
189

DynamiTe: Dynamic Termination and Non-termination
Proofs

TON CHANH LE, Stevens Institute of Technology, USA

TIMOS ANTONOPOULOS, Yale University, USA

PARISA FATHOLOLUMI, Stevens Institute of Technology, USA

ERIC KOSKINEN, Stevens Institute of Technology, USA

THANHVU NGUYEN, University of Nebraska, Lincoln, USA

There is growing interest in termination reasoning for nonlinear programs and, meanwhile, recent dynamic

strategies have shown they are able to infer invariants for such challenging programs. These advances led

us to hypothesize that perhaps such dynamic strategies for nonlinear invariants could be adapted to learn

recurrent sets (for non-termination) and/or ranking functions (for termination).

In this paper, we exploit dynamic analysis and draw termination and non-termination as well as static and

dynamic strategies closer together in order to tackle nonlinear programs. For termination, our algorithm infers

ranking functions from concrete transitive closures, and, for non-termination, the algorithm iteratively collects

executions and dynamically learns conditions to refine recurrent sets. Finally, we describe an integrated

algorithm that allows these algorithms to mutually inform each other, taking counterexamples from a failed

validation in one endeavor and crossing both the static/dynamic and termination/non-termination lines, to

create new execution samples for the other one.

We have implemented these algorithms in a new tool called DynamiTe. For nonlinear programs, there

are currently no SV-COMP termination benchmarks so we created new sets of 38 terminating and 39 non-

terminating programs. Our empirical evaluation shows that we can effectively guess (and sometimes even

validate) ranking functions and recurrent sets for programs with nonlinear behaviors. Furthermore, we show

that counterexamples from one failed validation can be used to generate executions for a dynamic analysis

of the opposite property. Although we are focused on nonlinear programs, as a point of comparison, we

compareDynamiTe’s performance on linear programs with that of the state-of-the-art tool, Ultimate. Although

DynamiTe is an order of magnitude slower it is nonetheless somewhat competitive and sometimes finds

ranking functions where Ultimate was unable to. Ultimate cannot, however, handle the nonlinear programs in

our new benchmark suite.

Supplemental Materials. Our materials are available at https://github.com/letonchanh/dynamite.

CCS Concepts: • Software and its engineering → Software verification; Dynamic analysis; Formal
software verification; • Theory of computation→ Invariants; Program analysis.

Additional Key Words and Phrases: dynamic analysis, termination, non-termination

ACM Reference Format:
Ton Chanh Le, Timos Antonopoulos, Parisa Fathololumi, Eric Koskinen, and ThanhVu Nguyen. 2020. Dyna-

miTe: Dynamic Termination and Non-termination Proofs. Proc. ACM Program. Lang. 4, OOPSLA, Article 189
(November 2020), 30 pages. https://doi.org/10.1145/3428257

Authors’ addresses: Ton Chanh Le, Stevens Institute of Technology, USA, letonchanh@gmail.com; Timos Antonopoulos,

Yale University, USA, timos.antonopoulos@yale.edu; Parisa Fathololumi, Stevens Institute of Technology, USA, pfatholo@

stevens.edu; Eric Koskinen, Stevens Institute of Technology, USA, eric.koskinen@stevens.edu; ThanhVu Nguyen, University

of Nebraska, Lincoln, USA, tnguyen@cse.unl.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/11-ART189

https://doi.org/10.1145/3428257

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 189. Publication date: November 2020.

https://github.com/letonchanh/dynamite
https://doi.org/10.1145/3428257
https://doi.org/10.1145/3428257

189:2 T. C. Le, T. Antonopoulos, P. Fathololumi, E. Koskinen, T. Nguyen

1 INTRODUCTION
Termination continues to be an important theoretical property that is of practical interest. In recent

years, there has been a proliferation of termination and non-termination verification tools, including

T2 [Brockschmidt 2020], Ultimate [Ultimate 2020], CPAchecker [Beyer and Keremoglu 2011],

AProVE [Giesl et al. 2014], FuncTion [Urban 2015], SeaHorn [Gurfinkel et al. 2015], HipTNT+ [Le

et al. 2015], and many others (see the Termination track of SV-COMP [Beyer 2020]). These tools

are very effective at proving termination and non-termination, especially for programs with linear

arithmetic assignments and loop guards [Podelski and Rybalchenko 2004a].

Meanwhile, researchers are increasingly using techniques based on dynamic execution, to bolster

static verification. Static analysis explores all possible program paths but typically has one or more

shortcomings: expressivity sacrifices, false positives, simpler invariants or restrictions on kinds of

target programs. Dynamic analysis focuses on exploring only a few program executions and, as

such, also has its own shortcomings: it is only correct with respect to the explored paths. However,

by (initially) sacrificing soundness, dynamic analyses support more expressive invariants and scale

well to large and complex programs (see, e.g., [O’Hearn 2020]), often being effective even when the

source code is not available. Moreover, false positives for the existence of a bug are not a concern:

if any of the explored paths leads to an error, then it is a real error. More recent dynamic analyses

have taken a “data-driven” or machine learning approach, i.e., learning based on training data.

DIG [Nguyen et al. 2014a] and [Yao et al. 2020] use this form of dynamic analysis to learn invariants

of nonlinear programs. Moreover, other recent works combine both dynamic and static analysis

techniques in an iterative loop, sometimes for the purpose of termination reasoning [Nori and

Sharma 2013]. The dynamic analysis component is used to “guess” some candidate results and the

static analysis one is used to verify them. The results of the checker, e.g., counterexamples showing

invalidity of the candidate results, are then used to help the dynamic analysis to infer better results.

Landscape. In the context of these recent advances that use dynamic support to learn invariants

of nonlinear programs, a natural question is whether they can be used or adapted to empower

termination and non-termination reasoning for such challenging programs. We explored in this

direction, asking first whether non-termination reasoning can be built from dynamic approaches

for nonlinear invariants, and then a similar question for termination. While these endeavors at first

seem independent and could potentially be parallelized, we finally explored smarter approaches,

where counterexamples from a failed termination proof could be used to generate executions for

dynamically learning non-termination, and vice-versa.

Learning ranking functions and recurrent sets. In this paper, we present algorithms that mix static

and dynamic strategies in order to prove termination and non-termination of nonlinear programs.

Overall, our strategy begins by sampling terminating and potentially non-terminating executions

from an instrumented program, with truncated divergence. We first present a novel termination

algorithm ProveT, which dynamically samples concrete states from the transitive closure of the

loop bodies of sampled traces, fits them to a ranking function template, and uses an SMT solver to

generate unknown coefficients in the template. We then attempt to validate these candidate ranking

functions (via reachability) and use any possible counterexamples to dynamically generate more

sample traces. A second ProveNT algorithm is used for non-termination, and iteratively refines

a recurrent set condition, by executing the program and using samples to learn conditions for

re-entering versus exiting the loop. We next widen the interfaces of these procedures and show

that these algorithms can inform each other. A failed attempt of ProveT to prove termination yields

a potentially infinite path, which we use to generate new executions to input to ProveNT, and

vice-versa.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 189. Publication date: November 2020.

DynamiTe: Dynamic Termination and Non-termination Proofs 189:3

We have implemented these algorithms in a new tool called DynamiTe for dynamically proving

termination and non-termination. DynamiTe employs the power of many disparate tools: the dy-

namic invariant inference tool DIG [Nguyen et al. 2014a], the symbolic execution tool CIVL [Siegel

et al. 2015], the reachability analysis tools CPAchecker [Beyer and Keremoglu 2011] and Ulti-

mate [Ultimate 2020] (without termination reasoning), and the SMT solvers Z3 [de Moura and

Bjørner 2008] and CVC4 [Barrett et al. 2011].

Our main goal is to prove termination and non-termination of nonlinear programs, a domain for

which many existing tools struggle. We evaluate DynamiTe on two existing benchmarks consisting

of nonlinear programs (polyrank [Bradley et al. 2005b], which has nondeterministic terminating

programs, and Anant [Cook et al. 2014], which has nonlinear non-terminating programs) and also

create and evaluate DynamiTe on more challenging nonlinear terminating and non-terminating

benchmarks (by adapting the SV-COMP benchmark nla-digbench [2020] consisting of programs

having nonlinear polynomial invariants). We show that DynamiTe is able to learn rich ranking

functions and recurrent sets for these programs that cannot be handled by tools like Ultimate. We

also show that the integrated algorithm can choose the right algorithm, ProveT or ProveNT or use

the counterexample from a failed proof to assist the other.

Although nonlinear programs were our focus, we also compared our algorithms on linear

programs against a state-of-the-art termination prover: Ultimate [Ultimate 2020]. We used the

62 benchmarks from the category termination-crafted-lit in SV-COMP 2020 and show that,

although DynamiTe is typically an order of magnitude slower (owing to the need for program

execution), it is nonetheless competitive with Ultimate, which is a much more mature tool. Also, in

some cases DynamiTe is faster than Ultimate and in other cases DynamiTe is able to learn ranking

functions, where Ultimate is unable to do so.

Contributions. In summary, we present:

(1) A novel termination algorithm, based on sampling concrete states from the transitive closure

and fitting to ranking function templates with SMT. (Section 4)

(2) A novel non-termination algorithm, based on refining recurrent sets with conditions learned

from dynamic executions of the program (Section 5).

(3) An integrated algorithm for termination and non-termination, that uses counterexamples

from one failed static validation attempt to generate executions for dynamic analysis of the

other. (Section 6)

(4) A new publicly available tool called DynamiTe [2020] for termination/non-termination of

nonlinear programs. (Section 7)

(5) Two new benchmark suites for SV-COMP: one for termination of nonlinear programs, and

one for non-termination of nonlinear programs. (Section 8)

(6) An experimental evaluation, demonstrating that DynamiTe is able to learn and sometimes

validate ranking functions and recurrent sets for nonlinear programs. (Section 8)

Related work. Similarly to DynamiTe, several existing works support programs with nonlinear

properties. Nori and Sharma [2013] show program termination by dynamically inferring (nonlinear,

disjunctive) loop bounds from program execution traces. Bradley et al. [2005b,c] use finite difference

trees to statically infer lexicographic polynomial ranking functions to prove termination of nonlinear

programs. For non-termination analysis, Cook et al. [2014] uses abstract interpretation to over-

approximate the nonlinear programs and infer linear recurrent sets to prove program termination.

Frohn and Giesl [2019] uses recurrence solvers to generate loop-free transitions so that paths

to non-terminating loops can be discovered. In contrast, DynamiTe integrates existing dynamic

invariant generation and static verification for dynamically analyze both program termination and

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 189. Publication date: November 2020.

189:4 T. C. Le, T. Antonopoulos, P. Fathololumi, E. Koskinen, T. Nguyen

non-termination from their concrete snapshots, and it can analyze many other programs that are

not by these works (details in Sections 8 and 9). Also, DynamiTe can analyze termination properties

for nondeterministic programs (similarly to [Bradley et al. 2005b,c; Nori and Sharma 2013], but it

currently cannot handle non-termination for nondeterministic programs (see Sections 3, 5 and 8.3

for additional discussion and evaluation). In Section 9 we discuss these works and other general

termination and non-termination techniques in more details.

2 OVERVIEW

int a = 0, n = *;

while ((a+1) * (a+1) <= n):

a = a + 1

Consider the program to the right. In the loop body of this

program, a is incremented by 1, and the loop terminates

when the square of a+1 is no longer below n. While the

termination of this program is intuitively obvious, existing tools (e.g. Ultimate, AProVE, SeaHorn)
are unable to prove it to be terminating because it requires reasoning about the nonlinear behavior of

program variables. Proving termination here involves discovering a ranking function that pertains

to variables occurring in a quadratic inequality in the loop condition. As we discuss below, examples

like this and more complicated ones with polynomial expressions, foil many existing techniques

that are based on linear arithmetic constraints. One major impediment appears to be the lack of

static reasoning techniques for programs with such nonlinear behaviors. Some static works have

shown static termination reasoning for certain classes of nonlinear programs (e.g. “NAW loops”

[Babić et al. 2007], loops with finite difference trees [Bradley et al. 2005b,c]), and other works

provide static resource bounds [Gulwani 2009; Gulwani et al. 2009; Hoffmann et al. 2011; Hoffmann

and Hofmann 2010a,b], but still lack general techniques for termination and non-termination of

these challenging programs.

Meanwhile, in recent years, a number of works have showed that dynamic analysis can be used

to learn rich, nonlinear invariants. Nguyen et al. [2012] showed that we can use dynamic analysis

to learn expressive (nonlinear) polynomial invariants from a small set of program execution traces.

Subsequent works [Nguyen et al. 2017a,b] propose iterative loop algorithms to generate candidate

invariants from traces and use symbolic execution to refute spurious results and generate valid

counterexamples, which are then used to improve the invariant generation process. Many other

works, e.g., [Nguyen et al. 2014b; Sharma et al. 2013], combine inferring nonlinear invariants with

static checking. Recently, Yao et al. [2020] proposes using neural networks to learn nonlinear

invariants.

2.1 Learning ranking functions and recurrent sets
In this paper, we explore the question of whether techniques for nonlinear invariants can be

extended to reasoning about both termination and non-termination and do so in an integrated way.

We begin by adapting earlier dynamic analysis works, to provide a new route for learning ranking

functions and recurrent sets. To highlight and illustrate the key features of our work, we will use

the following pair of slightly more complicated examples. The following two programs are similar,

but one terminates and the other does not:

Termination Non-Termination
1 int s = 1, t = 1, k, c = 1

2 while (t*t - 4*s + 2*t + 1 + c <= k):

3 t = t + 2

4 s = s + t

5 c = c + t

1 int s = 1, t = 1, c = 1

2 while (t*t - 4*s + 2*t + 1 + c >= 0):

3 t = t + 2

4 s = s + t

5 c = c + t

These examples are based on sqrt1.c from the SV-COMP benchmark nla-digbench [2020]. (We

discuss how we adapted it in Section 8.) Both of these programs involve loop conditions that

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 189. Publication date: November 2020.

DynamiTe: Dynamic Termination and Non-termination Proofs 189:5

are nonlinear, given the quadratic term t*t in them. For illustration purposes, the body of both

programs is the same, and it is not difficult to see by induction that the subexpression t*t - 4*s +

2*t + 1 in both loop conditions is always equal to 0.

In the program on the left, the loop condition is essentially equivalent to c <= k for all reachable

states in the program. Given that k is initialized to a nondeterministic value and unchanged and t

is always positive, and thus c is always increasing up to k and the execution will eventually exit

the loop. This reasoning is usually captured with ranking functions: a map from every state to

an ordered element where a transition in the program between states implies a transition from

an element to a strictly smaller in that order element. Moreover, such an order is chosen to not

be forever decreasing, and thus there cannot be an infinite sequence of states with valid program

transitions between them. In this case such a function would be the one that maps every state to

the value of k-c. It is the aim of our algorithm to synthesize this function and we describe in the

following paragraphs how this is achieved.

In the program on the right, the loop condition is now essentially c >= 0 for all reachable states

of the program, which holds trivially since c is initialized to 1 and always increasing. To show

non-termination, a recurrent set is usually constructed: by abstracting the loop body in a relation

Tloop, a set X of states is collected such that for any state s in that set, and any other state s ′ we
can transition to from s , it is the case that s ′ is also in X . The existence of such a set that contains

reachable states implies that the program is non-terminating at least in some cases.

The above examples reiterate the point that, even for simple nonlinear programs, the necessary

reasoning evades existing termination and non-termination tools, many of which are based on

linear arithmetic constraint solving [Gurfinkel et al. 2015; Podelski and Rybalchenko 2004a].

Dynamic snapshots for termination/non-termination. In this paper, we work in a direction that is

based on learning from dynamically generated program traces, for guessing (and possibly validating)

ranking functions and recurrent sets for examples such as those above. To this end, we begin by

describing a simple mechanism for collecting traces which may or may not terminate. Tools for

dynamic analysis typically take “snapshots” of the state of the program to record trace information.

These snapshots may record the values of some/all variables, as well as the program location and

there are many techniques for injecting snapshots.

In the case of termination, though, there is the additional challenge of recording snapshots of a

loop that may run forever. Our solution is to break the loop so that potentially infinite executions

are truncated, and then we can learn about those prefixes and try to characterize the ones that

would have terminated versus those that would not have. We can truncate loops by introducing

a counter. Counter instrumentation is common in other kinds of static analysis [Gulwani 2009;

Gulwani et al. 2009; Hoffmann et al. 2011; Hoffmann and Hofmann 2010a,b], but here we use it to

truncate executions.

1 int s = 1, t = 1, c = 1

2 int _ctr = 0, _bnd = 500

3 vtracepre(s,t,c)
4 while (t*t - 4*s + 2*t + 1 + c >= 0):

5 if (_ctr >= _bnd) abort() else _ctr++

6 vtracebody(s,t,c)
7 t = t + 2

8 s = s + t

9 c = c + t

10 vtracepost(s,t,c)

Using the above non-termination example, our

transformation generates the program on the

right, where changes are indicated in the gray

boxed regions. Technically, these changes are

made to every loop of the program, but for il-

lustrative purposes in the section we will just use

one loop. Our transformation begins by introduc-

ing a pair of variables for the loop. The variable

_ctr is used to count the loop’s iterations, and

_bnd is an input to the dynamic analysis, whose value is pragmatically chosen to determine a useful

prefix of potentially non-terminating traces. As such, _ctr is incremented inside the loop body and

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 189. Publication date: November 2020.

189:6 T. C. Le, T. Antonopoulos, P. Fathololumi, E. Koskinen, T. Nguyen

when it reaches _bnd, control exits the loop if it hasn’t already. Next, we inject function calls to a

method vtrace in three places: before (vtracepre), during (vtracebody), and after (vtracepost) the
loop. In each location, vtrace is used to record the values of the variables in scope as a tuple such

as (body, s = 1, t = 1, c = 1), which we call a “snapshot”. It should be noted that vtracepost only
captures values for states that exited the loop due to natural causes.

This truncation and instrumentation permits us to distinguish between three classes of traces:

π̄base = {(pre, _) · (post, _)}, π̄term = {(pre, _) · (body, _)
+ · (post, _)}, π̄mayloop = {(pre, _) · (body, _)

+}

Above we have described the classes of traces using simple regular expressions, matching the first

component of the tuple, and ignoring the values of variables. Technically, by these expressions, we

mean the set of all traces that match the regular expression. The first set of traces π̄base are those
that have a snapshot before the loop, skip the loop entirely and then have a snapshot immediately

after the loop. The second set π̄term is similar but has at least one snapshot from inside the body

of the loop. The third set π̄mayloop includes traces that entered the loop but for which there is no

post-loop snapshot. (Of course the union of these languages covers the language of the program.)

This transformation is unsound because (i) it does not account for loop body states beyond _bnd,

and (ii) executions may be forced to exit the loop before their day has come to do so. However,

as we will see, this strategy collects rich data that enables us to start making guesses for ranking

functions and recurrent sets, even in nonlinear contexts such as this example.

2.2 Algorithms
Learning ranking functions for termination. In Section 4, we present an algorithm beginning with:

(1) Instrumenting the program as discussed above.

(2) Generating random inputs to the program and collect traces (as in [Nguyen et al. 2012,

2014a]).

(3) Partitioning traces into (π̄base, π̄term, π̄mayloop).
(4) Using π̄term as an input to subprocedure InferRF(π̄term), discussed below, to infer a ranking

function from the data.

For the above Termination example, such a possible trace is: {(pre, 1, 1, 42, 1), (body, 1, 1, 42, 1),
(body, 4, 3, 42, 4), (body, 9, 5, 42, 9), . . .} ∈ π̄term, where each tuple represents variables (_,s,t,k,c).

Running DynamiTe on this example takes 7.55 seconds to produce an answer. By comparison,

existing tools for termination [AProVE 2020; CPAChecker 2020; Gurfinkel et al. 2015; Ultimate

2020] typically perform well on linear programs, but fail to produce an answer on this program.

The output of InferRF is the ranking function expression k-c. In some cases this guess may already

be useful, even though it has not been verified. A user may wish to examine it and, in this case, it

appears to be correct. If a stronger guarantee is needed, this ranking function can be given to a

safety reachability prover such as (the reachability analyses of) CPAChecker [2020] or Ultimate

[2020]. For example, using a standard translation [Cook et al. 2006], we can use an encoding that

reduces ranking function validity checking to reachability. In this example, Ultimate’s reachability

reasoning can verify that k-c is a valid ranking function after 167 seconds.

In some cases, however, InferRF guesses incorrectly and returns a ranking function that is

invalid. In these cases, a reachability solver may return a counterexample, which contains valuable

information: a stem (path to the loop) and lasso (cycle through the loop body) that potentially non-

terminates. In Section 4we describe a sub-procedure GuessInput(cex) that uses this counterexample

to guide the generation of new program inputs that can lead to a trace corresponding to this stem

and lasso.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 189. Publication date: November 2020.

DynamiTe: Dynamic Termination and Non-termination Proofs 189:7

Our algorithm is parametric over the procedure InferRF for inferring ranking functions from

trace samples. In Section 4 we give one strategy that is based on taking samples from the transitive

closure over the trace snapshots and then fitting them to a template, using models of the well-

foundedness constraints from an SMT solver to generate unknown coefficients of the template. The

output ranking functions can be seen in Section 8.

Learning recurrent sets for non-termination. For non-termination, the goal is to guess a recurrent
set, which is a set of states X , such that once X is reached, every subsequent transition will return

to X . (We will define this formally later.) We begin by instrumenting the program but, unlike the

termination algorithm, we instead use a form of iterative refinement to learn recurrent sets. For

each loop, our overall algorithm keeps a work-list of candidate recurrent sets, starting by using the

loop condition itself as the first candidate recurrent set. On each iteration, we select such a candidate

recurrent set and check whether it is a valid recurrent set and reachable. If so, the algorithm has

proven non-termination and returns. Otherwise, we have a model witness to the invalidity of the

recurrent set which can be used for its refinement.

When R is not a recurrent set, our procedure RefineRS(R, P ,Tstem,Tloop) attempts to learn a

refined set from traces of the program. RefineRS uses the reason for the invalidity of R to generate

a set of traces Π of the instrumented/truncated program. These traces are then used to learn

conditions that lead to refined candidate recurrent sets. These refined candidate recurrent sets are

then returned to the outer algorithm for further validity checking.

From failed validation to dynamic learning. A failed proof of static termination can be used to

inform a dynamic non-termination proof and vice-versa. We discuss how our algorithms can be

integrated together in an algorithm called ProveTNT, described in Section 6. The key idea is to

additionally parameterize ProveT (respectively, ProveNT) by a set of input traces, which are derived

from a failed ProveNT (resp., ProveT) attempt. These concrete traces contain useful data: examples

of where the program appears to terminate or appears to diverge, and can immediately be used to

guess ranking functions or recurrent sets.

2.3 The DynamiTe Tool
We have developed DynamiTe for dynamically guessing (and statically validating) rank functions

and recurrent sets. The tool is publicly available at [DynamiTe 2020]. DynamiTe is written in a com-

bination of Python and OCaml, the latter used mostly for program transformations (instrumentation

and ranking function validity checking) with CIL [Necula et al. 2002].

DYNAMITE

CIL
Instrument

ProveT

Z3 / CVC4

CIVL

ProveNT

DIGUltimate /
CPAChecker

cex’s

ra
nk

in
g

fu
nc

tio
ns

loop conds /
transition rels

loop loop

in
va

ria
nt

s

snapshots

SAT m
odels

fo
rm

ul
ae

C
program
source

Instru-
mented
program

Fig. 1. Tools used in DynamiTe.

DynamiTe takes advantage of sev-

eral existing dynamic, symbolic, and

static analysis techniques and tools as

shown in Fig. 1. The two main algo-

rithms to check for termination and non-

termination mentioned above are the

two blocks labeled ProveT and ProveNT,

respectively. As shown in the figure,

ProveT uses the two tools Ultimate and

CPAchecker to verify the inferred rank-

ing functions and obtain counterexam-

ples to improve the inference process. On

the other hand, ProveNT uses the CIVL

symbolic execution tool to obtain pro-

gram information such as loop condi-

tions and transition relations, the DIG

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 189. Publication date: November 2020.

189:8 T. C. Le, T. Antonopoulos, P. Fathololumi, E. Koskinen, T. Nguyen

dynamic invariant generation tool to infer invariants from snapshot traces in order to represent and

refine recurrent sets. DynamiTe also uses the Z3 and CVC4 SMT solvers to check if the candidate

recurrent sets are valid and if not obtains counterexamples to refine DIG’s inference process.

Our algorithms can work with programs containing sequential and/or nested loops. Our program
transformation puts each loop into a separate method and replaces the loop by a call to that method.

We then build a call graph of those methods and extract a postorder call sequence from it. We

analyze each loop at a time in that order, i.e., the top-down innermost loop will be examined first.

We proceed to the next loop in the sequence only when we have learned that the current loop

is terminating. Otherwise, we conclude that the whole program does not terminate due to the

non-termination of the current loop.

Our main goal in this paper is to develop integrated termination/nontermination algorithms that

exploit dynamic analysis to support nonlinear programs. However, we also evaluate how DynamiTe

performs on linear examples. To this end, we evaluated DynamiTe on the 66 benchmarks from

the SV-COMP termination-crafted-lit set of linear arithmetic termination and non-termination

problems collected from literature.We comparedDynamiTe to Ultimate, because it is one of the most

successful termination reasoning tools available. We report Ultimate’s proving time as compared

with DynamiTe’s guessing time and DynamiTe’s time to validate guesses. Details are in Section 8.

Overall, DynamiTe is roughly an order of magnitude slower than Ultimate on linear benchmarks,

owing to the fact that DynamiTe must repeatedly execute the program to collect data. Nonetheless,

it’s worth noting that Ultimate is a much more mature tool. In one case, DynamiTe was able to

learn a rank function that Ultimate could not. We also show that DynamiTe is competitive for

proving non-termination of linear programs, as compared to Ultimate’s ability to generate lasso

counterexamples to termination.

For the nonlinear case, there are two existing benchmarks: polyrank for termination and Anant

for non-termination. However, they only have at-most-quadratic polynomial programs and 10/11

programs in the polyrank benchmark are linear. To make (non)termination reasoning more chal-

lenging, we adapted the closely related SV-COMP digbench set of programs for nonlinear in-

variant generation problems to create two new sets of benchmarks called termination-nla and

nontermination-nla which we are submitting to SV-COMP. The set termination-nla consists of 37

terminating programs and nontermination-nla consists of 38 non-terminating programs, which

were created by adapting (up to sextic degree) nonlinear invariants in their loop conditions. Our

empirical evaluation shows that DynamiTe can discover and sometimes validate rank functions (in

35 of 37 cases) and recurrent sets (in 33 of 38 cases) for nonlinear programs, that are not supported

by Ultimate. (Ultimate returns an unsupported error message.)

3 PRELIMINARIES
We denote a program by P . We assume, for simplicity, that it has a single setV of variables. We will

sometimes use the notation V ′ to mean a second set of primed versions of the same variables, i.e.
V ′ = {v ′ | v ∈ V }, to describe transition relations. We denote by Σ set of states which we treat as

valuations of the variables V , i.e. Σ : V → Val . To represent conditions, we use logical formulae for

states, denoted C, where [[C]] : Σ→ B. We also work with logical state transition relations denoted
T , where [[T]] ⊆ Σ × Σ. T can also be presented in the form of logical formulae. As we describe

below, program loops can be summarized using these conditions and relations, in a standard way.

Definition 3.1 (Ranking functions). For a state space S , a ranking function f is a total map from S
to a well-ordered set with ordering relation ≺. A relation T ⊆ S × S is well-founded if and only if

there exists a ranking function f such that ∀(s, s ′) ∈ T . f (s ′) ≺ f (s).

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 189. Publication date: November 2020.

DynamiTe: Dynamic Termination and Non-termination Proofs 189:9

The existence of a ranking function over the transition relationT of a loop implies the termination

of that loop, as there can be no infinite sequence of states s0, s1, . . . such that T (si , si+1) holds for
every i ≥ 0. This is because for all i ≥ 0, f (si+1) ≺ f (si) and the sequence of states mapped under

f cannot be decreasing forever as the image of f is a well-order.

The termination of a loop with a transition relation T can also be proved by a finite set of

ranking functions (or measures)M = { f1, . . . , fm } by showing that the transitive closure of T is

contained in the disjunctively well-founded relation defined fromM [Podelski and Rybalchenko

2004b]. That is, T + ⊆ {(s, s ′) | f1 (s
′) ≺ f1 (s) ∨ . . . ∨ fm (s ′) ≺ fm (s)}.

This validity of the finite set of ranking functionsM for the loop’s termination can be checked via

proving safety of the following instrumented loop (i.e., the error is unreachable) [Cook et al. 2006].

This check can be performed by a reachability prover such as Ultimate [2020] or CPAchecker [Beyer

and Keremoglu 2011]. Below is an illustration for awhile loop, whose instrumentation code are put in

gray boxes. In this instrumented program, a state ŝ of the loop is arbitrarily recorded and then for any

_dup = False

while C:

if _dup:

if not (f1 (x̂1, ..., x̂n) > f1 (x1, ..., xn) and f1 (x̂1, ..., x̂n) ≥ 0):
. . .

if not (fm (x̂1, ..., x̂n) > fm (x1, ..., xn) and fm (x̂1, ..., x̂n) ≥ 0):
ERROR: skip

if not _dup and *:

x̂1 = x1; ...; x̂n = xn
_dup = True

B

subsequent state s , we check if

the transition (ŝ, s) satisfies at

least one ranking function inM.

A transition (ŝ, s) that does not
satisfy any ranking function in

M, indicates that the transitive

closure transition T + is not a

subset of the disjunctively well-

founded relation of M. In this

case, the error is reached and the

termination proof fails. Other-

wise, a safe program in which

the error is unreachable implies the loop’s termination.

Definition 3.2 (Recurrent set). For sets of states X and transition relation T , X is a recurrent set if

(1) X , ∅, (2) T is total on X , (3) the image of T on X is contained within X

The above notion of recurrent sets (i.e. “closed recurrent sets” in [Chen et al. 2014]) can help to

avoid the difficulty and inefficiency of reasoning the ∀∃ alternation in “open recurrent sets” [Gupta

et al. 2008], but it cannot support nondeterminism without under-approximation. Therefore, our

non-termination proofs are restricted to only deterministic programs. Finding under-approximation

of nondeterminism from concrete possibly-nonterminating snapshots to support non-termination

proofs of nondeterministic programs will be our future work. Note that such restriction does not

apply to our termination proofs.

Definition 3.3 (Loop summary). As is typical [Cook et al. 2006], we will describe loops in terms

of a triple (Tstem,Cloop,Tloop), where Tstem over-approximates the transition from the entrypoint of

the program up to the loop header, Cloop over-approximates the condition for entering the loop,

and Tloop over-approximates the transition through the entire body of the loop back to the header.

4 INFERRING RANKING FUNCTIONS FOR TERMINATION
The algorithm for proving termination is summarized as follows, and two of the main subprocedures

involved, ProveT and InferRF, are shown in Fig. 2.

ProveT. The procedure ProveT aims to prove the termination of a loop L in an instrumented

program Pinstr by inferring a set of ranking functions from a given set of terminating traces πterm.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 189. Publication date: November 2020.

189:10 T. C. Le, T. Antonopoulos, P. Fathololumi, E. Koskinen, T. Nguyen

1 ProveT(P, Pinstr, L, πterm):
2 rfset = { }

3 π̄mayloop = { }

4 while (True):

5 new_rfset = InferRF(πterm, L)
6 rfset = rfset ∪ new_rfset

7 if (IsUnchanged(rfset):

8 return (Unk, π̄mayloop)
9 else:

10 cex = ValidateRFs(P , rfset)

11 if (not cex):

12 return (, { })

13 else:

14 inps = GuessInputs(Pinstr, cex)

15 π = Execute(Pinstr, inps)

16 πL = Project(π , L)
17 πbase, πterm, πmayloop = Partition(πL, L)
18 π̄mayloop = π̄mayloop ∪ πmayloop

1 InferRF(πterm, L):
2 tcTrans = { }

3 for τL in πterm:
4 tcTrans = tcTrans ∪ GenTCTrans(τL)
5 rfTemplate = GenRFTemplate(L)
6 rfset = { }

7 while not IsEmpty(tcTrans):

8 (s1, s2) = RandPop(tcTrans)

9 t1 = rfTemplate(s1)
10 t2 = rfTemplate(s2)
11 rf = Solve(rfTemplate , {t1 > t2, t1 ≥ 0})
12 rfset = rfset ∪ {rf }

13 tcTrans.filter(t: NotSatisfied(t, rf))

14 return rfset

Fig. 2. Algorithm ProveT for proving Termination, aided by dynamic inference of candidate ranking functions.

(We discuss how Pinstr is built from P in Section 2 and formalize it in Section 7.) The procedure

returns either the result Term when the termination proof is successful or otherwise, returns

Unk with a set of “possibly non-terminating” traces π̄mayloop as a counterexample. Initially, the

counterexample π̄mayloop and the set of ranking functions rfset are initialised to be empty. The

procedure then enters a loop until a valid set of ranking functions is found or until no progress is

made when updating the set of ranking functions. Starting with the set of terminating traces πterm,
the subprocedure InferRF is called to produce a set of ranking functions that attempts to cover

those traces in πterm. The details for this subprocedure is given in the next paragraph. The current

set of ranking functions rfset is updated to include the resulting set of ranking functions (new_rfset)

from InferRF. The loop in ProveT exits if no new ranking functions were added. Otherwise, the

updated set of ranking functions rfset is validated against the original program P via a reachability

prover (as is standard [Cook et al. 2006]). If the prover returns no counterexample, which means the

validation is successful, ProveT returns Term indicating that the loop L is terminating (via the set of

ranking functions rfset). On the other hand, if a counterexample to the set of ranking functions is

found, then a new set of inputs is generated. The given program is executed on those new inputs

and a set of concrete traces from these executions (π) is collected. These traces are then projected

into the locations of interest in the loop L. That is, for each trace τ ∈ π , the projection returns a

sequence of states τL , comprising the state right before the loop, the states reached inside the loop,

right after the loop header, and the state at the loop’s exit. Subsequently, the set of these sub-traces

(πL) are partitioned on whether they never enter the loop’s body (πbase), whether they terminate

(πterm), and whether they reach the instrumented bound of iterations before terminating, and as

such are classified as “possibly non-terminating” (πmayloop). Finally, the traces in πmayloop are added
into the counterexample π̄mayloop and the procedure repeats the above steps with the new set of

terminating traces πterm.

InferRF. This sub-procedure first generates a random sample of pairs of snapshots from the

transitive closure of the concrete transition relation as follows. For each terminating trace τL ∈ πterm,
with an implicit order of appearance in the trace τL present, all combinations (σ1,σ2) of the states
σ1,σ2 ∈ τL are generated, restricted so that σ1 appears before σ2 in τL . The set of these combinations

is randomly shuffled into a list, and the first K pairs are selected, with K being a predefined value

for the desired size of the sample. All these samples from each trace τL are aggregated into the set

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 189. Publication date: November 2020.

DynamiTe: Dynamic Termination and Non-termination Proofs 189:11

1 ProveNT(Pinstr, L, πmayloop):
2 (Tstem, Cloop, Tloop) = GetLoopInfo(Pinstr, L)
3 Cmayloop = DynInfer(πmayloop)
4 # stack of candidate recurrent sets

5 stack S = {(0, Cloop), (0, Cmayloop) }
6 π̄term = { }

7

8 while not IsEmpty(S):

9 (depth , R) = Pop(S)

10 if (depth >UPPERBOUND or R (V̄) ≠⇒ Cloop (V̄)):
11 continue;

12 if IsValid(R (V̄) ∧ Tloop (V̄ , V̄ ′) =⇒ R (V̄ ′)):
13 if IsSat(Tstem (V̄0, V̄) ∧ R (V̄)):
14 return (NonTerm, { })

15 else:

16 RS, πterm = RefineRS(R, Pinstr, L, Tstem, Tloop)
17 π̄term = π̄term ∪ πterm
18 for R′ in RS :
19 S.push((depth + 1, R′))
20 return (Unk, π̄term)

1 RefineRS(R, Pinstr, L, Tstem, Tloop):
2 R as

∧
i Ri

3 RS = { }
4 π̄term = { }

5 for Ri in R:
6 ri = (R (V̄) ∧ Tloop (V̄ , V̄ ′) =⇒ Ri (V̄ ′))
7 if IsSat(¬ri):
8 inps = GuessInputs(Tstem (V̄0, V̄) ∧ ¬ri (V̄ , V̄ ′)
9 π = Execute(Pinstr, inps)

10 πL = Project(π , L)
11 πbase, πterm, πmayloop = Partition(πL, L)
12 Cterm = DynInfer(πterm)
13 Cmayloop = DynInfer(πmayloop)
14 π̄term = π̄term ∪ πterm
15 Cterm as

∧
i Ci

16 for Ci in Cterm:

17 RS = RS ∪ {R ∧ ¬Ci }
18 RS = RS ∪ {Cmayloop }
19 return (RS, π̄term)

Fig. 3. Algorithm ProveNT for proving Non-termination, aided by dynamic inference of recurrent sets.

tcTrans. The subprocedure InferRF also generated a ranking function template, which is of the

form u0 + u1 · v1 + u2 · v2 + . . .un · vn for the set of variables {v1, . . . ,vn } in the loop L and the

unknown coefficients u0,u1 . . . ,un .
While the set tcTrans is non-empty, an element (s1, s2) is randomly popped, and two instances

t1, t2 of the template are produced for the two respective states s1 and s2. Given the valuation

{hi1, . . . ,h
i
n } of the set of variables {v1, . . . ,vn } in the state si , for i ∈ {1, 2}, the instance ti is of

the form u0 + u1 · h
i
1 + u2 · h

i
2 + . . .un · h

i
n . The solver from Z3 is then asked to return values for

u0, . . . ,un that satisfy the constraints

u0 +
∑

1≤j≤n uj · h
1
j > u0 +

∑
1≤j≤n uj · h

2
j , and u0 +

∑
1≤j≤n uj · h

1
j ≥ 0,

while minimizing the value of

∑
0≤j≤n |uj |. The resulting solution of values for u0, . . . ,un is added

as a candidate ranking function to the set rfset of accumulated ranking functions. Any pair of states

(s1, s2) from the random sample of trasitive closure of the transition relation that was constructed

earlier, that satisfies the latter candidate ranking function is removed from that sample, and the

procedure continues with the remaining ones.

Correctness. Sub-procedure InferRF terminates since at each iteration of the loop we remove at

least one of the pairs (s1, s2) from tcTrans (line 8 of InferRF), but possibly more (line 13 of InferRF).

By construction, each ranking function returned by InferRF handles at least one of the pairs (s1, s2)
in tcTrans. Such a candidate ranking function is only returned by ProveT if it is validated on P by

a reachability solver. On the other hand, it is not guaranteed that ProveT will terminate. Because

the traces are dynamically generated, and because the transitive closure is sampled randomly, a

newly inferred candidate ranking function could potentially only handle few of the possible pairs

of states in the actual transitive closure of the loop body. As a result, a new ranking function may

be added to the set of possible ranking functions continuously (see line 6 of ProveT).

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 189. Publication date: November 2020.

189:12 T. C. Le, T. Antonopoulos, P. Fathololumi, E. Koskinen, T. Nguyen

5 INFERRING RECURRENT SETS FOR NON-TERMINATION
The algorithm ProveNT for proving non-termination is given in Fig. 3. The input is an instrumented

program Pinstr, the loop L currently being analysed, and a set πmayloop of traces that may be non-

terminating. The procedure outputs either that a recurrent set was found (NonTerm), or that such a

recurrent set was not found (Unk) together with a set of traces that were found to be terminating.

The algorithm is aided by a dynamic sub-procedure RefineRS for guessing candidate recurrent

sets, which are then validated.

ProveNT begins by collecting summaries for the loop L in P . We use standard techniques [Cook

et al. 2006] to represent L in terms of three entities:

• Tstem is a state relation that over-approximates the transition from the entry point of the

program up to the entry point of loop L.
• Cloop is a state predicate that over-approximates the condition for entering the loop.

• Tloop is a state relation that over-approximates all transitions from the beginning of the body

of the loop, back to the loop header.

An illustration of these entities is given in Fig. 4. The algorithm is structured using a stack S as a work

list, tracking candidate recurrent sets that will later be examined and possibly refined. To begin with,

we ambitiously select Cloop to be the first candidate recurrent set. The stack element also includes

an integer 0, to track the exploration depth, so that we can later bound the search. We also add

the condition Cmayloop into the work list S, which is dynamically inferred from the set πmayloop of
possibly non-terminating traces received from a failed termination proof.

fun(int x, int y):

 y = 2*y

 x = x + 5

 while(x < y):

 x = x + 2

 y = y - x

Cloop = {(x, y) | x < y}

}

Tloop = {(x, y), (x′, y′) | x < y ∧
x′ = x+ 2 ∧
y′ = y − x}

Tstem = {(x, y), (x′, y′) | x′ = x+ 5 ∧
y′ = 2 ∗ y}

}

Fig. 4. Illustration of Tstem, Cloop and Tloop

The main loop iterates as long as S is non-

empty and no valid recurrent set was found.

Popping a candidate R off the stack, if we have

gone beyond some upper bound, then we sim-

ply ignore R rather than exploring further re-

finements of R. R is also ignored if it doesn’t

even imply the loop condition: it could not

be a recurrent set. We next use an SMT query

IsValid to check whether R is indeed a recur-

rent set, i.e., Definition 3.2: if R holds of variables V̄ , and a loop body transition to V̄ ′ is possible, then
R must hold of V̄ ′. If R is a recurrent set, then we check that at least some state in R is reachable

from an initial state, using Tstem, and if it is we have succeeded in proving the program to be

non-terminating. Alternatively, if R is not a recurrent set, we explore further by refining R, with
respect to this loop, using subprocedure RefineRS discussed below. This subprocedure also collects
any terminating traces found during the refinement. Such terminating traces are evidence that the

program is terminating, and thus useful for the case where non-termination fails to be proved and

the algorithm switches to proving termination.

RefineRS. This subprocedure, shown in Fig. 3, takes as input the current candidate recurrent

set R with respect to the loop L and returns a set of new candidate recurrent sets RS . The input
recurrent set R is assumed to be a conjunction of {Ri }i≤k , for some k ∈ N, and it is known that R is

not a recurrent set for the transition relation Tloop. As such there are two states σ and σ ′ (i.e. two
valuations of the set of variables V̄), for which the formula on the left does not hold:∧

i≤k Ri (σ) ∧ Tloop (σ ,σ
′) =⇒

∧
i≤k Ri (σ

′) ri =
∧

i≤k Ri (σ) ∧ Tloop (σ ,σ
′) =⇒ Ri (σ

′)

Therefore, for at least one of the i ≤ k , the formula on the right does not hold. The candidate recur-

rent set R is updated for each such Ri as described next. The algorithm proceeds via GuessInputs
using SMT to generate solutions V̄0 to the formula ∃V̄ , V̄ ′ Tstem (V̄0, V̄) ∧¬ri (V̄ , V̄

′), which are used

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 189. Publication date: November 2020.

DynamiTe: Dynamic Termination and Non-termination Proofs 189:13

as inputs to execute Pinstr. Informally, these inputs are witnesses to a path, via Tstem, from the initial

state to a state on which the recurrent set fails. After the program is executed using the resulting

inputs inps and a set of traces is produced as a result. The traces are first projected—to include the

instrumented information regarding only the loop L being analyzed—and then partitioned into: the

traces πbase that never enter the loop, traces πterm that definitely terminate, and traces πmayloop that
may be non-terminating, as the execution for the latter reached the imposed loop bound. It should

be noted that, since any candidate R implies Cloop, if the program is deterministic, and assuming

soundness of the preceding subprocedures, then the inputs inpswill not cause any traces that never

enter the loop to be generated, and thus πbase will be empty. Traces πterm are used to dynamically

infer a condition Cterm that captures the set of states reached right after the loop header by those

terminating traces and a similar condition Cmayloop is inferred using πmayloop. The accumulating

set π̄term is updated to include πterm and the recurrent set RS is then updated as follows. For every

conjunct Ci of Cterm, RS is updated to include the strengthened candidate recurrent set R ∧ ¬Ci
in which any states in Ci that is possibly in a terminating trace is excluded from the candidate.

The condition Cmayloop is also included as a new candidate recurrent set since it captures all states

that are in possibly non-terminating traces. At the end, the procedure RefineRS returns the set of

candidate recurrent sets constructed, together with any terminating traces accumulated in π̄term.
Consider the example to the right with nonlinear expressions to illustrate how ProveNT and

RefineRS works. The summary of this loop is: Tstem = true, Cloop = t ≤ n2 + 1, and

int t, n, m

while (t <= n*n + 1):

t = t + 2*m

n = n + 1

Tloop = t ≤ n2+1∧ t ′ = t +2m∧n′ = n+1∧m′ =m. The procedure

ProveNT first uses the loop condition t ≤ n2 + 1 as a candidate

recurrent set and checks if the implication t ≤ n2 + 1 ∧ Tloop =⇒
t ′ ≤ n′2+1 is valid. As this is not the case, ProveNT invokes RefineRS
on this invalid recurrent set to refine it. Then RefineRS finds a set
of inputs over the variables (t ,n,m) that invalidate the implication,

such as {(29,−6,−1), (13,−4, 0), (1, 0, 1), (1,−1, 2), (0, 0, 3), (1, 1, 4), . . .}. The program execution

over these inputs produces only terminating traces and a dynamic invariant inference tool, like

DIG [Nguyen et al. 2012, 2014a], can generate the conditionm ≥ −1 from the snapshots at the

beginning of the loop’s body in those traces. This possibly terminating condition (see Cterm in

RefineRS) is used to refine the current candidate into a new one t ≤ n2 + 1 ∧ ¬(m ≥ −1).
Unfortunately, this new candidate recurrent set is still invalid and RefineRS generates a new set

of inputs from its validity check, that is {. . . , (78,−9,−5), (26,−5,−4), (24,−5,−3), (15,−4,−2)}.
Again, all these inputs lead to terminating traces, fromwhich a new conditionn ≤ m−1∧m ≤ −2 can
be dynamically inferred. From this new condition, RefineRS returns two new candidate recurrent

sets by strengthening the current candidate t ≤ n2 + 1 ∧ ¬(m ≥ −1):
(1) t ≤ n2 + 1 ∧ ¬(m ≥ −1) ∧ ¬(n ≤ m − 1), and
(2) t ≤ n2 + 1 ∧ ¬(m ≥ −1) ∧ ¬(m ≤ −2).

Finally, the procedure ProveNT determines that the new candidate (1) is a valid recurrent set and

returns the result NonTerm.

DynInfer. We use dynamic invariant inference to guess conditions from terminating traces and

potentially non-terminating traces which are then used to refine the invalid candidate recurrent

sets. Dynamic invariant generation works, pioneered by the tool Daikon [Ernst et al. 2001, 2007],

learns candidate invariants from program execution traces and templates (e.g., equalities, inequal-

ities). Recent works in dynamic invariant generation are capable of generating very expressive

invariants (e.g., nonlinear invariants). In addition, many works integrate dynamic inference with

static checking to remove spurious invariants. We use the DIG [Nguyen et al. 2012, 2014a] tool to

infer numerical invariants from traces. DIG supports nonlinear equations as well as several other

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 189. Publication date: November 2020.

189:14 T. C. Le, T. Antonopoulos, P. Fathololumi, E. Koskinen, T. Nguyen

forms of inequalities such as octagonal invariants and max/min-plus invariants. DIG reduces the

problem of nonlinear equation solving to linear equation and ussing terms to represent nonlinear

polynomials and uses linear constraint solving to find octagonal and max/min-plus invariants. In

addition, DIG implements a counterexample-guided invariant generation technique that iteratively

infer candidate invariants from program traces and check them using symbolic execution, which,

for incorrect invariants, returns counterexamples that are used as traces to help DIG infer better

results in the next iteration.

5.1 Correctness
ProveNT. For correctness of the algorithm ProveNTwe aim to show that if its output is (NonTerm, {})

then there is at least one execution of the program P , that leads to a non-terminating execution of

the loop L at hand. For what follows, we assume that

(1) for any state that satisfies Cloop, there is a valid transition from that state in the program P ,
(2) Tstem is an exact representation, or at worst an under-approximation, of the transition from

the entrypoint to the loop header, and

(3) Tloop is an exact representation, or at worst an over-approximation, of the loop body transition.

The procedure ProveT will declare that the input loop is non-terminating only when both

IsValid(R (V̄) ∧ Tloop (V̄ , V̄
′) =⇒ R (V̄ ′)) and IsSat(Tstem (V̄0, V̄) ∧ R (V̄)) hold (see lines 12 and 13

of ProveNT). In other words,

(i) ∃V̄0, V̄ Tstem (V̄0, V̄) ∧ R (V̄) and (ii) ∀V̄ , V̄ ′R (V̄) ∧ Tloop (V̄ , V̄
′) =⇒ R (V̄ ′).

Formula (ii), together with the assumption (3) above implies the condition (3) of Definition 3.2.

From formula (i) and the assumption (2) above, there is a state S ′ at the loop header that can be

reached from S , such that R (S ′) holds which implies that condition (1) of Definition 3.2 holds for

a reachable state in P from S . Finally, given that R implies Cloop (see line 10 of ProveNT), and

given the assumption (1) above, it follows that the real transition relation for the loop is total on R.
Therefore there is a non-terminating execution of P starting from the state S . We should note that,

given that Tstem is an over-approximation in reality, our implementation could simply check if a

witness path exists.

Further, the algorithm terminates, since whenever a new candidate recurrent set R is added the

variable depth is increased and the recurrent sets with an accompanying depth of value higher

than UPPERBOUND are ignored (see line 10 of ProveNT).

6 AN INTEGRATED ALGORITHM
We now describe ProveTNT, an algorithm supported with dynamic analysis, that mixes termination

and non-termination reasoning, allowing the failed outcomes of one endeavor to provide feedback

to the other. In this algorithm, ProveNT consumes the previously ignored argument π̄mayloop (a set
of potentially non-terminating traces returned by ProveT) and ProveT consumes the previously

ignored argument π̄term (a set of terminating traces from ProveNT).

The procedure ProveTNT is given in Fig. 5 and begins by instrumenting the input program P ,
generating random initial inputs, and executing the instrumented program on those inputs to get a

set π of concrete traces. These executions may be used for reasoning about multiple loops in the

program, and avoid the need for re-execution. We then iterate over the loops in the program in

a post-order fashion, in which the top-down innermost loop will be analyzed first. If that loop is

proved to be non-terminating, the procedure returns the result NonTerm immediately. Otherwise, it

continues to analyze the next loop in the post-order sequence. At the end, the procedure returns

the result Term when all loops in the program are proved to be terminating.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 189. Publication date: November 2020.

DynamiTe: Dynamic Termination and Non-termination Proofs 189:15

1 ProveTNT(P):
2 Pinstr = Instrument(P)
3 inps = GenRandomInputs(Pinstr)
4 π = Execute(Pinstr, inps)

5 L = GetLoopSeq(Pinstr)
6

7 for L in L:

8 πL = Project(π , L)
9 πbase, πterm, πmayloop = Partition(πL, L)
10 if card(πmayloop) >> card(πbase ∪ πterm):
11 rnt , π̄term = ProveNT(Pinstr, L, πmayloop)
12 if rnt is NonTerm:

13 return NonTerm

14 else:

15 rt , _ = ProveT(P, Pinstr, L, πterm ∪ π̄term)
16 if rt is Unk:

17 return Unk

18 else:

19 rt , π̄mayloop = ProveT(P, Pinstr, L, πterm)
20 if rt is Unk:

21 rnt , _ = ProveNT(Pinstr, L, πmayloop∪π̄mayloop)
22 if rnt is NonTerm:

23 return NonTerm

24 else:

25 return Unk

26 return Term

Fig. 5. The integrated algorithm for approving termination and non-termination, via mutual feedback.

Within each loop L we project on the set of traces, focusing on only those that reach L’s header
and keeping only the relevant snapshots from the instrumentation on that loop in πL (see line 8 in

ProveTNT). We then partition πL into the three classes of traces π̄base, π̄term, π̄mayloop, similarly to

what was described in previous sections. We next make a decision as to whether we should attempt

non-termination or termination reasoning first. Our algorithm heuristically chooses which action

to perform after comparing the sizes of terminating trace sets (π̄base and π̄term) and the potentially

non-terminating one (π̄mayloop). In our implementation, we decide to prove non-termination first

when the number of the potentially non-terminating traces is four times larger than the total size

of terminating traces. In the case the algorithm succeeds in proving the chosen analysis, it moves

to the next step as described above (i.e. returning NonTerm immediately if ProveNT is chosen or

analyzing the next loop if ProveT is chosen). Otherwise, the chosen sub-procedure will return

counterexamples in the form of new traces, that can be used, together with the traces collected

from running the random inputs, as input to the alternative analysis.

Consider the simple program: while(x>=0): x = x + y. This example conditionally terminates, de-

pending on the initial values of x and y. That is, the loop does not terminate when x≥0 and y≥0
and terminates otherwise. Given that the random inputs are evenly-distributed then x is negative in

roughly half of the random inputs, on which the loop terminates. From the heuristic for choosing

the sub-procedure, ProveTNT may decide to attempt proving termination first. More specifically,

in our implementation, we decide to prove non-termination first when the number of the poten-

tially non-terminating traces is four times larger than the total size of terminating traces. The

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 189. Publication date: November 2020.

189:16 T. C. Le, T. Antonopoulos, P. Fathololumi, E. Koskinen, T. Nguyen

sub-procedure ProveT may find a ranking function such as x from the terminating traces. However,

it is not a valid ranking function for all inputs and the validation in ProveT returns counterex-

amples whose corresponding inputs create potentially non-terminating execution traces, such as

[(x=0, y=0), (x=0, y=0), . . .], [(x=3, y=1), (x=4, y=1), . . .], etc., in which the ranking function x is

not decreasing. Since there is no terminating trace generated from those inputs, ProveT gives up

and returns such potentially non-terminating execution traces as its counterexample traces. At this

point, our ProveTNT algorithm switches gears and uses these counterexample traces as inputs to

ProveNT. Finally, ProveNT proceeds on these traces and finds a recurrent set x≥0∧ y≥0 from them

to confirm the loop’s non-termination.

The proving strategy in ProveTNT also helps to overcome the scenario when execution traces

from a terminating program, like the simple loop in this program: while(x<1000): x = x + 1. This is

wrongly categorized as potentially non-terminating due to the predefined instrumented execution

bound (e.g. 500) being reached before the loop terminates. In this example, the execution traces with

inputs where x < 500 are considered as potentially non-terminating. Note that on those inputs, the

collected traces from that loop are identical to traces collected from the non-terminating loop while

True: x = x + 1. If those inputs dominate the set of random inputs then the procedure ProveTNT

may attempt proving non-termination first. The sub-procedure ProveNT then starts with the first

candidate recurrent set x<1000 and performs a check on it with the implication x<1000 ∧ x′ =

x+1 =⇒ x′<1000. The implication does not hold and there is only one input of x=999 and the

corresponding terminating trace [x=999, x=1000] are generated from it as counterexample. Due to

the lack of data, the dynamic inference is not triggered and there is no new candidate recurrent

set generated. The procedure ProveTNT then passes that terminating counterexample trace to

the sub-procedure ProveT for proving termination. From that trace, ProveT can easily find the

ranking function 999 − x to prove the loop’s termination. Interestingly, the ProveT alone cannot

prove the termination of this loop due to the lack of terminating traces. This happens since we

usually prefer to generate small random inputs and limit the number of them, which may help to

reduce the program execution time, for efficiency. In this example, we can try inputs larger than the

predefined instrumented bound (i.e. x ≥ 500) but the same problem may occur on other examples

if the generated inputs are not large enough. For example, for the same program but with the loop

condition replaced with x < 10000, the algorithm would require some inputs where x would be

larger than or equal to 9500.

7 THE DYNAMITE TOOL
We have realized our learning-based algorithms in a new tool called DynamiTe. DynamiTe employs

the power of several major existing tools, yet our particular combination of them allow DynamiTe

to do things that none of these tools can achieve individually (see Fig. 1). We found that we were

able to use these tools with few modifications and, consequently, our framework allows us to

benefit from improvements in those tools or substitute alternatives. For SMT, we use SMTlib and

for reachability, we follow the SV-COMP [Beyer 2020] format. We now discuss some of the key

components of the implementation.

We perform two transformations on the input program. For validating our guesses in termination

reasoning, we use a standard transformation [Cook et al. 2006] that lets us input candidate rank

functions and apply a reachability prover. This is a common technique and we have briefly described

it in Sec. 3. The second transformation (described in Section 2) involves (i) instrumenting the

program to collect states and traces and (ii) truncating potentially infinite loops. For a formal

description of this transformation, see our technical report [Le et al. 2020].

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 189. Publication date: November 2020.

DynamiTe: Dynamic Termination and Non-termination Proofs 189:17

DynamiTe and Ultimate on LIN Termination Programs from SV-COMP

DynamiTe Learning Validate Total UAutomizer

Benchmark Learned Rank Functions T(s) Res T(s) Res T(s) σ5 T(s) Res

AlDaFeGo-SAS2010-easy2-2.c z 7.4 ✓ 8.0 ✓ 20.7 1.2 0.4 ✓
AlDaFeGo-SAS2010-random2d.c N+r, −r, r−i, x−r, i−r, N−i 23.8 ✓ 13.2 ✓ 52.38 7.9 0.6 ✓
AlDaFeGo-SAS2010-wcet2.c −i, 1−i, j, j−i, −j, 2−i 11.5 ✓ 121.5 ? 148.14 75.3 1.3 ✓
BrCoFu-CAV2013-Fig1.c n−j, j, −i, n−i 28.9 ✓ 14.2 ✓ 66.22 22.0 1.5 ✓
ChCoGuSaYa-ESOP2008-easy2.c z 3.9 ✓ 2.8 ✓ 9.4 0.8 0.4 ✓
ChFlMu-SAS2012-Ex3.01.c −x+z, y, −x 5.9 ✓ 4.0 ✓ 16.34 2.4 2.8 ✓
CoSeZu-TACAS2013-Fig8a-mod.c −x, x, −K+x, K−x 11.7 ✓ 4.0 ✓ 18.62 0.9 4.6 ✓
HaLaNoRa-SAS2010-Fig1.c 0.0 ? 4.9 ? 8.94 1.8 29.4 ✓
HeHoLePo-ATVA2013-Fig5.c x 2.3 ✓ 5.8 ✓ 9.56 0.5 3.8 ?
KrShTsWi-CAV2010-Fig1.c 28−x, 82−x, 88−x, (see below) 8.9 ✓ 6.0 ? 14.66 1.5 3.9 ✓
LeHe-TACAS2014-Ex1.c q 2.2 ✓ 2.9 ✓ 8.78 1.8 0.5 ✓
PoRy-TACAS2011-Fig1.c y 2.4 ✓ 4.6 ✓ 8.76 0.9 0.3 ✓
Ur-WST2013-Fig2.c −x1, −x1 + 5·x2, (see below) 14.2 ✓ 12.5 ✓ 32.78 5.7 1.6 ✓
cstrcspn.c – – – – 2 0.2 90.3 ✓
genady.c i 0.1 ✓ 7.4 ✓ 9.78 1.6 0.4 ✓

...

(Results of for the other 46 benchmarks in [Le et al. 2020].

KrShTsWi-CAV2010-Fig1.c: 28−x, 82−x, 88−x, 90−x, 104−x, 118−x, 144−x, 156−x,
212−x, 214−x, 228−x, 234−x, 246−x

Urban-WST2013-Fig2.c: −x1, −x1 + 5·x2, −x1 + 6·x2, −x1 + 7·x2, −x1 + 8·x2, −x1 + 9·x2, −x1 + 10·x2, −x2

Fig. 6. Results of applying UAutomizer and DynamiTe on the 61 termination benchmarks from SV-COMP

termination-crafted-lit. For lack of space, we only show 15 rows (every 4th row) with abbreviated names.

The full result can be found in our technical report [Le et al. 2020]. ? indicates unknown results.

8 EVALUATION
Our main goal of DynamiTe is to improve the state-of-the-art in termination and non-termination

reasoning to better support nonlinear (NLA) programs. To this end, Sections 8.2 and 8.3 report

experimental results on those programs. However, in Section 8.1 we first evaluated DynamiTe to

see how it performs on linear programs, particularly in comparison with the state-of-the-art tool

UAutomizer from Ultimate Ultimate [2020], which is the winner of the Termination category in the

recent Competition on Software Verification (SV-COMP) [Beyer 2020].

Our experiments were all run on a 20-core Intel(R) Core(TM) i7-6950XCPU@3.00GHz.DynamiTe

in general take advantages of parallel processing when possible. For example, in termination

reasoning, multiple instances of Ultimate’s variants (Automizer and Taipan) and CPAchecker are

invoked to validate the termination results. In non-termination reasoning, we use these CPU

cores to run the symbolic execution tool CIVL to obtain program information at multiple depths.

The dynamic inference tool DIG also computes invariants simultaneously. The timeout for each

benchmark program is 400s.

8.1 Linear programs
Although our main goal was to support NLA programs (i.e. expressivity) we nonetheless compared

our work against the state-of-the-art termination tool UAutomizer. We ran both UAutomizer and

DynamiTe on the 61 termination benchmarks and 5 non-termination benchmarks from the SV-

COMP suite termination-crafted-lit, which were used in SV-COMP 2020. Note that this folder

contains other benchmarks that are for other properties like overflow.

Terminating Linear programs. The results of the experiments on these programs are shown in

Table 8. SinceDynamiTe is nondeterministic, we ran our experiments 5 times. We depict the ranking

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 189. Publication date: November 2020.

189:18 T. C. Le, T. Antonopoulos, P. Fathololumi, E. Koskinen, T. Nguyen

Fig. 7. Visual comparison between DynamiTe and UAutomizer on linear termination benchmarks.

functions learned by DynamiTe in the second column, taken from the first iteration of DynamiTe.

If a benchmark program has more than one loop, we report the ranking functions learned from the

last analyzed loop. We also break down the overall time (and result) of DynamiTe into time spent

to learn ranking functions versus validate them. Finally, we report the Total time, averaged over 5

runs, as well as the standard deviation σ5.

In the last two columns, we show the time and result of UAutomizer. These results are also

visualized in the plot in Fig. 7. The results show that UAutomizer often performs much faster

than DynamiTe on these linear examples, owing largely to the fact that DynamiTe must execute

the program many times (on the newly generated inputs), as is typically the case for data-driven

strategies [Nguyen et al. 2017a]. Nonetheless, the results show that DynamiTe is competitive. In

most benchmark programs, DynamiTe can learn useful ranking functions from their terminating

traces. For ranking functions that cannot be validated by the reachability provers, we manually

checked if they are valid with respect to the observed terminating traces. We found that some of

them are the desired ranking functions to prove the programs’ termination while the others are

still in good progress so that we could infer the desired ranking functions from their validation’s

counterexamples. There are no ranking functions learned from unsupported recursive programs

and string-manipulating programs. We also found that DynamiTe was able to infer a ranking

function for the program HeHoLePo-ATVA2013-Fig5.c, which can be validated successfully, while

UAutomizer cannot. It is worth noting that UAutomizer is a very mature tool, with contributions

from multiple researchers/developers, has been applied in industrial settings, and has consistently

performed well in the SV-COMP Termination categories. By contrast,DynamiTe is still in its infancy.

Furthermore, we will soon discuss nonlinear programs, a class of programs not currently supported

by UAutomizer.

Non-Terminating Linear programs. Of the termination-crafted-lit SV-COMP suite, only 5 bench-

marks were for non-termination. We ran DynamiTe and Ultimate on them; the results are given in

Fig. 8. Again we report the mean and standard deviation over 5 runs. In all cases, UAutomizer was

able to generate a lasso counterexample to termination.DynamiTewas able to produce a validated re-

current set in 3 programswith UPPERBOUND=3 in ProveNT. The program HeJhMaSu-POPL2002-LockEx.c

has a nondeterministic loop condition so that Trueis its trivially valid recurrent set. Therefore,

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 189. Publication date: November 2020.

DynamiTe: Dynamic Termination and Non-termination Proofs 189:19

DynamiTe and Ultimate on LIN Non-termination Programs from SV-COMP

DynamiTe Learning Validate Total UAutomizer

Benchmark Learned Rec. Sets T(s) Res T(s) Res T(s) σ5 T(s) Res

BrMaSi-CAV2005-Fig1-mod.c y1,y2 ∧ y2 = 0 11.7 ✓ 8.9 ✓ 44.3 1.7 0.1 χ
ChCoFuNiHe-TACAS2014-Intro.c 5.8 ? 2.7 ? 38.68 5.4 0.2 χ
HeJhMaSu-POPL2002-LockEx.c T rue 0.0 ✓ 0.1 ✓ 17.4 0.1 0.1 χ
Ur-WST2013-Fig1.c 6.8 ? 0.8 ? 17.7 1.8 0.4 χ
Velroyen.c x,0 0.0 ✓ 0.1 ✓ 12.1 0.7 2.2 χ

Fig. 8. Results of applying ultimate and DynamiTe on the 5 non-termination benchmarks from SV-COMP

termination-crafted-lit. Ultimate returned “incorrect,” indicating that it had found a non-terminating

lasso to disprove termination.

there is no cost for learning recurrent sets in these programs. On the other hand, the program

ChCoFuNiHe-TACAS2014-Intro.c has a nondeterministic assignment in its loop body so that while

the loop condition is a (closed) recurrent set, it cannot be validated without an underapproxi-

mation to restrict the choice of nondeterministic values in that assignment. The two programs

Ur-WST2013-Fig1.c and Velroyen.c have many branches in their loop bodies but only some of

them were taken by the symbolic execution tool to build the loop summaries. Unfortunately, in

Ur-WST2013-Fig1.c, the non-terminating branch was missing so that DynamiTe cannot find any

valid recurrent set from the other (terminating) branches in the summary.

8.2 Termination of NLA programs
Currently, we lack challenging benchmark suites for termination of nonlinear programs. The

existing polyrank benchmark [Bradley et al. 2005b] has only one (quadratic) polynomial program.

The other programs in polyrank are linear and many of them were included into the SV-COMP

termination-crafted-lit suite. DynamiTe can prove the termination of 8/11 benchmarks (see Fig.

9) by inferring multiple linear ranking functions, instead of a single nonlinear ranking function,

and successfully validating them with Ultimate or CPAchecker. For the remaining 3 examples,

DynamiTe was able to infer the correct ranking functions, but the validators could not validate

them before timeout. In order to better evaluate the tool, we adapted an existing nonlinear testsuite

from SV-COMP called nla-digbench which consists of 28 programs implementing mathematical

functions such as intdiv, gcd, lcm, power. Although these programs are relatively small (under 50

LoCs) they contain nontrivial structures such as nested loops and nonlinear invariant properties.

To the best of our knowledge, nla-digbench contains the largest number of programs containing

nonlinear arithmetic. These programs have also been used to evaluate other numerical invariant

systems [Rodríguez-Carbonell and Kapur 2007b; Yao et al. 2020].

However, these benchmarks are for invariant generation rather than termination and most

of them are linear programs (with nonlinear invariant properties). We therefore adapted these

benchmarks to make them suitable nonlinear examples for termination. For each benchmark, we

manually examined the behavior of the program. The benchmarks contain commented nonlinear

assertions, that illustrate the need for nonlinear reasoning. For example, bresenham1 contains the

assertion 2*Y*x - 2*X*y - X + 2*Y - v == 0. We adapted these assertions to be loop conditions

in various ways, creating one or more termination challenge programs. We typically geared the

loop condition to the assertion. In this case, we used the invariant that the LHS is 0 and added an

additional term +c that increased on each iteration, and made the loop condition bounded by a

variable k. For example, from the bresenham1 program, we created a new program in which the loop

condition is 2*Y*x - 2*X*y - X + 2*Y - v + c <= k. In other cases, we introduced new variables

and had them be integrated by other expressions that we knew to be monotonically increasing or

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 189. Publication date: November 2020.

189:20 T. C. Le, T. Antonopoulos, P. Fathololumi, E. Koskinen, T. Nguyen

DynamiTe on NLA Termination Programs adapted from SV-COMP

DynamiTe Learning Validation
Benchmark Learned Ranking Functions Time Res Time Res

loop1.c −i, −j + bn, −i + an 16.3 ✓ 7.6 ✓
loop2.c x, x + −y 3.5 ✓ 3.8 ✓
loop3.c x, −y + z, z, x + −z, x + −y 8.2 ✓ 17.4 ✓
loop4.c −i, −i + an, −j, −k + bn, −k, −j + bn 17.4 ✓ 179.7 ✓
loop6.c −x, N + −x, −x + −y 1.2 ✓ 4.2 ✓
loop7.c
loop8.c −1 · y1 + 12 · y2, y2, −1 · y1 + 14 · y2, −1 · y1 + 29 ·

y2, −1 · y1 + 34 · y2, −1 · y1 + 42 · y2, −1 · y1 + 49 ·
y2, −1 · y1 + 50 · y2

5.0 ✓ 15.9 ✓

loop9.c y2, y1 6.9 ✓ 4.9 ✓
loop10.c y, x, w + −1 · y, w, z 0.7 ✓ 682.3 ?
loop11.c −e, e, −n, n 1.0 ✓ 296.3 ?
loop12.c −1 ·y, −1 ·y+−1 ·z, x +−1 ·y, −1 ·x, z, 1+−1 ·y, 1+z 7.7 ✓ 725.2 ?

Fig. 9. Results of applying DynamiTe to the benchmark suite polyrank.

replace variables and numbers with nonlinear expressions that are equal to them. We have made

these 38 benchmarks available in the supplemental materials [DynamiTe 2020] and will issue a pull

request to submit them to the SV-COMP benchmark repository.

The results of applying DynamiTe to these benchmarks is given in Fig. 10. For each benchmark,

we give a brief description of the mathematical behaviors of the program in the second column.

Based on the results, we display the output list of inferred ranking functions, as well as a breakdown

of the time it took to learn versus validate them. As mentioned in the previous section, we use

Ultimate and CPAchecker for validation. In 34 of the 38 benchmarks, DynamiTe was able to guess

ranking functions. The ranking functions derived from 8 of those 32 benchmarks can be validated.

For those ranking functions that cannot be validated by the existing safety provers, we manually

inspected them and confirmed they were correct. In the remaining 4 cases, the program cohencu4

is non-terminating because the increment statement c++ was unintentionally not added. Therefore,

there are no terminating traces to learn ranking functions. After fixing that problem, DynamiTe

can infer the desired ranking functions for this program successfully. The 2 programs freire1 and

knuth-nosqrt are originally floating-point programs but were intentionally transformed to integer

programs. However, the invariant assertions in the original benchmarks is no longer valid in our

adapted benchmark programs. Therefore, the desired ranking functions cannot be found from

them. The last program knuth still has the use of sqrt function which is not supported by our CIL

instrumentation. It is worth noting that UAutomizer cannot handle these benchmarks. In addition,

since the validation get stuck on most benchmarks, we do not report the total time in Fig. 10.

8.3 Non-Termination of NLA programs
We first apply DynamiTe to the existing nonlinear non-termination benchmark Anant [Cook

et al. 2014]. The benchmark is a set of quadratic polynomial programs and some of them have

nondeterminism and divisions. The result of applying DynamiTe on this benchmark is given in

Fig. 11. DynamiTe can prove the non-termination of 4 benchmarks that [Cook et al. 2014] cannot

handle. However, there are 10 benchmarks that DynamiTe cannot handle, due to nondeterminism

(4), overfitting invariants (1), overflow (1), and problems in SMT solvers (2) or in symbolic execution

(2). This result shows that our dynamic approach is orthogonal to the existing static techniques for

proving non-termination of (nonlinear) programs.

In addition to the benchmark Anant, we also adapted SV-COMP nla-digbench suite to create

NLA non-termination challenge programs (e.g. up-to-sextic polynomial programs). (These are

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 189. Publication date: November 2020.

DynamiTe: Dynamic Termination and Non-termination Proofs 189:21

DynamiTe on NLA Termination Programs adapted from SV-COMP

DynamiTe Learning Validation
Benchmark Desc. Learned Ranking Fns. Time Res Time Res

bresenham1 −c + k 33.3 ✓ 17.5 ✓
cohencu1 cubic sum −x, k + −z 11.9 ✓ 8.2 ✓
cohencu2 cubic sum k + −z, −x, k + −y 7.5 ✓ 172.9 ?
cohencu3 cubic sum k + −z, −y + z, k + −x 8.6 ✓ 39.4 ?
cohencu4 cubic sum 0.0 ? 16.5 ?
cohencu5 cubic sum −c + k 14.4 ✓ 147.0 ?
cohencu6 cubic sum a + −n 21.4 ✓ 197.7 ?
cohencu7 cubic sum a + −n 12.0 ✓ 38.6 ?
dijkstra1 square root n + −q 4.9 ✓ 15.8 ✓
dijkstra2 square root −c + k 13.7 ✓ 45.7 ?
dijkstra3 square root n + −q 1.3 ✓ 6.5 ?
dijkstra4 square root −c + k, h 7.3 ✓ 199.9 ?
dijkstra5 square root −c, −c + k 12.6 ✓ 16.5 ?
dijkstra6 square root −c, −c + k 11.1 ✓ 15.4 ?
divbin1 int div r − b 6.2 ✓ 192.4 ?
egcd gcd b, a 21.4 ✓ 13.2 ?
egcd2 gcd c, −s, s, −q 13.9 ✓ 34.8 ?
egcd3 gcd −v, c +−v, b +−v, v, c +

−2 · v, c + −d, d, −c
23.4 ✓ 12.1 ?

fermat1 product −c + k 8.4 ✓ 17.5 ?
freire1 square root −1 · r + 12 · a + 3 · k 19.6 ? 4.4 ?
geo1 geo series y, −x, −y, −x + y, x, k−c 18.4 ✓ 13.5 ?
geo2 geo series −y, y, x + −y, k + −c 16.5 ✓ 4.5 ?
geo3 geo series −x, −x + y, y, −y, k + −c 690.1 ✓ 7.9 ?
hard int div −q, p 5.0 ✓ 60.6 ?
hard2 int div r + −p 6.8 ✓ 7.1 ?
knuth product – – – –

knuth-nosqrt product q, t, −t, −r + t 2.9 ? 10.3 ?
lcm1 divisor x, v, u − y 22.6 ✓ 6.6 ?
lcm2 divisor y, x 21.3 ✓ 13.2 ?
mannadiv divisor y3 13.8 ✓ 4.6 ?
prod4br gcd, lcm b, −q, a 15.0 ✓ 15.4 ?
prodbin gcd, lcm y 9.8 ✓ 10.4 ?
ps2 pow sum k + −c 5.2 ✓ 5.0 ?
ps3 pow sum k + −c 4.1 ✓ 8.3 ✓
ps4 pow sum k + −c 4.9 ✓ 14.1 ✓
ps5 pow sum −x, k + −c 8.2 ✓ 12.7 ✓
ps6 pow sum x, k + −c 6.4 ✓ 176.8 ✓
sqrt1 square root k + −c 6.3 ✓ 205.4 ✓

Full RF for egcd3: c+−v, v, −37 ·b+−d, −293 ·b+−d, −2341 ·b+−d, −18725 ·b+−d, −37449 ·
b+c+−d, 10083 ·c+−d, 322639 ·c+−d, 2581111 ·c+−d, −1677722 ·b+−d

freire1: −1 ·r+12 ·a+3 ·k, −1 ·r+19 ·a, −1 ·r+28 ·a+3 ·k, −1 ·r+2 ·k, −1 ·r+−1 ·a, −1 ·
r+−2 ·a, −1 ·r+−16 ·a, −1 ·r+25 ·k, −1 ·r+34 ·k, −1 ·r+38 ·k, −1 ·r+40 ·k, −1 ·
r+44 ·k, −1 ·r+−19 ·a, −1 ·r+89 ·k, −1 ·r+105 ·k, −1 ·r+154 ·k, −1 ·r+186 ·a

Fig. 10. Results of applying DynamiTe to our new benchmark suite of NLA termination challenge problems.

For egcd3 and geo1 the full set of ranking functions are below the table.

also available in the supplementary materials and will be submitted to SV-COMP.) The results of

applying DynamiTe on this benchmark are given in Fig. 12. Out of the 39 benchmarks, DynamiTe

was able to generate a recurrence set for 37 programs.

Interestingly, we found that, for non-termination, our algorithm’s semantic extraction of the

first candidate recurrent set from the loop condition already provides a good guess to start with.

Consequently, in 34 cases, dynamic analysis was actually unnecessary because our algorithm

could already use the loop condition to guide guessing for a recurrent set. This is in contrast with

termination, where we don’t have have any semantic information to provide a starting guess for

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 189. Publication date: November 2020.

189:22 T. C. Le, T. Antonopoulos, P. Fathololumi, E. Koskinen, T. Nguyen

DynamiTe on NLA Non-Termination Programs from Anant

DynamiTe Learning Validation
Benchmark Learned Recurrent Sets Time Res Time Res

p1.c −1 >= x + −y ? ✓ 0.1 ✓
p2.c And (y >= 2, 5 >= y, y + −z <= −5, 0 >= −x + y) 1.8 ✓ 2.1 ✓
p2a.c And (y >= 3, 3 >= −y + z, 8 >= z, x >= 6, y + −z <= −3) 3.0 ✓ 30.2 ✓
p3.c And (y + −1 · z <= −7, y >= 1, 0 <= x) 1.5 ✓ 1.4 ✓
p4.c And (w + −z <= −8, 0 >= w + −x) 2.8 ✓ 2.2 ✓
p5.c ? ? 0.1 ?
p6.c −5 <= z ? ✓ 0.2 ✓
p7.c 2 <= w 0.0 ✓ 1.4 ✓
p8.c 2.3 ? 0.4 ?
p9.c 1.7 ? 1.6 ?
p10.c ? ? ? ?
p11.c 8.0 ? 3.9 ?
p12.c And (y + −z <= −3, 6 >= z, −x + −y <= −3, y >= 3) 19.5 ✓ 81.3 ✓
p13.c And (Not (w >= 2), 0 >= w + −x) 1.3 ✓ 37.8 ✓
p14.c 0 <= x ? ✓ 0.1 ✓
p15.c And (−20 >= y, 1 <= x) ? ✓ 0.1 ✓
p16.c And (1 <= x, Not (y <= −1)) 2.5 ✓ 14.7 ✓
p17.c −1 >= x + −y ? ✓ 0.1 ✓
p18.c −1 >= x + −y ? ✓ 0.1 ✓
p19.c And (y >= 6, z >= 1, 0 <= x) 3.0 ✓ 1.1 ✓
p20.c And (1 == y · z +−x +−z, −x + z <= −8, 2 >= −x +y, y >= 4) 27.7 ✓ 25.1 ✓
pfactorial.c 64.9 ? 14.0 ?
pinteger_log.c ? ? ? ?
pinteger_log_by_mul.c ? ? ? ?
plasso_example1.c And (j >= 2, −i+−j <= −6, k >= 3, −j+−k <= −9, −i+−k <=

−6, i >= 0)
4.2 ✓ 6.5 ✓

plasso_example2.c ? ? ? ?
plasso_example3.c And (0 <= i, k >= 1, j >= 1) 6.1 ✓ 17.7 ✓
pnCr_combination.c 1 <= nCr ? ✓ 0.4 ✓
ppower.c ? ? ? ?

Fig. 11. Results of applying DynamiTe to the benchmark suite Anant of NLA non-termination problems.

rank functions. However, in 3 cases, dynamic refinement was necessary where the loop conditions

are not the existing invariant assertions in the original benchmark programs and the refinement

can find non-trivial conditions to construct valid recurrent sets.

8.4 Integrated Algorithm: Discriminating between termination and non-termination
We experimented with ProveTNT to evaluate (a) whether the algorithm is able to discriminate

programs that terminate from those that non-terminate and (b) whether feedback from a failed

attempt to prove termination can inform a proof of non-termination and vice-versa. For (a), we

jumbled together all of the NLA benchmarks and ran the integrated algorithm on them. The results

are given in Fig. 13. For these benchmarks we note the number of loops (#L). We also indicate

whether a guess was made of either a recurrent set (rcr) or a ranking function (rf). ProveTNT

makes an initial guess whether to pursue termination or non-termination and if the choice fails,

“switches” to the opposite tack.We report the number of switches (#Sw), as well as the final validated

conclusion and the total time.

For the vast majority of the examples, there are no switches, which means the initial choice

(based on dynamic execution sampling the instrumented program) was was a good one, or that

ProveTNT timed out before it could validate a guess. In 16 of the 77 benchmarks, a switch was made

at least once. As compared with Fig. 10 (NLA Termination) and Fig. 12 (NLA Non-termination),

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 189. Publication date: November 2020.

DynamiTe: Dynamic Termination and Non-termination Proofs 189:23

DynamiTe on NLA Non-Termination Programs adapted from SV-COMP

DynamiTe Learning Validation
Benchmark Desc. Learned Rec. Sets Time Res Time Res

bresenham1 And (0 == (2 · Y · x + −X + 2 · Y + −v)%2, 0 ==
X · y + −((2 · Y · x + −X + 2 · Y + −v)/2))

? ✓ 0.2 ✓

cohencu1 cubic sum −6 <= 6 · n + −z ? ✓ 0.1 ✓
cohencu2 cubic sum And (−6 == 6 · n + −z, 0 == n2 + −((−1 + −3 · n +

y)/3), 0 == (2 + −3 · n + y)%3)
4.1 ✓ 21.5 ✓

cohencu3 cubic sum And (−6 == 6 ·n +−z, 6 == y · z +−18 · x +−12 ·y +
2 · z, −12 == z2 + −12 · y + −6 · z)

3.9 ✓ 1.3 ✓

cohencu4 cubic sum And (6 == y · z + −18 · x + −12 · y + 2 · z, −12 ==
z2 + −12 · y + −6 · z)

4.0 ✓ 8.6 ✓

cohencu5 cubic sum −12 == z2 + −12 · y + −6 · z ? ✓ 0.2 ✓
dijkstra1 square root 1 <= 2 · p + q + −r ? ✓ 0.1 ✓
dijkstra2 square root 0 == n · q + −p2 + −q · r ? ✓ 6.2 ✓
dijkstra3 square root 0 == h3 +−q · (h · (12 ·n +q +−12 · r) +−16 ·n · p +

4 · p · q + 16 · p · r)
? ✓ 6.3 ✓

dijkstra4 square root 0 == n · h2 + 4 · q · n2 + −n · q2 + −8 · n · q · r + r ·
q2 + 4 · q · r2 + −h · (h · r + 4 · n · p + −4 · p · r)

? ✓ 0.4 ✓

dijkstra5 square root 0 == p ·h2+−q ·(h ·(4 ·n+−4 ·r)+−4 ·n ·p+p ·q+4 ·p ·r) ? ✓ 0.3 ✓
dijkstra6 square root 0 == n · q + −p2 + −q · r ? ✓ 6.2 ✓
divbin1 int div 0 == b · q + −A + r ? ✓ 0.1 ✓
egcd gcd 0 == q · x + s · y + −b ? ✓ 0.2 ✓
egcd2 gcd 0 == p · x + r · y + −a ? ✓ 0.2 ✓
egcd3 gcd 0 == q · x + s · y + −b ? ✓ 0.1 ✓
fermat1 product 0 == u2 + −v2 + −4 · A + −4 · r + −2 · u + 2 · v ? ✓ 0.2 ✓
fermat2 divisor 0 == u2 + −v2 + −4 · A + −4 · r + −2 · u + 2 · v ? ✓ 0.2 ✓
fermat3 0 == u2 + −v2 + −4 · A + −4 · r + −2 · u + 2 · v ? ✓ 0.2 ✓
freire1 square root 0 == r2 + −a + −r + 2 · x ? ✓ 0.2 ✓
geo1 geo series −1 == x · z + −x + −y ? ✓ 0.1 ✓
geo2 geo series −1 == x · z + −y · z + −x ? ✓ 0.1 ✓
geo3 geo series 0 == a · y · z + −x · z + −a + x ? ✓ 0.2 ✓
hard int div 0 == B · p + −d ? ✓ 0.1 ✓
hard2 int div 0 == B · p + −d ? ✓ 0.1 ✓
knuth product – – – –

knuth-nosqrt 0 == a · k + −a · t + −d · k + d · t ? ✓ 0.2 ✓
lcm1 divisor 0 == a · b + −u · x + −v · y ? ✓ 0.2 ✓
lcm2 divisor And (0 == (u · x + v · y)%2, 0 == a · b + −((u · x +

v · y)/2))
? ✓ 0.2 ✓

mannadiv 0 == x2 · y1 + −x1 + y2 + y3 ? ✓ 0.1 ✓
prod4br gcd, lcm 0 == a · b · p + −x · y + q ? ✓ 0.1 ✓
prodbin gcd, lcm 0 == a · b + −x · y + −z ? ✓ 0.2 ✓
ps2 pow sum 0 == y2 + −2 · x + y ? ✓ 0.1 ✓
ps3 pow sum And (0 == (−3 ·y2 +6 · x +−y)%2, 0 == y3 +−((−3 ·

y2 + 6 · x + −y)/2))
? ✓ 0.5 ✓

ps4 pow sum 0 == y4 + y2 · (1 + 2 · y) + −4 · x ? ✓ 0.2 ✓
ps5 pow sum And (0 == y5+−((−y3 ·(10+15 ·y)+30 ·x+y)/6), 0 ==

(−y3 · (10 + 15 · y) + 30 · x + y)%6)
? ✓ 0.6 ✓

ps6 pow sum And (0 == y6 + −((−y2 · (−1 + y2 · (5 + 6 · y)) + 12 ·
x)/2), 0 == (−y2 · (−1 +y2 · (5 + 6 · y)) + 12 · x)%2)

? ✓ 0.7 ✓

sqrt1 square root −1 == t2 + −4 · s + 2 · t ? ✓ 0.2 ✓
sqrt2 ? ? ? ?

Fig. 12. Results of applying DynamiTe to our new benchmark suite of NLA termination challenge problems.

more timeouts occur here. However, the comparison is a little unfair: in the earlier experiments we

already knew the conclusion (T versus NT) so we aimed DynamiTe toward the prize.

For ProveTNT, one pitfall is that a wrong initial choice could lead to time spent attempting to

validate a ranking function, when it should be spent pursing recurrent sets (or vice-versa). A first

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 189. Publication date: November 2020.

189:24 T. C. Le, T. Antonopoulos, P. Fathololumi, E. Koskinen, T. Nguyen

DynamiTe’s ProveTNT Algorithm on NLA Term. & Non-Term. Programs adapted from SVCOMP

DynamiTe

Benchmark #L Exp. Out #Sw. Res Time

bresenham1 1 NT rcr. – NT 15.4

bresenham1 1 T rf. – T 24

cohencu1 1 NT rcr. – NT 10.1

cohencu1 1 T rf. – T 9.6

cohencu2 1 NT – – ? 24.8

cohencu2 1 T rf. – ? 0

cohencu3 1 NT – 1 ? 35.9

cohencu3 1 T rf. – ? 0

cohencu4 1 NT – 1 ? 39

cohencu4 1 T – 1 ? 105.9

cohencu5 1 NT rcr. – NT 10.6

cohencu5 1 T rf. – T 166.4

cohencu6 1 T rf. – ? 0

cohencu7 1 T rf. – ? 0

dijkstra1 2 NT rf. 1 ? 59.4

dijkstra1 2 T rf. – T 15.2

dijkstra2 2 NT rf. 1 ? 353.1

dijkstra2 2 T rf. – ? 0

dijkstra3 2 NT rf. – ? T.O.
dijkstra3 2 T rf. 1 ? 0

dijkstra4 2 NT rf. 2 ? T.O.
dijkstra4 2 T rf. – ? 0

dijkstra5 2 NT rf. – ? T.O.
dijkstra5 2 T rf. 1 ? 0

dijkstra6 2 NT rf. 2 ? T.O.
dijkstra6 2 T rf. 1 ? 0

divbin1 T – – ? 2

divbin1 2 NT – – ? T.O.
egcd 1 NT rcr. – NT 85.6

egcd 1 T rf. – ? 0

egcd2 T – – ? 2

egcd2 2 NT rcr. – NT 86.1

egcd3 3 NT rcr. – NT 139.2

egcd3 3 T rf. 1 NT 744.9

fermat1 3 NT rf. – ? T.O.
fermat1 3 T rf. – NT 396.2

fermat2 3 NT rcr. – NT 138.3

fermat3 3 NT rf. – NT T.O.
freire1 1 NT – – ? T.O.

DynamiTe

Benchmark #L Exp. Out #Sw. Res Time

freire1 1 T – 1 ? 0

geo1 1 NT rcr. – NT 48.5

geo1 1 T rf. 1 ? 0

geo2 1 NT rcr. – NT 48.6

geo2 1 T rf. 1 ? 0

geo3 1 NT rcr. – NT 53.2

geo3 1 T rf. 1 ? 0

hard 2 NT rcr. – NT 49.2

hard 2 T rf. 1 NT 121.1

hard2 2 NT rcr. – NT 48.9

hard2 2 T rf. 1 ? 57.3

knuth NT – – ? 10.6

knuth T – – ? 3.4

knuth-nosqrt 1 NT rcr. – NT 75.9

knuth-nosqrt 1 T – 1 ? 0

lcm1 3 NT rcr. – NT 82.9

lcm1 3 T rcr. 1 NT 172.7

lcm2 1 NT rcr. – NT 86.4

lcm2 1 T rf. 1 ? 0

mannadiv 1 NT – 1 ? 197.2

mannadiv 1 T rf. 1 ? 0

prod4br 1 NT – 1 ? 198.4

prod4br 1 T rf. 1 ? 0

prodbin 1 NT – 1 ? 337

prodbin 1 T rf. 1 ? 0

ps2 1 NT rcr. – NT 50.3

ps2 1 T rf. – T 19

ps3 1 NT – – ? T.O.
ps3 1 T rf. – T 20.6

ps4 1 NT rcr. – NT 51.4

ps4 1 T rf. 1 ? 56.5

ps5 1 NT – – ? 61.1

ps5 1 T rf. 1 ? 58.2

ps6 1 NT – – ? 61.7

ps6 1 T rf. 1 ? 29.1

sqrt1 1 NT rcr. – NT 51.1

sqrt1 1 T rf. 1 ? 0

sqrt2 1 NT rf. 1 ? T.O.

Fig. 13. Results of applying DynamiTe to a mix of terminating and non-terminating examples.

attack against this problem is to improve the first guess: the better the initial guess, the closer

the results come to those in Fig. 10 and Fig. 12. A naïve strategy could be to add a timeout to

validation. Another could be to parallelize, pursuing termination and non-termination concurrently.

The downside of parallelization, is that one cannot use the output of one failed endeavor to inform

the other. ProveTNT takes an alternate strategy, as dicussed in Section 6: pursue one and, if it fails,

exploit the information from the counter example to expedite the alternative. In the worst case, this

at least improves over running the two strategies sequentially. In Section 6 we gave two examples

that demonstrate where the integrated strategy helps.

8.5 Discussion
Unlike static analysis techniques, our dynamic analysis technique executes the programs to collect

data in the form of snapshots at several program locations. In some cases, the time to execute the

programs and process their raw output is significant, especially on programs with high-complexity

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 189. Publication date: November 2020.

DynamiTe: Dynamic Termination and Non-termination Proofs 189:25

or programs with a large number of parameters which require a large number of random inputs to

maintain the data’s diversity. On the other hand, when there is not enough data, overfitting may

occur. In proving non-termination, overfitting can make the dynamically inferred conditions too

strong to refine a recurrent set. In proving termination, overfitting may create a large number of

ranking functions and overwhelm the validation tools. We also have a problem with branching

in the loop body where the loop summary returned by the symbolic execution is imprecise since

some branches are not taken. That imprecision affects the refinement of candidate recurrent sets.

On the other hand, our dynamic analysis has some advantages that static analysis does not have.

For example, we can find a reliable set of ranking functions from known terminating traces at the

beginning so we can avoid many expensive validation steps whereas static analysis techniques

require many of them to refine the ranking function set from scratch.

9 RELATEDWORK
Inference of nonlinear invariants. Nonlinear polynomial relations arise in many safety-and

security-critical applications. For example, the Astrée analyzer, which has been applied to verify

the absence of errors in the Airbus A340/A380 avionic systems [Blanchet et al. 2003], implements

the ellipsoid abstract domain [Feret 2004] to represent and analyze a class of quadratic inequalities.

Rodríguez-Carbonell and Kapur [2007a,b] used abstract interpretation to infer nonlinear equali-

ties. They first observe that a set of polynomial invariants form the algebraic structure of an ideal,

then compute the polynomial invariants using Grobner basis and operations over ideals based on

the structure of the program until a fixed point is reached. The approach is restricted to non-nested

loops and programs with assignments and loop guards expressible as polynomial equalities. The

SPEED project [Gulwani 2009; Gulwani et al. 2009] uses a numerical abstract domain [Gulavani and

Gulwani 2008] to compute disjunctive and nonlinear invariants representing runtime complexity

bounds. The numerical domain uses operators such as max to represent disjunction and constraints

over various operators using inference rules to represent nonlinear operators.

The well-known dynamic invariant tool Daikon [Ernst et al. 2001, 2007] infers candidate invari-

ants under various templates over concrete program states. The tool comes with a large set of

templates which it tests against observed traces, removing those that fail, and return the remaining

ones as candidate invariants. DIG [Nguyen et al. 2014a], which is used by DynamiTe focuses

on numerical invariants and therefore can compute more expressive (e.g., nonlinear) numerical

relations than those supported by Daikon’s templates.

More recently, Yao et al. [2020] described a method for inferring invariants through a form of

neural networks. The technique uses a Continous Logic Network to learn SMT formulas directly

from program traces. The authors show that this approach can learn more general nonlinear

invariants (equalities, inequalities, and disjunction).

There are several hybrid works in the form of guessing and checking invariants. In Sharma et al.

[2013], “guess” component infers nonlinear equalities using the similar equation solving technique

in DIG and the “check” component uses the Z3 SMT solver. Counterexamples from the checker

are used to produce more traces to infer better invariants. The works from NumInv [Nguyen

et al. 2017a] and SymInfer [Nguyen et al. 2017c] combined the dynamic analyis from DIG to infer

nonlinear invariants with symbolic execution to remove spurious results.

PIE [Padhi et al. 2016] and ICE [Garg et al. 2014] also use an guess and check approach to infer

invariants to prove a given specification. To prove a property, PIE iteratively infers and refined

invariants by constructing necessary predicates to separate (good) states satisfying the property

and (bad) states violating that property. ICE uses a decision learning algorithm to guess inductive

invariants over predicates sepa- rating good and bad states. The checker produces good, bad, and

“implication” counterexamples to help learn more precise invariants.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 189. Publication date: November 2020.

189:26 T. C. Le, T. Antonopoulos, P. Fathololumi, E. Koskinen, T. Nguyen

Termination. Today, numerous theories, techniques, and tools exist for proving termination and

non-termination [Cook et al. 2006, 2011; Cousot and Cousot 2012; Dietsch et al. 2015; Giesl et al.

2004; Podelski and Rybalchenko 2004a]. Tools include Terminator [Cook et al. 2006], Ultimate

Automizer [Ultimate 2020], HipTNT+ [Le et al. 2015], FuncTion [2020], CPAChecker [2020], and

AProVE [2020]. There is even a category on termination in the Software Verification Competition

(SV-COMP) [Beyer 2020]. Along the way, some have shown methods for conditional termination,

whereby preconditions are found that specify the portion of traces that terminate [Cook et al.

2008; Le et al. 2015]. Another active line of research has focused on flavors of ranking functions,

including piece-wise [Urban 2013], ordinals [Urban and Miné 2014], size-change [Lee et al. 2001],

and lexicographic [Bradley et al. 2005a]. Babić et al. [2007] focused on proving termination of a

restricted class of nonlinear loops, called NAW loops, which have special properties to allow their

termination to be proved via analyzing the divergence of variables influencing the loop conditions.

Bradley et al. [2005a,b] focused on the class of polynomial loops from which finite different trees

can be derived. However, the techniques could not work on examples with infinite difference trees.

if x >= 0:

while x * x <= 100:

x = 2 * x + 1

For example, to prove the termination of the program on the right,

those techniques construct a difference tree whose root is the expres-

sion 100 - x * x in the loop condition. Since the tree is infinite, they

could not prove the program’s termination. DynamiTe can derive the

ranking function 10 - x from concrete snapshots of that example, which is sufficient to prove its

termination.

A number of works have exploited dynamic information to inform termination reasoning. Nori

and Sharma [2013] showed that linear regression can be used to dynamically infer bounds of program

loops from test suites and these bounds imply termination. They then attempt to validate those

bounds and use counterexamples to improve the precision of inference. By using the disjunctive

well-foundedness in the termination proofs, DynamiTe can prove the termination of examples

in [Nori and Sharma 2013] which have a disjunctive or nonlinear bound with only simple linear

ranking functions. Nguyen et al. [2019] describe runtime contracts for enforcing termination, using

the size-change strategy for termination.

Several static techniques are able to infer polynomial resource bounds [Hoffmann et al. 2011;

Hoffmann and Hofmann 2010a,b]. The TiML functional language [Wang et al. 2017] allows a user

to specify time complexity as types and then uses type checking to verify the specified complexity.

The WISE tool [Burnim et al. 2009] uses concolic execution to search for a path policy that leads to

an execution path with high resource usage.

Non-Termination. Along the line of research on proving non-termination, Gupta et al. [2008]

introduced a constraint solving technique to find recurrent sets of non-terminating loops. Later,

Chen et al. [2014] strengthened the concept of recurrent sets to “closed” recurrent sets so that they

can reduce the non-termination problem to safety proving and support more nondeterministic

programs.

Cook et al. [2014] proved non-termination of nonlinear programs by soundly over-approximating

the programs to nondeterministic linear programs and then using Chen et al. [2014] approach to

disprove their termination. However, since the technique searches for linear recurrent sets via

Farkas’ lemma on the abstract linear programs, it cannot generate recurrent sets described by

nonlinear equations. For example, in the benchmarks from Figure 12, there were only 5 cases where

DynamiTe learned a linear recurrent set and in roughly half of the cases, DynamiTe learned a

nonlinear recurrent set, which could not be found using the Cook et al. [2014] approach. Therefore,

while we are able to leverage ongoing advances in nonlinear invariant generation techniques

(a growing area of research), the Cook et al. [2014] approach cannot. In addition, Cook et al.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 189. Publication date: November 2020.

DynamiTe: Dynamic Termination and Non-termination Proofs 189:27

[2014] build over-approximation by using an abstract interpreter, such as Interproc, which usually

does not perform well on nonlinear programs. As shown in Section 8.3, DynamiTe can prove the

non-termination of all 4 Anant benchmarks in [Cook et al. 2014] that they cannot handle.

Frohn andGiesl [2019] utilized recurrence relation solvers to replace loopswhose non-termination

cannot be proved by loop-free transitions in finding feasible paths to a non-terminating loop. The

technique relies on recurrence relation solvers, whose supporting forms of recurrence relations are

restricted. For example, the approach cannot prove the non-termination of the p3 program in the

aforementioned nonlinear Anant benchmarks while DynamiTe can.

There are some other approaches that attempt to reason program termination and non-termination

at the same time. Harris et al. [2010] introduced a technique that maintains an over- and under-

approximation for alternatively proving termination or non-termination of a program. Le et al.

[2014] proposed a resource logic which can uniformly specify and verify preconditions of program

termination and non-termination. Later, Le et al. [2015] introduced a second-order constraint-based

technique to derive termination summary in the form of that logic automatically. However, they

cannot handle nonlinear programs.

10 CONCLUSION
We have shown that dynamic strategies for discovering invariants and sampling transitive closure

can be incorporatedwith static refinement into an overall framework for proving termination or non-

termination of nonlinear programs. DynamiTe [2020] is publicly available and the new benchmark

suites nla-term and nla-nonterm will soon be submitted to SV-COMP. While DynamiTe already

exploits concurrency by simultaneously attempting validation with CPAchecker and Ultimate, as

well as within DIG, one avenue for improvement is to parallelize ProveTNT. Another direction is to

explore how a dynamic invariant inference tool for heap-manipulating programs, like SLING [Le

et al. 2019], can be incorporated into DynamiTe to dynamically construct termination and non-

termination proofs for those programs.

ACKNOWLEDGMENT
We thank the anonymous reviewers for the helpful feedback. Timos Antonopoulos and Eric Kosk-

inen are supported by the Office of Naval Research under Grant N00014-17-1-2787. ThanhVu

Nguyen is supported by the National Science Foundation under Grant CCF-1948536 and the Army

Research Office under Grant W911NF-19-1-0054.

REFERENCES
AProVE. 2020. AProVE: Automated Program Verification Environment. http://aprove.informatik.rwth-aachen.de/.

Domagoj Babić, Alan J. Hu, Zvonimir Rakamaric, and Byron Cook. 2007. Proving Termination by Divergence. In Fifth IEEE
International Conference on Software Engineering and Formal Methods (SEFM 2007), 10-14 September 2007, London, England,
UK. IEEE Computer Society, 93–102. https://doi.org/10.1109/SEFM.2007.32

Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovi’c, Tim King, Andrew Reynolds,

and Cesare Tinelli. 2011. CVC4. In Proceedings of the 23rd International Conference on Computer Aided Verification (CAV
’11) (Lecture Notes in Computer Science), Ganesh Gopalakrishnan and Shaz Qadeer (Eds.), Vol. 6806. Springer, 171–177.

Snowbird, Utah.

Dirk Beyer. 2020. Advances in Automatic Software Verification: SV-COMP 2020. In Tools and Algorithms for the Construction
and Analysis of Systems - 26th International Conference, TACAS 2020, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Part II (Lecture Notes in
Computer Science), Armin Biere and David Parker (Eds.), Vol. 12079. Springer, 347–367. https://doi.org/10.1007/978-3-

030-45237-7_21

Dirk Beyer and M Erkan Keremoglu. 2011. CPAchecker: A tool for configurable software verification. In International
Conference on Computer Aided Verification. Springer, 184–190.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 189. Publication date: November 2020.

http://aprove.informatik.rwth-aachen.de/
https://doi.org/10.1109/SEFM.2007.32
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.1007/978-3-030-45237-7_21

189:28 T. C. Le, T. Antonopoulos, P. Fathololumi, E. Koskinen, T. Nguyen

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, and

Xavier Rival. 2003. A static analyzer for large safety-critical software. In Proceedings of the ACM SIGPLAN 2003 conference
on Programming language design and implementation. 196–207.

Aaron R Bradley, Zohar Manna, and Henny B Sipma. 2005a. Linear ranking with reachability. In International Conference on
Computer Aided Verification. Springer, 491–504.

Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. 2005b. The Polyranking Principle. In Automata, Languages and
Programming, 32nd International Colloquium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceedings (Lecture Notes in
Computer Science), Luís Caires, Giuseppe F. Italiano, Luís Monteiro, Catuscia Palamidessi, and Moti Yung (Eds.), Vol. 3580.

Springer, 1349–1361. https://doi.org/10.1007/11523468_109

Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. 2005c. Termination of Polynomial Programs. In Verification, Model
Checking, and Abstract Interpretation, 6th International Conference, VMCAI 2005, Paris, France, January 17-19, 2005,
Proceedings (Lecture Notes in Computer Science), Radhia Cousot (Ed.), Vol. 3385. Springer, 113–129. https://doi.org/10.

1007/978-3-540-30579-8_8

Marc Brockschmidt. 2020. T2: TEMPORAL LOGIC PROVER. https://github.com/mmjb/T2.

Jacob Burnim, Sudeep Juvekar, and Koushik Sen. 2009. WISE: Automated test generation for worst-case complexity. In 2009
IEEE 31st International Conference on Software Engineering. IEEE, 463–473.

Hong Yi Chen, Byron Cook, Carsten Fuhs, Kaustubh Nimkar, and Peter W. O’Hearn. 2014. Proving Nontermination via

Safety. In Tools and Algorithms for the Construction and Analysis of Systems - 20th International Conference, TACAS 2014,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13,
2014. Proceedings (Lecture Notes in Computer Science), Erika Ábrahám and Klaus Havelund (Eds.), Vol. 8413. Springer,

156–171. https://doi.org/10.1007/978-3-642-54862-8_11

Byron Cook, Carsten Fuhs, Kaustubh Nimkar, and Peter W. O’Hearn. 2014. Disproving termination with overapproximation.

In Formal Methods in Computer-Aided Design, FMCAD 2014, Lausanne, Switzerland, October 21-24, 2014. IEEE, 67–74.
https://doi.org/10.1109/FMCAD.2014.6987597

Byron Cook, Sumit Gulwani, Tal Lev-Ami, Andrey Rybalchenko, and Mooly Sagiv. 2008. Proving Conditional Termination.

In Computer Aided Verification, 20th International Conference, CAV 2008, Princeton, NJ, USA, July 7-14, 2008, Proceedings
(Lecture Notes in Computer Science), Aarti Gupta and Sharad Malik (Eds.), Vol. 5123. Springer, 328–340. https://doi.org/10.

1007/978-3-540-70545-1_32

Byron Cook, Andreas Podelski, and Andrey Rybalchenko. 2006. Termination proofs for systems code. In Proceedings of the
ACM SIGPLAN 2006 Conference on Programming Language Design and Implementation, Ottawa, Ontario, Canada, June
11-14, 2006, Michael I. Schwartzbach and Thomas Ball (Eds.). ACM, 415–426. https://doi.org/10.1145/1133981.1134029

Byron Cook, Andreas Podelski, and Andrey Rybalchenko. 2011. Proving program termination. Commun. ACM 54, 5 (2011),

88–98. https://doi.org/10.1145/1941487.1941509

Patrick Cousot and Radhia Cousot. 2012. An abstract interpretation framework for termination. In Proceedings of the 39th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA,
January 22-28, 2012, John Field and Michael Hicks (Eds.). ACM, 245–258. https://doi.org/10.1145/2103656.2103687

CPAChecker. 2020. CPAchecker: The Configurable Software-Verification Platform. https://cpachecker.sosy-lab.org/.

Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for the
Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings
(Lecture Notes in Computer Science), C. R. Ramakrishnan and Jakob Rehof (Eds.), Vol. 4963. Springer, 337–340. https:

//doi.org/10.1007/978-3-540-78800-3_24

Daniel Dietsch, Matthias Heizmann, Vincent Langenfeld, and Andreas Podelski. 2015. Fairness Modulo Theory: A New

Approach to LTL Software Model Checking. In Computer Aided Verification - 27th International Conference, CAV 2015,
San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I (Lecture Notes in Computer Science), Daniel Kroening and
Corina S. Pasareanu (Eds.), Vol. 9206. Springer, 49–66. https://doi.org/10.1007/978-3-319-21690-4_4

DynamiTe. 2020. Supplemental Materials. https://github.com/letonchanh/dynamite.

Michael D Ernst, Jake Cockrell, William G Griswold, and David Notkin. 2001. Dynamically discovering likely program

invariants to support program evolution. IEEE Transactions on Software Engineering 27, 2 (2001), 99–123.

Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Carlos Pacheco, Matthew S Tschantz, and Chen Xiao.

2007. The Daikon system for dynamic detection of likely invariants. Science of computer programming 69, 1-3 (2007),

35–45.

Jérôme Feret. 2004. Static analysis of digital filters. In European Symposium on Programming. Springer, 33–48.
Florian Frohn and Jürgen Giesl. 2019. Proving Non-Termination via Loop Acceleration. In 2019 Formal Methods in Computer

Aided Design, FMCAD 2019, San Jose, CA, USA, October 22-25, 2019, Clark W. Barrett and Jin Yang (Eds.). IEEE, 221–230.

https://doi.org/10.23919/FMCAD.2019.8894271

FuncTion. 2020. FuncTion: An Abstract Domain Functor for Termination. https://www.di.ens.fr/~urban/FuncTion.html.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 189. Publication date: November 2020.

https://doi.org/10.1007/11523468_109
https://doi.org/10.1007/978-3-540-30579-8_8
https://doi.org/10.1007/978-3-540-30579-8_8
https://github.com/mmjb/T2
https://doi.org/10.1007/978-3-642-54862-8_11
https://doi.org/10.1109/FMCAD.2014.6987597
https://doi.org/10.1007/978-3-540-70545-1_32
https://doi.org/10.1007/978-3-540-70545-1_32
https://doi.org/10.1145/1133981.1134029
https://doi.org/10.1145/1941487.1941509
https://doi.org/10.1145/2103656.2103687
https://cpachecker.sosy-lab.org/
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-21690-4_4
https://github.com/letonchanh/dynamite
https://doi.org/10.23919/FMCAD.2019.8894271
https://www.di.ens.fr/~urban/FuncTion.html

DynamiTe: Dynamic Termination and Non-termination Proofs 189:29

Pranav Garg, Christof Löding, P Madhusudan, and Daniel Neider. 2014. ICE: A robust framework for learning invariants. In

International Conference on Computer Aided Verification. Springer, 69–87.
Jürgen Giesl, Marc Brockschmidt, Fabian Emmes, Florian Frohn, Carsten Fuhs, Carsten Otto, Martin Plücker, Peter Schneider-

Kamp, Thomas Ströder, Stephanie Swiderski, et al. 2014. Proving termination of programs automatically with AProVE.

In International Joint Conference on Automated Reasoning. Springer, 184–191.
Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, and Stephan Falke. 2004. Automated Termination Proofs with

AProVE. In Rewriting Techniques and Applications, 15th International Conference, RTA 2004, Aachen, Germany, June
3-5, 2004, Proceedings (Lecture Notes in Computer Science), Vincent van Oostrom (Ed.), Vol. 3091. Springer, 210–220.

https://doi.org/10.1007/978-3-540-25979-4_15

Bhargav S Gulavani and Sumit Gulwani. 2008. A numerical abstract domain based on expression abstraction and max

operator with application in timing analysis. In International Conference on Computer Aided Verification. Springer,
370–384.

Sumit Gulwani. 2009. Speed: Symbolic complexity bound analysis. In International Conference on Computer Aided Verification.
Springer, 51–62.

Sumit Gulwani, Krishna K Mehra, and Trishul Chilimbi. 2009. Speed: precise and efficient static estimation of program

computational complexity. ACM Sigplan Notices 44, 1 (2009), 127–139.
Ashutosh Gupta, Thomas A. Henzinger, Rupak Majumdar, Andrey Rybalchenko, and Ru-Gang Xu. 2008. Proving non-

termination. In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2008, San Francisco, California, USA, January 7-12, 2008, George C. Necula and Philip Wadler (Eds.). ACM, 147–158.

https://doi.org/10.1145/1328438.1328459

Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A Navas. 2015. The SeaHorn verification framework. In

International Conference on Computer Aided Verification. Springer, 343–361.
William R. Harris, Akash Lal, Aditya V. Nori, and Sriram K. Rajamani. 2010. Alternation for Termination. In Static Analysis -

17th International Symposium, SAS 2010, Perpignan, France, September 14-16, 2010. Proceedings (Lecture Notes in Computer
Science), Radhia Cousot and Matthieu Martel (Eds.), Vol. 6337. Springer, 304–319. https://doi.org/10.1007/978-3-642-

15769-1_19

Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. 2011. Multivariate amortized resource analysis. In Proceedings of the
38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January
26-28, 2011, Thomas Ball and Mooly Sagiv (Eds.). ACM, 357–370. https://doi.org/10.1145/1926385.1926427

Jan Hoffmann and Martin Hofmann. 2010a. Amortized Resource Analysis with Polymorphic Recursion and Partial Big-Step

Operational Semantics. In Programming Languages and Systems - 8th Asian Symposium, APLAS 2010, Shanghai, China,
November 28 - December 1, 2010. Proceedings (Lecture Notes in Computer Science), Kazunori Ueda (Ed.), Vol. 6461. Springer,
172–187. https://doi.org/10.1007/978-3-642-17164-2_13

Jan Hoffmann and Martin Hofmann. 2010b. Amortized Resource Analysis with Polynomial Potential. In Programming
Languages and Systems, 19th European Symposium on Programming, ESOP 2010, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings (Lecture Notes
in Computer Science), AndrewD. Gordon (Ed.), Vol. 6012. Springer, 287–306. https://doi.org/10.1007/978-3-642-11957-6_16

Ton Chanh Le, Timos Antonopoulos, Parisa Fathololumi, Eric Koskinen, and ThanhVu Nguyen. 2020. DynamiTe: Dynamic

Termination and Non-termination Proofs. arXiv:2010.05747 [cs.PL]

Ton Chanh Le, Cristian Gherghina, Aquinas Hobor, and Wei-Ngan Chin. 2014. A Resource-Based Logic for Termination

and Non-termination Proofs. In Formal Methods and Software Engineering - 16th International Conference on Formal
Engineering Methods, ICFEM 2014, Luxembourg, Luxembourg, November 3-5, 2014. Proceedings (Lecture Notes in Computer
Science), Stephan Merz and Jun Pang (Eds.), Vol. 8829. Springer, 267–283. https://doi.org/10.1007/978-3-319-11737-9_18

Ton Chanh Le, Shengchao Qin, and Wei-Ngan Chin. 2015. Termination and non-termination specification inference. In

Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation, Portland, OR,
USA, June 15-17, 2015, David Grove and Steve Blackburn (Eds.). ACM, 489–498. https://doi.org/10.1145/2737924.2737993

Ton Chanh Le, Guolong Zheng, and ThanhVu Nguyen. 2019. SLING: using dynamic analysis to infer program invariants in

separation logic. In Proceedings of the 40th ACMSIGPLANConference on Programming Language Design and Implementation,
PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM, 788–801. https:

//doi.org/10.1145/3314221.3314634

Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. 2001. The size-change principle for program termination. In

Conference Record of POPL 2001: The 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
London, UK, January 17-19, 2001, Chris Hankin and Dave Schmidt (Eds.). ACM, 81–92. https://doi.org/10.1145/360204.

360210

George C Necula, Scott McPeak, Shree P Rahul, and Westley Weimer. 2002. CIL: Intermediate language and tools for analysis

and transformation of C programs. In International Conference on Compiler Construction. Springer, 213–228.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 189. Publication date: November 2020.

https://doi.org/10.1007/978-3-540-25979-4_15
https://doi.org/10.1145/1328438.1328459
https://doi.org/10.1007/978-3-642-15769-1_19
https://doi.org/10.1007/978-3-642-15769-1_19
https://doi.org/10.1145/1926385.1926427
https://doi.org/10.1007/978-3-642-17164-2_13
https://doi.org/10.1007/978-3-642-11957-6_16
https://arxiv.org/abs/2010.05747
https://doi.org/10.1007/978-3-319-11737-9_18
https://doi.org/10.1145/2737924.2737993
https://doi.org/10.1145/3314221.3314634
https://doi.org/10.1145/3314221.3314634
https://doi.org/10.1145/360204.360210
https://doi.org/10.1145/360204.360210

189:30 T. C. Le, T. Antonopoulos, P. Fathololumi, E. Koskinen, T. Nguyen

Phuc C. Nguyen, Thomas Gilray, Sam Tobin-Hochstadt, and David Van Horn. 2019. Size-change termination as a contract:

dynamically and statically enforcing termination for higher-order programs. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, Kathryn S.
McKinley and Kathleen Fisher (Eds.). ACM, 845–859. https://doi.org/10.1145/3314221.3314643

ThanhVu Nguyen, Timos Antonopoulos, Andrew Ruef, and Michael Hicks. 2017a. Counterexample-guided approach

to finding numerical invariants. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering.
605–615.

ThanhVu Nguyen, Matthew B Dwyer, and Willem Visser. 2017b. Symlnfer: Inferring program invariants using symbolic

states. In 2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 804–814.
ThanhVu Nguyen, Matthew B Dwyer, and Willem Visser. 2017c. Symlnfer: Inferring program invariants using symbolic

states. In 2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 804–814.
ThanhVu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2012. Using dynamic analysis to discover

polynomial and array invariants. In 2012 34th International Conference on Software Engineering (ICSE). IEEE, 683–693.
ThanhVu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2014a. DIG: A Dynamic Invariant Generator for

Polynomial and Array Invariants. ACM Transactions on Software Engineering and Methodology, to appear (2014).
ThanhVu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2014b. Using dynamic analysis to generate

disjunctive invariants. In Proceedings of the 36th International Conference on Software Engineering. 608–619.
Aditya V Nori and Rahul Sharma. 2013. Termination proofs from tests. In Proceedings of the 2013 9th Joint Meeting on

Foundations of Software Engineering. 246–256.
Peter W. O’Hearn. 2020. Incorrectness logic. Proc. ACM Program. Lang. 4, POPL (2020), 10:1–10:32. https://doi.org/10.1145/

3371078

Saswat Padhi, Rahul Sharma, and Todd Millstein. 2016. Data-driven precondition inference with learned features. ACM
SIGPLAN Notices 51, 6 (2016), 42–56.

Andreas Podelski and Andrey Rybalchenko. 2004a. A Complete Method for the Synthesis of Linear Ranking Functions. In

Verification, Model Checking, and Abstract Interpretation, 5th International Conference, VMCAI 2004, Venice, Italy, January
11-13, 2004, Proceedings (Lecture Notes in Computer Science), Bernhard Steffen and Giorgio Levi (Eds.), Vol. 2937. Springer,

239–251. https://doi.org/10.1007/978-3-540-24622-0_20

Andreas Podelski and Andrey Rybalchenko. 2004b. Transition Invariants. In 19th IEEE Symposium on Logic in Computer
Science (LICS 2004), 14-17 July 2004, Turku, Finland, Proceedings. IEEE Computer Society, 32–41. https://doi.org/10.1109/

LICS.2004.1319598

Enric Rodríguez-Carbonell and Deepak Kapur. 2007a. Automatic generation of polynomial invariants of bounded degree

using abstract interpretation. Science of Computer Programming 64, 1 (2007), 54–75.

Enric Rodríguez-Carbonell and Deepak Kapur. 2007b. Generating all polynomial invariants in simple loops. Journal of
Symbolic Computation 42, 4 (2007), 443–476.

Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, Percy Liang, and Aditya V Nori. 2013. A data driven

approach for algebraic loop invariants. In European Symposium on Programming. Springer, 574–592.
Stephen F. Siegel, Manchun Zheng, Ziqing Luo, Timothy K. Zirkel, Andre V. Marianiello, John G. Edenhofner, Matthew B.

Dwyer, and Michael S. Rogers. 2015. CIVL: the concurrency intermediate verification language. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2015, Austin, TX, USA,
November 15-20, 2015, Jackie Kern and Jeffrey S. Vetter (Eds.). ACM, 61:1–61:12. https://doi.org/10.1145/2807591.2807635

SV-COMP benchmark nla-digbench. 2020. SV-COMP benchmark nla-digbench. https://github.com/sosy-lab/sv-

benchmarks/tree/master/c/nla-digbench.

Ultimate. 2020. Ultimate Automizer. https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/?ui=tool&tool=ltl_

automizer.

Caterina Urban. 2013. Piecewise-Defined Ranking Functions. In 13th International Workshop on Termination (WST 2013). 69.
Caterina Urban. 2015. FuncTion: an abstract domain functor for termination. In International Conference on Tools and

Algorithms for the Construction and Analysis of Systems. Springer, 464–466.
Caterina Urban and Antoine Miné. 2014. An abstract domain to infer ordinal-valued ranking functions. In European

Symposium on Programming Languages and Systems. Springer, 412–431.
Peng Wang, Di Wang, and Adam Chlipala. 2017. TiML: a functional language for practical complexity analysis with

invariants. Proceedings of the ACM on Programming Languages 1, OOPSLA (2017), 1–26.

Jianan Yao, Gabriel Ryan, Justin Wong, Suman Jana, and Ronghui Gu. 2020. Learning nonlinear loop invariants with gated

continuous logic networks. In Proceedings of the 41st ACM SIGPLAN International Conference on Programming Language
Design and Implementation, PLDI 2020, London, UK, June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM,

106–120. https://doi.org/10.1145/3385412.3385986

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 189. Publication date: November 2020.

https://doi.org/10.1145/3314221.3314643
https://doi.org/10.1145/3371078
https://doi.org/10.1145/3371078
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1109/LICS.2004.1319598
https://doi.org/10.1109/LICS.2004.1319598
https://doi.org/10.1145/2807591.2807635
https://github.com/sosy-lab/sv-benchmarks/tree/master/c/nla-digbench
https://github.com/sosy-lab/sv-benchmarks/tree/master/c/nla-digbench
https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/?ui=tool&tool=ltl_automizer
https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/?ui=tool&tool=ltl_automizer
https://doi.org/10.1145/3385412.3385986

	Abstract
	1 Introduction
	2 Overview
	2.1 Learning ranking functions and recurrent sets
	2.2 Algorithms
	2.3 The DynamiTe Tool

	3 Preliminaries
	4 Inferring Ranking Functions for Termination
	5 Inferring Recurrent Sets for Non-Termination
	5.1 Correctness

	6 An integrated algorithm
	7 The DynamiTe Tool
	8 Evaluation
	8.1 Linear programs
	8.2 Termination of NLA programs
	8.3 Non-Termination of NLA programs
	8.4 Integrated Algorithm: Discriminating between termination and non-termination
	8.5 Discussion

	9 Related Work
	10 Conclusion
	References

