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Abstract. This paper investigates the effect of bucketing in security
against timing channel attacks. Bucketing is a technique proposed to
mitigate timing-channel attacks by restricting a system’s outputs to only
occur at designated time intervals, and has the effect of reducing the pos-
sible timing-channel observations to a small number of possibilities. How-
ever, there is little formal analysis on when and to what degree bucketing
is effective against timing-channel attacks. In this paper, we show that
bucketing is in general insufficient to ensure security. Then, we present
two conditions that can be used to ensure security of systems against
adaptive timing channel attacks. The first is a general condition that
ensures that the security of a system decreases only by a limited degree
by allowing timing-channel observations, whereas the second condition
ensures that the system would satisfy the first condition when bucketing
is applied and hence becomes secure against timing-channel attacks. A
main benefit of the conditions is that they allow separation of concerns
whereby the security of the regular channel can be proven independently
of concerns of side-channel information leakage, and certain conditions
are placed on the side channel to guarantee the security of the whole
system. Further, we show that the bucketing technique can be applied
compositionally in conjunction with the constant-time-implementation
technique to increase their applicability. While we instantiate our contri-
butions to timing channel and bucketing, many of the results are actually
quite general and are applicable to any side channels and techniques that
reduce the number of possible observations on the channel.

1 Introduction

Side-channel attacks aim to recover a computer system’s secret information by
observing the target system’s side channels such as cache, power, timing and
electromagnetic radiation [11,15–17,21,23–25,31,36]. They are well recognized
as a serious threat to the security of computer systems. Timing-channel (or
simply timing) attacks are a class of side-channel attacks in which the adversary
makes observations on the system’s running time. Much research has been done
to detect and prevent timing attacks [1,3,4,6,7,9,18,20,22,26,27,30,41].
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Bucketing is a technique proposed for mitigating timing attacks
[7,14,26,27,41]. It restricts the system’s outputs to only occur at designated time
intervals. Therefore, bucketing has the effect of reducing the possible timing-
channel observations to a small number of possibilities. This is at some cost
of system’s performance because outputs must be delayed to the next bucket
time. Nonetheless, in comparison to the constant-time implementation technique
[1,3,6,9,20,22] which restricts the system’s running time to be independent of
secrets, bucketing is often said to be more efficient and easier to implement as it
allows running times to vary depending on secrets [26,27].1 For example, buck-
eting may be implemented in a blackbox-style by a monitor that buffers and
delays outputs [7,41].

In this paper, we formally study the effect of bucketing on security against
adaptive timing attacks. To this end, first, we give a formal notion of secu-
rity against adaptive side-channel-observing adversaries, called (f, ε)-security.
Roughly, (f, ε)-security says that the probability that an adversary can recover
the secret by making at most f(n) many queries to the system is bounded by
ε(n), where n is the security parameter.

Next, we show that bucketing alone is in general insufficient to guarantee
security against adaptive side-channel attacks by presenting a counterexample
that has only two timing observations and yet is efficiently attackable. This
motivates a search for conditions sufficient for security. We present a condition,
called secret-restricted side-channel refinement (SRSCR), which roughly says that
a system is secure if there are sufficiently large subsets of secrets such that
(1) the system’s side channel reveals no more information than the regular chan-
nel on the subsets and (2) the system is secure on the subsets against adversaries
who only observe the regular channel. The degree of security (i.e., f and ε) is
proportional to that against regular-channel-only-observing adversaries and the
size of the subsets.

Because of the insufficiency of bucketing mentioned above, applying bucket-
ing to an arbitrary system may not lead to a system that satisfies SRSCR (for
good f and ε). To this end, we present a condition, called low-input side-channel
non-interference (LISCNI). We show that applying bucketing to a system that
satisfies the condition would result in a system that satisfies SRSCR. There-
fore, LISCNI is a sufficient condition for security under the bucketing technique.
Roughly, LISCNI says that (1) the side-channel observation does not depend on
attacker-controlled inputs (but may depend on secrets) and (2) the system is
secure against adversaries who only observe the regular channel. The degree of
security is proportional to that against regular-channel-only-observing adver-
saries and the granularity of buckets. A main benefit of the conditions SRSCR
and LISCNI is that they allow separation of concerns whereby the security of
the regular channel can be proven independently of concerns of side-channel

1 Sometimes, the terminology “constant-time implementation” is used to mean even
stricter requirements, such as requiring control flows to be secret independent [3,9].
In this paper, we use the terminology for a more permissive notion in which only
the running time is required to be secret independent.
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information leakage, and certain conditions are placed on the side channel to
guarantee the security of the whole system.

Finally, we show that the bucketing technique can be applied in a compo-
sitional manner with the constant-time implementation technique. Specifically,
we show that when a system is a sequential composition of components in which
one component is constant-time and the other component LISCNI, the whole
system can be made secure by applying bucketing only to the non-constant-time
part. We show that the combined approach is able to ensure security of some
non-constant-time systems that cannot be made secure by applying bucketing
to the whole system. We summarize the main contributions below.

– A formal notion of security against adaptive side-channel-observing adver-
saries, called (f, ε)-security. (Sect. 2)

– A counterexample which shows that bucketing alone is insufficient for security
against adaptive side-channel attacks. (Sect. 2.1)

– A condition SRSCR which guarantees (f, ε)-security. (Sect. 3.1)
– A condition LISCNI which guarantees that the system satisfying it becomes

one that satisfies SRSCR and therefore becomes (f, ε)-secure after suitable
bucketing is applied. (Sect. 3.2)

– A compositional approach that combines bucketing and the constant-time
technique. (Sect. 3.3)

While the paper focuses on timing channels and bucketing, many of the results
are actually quite general and are applicable to side channels other than timing
channels. Specifically, aside from the compositional bucketing result that exploits
the “additive” nature of timing channels (cf. Sect. 3.3), the results are applicable
to any side channels and techniques that reduce the number of possible side-
channel observations

The rest of the paper is organized as follows. Section 2 formalizes the setting,
and defines (f, ε)-security which is a formal notion of security against adaptive
side-channel attacks. We also show that bucketing is in general insufficient to
guarantee security of systems against adaptive side-channel attacks. Section 3
presents sufficient conditions for ensuring (f, ε)-security: SRSCR and LISCNI.
We show that they facilitate proving the security of systems by allowing system
designers to prove the security of regular channels separately from the concern
of side channels. We also show that the LISCNI condition may be used in com-
bination with the constant-time implementation technique in a compositional
manner so as to prove the security of systems that are neither constant-time nor
can be made secure by (globally) applying bucketing. Section 4 discusses related
work. Section 5 concludes the paper with a discussion on future work.

2 Security Against Adaptive Side-Channel Attacks

Formally, a system (or, program) is a tuple (rc, sc,S, I,Orc,Osc) where rc and
sc are indexed families of functions (indexed by the security parameter) that
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represent the regular-channel and side-channel input-output relation of the sys-
tem, respectively. S is a security-parameter-indexed family of sets of secrets (or,
high inputs) and I is a security-parameter-indexed family of sets of attacker-
controlled inputs (or, low inputs). A security parameter is a natural number that
represents the size of secrets, and we write Sn for the set of secrets of size n and
In for the set of corresponding attacker-controlled inputs. Each indexed function
rcn (respectively scn) is a function from Sn × In to Orc

n (resp. Osc
n ), where Orc

and Osc are indexed families of sets of possible regular-channel and side-channel
outputs, respectively. For (s, v) ∈ Sn × In, we write rcn(s, v) (resp. scn(s, v))
for the regular-channel (resp. side-channel) output given the secret s and the
attacker-controlled input v.2 For a system C = (rc, sc,S, I,Orc,Osc), we often
write rc〈C〉 for rc, sc〈C〉 for sc, S〈C〉 for S, I〈C〉 for I, Orc〈C〉 for Orc, and
Osc〈C〉 for Osc. We often omit “〈C〉” when it is clear from the context.

For a system C and s ∈ Sn, we write Cn(s) for the oracle which, given
v ∈ In, returns a pair of outputs (o1, o2) ∈ Orc

n × Osc
n such that rcn(s, v) = o1

and scn(s, v) = o2. An adversary A is an algorithm that attempts to discover
the secret by making some number of oracle queries. As standard, we assume
that A has the full knowledge of the system. For i ∈ N, we write ACn(s)(i) for
the adversary A that makes at most i oracle queries to Cn(s). We impose no
restriction on how the adversary chooses the inputs to the oracle. Importantly,
he may choose the inputs based on the outputs of previous oracle queries. Such
an adversary is said to be adaptive [25].

Also, for generality, we intentionally leave the computation class of adver-
saries unspecified. The methods presented in this paper work for any computa-
tion class, including the class of polynomial time randomized algorithms and the
class of resource-unlimited randomized algorithms. The former is the standard
for arguing the security of cryptography algorithms, and the latter ensures infor-
mation theoretic security. In what follows, unless specified otherwise, we assume
that the computation class of adversaries is the class of resource-unlimited ran-
domized algorithms.

As standard, we define security as the bound on the probability that an
adversary wins a certain game. Let f be a function from N to N. We define
WinA(n, f) to be the event that the following game outputs true.

s ← Sn

s′ ← ACn(s)(f(n))
Output s = s′

Here, the first line selects s uniformly at random from Sn. We note that, while
we restrict to deterministic systems, the adversary algorithm A may be prob-
abilistic and also the secret s is selected randomly. Therefore, the full range of
probabilities is possible for the event WinA(n, f). Now, we are ready to give the
definition of (f, ε)-security.

2 We restrict to deterministic systems in this paper. Extension to probabilistic systems
is left for future work.
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Definition 1 ((f, ε)-security). Let f : N → N and ε : N → R be such that 0 <
ε(n) ≤ 1 for all n ∈ N. We say that a system is (f, ε)-secure if there exists N ∈ N

such that for all adversaries A and n ≥ N , it holds that Pr[WinA(n, f)] < ε(n).

Roughly, (f, ε)-secure means that, for all sufficiently large n, there is no attack
that is able to recover secrets in f(n) number of queries with the probability of
success ε(n).

By abuse of notation, we often implicitly treat an expression e on the security
parameter n as the function λn∈N.e. Therefore, for example, (n, ε)-secure means
that there is no attack that is able to recover secrets in n many queries with the
probability of success ε(n), and (f, 1)-secure means that there is no attack that
makes at most f(n) number of queries and is always successful. Also, by abuse
of notation, we often write ε ≤ ε′ when ε(n) ≤ ε′(n) for all sufficiently large n,
and likewise for ε < ε′.

Fig. 1. Timing insecure login program

Example 1 (Leaky Login). Consider the program shown in Fig. 1 written in a
C-like language. The program is an abridged version of the timing insecure login
program from [6]. Here, pass is the secret and guess is the attacker-controlled
input, each represented as a length n bit array. We show that there is an efficient
adaptive timing attack against the program that recovers the secret in a linear
number of queries.

We formalize the program as the system C where for all n ∈ N,

– Sn = In = {0, 1}n;
– Orc

n = {true, false} and Osc
n = {i ∈ N | i ≤ n};

– For all (s, v) ∈ Sn × In, rcn(s, v) = true if s = v and rcn(s, v) = false if
s 	= v; and

– For all (s, v) ∈ Sn × In, scn(s, v) = (argmaxi s�i = v�i).

Here, a�i denotes the length i prefix of a. Note that sc expresses the timing-
channel observation, as its output corresponds to the number of times the loop
iterated.

For a secret s ∈ Sn, the adversary ACn(s)(n) efficiently recovers s as follows.
He picks an arbitrary v1 ∈ In as the initial guess. By seeing the timing-channel
output scn(s, v1), he would be able to discover at least the first bit of s, s[0],
because s[0] = v1[0] if and only if scn(s, v1) > 0. Then, he picks an arbitrary
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v2 ∈ {0, 1}n satisfying v2[0] = s[0], and by seeing the timing-channel output, he
would be able to discover at least up to the second bit of s. Repeating the process
n times, he will recover all n bits of s. Therefore, the system is not (n, ε)-secure
for any ε. This is an example of an adaptive attack since the adversary crafts
the next input by using the knowledge of previous observations. �

Example 2 (Bucketed Leaky Login). Next, we consider the security of the pro-
gram from Example 1 but with bucketing applied. Here, we assume a constant
number of buckets, k, such that the program returns its output at time intervals
i · n/k for i ∈ {j ∈ N | j ≤ k}.3 (For simplicity, we assume that n is divisible by
k.) The bucketed program can be formalized as the system where

– rc, sc, I, Orc are as in Example 1;
– For all n ∈ N, Osc

n = {i ∈ N | i ≤ k}; and
– For all n ∈ N and (s, v) ∈ Sn × In, scn(s, v) = bkt(argmaxi s�i = v�i, n/k)

where bkt(i, j) is the smallest a ∈ N such that i ≤ a · j. It is easy to see that
the system is not constant-time for any k > 1. Nonetheless, we can show that
the system is (f, ε)-secure where f(n) = 2n/k − (N + 1) and ε(n) = 1 − N−1

2n/k for
any 1 ≤ N < 2n/k. Note that as k approaches 1 (and hence the system becomes
constant-time), f approaches 2n − (N + 1) and ε approaches 1 − N−1

2n , which
match the security bound of the ideal login program that only leaks whether
the input guess matched the password or not. We will show that the approach
presented in Sect. 3.1 can be used to derive such a bound. �

2.1 Insufficiency of Bucketing

We show that bucketing is in general insufficient to guarantee the security of
systems against adaptive side-channel attacks. In fact, we show that bucket-
ing with even just two buckets is insufficient. (Two is the minimum number
of buckets that can be used to show the insufficiency because having only one
bucket implies that the system is constant-time and therefore is secure.) More
generally, our result applies to any side channels, and it shows that there are
systems with just two possible side-channel outputs and completely secure (i.e.,
non-interferent [19,37]) regular channel that is efficiently attackable by side-
channel-observing adversaries.

Consider the system such that, for all n ∈ N,

– Sn = {0, 1}n and In = {i ∈ N | i ≤ n};
– Orc

n = {•} and Osc
n = {0, 1};

– For all (s, v) ∈ Sn × In, rcn(s, v) = •; and
– For all (s, v) ∈ Sn × In, scn(s, v) = s[v].

Note that the regular channel rc only has one possible output and therefore
is non-interferent. The side channel sc has just two possible outputs. The side
channel, given an attacker-controlled input v ∈ In, reveals the v-th bit of s.
3 A similar analysis can be done for any strictly sub-linear number of buckets.
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It is easy to see that the system is linearly attackable. That is, for any secret
s ∈ Sn, the adversary may recover the entire n bits of s by querying with each
of the n-many possible attacker-controlled inputs. Therefore, the system is not
(n, ε)-secure for any ε. Note that the side channel is easily realizable as a timing
channel, for example, by having a branch with the branch condition “s[v] = 0”
and different running times for the branches.

We remark that the above attack is not adaptive. Therefore, the counterex-
ample actually shows that bucketing can be made ineffective by just allowing
multiple non-adaptive side-channel observations. We also remark that the coun-
terexample shows that some previously proposed measures are insufficient. For
example, the capacity measure [5,28,33,39] would not be able to detect the vul-
nerability of the example, because the measure is equivalent to the log of the
number of possible outputs for deterministic systems.

3 Sufficient Conditions for Security Against Adaptive
Side-Channel Attacks

In this section, we present conditions that guarantee the security of systems
against adaptive side-channel-observing adversaries. The condition SRSCR pre-
sented in Sect. 3.1 guarantees that systems that satisfy it are secure, whereas
the condition LISCNI presented in Sect. 3.2 guarantees that systems that satisfy
it become secure once bucketing is applied. We shall show that the conditions
facilitate proving (f, ε)-security of systems by separating the concerns of regular
channels from those of side channels. In addition, we show in Sect. 3.3 that the
LISCNI condition may be used in combination with constant-time implementa-
tion techniques in a compositional manner so as to prove the security of systems
that are neither constant-time nor can be made secure by (globally) applying
bucketing.

3.1 Secret-Restricted Side-Channel Refinement Condition

We present the secret-restricted side-channel refinement condition (SRSCR).
Informally, the idea here is to find large subsets of secrets S′ ⊆ P(Sn) such
that for each S′′ ∈ S′, the secrets are difficult for an adversary to recover by
only observing the regular channel, and that the side channel reveals no more
information than the regular channel for those sets of secrets. Then, because S′

is large, the entire system is also ensured to be secure with high probability. We
adopt refinement order [29,38], which had been studied in quantitative infor-
mation flow research, to formalize the notion of “reveals no more information”.
Roughly, a channel C1 is said to be a refinement of a channel C2 if, for every
attacker-controlled input, every pair of secrets that C2 can distinguish can also
be distinguished by C1.

We write O• for the indexed family of sets such that O•
n = {•} for all n ∈ N.

Also, we write sc• for the indexed family of functions such that sc•
n(s, v) = • for

all n ∈ N and (s, v) ∈ Sn×In. For C = (rc, sc,S, I,Orc,Osc), we write C• for the
system (rc, sc•,S, I,Orc,O•). We define the notion of regular-channel security.
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Definition 2 (Regular-channel (f, ε)-security). We say that the C is
regular-channel (f, ε)-secure if C• is (f, ε)-secure.

Roughly, regular-channel security says that the system is secure against attacks
that only observe the regular channel output.

Let us fix a system C = (rc, sc,S, I,Orc,Osc). For an indexed family of sets
of sets of secrets S′ (i.e., S′

n ⊆ P(Sn) for each n), we write S′′ ≺ S′ when S′′

is an indexed family of sets of secrets such that S′′
n ∈ S′

n for each n. Note that
such S′′ satisfies S′′

n ⊆ Sn for each n. Also, for S′′ ≺ S′, we write C|S′′ for the
system that is equal to C except that its secrets are restricted to S′′, that is,
(rc, sc, S′′, I,Orc,Osc). Next, we formalize the SRSCR condition.

Definition 3 (Secret-Restricted Side-Channel Refinement). Let f : N →
N, ε : N → (0, 1], and 0 < r ≤ 1. We say that the system C = (rc, sc,S, I,Orc,
Osc) satisfies the secret-restricted side-channel refinement condition with f , ε,
and r, written SRSCR(f, ε, r), if there exists an indexed family of sets of sets of
secrets Sres such that Sres

n ⊆ P(Sn) for all n ∈ N, and:

(1) For all n ∈ N, r ≤ |⋃ Sres
n |/|Sn|;

(2) For all S′′ ≺ Sres , C|S′′ is regular-channel (f, ε)-secure; and
(3) For all n ∈ N, S ∈ Sres

n , v ∈ In and s1, s2 ∈ S, it holds that scn(s1, v) 	=
scn(s2, v) ⇒ rcn(s1, v) 	= rcn(s2, v).

Condition (2) says that the system is regular-channel (f, ε)-secure when
restricted to any subset of secrets S′′ ≺ Sres . Condition (3) says that the sys-
tem’s side channel reveals no more information than its regular channel for the
restricted secret subsets. Condition (1) says that the ratio of the restricted set
over the entire space of secrets is at least r.4

We informally describe why SRSCR is a sufficient condition for security. The
condition guarantees that, for the restricted secrets Sres , the attacker gains
no additional information by observing the side-channel compared to what he
already knew by observing the regular channel. Then, because r is a bound on
the probability that a randomly selected secret falls in Sres , the system is secure
provided that r is suitably large and the system is regular-channel secure. The
theorem below formalizes the above intuition.

Theorem 1 (SRSCR Soundness). Suppose C satisfies SRSCR(f, ε, r). Then,
C is (f, ε′)-secure, where ε′ = 1 − r(1 − ε).

Proof. Let Sres be an indexed family of sets of secret subsets that satisfies con-
ditions (1), (2), and (3) of SRSCR(f, ε, r). By condition (2), for all sufficiently
large n and adversaries A, Pr[Win•,res

A (n, f)] < ε(n) where Win•,res
A (n, f) is the

modified game in which the oracle Cn(s) always outputs • as its side-channel
output and the secret s is selected randomly from

⋃
Sres
n (rather than from Sn).

4 It is easy to relax the notion to be asymptotic so that the conditions need to hold
only for n ≥ N for some N ∈ N.
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For any n, the probability that a randomly selected element from Sn is in⋃
Sres
n is at least r by condition (1). That is, Pr[s ∈ ⋃

Sres
n | s ← Sn] ≥ r.

Also, Pr[¬Win•,res
A (n, f)] > 1 − ε(n) (for sufficiently large n) for any A by the

argument above. Therefore, by condition (3), for sufficiently large n,

Pr[¬WinA(n, f)] ≥ Pr[s ∈ Sres
n | s ←

⋃
Sn] · Pr[¬Win•,res

A (n, f)] > r · (1 − ε(n))

Therefore, Pr[WinA(n, f)] < 1 − r(1 − ε(n)) for sufficiently large n. �
As a special case where the ratio r is 1, Theorem 1 implies that if a system
satisfies SRSCR(f, ε, 1) then it is (f, ε)-secure.

Example 3. Recall the bucketed leaky login program from Example 2. We show
that the program satisfies the SRSCR condition. For each n, a ∈ {0, 1}n, and
0 ≤ i < k, let Sa,i

n ⊆ Sn be the set of secrets whose sub-bits from i · n/k to
(i + 1) · n/k − 1 may differ but the remaining n − n/k bits are a (and therefore
same). That is,

Sa,i
n = {s ∈ Sn | s[0, . . . , i · n/k − 1] = a[0, . . . , i · n/k − 1]

and s[(i + 1) · n/k, . . . , n − 1] = a[(i + 1) · n/k, . . . , n − 1]}
Let Sres be the indexed family of sets of sets of secrets such that Sres

n =
{Sa,i

n | a ∈ {0, 1}n} for some i. Then, the system satisfies conditions (1), (2),
and (3) of SRSCR(f, ε, r) with r = 1, f(n) = 2n/k − (N + 1), and ε = 1 − N−1

2n/k

for any 1 ≤ N < 2n/k. Note that (1) is satisfied with r = 1 because Sn =
⋃

Sres
n ,

and (2) is satisfied because |Sa,i
n | = 2n/k and (f, ε) matches the security of the

ideal login program without side channels for the set of secrets of size 2n/k. To
see why (3) is satisfied, note that for any v ∈ In and s ∈ Sa,i

n , scn(s, v) = i
if s 	= v, and scn(s, v) = k if s = v. Hence, for any v ∈ In and s1, s2 ∈ Sa,i

n ,
scn(s1, v) 	= scn(s2, v) ⇒ rcn(s1, v) 	= rcn(s2, v). Therefore, by Theorem 1, it
follows that bucketed leaky login program is (f, ε)-secure. Note that the bound
matches the one given in Example 2. �

To effectively apply Theorem 1, one needs to find suitable subsets of secrets
Sres on which the system’s regular channel is (f, ε)-secure and the side channel
satisfies the refinement relation with respect to the regular channel. As also
observed in prior works [29,38], the refinement relation is a 2-safety property [13,
35] for which there are a number of effective verification methods [2,6,10,32,34].
For instance, self-composition [3,4,8,35] is a well-known technique that can be
used to verify arbitrary 2-safety properties.

We note that a main benefit of Theorem 1 is separation of concerns whereby
the security of regular channel can be proven independently of side channels, and
the conditions required for side channels can be checked separately. For instance,
a system designer may prove the regular-channel (f, ε)-security by an elaborate
manual reasoning, while the side-channel conditions are checked, possibly auto-
matically, by established program verification methods such as self composition.
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Remarks. We make some additional observations regarding the SRSCR condi-
tion. First, while Theorem 1 derives a sound security bound, the bound may
not be the tightest one. Indeed, when the adversary’s error probability (i.e., the
“ε” part of (f, ε)-security) is 1, the bucketed leaky login program can be shown
to be actually (k(2n/k − 2), 1)-secure, whereas the bound derived in Example 3
only showed that it is (2n/k − 2, 1)-secure. That is, there is a factor k gap in the
bounds. Intuitively, the gap occurs for the example because the buckets partition
a secret into k number of n/k bit blocks, and while an adversary needs to recover
the bits of every block in order to recover the entire secret, the analysis derived
the bound by assessing only the effort required to recover bits from one of the
blocks. Extending the technique to enable tighter analyses is left for future work.

Secondly, the statement of Theorem 1 says that when regular channel of the
system is (f, ε)-secure for certain subsets of secrets, then the whole system is
(f, ε′)-secure under certain conditions. This may give an impression that only
the adversary-success probability parameter (i.e., ε) of (f, ε)-security is affected
by the additional consideration of side channels, leaving the number of oracle
queries parameter (i.e., f) unaffected. However, as also seen in Example 2, the
two parameters are often correlated so that smaller f implies smaller ε and
vice versa. Therefore, Theorem 1 suggests that the change in the probability
parameter (i.e., from ε to ε′) may need to be compensated by a change in the
degree of security with respect to the number of oracle queries.

Finally, condition (2) of SRSCR stipulates that the regular channel is (f, ε)-
secure for each restricted family of sets of secrets S′′ ≺ Sres rather than the
entire space of secrets S. In general, a system can be less secure when secrets are
restricted because the adversary has a smaller space of secrets to search. Indeed,
in the case when the error probability is 1, the regular channel of the bucketed
leaky login program can be shown to be (2n − 2, 1)-secure, but when restricted
to each S′′ ≺ Sres used in the analysis of Example 3, it is only (2n/k − 2, 1)-
secure. That is, there is an implicit correlation between the sizes of the restricted
subsets and the degree of regular-channel security. Therefore, finding Sres such
that each S′′ ∈ Sres

n is large and satisfies the conditions is important for deriving
good security bounds, even when the ratio |⋃ Sres

n |/|Sn| is large as in the analysis
of the bucketed leaky login program.

3.2 Low-Input Side-Channel Non-Interference Condition

While SRSCR facilitates proving security of systems by separating regular chan-
nels from side channels, it requires one to identify suitable subsets of secrets
Sres that satisfy the conditions. This can be a hurdle to applying the proof
method. To this end, this section presents a condition, called low-input side-
channel non-interference (LISCNI), which guarantees that a system satisfying
it becomes secure after applying bucketing (or other techniques) to reduce the
number of side-channel outputs. Unlike SRSCR, the condition does not require
identifying secret subsets. Roughly, the condition stipulates that the regular
channel is secure (for the entire space of secrets) and that the side-channel out-
puts are independent of attacker-controlled inputs.
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We show that the system satisfying the condition becomes a system satisfying
SRSCR once bucketing is applied, where the degree of security (i.e., the param-
eters f , ε, r of SRSCR) will be proportional to the degree of regular-channel
security and the granularity of buckets. Roughly, this holds because for a system
whose side-channel outputs are independent of attacker-controlled inputs, buck-
eting is guaranteed to partition the secrets into a small number of sets (relative
to the bucket granularity) such that for each of the sets, the side channel cannot
distinguish the secrets in the set, and the regular-channel security transfers to a
certain degree to the case when the secrets are restricted to the ones in the set.

As we shall show next, while the condition is not permissive enough to prove
security of the leaky login program (cf. Examples 1, 2 and 3), it covers interesting
scenarios such as fast modular exponentiation (cf. Example 4). Also, as we shall
show in Sect. 3.3, the condition may be used compositionally in combination
with the constant-time implementation technique [1,3,9,22] to further widen its
applicability.

Definition 4 (Low-Input Side-Channel Non-Interference). Let f : N →
N and ε : N → (0, 1]. We say that the system C satisfies the low-input side-
channel non-interference condition with f and ε, written LISCNI(f, ε), if the
following conditions are satisfied:

(1) C is regular-channel (f, ε)-secure; and
(2) For all n ∈ N, s ∈ Sn, and v1, v2 ∈ In, it holds that scn(s, v1) = scn(s, v2).

Condition (2) says that the side-channel outputs are independent of low inputs
(i.e., attacker-controlled inputs). We note that this is non-interference with
respect to low inputs, whereas the usual notion of non-interference says that
the outputs are independent of high inputs (i.e., secrets) [19,37].5

The LISCNI condition ensures the security of systems after bucketing is
applied. We next formalize the notion of “applying bucketing”.

Definition 5 (Bucketing). Let C be a system and k ∈ N such that k > 0.
The system C after k-bucketing is applied, written Bktk(C), is a system C ′ that
satisfies the following:

(1) rc〈C ′〉 = rc〈C〉, S〈C ′〉 = S〈C〉, I〈C ′〉 = I〈C〉, and Orc〈C ′〉 = Orc〈C〉;
(2) For all n ∈ N, Osc〈C ′〉n = {�1, . . . , �k} where �i 	= �j for each i 	= j; and
(3) For all n ∈ N, s1, s2 ∈ Sn and v1, v2 ∈ In, sc〈C〉n(s1, v1) = sc〈C〉n(s2, v2) ⇒

sc〈C ′〉n(s1, v2) = sc〈C ′〉n(s2, v2).

Roughly, k-bucketing partitions the side channel outputs into k number of buck-
ets. We note that our notion of “bucketing” is quite general in that it does not
specify how the side channel outputs are partitioned into the buckets. Indeed, as
we shall show next, the security guarantee derived by LISCNI only requires the
fact that side channel outputs are partitioned into a small number of buckets.

5 As with SRSCR, it is easy to relax the notion to be asymptotic so that condition (2)
only needs to hold for large n.
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This makes our results applicable to any techniques (beyond the usual bucket-
ing technique for timing channels [7,14,26,27,41]) that reduce the number of
possible side-channel outputs.

Below states that a system satisfying the LISCNI condition becomes one that
satisfies the SRSCR condition after suitable bucketing is applied.

Theorem 2 (LISCNI Soundness). Suppose that C satisfies LISCNI(f, ε). Let
k > 0 be such that k · ε ≤ 1. Then, Bktk(C) satisfies SRSCR(f, k · ε, 1/k).

Proof. Let C ′ = Bktk(C). By condition (2) of k-bucketing and condition (2) of
LISCNI(f, ε), we have that for all n ∈ N, s ∈ Sn and v1, v2 ∈ In, sc〈C ′〉n(s, v1) =
sc〈C ′〉n(s, v2). Therefore, by k-bucketing, there must be an indexed family of
sets of secrets S′ such that for all n, (a) S′

n ⊆ Sn, (b) |S′
n| ≥ |Sn|/k, and (c) for

all s1, s2 ∈ S′
n and v1, v2 ∈ In, sc〈C ′〉n(s1, v1) = sc〈C ′〉n(s2, v2). Note that such

S′ can be found by, for each n, choosing a bucket into which a maximal number
of secrets fall. We define an indexed family of sets of sets of secrets Sres to be
such that Sres

n is the singleton set {S′
n} for each n.

We show that C ′ satisfies conditions (1), (2), and (3) of SRSCR(f, k · ε, 1/k)
with the restricted secret subsets Sres defined above. Firstly, (1) is satisfied
because |S′

n| ≥ |Sn|/k. Also, (3) is satisfied because of property (c) above (i.e.,
the side channel is non-interferent for the subset).

It remains to show that (2) is satisfied. That is, C ′|S′ is regular-channel
(f, k · ε)-secure. For contradiction, suppose that C ′|S′ is not regular-channel
(f, k · ε)-secure, that is, there exists a regular-channel attack A that queries (the
regular channel of) C ′|S′ at most f(n) many times and successfully recovers the
secret with probability at least k ·ε(n). Then, we can construct a regular-channel
adversary for C which simply runs A (on any secret from Sn). Note that the
adversary makes at most f(n) many queries. We argue that the probability that
the adversary succeeds in recovering the secret is at least ε. That is, we show
that Pr[Win•

A(n, f)] ≥ ε(n) (for sufficiently large n) where Win•
A(n, f) is the

modified game in which the oracle always outputs • as its side-channel output.
To see this, note that the probability that a secret randomly selected from

Sn is in S′
n is at least 1/k, that is, Pr[s ∈ S′

n | s ← Sn] ≥ 1/k. Also, A’s regular-
channel attack succeeds with probability at least k · ε given a randomly chosen
secret from S′

n, that is, Pr[Win•,res
A (n, f)] ≥ k · ε(n) where Win•,res

A (n, f) is the
modified game in which the oracle always outputs • as its side-channel output
and the secret is selected randomly from S′

n (rather than from Sn). Therefore,
for sufficiently large n, we have:

Pr[Win•
A(n, f)] ≥ Pr[s ∈ S′

n | s ← Sn] ·Pr[Win•,res
A (n, f)] ≥ 1/k ·(k ·ε(n)) = ε(n)

This contradicts condition (1) of LISCNI(f, ε) which says that C is regular-
channel (f, ε)-secure. Therefore, C ′|S′ is regular-channel (f, k · ε)-secure. �

As a corollary of Theorems 1 and 2, we have the following.

Corollary 1. Suppose that C satisfies LISCNI(f, ε). Let k > 0 be such that k·ε ≤
1. Then, Bktk(C) is (f, ε′)-secure where ε′ = 1 − 1/k + ε.
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Note that as k approaches 1 (and hence the system becomes constant-time),
the security bound of Bktk(C) approaches (f, ε), matching the regular-channel
security of C. As with Theorem 1, Theorem 2 may give an impression that
the conditions only affect the adversary-success probability parameter (i.e., ε)
of (f, ε)-security, leaving the number of queries parameter (i.e., f) unaffected.
However, as also remarked in Sect. 3.1, the two parameters are often correlated
so that a change in one can affect the other. Also, like SRSCR, LISCNI separates
the concerns regarding regular channels from those regarding side channels. A
system designer may check the security of the regular channel while disregarding
the side channel, and separately prove the condition on the side channel.

Fig. 2. Fast modular exponentiation

Example 4 (Fast Modular Exponentiation). Fast modular exponentiation is an
operation that is often found in cryptography algorithms such as RSA [23,30].
Figure 2 shows its implementation written in a C-like language. It computes
yx mod m where x is the secret represented as a length n bit array and y is an
attacker controlled-input. The program is not constant-time (assuming that then
and else branches in the loop have different running times), and effective timing
attacks have been proposed for the program [23,30].

However, assuming that running time of the operation (a * y) % m is inde-
pendent of y, it can be seen that the program satisfies the LISCNI condition.6

Under the assumption, the program can be formalized as the system C where,
for all n ∈ N,

– Sn = In = {0, 1}n;
– Orc

n = Osc
n = N;

– For all (s, v) ∈ Sn × In, rcn(s, v) = vs mod m; and
– For all (s, v) ∈ Sn × In, scn(s, v) = timet · num(s, 1) + timef · num(s, 0).

6 This is admittedly an optimistic assumption. Indeed, proposed timing attacks exploit
the fact that the running time of the operation can depend on y [23,30]. Here, we
assume that the running time of the operation is made independent of y by some
means (e.g., by adopting the constant-time implementation technique).
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Here, num(s, b) = |{i ∈ N | i < n ∧ s[i] = b}| for b ∈ {0, 1}, and timet (resp.
timef) is the running time of the then (resp. else) branch.

Let the computation class of adversaries be the class of randomized poly-
nomial time algorithms. Then, under the standard computational assumption
that inverting modular exponentiation is hard, one can show that C satisfies
LISCNI(f, ε) for any f and negligible ε. This follows because the side-channel
outputs are independent of low inputs, and the regular-channel is (f, ε)-secure
for any f and negligible ε under the assumption.7 Therefore, it can be made
(f, ε)-secure for any f and negligible ε by applying bucketing. �

Remarks. We make some additional observations regarding the LISCNI condi-
tion. First, similar to condition (3) of SRSCR, the low-input independence condi-
tion of LISCNI (condition (2)) is a 2-safety property and is amenable to various
verification methods proposed for the class of properties. In fact, because the
condition is essentially side-channel non-interference but with respect to low
inputs instead of high inputs, it can be checked by the methods for checking
ordinary side-channel non-interference by reversing the roles of high inputs and
low inputs [1,3,6,9,20].

Secondly, we note that the leaky login program from Example 1 does not
satisfy LISCNI. This is because the program’s side channel is not non-interferent
with respect to low inputs. Indeed, given any secret s ∈ Sn, one can vary the
running times by choosing low inputs v, v′ ∈ In with differing lengths of match-
ing prefixes, that is, (argmaxi s�i = v�i) 	= (argmaxi s�i = v′�i). Nevertheless, as
we have shown in Examples 2 and 3, the program becomes secure once bucketing
is applied. In fact, it becomes one that satisfies SRSCR as shown in Example 3.
Ideally, we would like to find a relatively simple condition (on systems before
bucketing is applied) that covers many systems that would become secure by
applying bucketing. However, finding such a condition that covers a system like
the leaky login program may be non-trivial. Indeed, predicting that the leaky
login program become secure after applying bucketing appears to require more
subtle analysis of interaction between low inputs and high inputs. (In fact, it
can be shown that arbitrarily partitioning the side-channel outputs to a small
number of buckets does not ensure security for this program.) Extending the
technique to cover such scenarios is left for future work.

3.3 Combining Bucketing and Constant-Time Implementation
Compositionally

We show that the LISCNI condition may be applied compositionally with the
constant-time implementation technique (technically, we will only apply the con-
dition (2) of LISCNI compositionally). As we shall show next, the combined app-
roach is able to ensure security of some non-constant-time systems that cannot
7 The latter holds because (f, ε)-security is asymptotic and the probability that any

regular-channel adversary of the computation class may correctly guess the secret for
this system is negligible (under the computational hardness assumption). Therefore,
a similar analysis can be done for any sub-polynomial number of buckets.
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be made sure by applying bucketing globally to the whole system. We remark
that, in contrast to those of the previous sections of the paper, the results of this
section are more specialized to the case of timing channels. First, we formalize
the notion of constant-time implementation.

Fig. 3. A non-constant-time program that cannot be made secure by globally applying
bucketing.

Definition 6 (Constant-Time). Let f : N → N and ε : N → (0, 1]. We say
that a system C satisfies the constant-time condition (or, timing-channel non-
interference) with f and ε, written CT(f, ε), if the following is satisfied:

(1) C is regular-channel (f, ε)-secure; and
(2) For all n ∈ N, v ∈ In, and s1, s2 ∈ Sn, scn(s1, v) = scn(s2, v).

Note that CT requires that the side channel is non-interferent (with respect to
secrets). The following theorem is immediate from the definition, and states that
CT is a sufficient condition for security.

Theorem 3 (CT Soundness). If C satisfies CT(f, ε), then C is (f, ε)-secure.

To motivate the combined application of CT and LISCNI, let us consider the
following example which is neither constant-time nor can be made secure by
(globally) applying bucketing.

Example 5. Figure 3 shows a simple, albeit contrived, program that we will use
to motivate the combined approach. Here, sec is a n-bit secret and inp is a
n-bit attacker-controlled input. Both sec and inp are interpreted as unsigned
n-bit integers where − and > are the usual unsigned integer subtraction and
comparison operations. The regular channel always outputs true and hence is
non-interferent. Therefore, only the timing channel is of concern.

The program can be formalized as Ccomp where for all n ∈ N,

– Sn = In = {0, 1}n;
– Orc

n = {•};
– Osc

n = {i ∈ N | i ≤ 2n+1};
– For all (s, v) ∈ Sn × In, rcn(s, v) = •; and
– For all (s, v) ∈ Sn × In, scn(s, v) = s + v.
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Note that the side channel outputs the sum of the high input and the low input.
It is easy to see that the system is not constant-time (i.e., not CT(f, ε) for any
f and ε). Furthermore, the system is not secure as is, because an adversary can
immediately recover the secret by querying with any input and subtracting the
input from the side-channel output.

Also, it is easy to see that the system does not satisfy LISCNI(f, ε) for any f
and ε either, because its side-channel outputs are not independent of low inputs.
In fact, we can show that arbitrarily applying bucketing (globally) to the system
does not guarantee security. To see this, let us consider applying bucketing with
just two buckets whereby the buckets partition the possible running times in two
halves so that running times less than or equal to 2n fall into the first bucket
and those greater than 2n fall into the other bucket. After applying bucketing,
the system is C ′ where

– rc〈C ′〉, S〈C ′〉, I〈C ′〉, and Orc〈C ′〉 are same as those of Ccomp;
– For all n ∈ N, Osc〈C ′〉n = {0, 1}; and
– For all n ∈ N and (s, v) ∈ Sn × In, sc〈C ′〉n(s, v) = 0 if s + v ≤ 2n, and
sc〈C ′〉n(s, v) = 1 otherwise.

We show that there exists an efficient adaptive attack against C ′. Let s ∈
Sn. The adversary A recovers s by only making linearly many queries via the
following process. First, A queries with the input v1 = 2n−1. By observing the
side-channel output, A will know whether 0 ≤ s ≤ 2n−1 (i.e., the side-channel
output was 0) or 2n−1 < s ≤ 2n (i.e., the side-channel output was 1). In the
former case, A picks the input v2 = 2n−1 + 2n−2 for the next query, and in
the latter case, he picks v2 = 2n−2. Continuing the process in a binary search
manner and reducing the space of possible secrets by 1/2 in each query, A is
able to hone in on s within n many queries. Therefore, C ′ is not (n, ε)-secure for
any ε. �

Next, we present the compositional bucketing approach. Roughly, our com-
positionality theorem (Theorem 4) states that the sequential composition of a
constant-time system with a system whose side channel is non-interferent with
respect to low inputs can be made secure by applying bucketing to only the
non-constant-time component. As with LISCNI, the degree of security of the
composed system is relative to the that of the regular channel and the granular-
ity of buckets.

To state the compositionality theorem, we explicitly separate the conditions
on side channels of CT and LISCNI from those on regular channels and introduce
terminologies that only refer to the side-channel conditions. Let us fix C. We
say that C satisfies CTsc, if it satisfies condition (2) of CT, that is, for all n ∈ N,
v ∈ In, and s1, s2 ∈ Sn, scn(s1, v) = scn(s2, v). Also, we say that C satisfies
LISCNIsc if it satisfies condition (2) of LISCNI, that is, for all n ∈ N, s ∈ Sn,
and v1, v2 ∈ In, scn(s, v1) = scn(s, v2). Next, we define sequential composition
of systems.

Definition 7 (Sequential Composition). Let C† and C‡ be systems such
that S〈C†〉 = S〈C‡〉, I〈C†〉 = I〈C‡〉, and for all n ∈ N, Osc〈C‡〉n ⊆ N and
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Osc〈C‡〉n ⊆ N. The sequential composition of C† with C‡, written C†;C‡, is the
system C such that

– S〈C〉 = S(C†) and I〈C〉 = I(C†); and
– For all n ∈ N and (s, v) ∈ Sn × In, sc〈C ′〉n(s, v) = sc〈C†〉n(s, v) +

sc〈C‡〉n(s, v).

We note that the definition of sequential composition specifically targets the
case when the side channel is a timing channel, and says that the side-channels
outputs are numeric values and that the side-channel output of the composed
system is the sum of those of the components. Also, the definition leaves the
composition of regular channels open, and allows the regular channel of the
composed system to be any function from Sn × In. We are now ready to state
the compositionality theorem.

Theorem 4 (Compositionality). Let C† be a system that satisfies LISCNIsc

and C‡ be a system that satisfies CTsc. Suppose that Bktk(C†);C‡ is regular-
channel (f, ε)-secure where k · ε ≤ 1. Then, Bktk(C†);C‡ is (f, ε′)-secure, where
ε′ = 1 − 1/k + ε.

Proof. By Theorem 1, it suffices to show that Bktk(C†);C‡ satisfies SRSCR(f, k ·
ε, 1/k). By an argument similar to the proof of Theorem 2, there must be an
indexed family of sets of secrets S′ such that, for all n ∈ N, (a) S′

n ⊆ Sn,
(b) |S′

n| ≥ |Sn|/k, and (c) for all s1, s2 ∈ S′
n and v1, v2 ∈ In,

sc〈Bktk(C†)〉n(s1, v1) = sc〈Bktk(C†)〉n(s2, v2). We define an indexed family of
sets of sets of secrets Sres to be such that Sres

n is the singleton set {S′
n} for each

n.
We show that C = Bktk(C†);C‡ satisfies conditions (1), (2), and (3) of

SRSCR(f, k ·ε, 1/k) with the restricted secret subsets Sres defined above. Firstly,
(1) is satisfied because |S′

n| ≥ |Sn|/k. Also, because Bktk(C†);C‡ is regular-
channel (f, ε)-secure, we can show that (2) is satisfied by an argument similar
to the one in the proof of Theorem 2.

It remains to show that (3) is satisfied. It suffices to show that for all n ∈ N,
v ∈ In, and s1, s2 ∈ S′

n, sc〈C〉n(s1, v) = sc〈C〉n(s2, v). That is, the side channel
of the composed system is non-interferent (with respect to high inputs) for the
subset S′. By the definition of the sequential composition, for all v ∈ In and
s ∈ Sn, sc〈C〉n(s, v) = sc〈Bktk(C†)〉n(s, v) + sc〈C‡〉n(s, v). Therefore, for all
v ∈ In and s1, s2 ∈ S′

n,

sc〈C〉n(s1, v) = sc〈Bktk(C†)〉n(s1, v) + sc〈C‡〉n(s1, v)
= sc〈Bktk(C†)〉n(s2, v) + sc(C‡)n(s2, v)
= sc〈C〉n(s2, v)

because sc〈C‡〉n(s1, v) = sc〈C‡〉n(s2, v) by CTsc of C‡, and sc〈Bktk(C†)〉n(s1, v)
= sc〈Bktk(C†)〉n(s2, v) by (c) above. �

We note that the notion of sequential composition is symmetric. Therefore,
Theorem 4 implies that the composing the components in the reverse order, that
is, C‡;Bktk(C†), is also secure provided that its regular channel is secure.
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The compositionality theorem suggests the following compositional app-
roach to ensuring security. Given a system C that is a sequential composi-
tion of a component whose side channel outputs are independent of high inputs
(i.e., satisfies CTsc) and a component whose side channel outputs are indepen-
dent of low inputs (i.e., satisfies LISCNIsc), we can ensure the security of C by
proving its regular-channel security and applying bucketing only to the non-
constant-time component.

Example 6. Let us apply compositional bucketing to the system Ccomp from
Example 5. Recall that the system is neither constant-time nor applying buck-
eting to the whole system ensures its security. The system can be seen as the
sequential composition Ccomp = C†;C‡ where C† and C‡ satisfy the following:

– S and I are as in Ccomp;
– For all n ∈ N, Osc〈C†〉n = Osc〈C‡〉n = {i ∈ N | i ≤ 2n}; and
– For all n ∈ N and (s, v) ∈ Sn × In, sc〈C†〉n(s, v) = s and sc〈C‡〉n(s, v) = v.

Note that C‡ satisfies CTsc as its side-channel outputs are high-input inde-
pendent, and, C† satisfies LISCNIsc as its side-channel outputs are low-input
independent. By applying bucketing only to the component C†, we obtain the
system Bktk(C†);C‡. The regular-channel of Bktk(C†);C‡ (i.e., that of Ccomp) is
(f, ε)-secure for any f and negligible ε because it is non-interferent (with respect
to high inputs) and the probability that an adversary may recover a secret for
such a system is at most 1/|Sn|.8 Therefore, by Theorem 4, Bktk(C†);C‡ is
(f, ε)-secure for any f and negligible ε. �

The above example shows that compositional bucketing can be used to ensure
security of non-constant-time systems that cannot be made secure by a whole-
system bucketing. It is interesting to observe that the constant-time condition,
CTsc, requires the side-channel outputs to be independent of high inputs but
allows dependency on low inputs, while LISCNIsc is the dual and says that the
side-channel outputs are independent of low inputs but may depend on high
inputs. Our compositionality theorem (Theorem 4) states that a system consist-
ing of such parts can be made secure by applying bucketing only to the part
that satisfies the latter condition.

It is easy to see that sequentially composing components that satisfy CTsc

results in a system that satisfies CTsc, and likewise, sequentially composing com-
ponents that satisfy LISCNIsc results in a system that satisfies LISCNIsc. There-
fore, such compositions can be used freely in conjunction with the compositional
bucketing technique of this section. We also conjecture that components that are
made secure by compositional bucketing can themselves be sequentially com-
posed to form a secure system (possibly with some decrease in the degree of
security). We leave a more detailed investigation for future work.

8 Therefore, a similar analysis can be done for any strictly sub-exponential number of
buckets.
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4 Related Work

As remarked in Sect. 1, much research has been done on defending against tim-
ing attacks and more generally side channel attacks. For instance, there have
been experimental evaluation on the effectiveness of bucketing and other timing-
channel mitigation schemes [14,18], and other works have proposed information-
theoretic methods for formally analyzing the security of (deterministic and prob-
abilistic) systems against adaptive adversaries [12,25].

However, few prior works have formally analyzed the effect of bucketing on
timing channel security (or similar techniques for other side channels) against
adaptive adversaries. Indeed, to our knowledge, the only prior work to do so are
the series of works by Köpf et al. [26,27] who investigated the effect of bucketing
applied to blinded cryptography algorithms. They show that applying bucket-
ing to a blinded cryptography algorithm whose regular channel is IND-CCA2
secure results in an algorithm that is IND-CCA2 secure against timing-channel-
observing adversaries. In addition, they show bounds on information leaked by
such bucketed blinded cryptography algorithms in terms of quantitative informa-
tion flow [5,28,33,39,40]. By contrast, we analyze the effect of applying bucketing
to general systems, show that bucketing is in general insufficient against adaptive
adversaries, and present novel conditions that guarantee security against such
adversaries. (In fact, the results of [26,27] may be seen as an instance of our
LISCNI condition because blinding makes the behavior of cryptographic algo-
rithms effectively independent of attacker-controlled inputs.) Also, our results
are given in the form of (f, ε)-security, which can provide precise bounds on the
number of queries needed by adaptive adversaries to recover secrets.

Next, we compare our work with the works on constant-time implementations
(i.e., timing-channel non-interference) [1,3,6,9,20,22]. The previous works have
proposed methods for verifying that the given system is constant-time [3,6,9,20]
or transforming it to one that is constant-time [1,22]. As we have also discussed
in this paper (cf. Theorem 3), it is easy to see that the constant-time condition
directly transfers the regular-channel-only security to the security for the case
with timing channels. By contrast, security implied by bucketing is less straight-
forward. In this paper, we have shown that bucketing is in general insufficient
to guarantee the security of systems even when their regular channel is perfectly
secure. And, we have presented results that show that, under certain condi-
tions, the regular-channel-only security can be transferred to the side-channel-
observing case to certain degrees. Because there are advantages of bucketing
such as efficiency and ease of implementation [7,14,26,27,41], we hope that our
results will contribute to a better understanding of the bucketing technique and
foster further research on the topic.

5 Conclusion and Future Work

In this paper, we have presented a formal analysis of the effectiveness of the buck-
eting technique against adaptive timing-channel-observing adversaries. We have
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shown that bucketing is in general insufficient against such adversaries, and pre-
sented two novel conditions, SRSCR and LISCNI, that guarantee security against
such adversaries. SRSCR states that a system that satisfies it is secure, whereas
LISCNI states that the a system that satisfies it becomes secure when bucketing
is applied. We have shown that both conditions facilitate proving the security of
systems against adaptive side-channel-observing adversaries by allowing a sys-
tem designer to prove the security of the system’s regular channel separately
from the concerns of its side-channel behavior. By doing so, the security of the
regular-channel is transferred, to certain degrees, to the full side-channel-aware
security. We have also shown that the LISCNI condition can be used in con-
junction with the constant-time implementation technique in a compositional
manner to further increase its applicability. We have formalized our results via
the notion of (f, ε)-security, which gives precise bounds on the number of queries
needed by adaptive adversaries to recover secrets.

While we have instantiated our results to timing channel and bucketing, many
of the results are actually quite general and are applicable to side channels other
than timing channels. Specifically, aside from the compositional bucketing result
that exploits the “additive” nature of timing channels, the results are applicable
to any side channels and techniques that reduce the number of possible side-
channel observations.

As future work, we would like to extend our results to probabilistic systems.
Currently, our results are limited to deterministic systems, and such an extension
would be needed to assess the effect of bucketing when it is used together with
countermeasure techniques that involve randomization. We would also like to
improve the conditions and the security bounds thereof to be able to better
analyze systems such as the leaky login program shown in Examples 1, 2 and 3.
Finally, we would like to extend the applicability of the compositional bucketing
technique by considering more patterns of compositions, such as sequentially
composing components that themselves have been made secure by compositional
bucketing.
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