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ABSTRACT
Being able to detect program runtime complexity can help iden-
tify security vulnerabilities such as DoS attacks and side-channel
information leakage. In prior work, we use dynamic invariant gen-
eration to infer nonlinear numerical relations to represent runtime
complexity of imperative programs. In this work, we propose a
new dynamic analysis approach for learning recurrence relations to
capture complexity bounds for recursive programs. This approach
allows us to efficiently infer simple linear recurrence relations that
represent nontrivial, potentially nonlinear, complexity bounds. Pre-
liminary results on several popular recursive programs show that
we can learn precise recurrence relations capturing worst-case
complexity bounds such as O(n log n) and O(cn).

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; • Security and privacy → Software security engineer-
ing.
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1 INTRODUCTION
The automated discovery of program invariants—relations among
variables that are guaranteed to hold at certain locations of a
program—is an important research area in program analysis, ver-
ification, and synthesis. Generated invariants can be used to un-
derstand undocumented programs, prove correctness assertions,
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establish security properties, provide formal documentation, and
more [5, 13–15, 25, 29].

In [32, 34], we developed DIG, a dynamic invariant generation
tool that learns numerical invariants involving relations among
numerical program variables. In particular, DIG supports nonlinear
polynomial relations, e.g., x ≤ y2, x = qy + r. These relations arise
in many scientific, engineering, and safety- and security-critical
software, e.g., to verify the absence of errors in Airbus avionic
systems [11]. A rather surprising use of DIG’s nonlinear invariants
is that they can help characterize program runtime complexity, by
instrumenting a counter for the number of blocks executed and
inferring a relationship involving that counter and the program’s
input variables, at the end of the program’s execution [32]. For
example, it can be shown this way that a program runs in O(n2 + 2m)
for certain inputs and O(m) for other inputs.

In this paper, we propose a new dynamic analysis for learning
recurrence relations to capture complexity bounds for recursive pro-
grams. At high level, a recurrence relation defines the complexity
to solve a problem in terms of the complexities to solve its subprob-
lems. The dynamic technique allows us to efficiently infer simple
linear recurrence relations that represent nontrivial, potentially
nonlinear, complexity bounds. When applied to several classical
divide-and-conquer algorithms, we were able to learn precise re-
currence relations capturing worst-case complexity bounds such as
O(n log n) or O(cn) from execution traces obtained by running the
programs using few randomly generated inputs.

What distinguishes our work from other complexity analyses
(e.g., [21, 22, 27, 35] and those reviewed in Section 4) is the use of
dynamic, instead of static, analysis to learn program complexity
bounds. In general, a static analysis can reason about all program
paths soundly, but doing so is often expensive and is only possible
for relatively simple forms of invariant relations or restricted classes
of programs. Dynamic analyses limit their attention to only some
of a program’s paths, and thus provide no guarantee that those
invariants are correct, but can often be more efficient and produce
more expressive results [16, 34]. We can also improve correctness
by using symbolic execution techniques to check for spurious re-
sults [33] and generate worst-case complexity inputs leading to
high-complexity program paths [6, 30, 35].

As shown in many works [21, 22, 27, 35], complexity analysis, in
particular through worst-case execution time (WCET) analysis [41]
and high-security input dependent resource analysis, can help de-
tect several important security vulnerabilities [9, 12, 19] (e.g., by
allowing an attacker to exhaust the system’s resources (time or
memory) and perform Denial-of-Service attacks on servers or by

https://doi.org/10.1145/3416507.3423189
https://doi.org/10.1145/3416507.3423189


SEAD ’20, November 9, 2020, Virtual, USA Nguyen, et al.

def tripple(M, N, P):

t = 0 #ctr variable

assert (0 <= M and 0 <= N and 0 <= P);

i = 0; j = 0; k = 0

while i < N:

j = 0; t++

while j < M:

j++; k = i; t++

while k < P:

k++; t++

i = k

i++

[L]

Figure 1: A program with several complexity bounds.

exhibiting side-channel information leakage). By knowing the ex-
ecution times of different high-security dependent branches (e.g.,
one branch takes linear time while the other takes quadratic time),
the developer can mitigate an attack by "padding" the computation
so that all executions take the same time (e.g., instrumenting the
program to add dummy loops, instructions, or delays).

2 LEARNING POLYNOMIAL RELATIONS
In [32, 34], we developed DIG, a dynamic analysis tool that learns
(potentially nonlinear) numerical invariants, which describe re-
lations over numerical variables at arbitrary program locations.
DIG’s invariants can help understand programs and characterize
their runtime complexities, which is useful for identifying possible
security problems [4, 31].

Example. Figure 1 shows the program tripple, adapted from
Figure 2 of [22], with nontrivial runtime complexity. At first, tripple
appears to take O(NMP) due to the three nested loops. A closer analy-
sis [22] shows amore precise bound O(N + NM + P) because the inner
most loop, which is updated each time the middle loop executes,
changes the behavior of the outer most loop.

When given this program, DIG discovers an interesting and
complex postcondition at location L about the variable t, which is
a ghost variable introduced to count loop iterations:

P2Mt + PM2t − PMNt − M2Nt − PMt2 + MNt2 + PMt−

PNt − 2MNt + Pt2 + Mt2 + Nt2 − t3 − Nt + t2 = 0.

This nonlinear equality is valid, but incomprehensible and quite
different than the expected bound N + NM + P or even NMP. However,
when solving this equation (finding the roots of t), we obtain three
solutions that describe the exact bounds of this program:

t =




0 when N = 0

P + M + 1 when N ≤ P

N − M(P − N) when N > P

These results are more precise than the bound N + MN + P given
in [22] and can help developers analyze inputs causing the program
to run in different time complexities. This example also shows com-
plexity analysis can help detect side-channel information leakage,
e.g., if some of the inputs from M, N and P are high-security and some

are public, an attacker can infer valuable information about the
high-security inputs by observing the running time of the program.

3 LEARNING RECURRENCE RELATIONS
Polynomial relations can help capture general program complex-
ity. However, for recursive, e.g., divide-and-conquer, programs we
can generate recurrence relations [10] to compute complexity more
precisely. Using dynamic analysis to infer recurrent relations is rel-
atively straightforward and a linear recurrence relation can capture
complex program bounds such as those involving log or nonlinear
degrees.

A recurrence relation (or simply recurrence) defines the com-
plexity to solve a problem in terms of the complexities to solve
its subproblems. For example, we can compute the recurrence for
the standard mergesort algorithm as T(n) = 2T( n2 ) + O(n), i.e., the
algorithm splits the problem into two subproblems of half the sizes
of the original problem and merges the results of the subprob-
lems in linear time). Next, solving this recurrence, e.g., using the
well-known Master Theorem [10], gives the asymptotic complexity
O(n log n). Thus, we can obtain difficult program complexity bounds
by inferring and solving relatively simple recurrence relations, e.g.,
we obtain mergesort’s complexity involving log from a recurrence
that does not directly involve log.

Example. For the mergesort program in Figure 2, we instru-
ment the program with the new variables id and t to keep track
of recursive calls. We also record execution traces at the program
entrance to capture the length of the input and the unique id of
each recursive call.

The tree in Figure 2 shows the program execution traces when
applying mergesort to a list of 7 elements. The root node (7, [1]) is
the first mergesort call with id [1] on the list of 7 elements. The
children nodes (3, [1, 1]) and (4, [1, 2]) respectively represent the
first and second recursive calls on the first 3 and the remaining 4
elements of the original list.

We now analyze the recursive parts of the program. From the
execution traces, we form tuples of the form (t0, t1), where t0 rep-
resents the input length of the original call and t1 the input length
of the first recursive call. Then we use a learning technique such as
linear regression to find a relation of the form t1 ≈ ct0, which repre-
sents the relation between the sizes of the original problem and the
subproblems. From the data (7, 3), (3, 1), (2, 1), (4, 2) in the execu-
tion tree in Figure 2, we obtain the relation t1 ≈ 1

2 t0. Similarly, we
obtain t2 ≈ 1

2 t0 as the relation between mergesort and its second
recursive call. The combination of these two,T0 = T0

2 +
T0
2 , gives the

recurrence T (n) = T ( n2 ) +T (
n
2 ), indicating that mergesort makes

two recursive calls over inputs that are approximately half of the
original input.

For the non-recursive merge function, we can find a general
polynomial relation to capture its complexity. First, we instrument
the program using the counter variable t and increment it in each
loop to count the number of executed blocks. Next, from traces
recorded at the progarm exit (using the trace function), we can
compute the relation t ≈ len(A) + len(B), indicating merge runs
in linear time.

The combination of the recursive and non-recursive results gives
the recurrence T(n) = 2T( n2 ) + O(n) (merge takes linear time). We



Using Dynamically Inferred Invariants to Analyze Program Runtime Complexity SEAD ’20, November 9, 2020, Virtual, USA

def mergesort(L, id):

#id is a list , e.g., [1]

trace(len(L), id)

t = 0 #ctr variable

n = len(L)

if n == 0 or n == 1:

return copy(L)

mid = n // 2

A = mergesort(L[0:mid],

id+[++t]) #id = [1,1]

B = mergesort(L[mid:n],

id+[++t]) #id = [1,2]

C = merge(A, B)

return C

def merge(A, B):

t = 0 #ctr variable

a = 0; b = 0; C = []

while (a < len(A)

and b < len(B)):

t++

if A[a] <= B[b]:

C += [A[a]]; a++

else:

C += [B[b]]; b++

while a < len(A):

t++; C += [A[b]]

while b < len(B):

t++; C += [B[b]];

trace(len(A), len(B), t)

return C

7,
[1]3, 

[1,1] 4, 
[1,2]1,

[1,1,1] 2, 
[1,1,2] 2,

[1,2,1] 2,
[1,2,2]

1,
[1,2,2,1] 1, 

[1,2,2,2]

1, 
[1,2,1,1] 1,

[1,2,1,2]

1, 
[1,1,2,1] 1,

[1,1,2,2]

Figure 2: The Mergesort Algorithm.

can now apply the Master Theorem [10] to solve this recurrence to
obtain the complexity O(n log n).

Evaluation. We applied our approach to compute recurrence
relations for several recursive programs in OCaml. We manually
instrumented each program, ran it on randomly generated inputs to
obtain execution traces (e.g., for mergesortwe randomly generated
input lists of various sizes), and finally computed the recurrences.

Table 1 shows the results. We were able to obtain the correct
recurrences for all considered programs. We used the Master Theo-
rem, which supports recurrences of the form T (n) = aT ( nb ) + f (n),
to obtain the complexities of binary search and merge sort.
For the other programs, we manually convert their recurrences to
program complexities.

Table 1: Results

Program Recurrence Complexity

Binary Search T(n) = T( n2 ) + 1 O(log n)
Merge Sort T(n) = 2T( n2 ) + n O(n log n)

Insertion Sort T(n) = T(n − 1) + n O(n2)
Selection Sort T(n) = T(n − 1) + n O(n2)
List Rotation T(n) = T(n − 1) + 1 O(n)
Depth First Search T(n) = T(n − 1) + 1 O(n)
Fibonacci T(n) = T(n − 1) + T(n − 2) + 1 O(2n)
Tower of Hanoi T(n) = 2T(n − 1) + 1 O(2n)

4 RELATEDWORKS
There are many static analyses for program complexity, e.g., the
SPEED project [21–23] and others [26–28]. Chatterjee et al. [7, 8]
use ranking functions and linear programming to compute ter-
mination property and non-polynomial worst-case upper bounds.
Hansel et al. [24] use symbolic execution to obtain an integer tran-
sition system to derive upper runtime bounds. Several techniques

focus on recurrence relations for worst-case complexity analysis [1–
3, 17, 20]. For example, the work in [2] solves recurrence relations
using evaluation trees and can derive the complexity bound for
mergesort. These works use static or symbolic analyses while we
dynamically learn complexity invariants.

There are also works on verifying given complexity bounds [37].
In particular, the TiML functional language [39] allows a user to
specify time complexity as types and then uses type checking to
verify the specified complexity. We can use these works to check
our candidate invariants.

Several worst-case execution time (WCET) analyses use symbolic
execution or fuzzing to find inputs or program paths leading to
worst-case program behaviors [6, 30, 35, 36, 40]. The recent work
in [38] uses automatic amortized resource analysis, a type-based
technique to compute symbolic bounds and generate worst-case
input for OCaml functions. We can leverage these inputs to obtain
useful execution traces for dynamic analysis.

5 CONCLUSION AND FUTUREWORK
We propose new dynamic analysis techniques to learn numerical
and recurrence relations to capture program complexity bounds.
In addition to developing tools implementing these ideas, we are
extending DIG with other learning techniques such as linear re-
gression [18] and neural networks [42] to compute more general
relations to represent inexact, e.g., lower and upper, complexity
bounds. We are also exploring existing WCET techniques to gener-
ate worst-case complexity inputs and check candidate invariants
(e.g., using the guess-and-check approach [33] to remove spurious
results and generate counterexamples to help dynamic inference).
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