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Abstract Node selecting tree automata (NSTAs) constitute a general formalism
defining unary queries over trees. Basically, a node is selected by an NSTA when it
is visited in a selecting state during an accepting run. We consider twig patterns as an
abstraction of XPath. Since the queries definable by NSTAs form a strict superset of
twig-definable queries, we study the complexity of the problem to decide whether the
query by a given NSTA is twig-definable. In particular, we obtain that the latter prob-
lem is EXPTIME-complete. In addition, we show that it is also EXPTIME-complete
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to decide whether the query by a given NSTA is definable by a node selecting string
automaton.

Keywords Automata · Twigs · Complexity · Definability

1 Introduction

As node selecting queries are fundamental in the context of tree-structured data like
XML and web documents, many formalisms expressing such unary queries over
trees have been investigated over time. Surprisingly many formalisms have been pro-
posed which are expressively equivalent to the unary queries definable in monadic
second-order logic (MSO) turning the latter into a yardstick for expressiveness over
tree-structured data. We refer to these queries as the regular unary queries. Expres-
sively equivalent formalisms are for instance based on attribute grammars [28, 29],
automata [13, 16, 31], and logic [12, 19, 30]. Though expressive, well-understood,
and robust, regular unary queries lack the simplicity and usability of less expressive
languages like for instance XPath. Furthermore, a major advantage of XPath is with-
out doubt the large body of research on efficient evaluation, optimization, and static
analysis (see, e.g. [5] for a survey) and the availability of implementations. As such
results for general unary regular queries are scarce, the goal of the present paper is
to investigate the problem to decide whether a given regular unary query can in fact
already be defined in an XPath-like formalism.

The proposed type of research has attracted a lot of attention in the area of logic
and automata. There, a logic is said to have a decidable characterization if the follow-
ing decision problem is decidable: “Given as input a finite automaton, decide if the
recognized language can be defined using a formula of the logic”. Although quite a
bit of research is available for logics over trees (cf., e.g., [6, 10, 37]), the most directly
related result is by Place and Segoufin who showed that it is decidable whether
a regular unranked tree language is definable in FO2 over the descendant and the
following-sibling axes [33]. In terms of expressive power the latter logic corresponds
to a fragment of the navigational core of XPath that contains modalities for going up
to some ancestor, down to some descendant, left to some preceding sibling, and right
to some following sibling. The devised decision problem leads to a high complexity
with several nested exponentials. Although it is open whether this high complexity is
unavoidable, in this paper, we do not consider FO2 over trees but restrict our atten-
tion to some of its fragments. Another related result is the one by Bojańczyk and
Walukiewicz [11] showing that Boolean definability in the logic EX+EF is decid-
able in EXPTIME w.r.t. a given nondeterministic binary tree automaton. In short,
the logic EX+EF is defined over binary trees, expresses the child and ancestor rela-
tion and is closed under the Boolean connectives. Specifically, we consider regular
path queries and XPath with child, descendant and filter.1 We refer to the latter as

1Filter is sometimes also called predicate, e.g., in the XPath specification by the World Wide Web
Consortium.
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twig queries. These twig queries are incomparable to EX+EF as they are defined
over unranked trees and can define unary queries but are not closed under Boolean
operations.

To represent unary regular queries, we employ the class of node selecting tree
automata (NSTA) as defined in [16, 26] extended with wildcards. Basically, an NSTA
is a non-deterministic unranked tree automaton with a distinguished set of select-
ing states. A node is then selected by an NSTA when it is visited in a selecting
state during an accepting run. The output of the automaton consists of all selected
nodes.

A regular path query selects a node based on regular properties of its ancestor-
string, that is, the string formed by the labels on the path from the root to that
node. We formalize the latter as NFA-definable queries. Specifically, an NFA can
express a unary query by selecting every node which is visited in an accepting state
on the path from the root to that node. We characterize the NFA-definable regular
queries as those regular queries which are ancestor-based. The latter is a formal-
ization of the idea that NFA-definable queries cannot distinguish between nodes
with the same ancestor-string. Using this insight, we construct an NFA NFA(M)

for a given NSTA M , such that M is equivalent to NFA(M) if and only if the
query defined by M is NFA-definable. We then show that the latter equivalence
test can be performed in exponential time. Altogether, we show that testing NFA-
definability of NSTAs is EXPTIME-complete. We further discuss the relationship
with ancestor-based types for XML schema languages as defined in [23] and address
tractability.

Next, we turn to twig queries which are tree-patterns consisting of child and
descendant edges. These correspond to the fragment of XPath restricted to child-axis,
descendant-axis and filter. We show that NSTAs can be exponentially more succinct
than twig queries. However, the large size of such twigs is due to a high degree of
duplication which can be significantly reduced by folding them. We refer to the lat-
ter as DAG-twigs where DAG stands for a directed acyclic graph. In particular, we
show that when an NSTA is twig-definable, there always exists an equivalent DAG-
twig of at most linear size. To test twig-definability of NSTAs, one can simply guess
a DAG-twig of linear size and test equivalence with the given NSTA. We show that
the latter equivalence test can be done in EXPTIME through a reduction to empti-
ness of alternating tree-walking automata. The main result of this paper is that testing
twig-definability of NSTAs is complete for EXPTIME.

Related Work Various properties of XPath have been investigated in the literature
as for instance, its complexity, containment, and expressiveness. The complexity
of XPath and efficient evaluation algorithms are investigated in, e.g., [9, 20, 21].
The containment and satisfiability problems for XPath have been deeply stud-
ied in the database literature, for example in [8, 25, 32, 36]. The expressiveness
of various fragments and extensions of XPath have been investigated in, e.g., [4,
24, 37]. We refer to [5, 34] for surveys on these problems. To the best of our
knowledge the above mentioned results of Place and Segoufin [33] and Bojańczyk
and Walukiewicz [11] are the only research which studies decidability of XPath
definability.
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Outline In Section 2, we introduce the necessary definitions. In Section 3, we dis-
cuss regular path-definability of NSTAs. In Section 4, we discuss twig-definability
of NSTAs. We conclude in Section 5.

2 Definitions

Here, we introduce the necessary definitions concerning trees, queries and automata.
For a finite set S, we denote by |S| its number of elements.

2.1 Trees

Let Δ always denote an infinite set of labels. Intuitively, � is our abstraction of
the set of XML-tags. We assume that we can test equality between elements from
� in constant time. We denote by �∗ the set of finite strings over �. By ε we
denote the empty string. We only consider rooted, ordered, finite, labelled, unranked
trees which are directed from the root downwards. That is, we consider trees with a
finite number of nodes and in which nodes can have arbitrarily many children. We
view a tree t as a relational structure over a finite number of unary labelling rela-
tions σ(·), where each σ ∈ �, and binary relations child(·, ·) and next-sibling(·, ·).
Here, σ(u) expresses that u is a node with label σ , and child(u, v) (respectively,
next-sibling(u, v)) expresses that v is a child (respectively, the next sibling) of u.
When next-sibling(u, v) holds, we sometimes also say that v is (immediately) to the
right of u.

We write Nodest for the set of nodes of t . The set of edges of a tree t , denoted
by Edgest is the set of pairs (u, v) such that child(u, v) holds in t . The root node
of t is denoted by root(t). We define the size of t , denoted by |t |, to be the num-
ber of nodes of t . By σ(t1, . . . , tn) we denote a tree with root labelled σ and
subtrees t1, . . . , tn attached below the root from left to right. We sometimes over-
load notation and denote by σ not only the �-symbol but also the tree that has a
σ -labelled root and no children below the root. By T� we denote the set of all
trees.

A path in tree t is a sequence of nodes v0 · · · vn such that, for each i = 1, . . . , n,
we have that (vi−1, vi) ∈ Edgest . Paths therefore never run upwards, that is, turn
towards to the root of t . We say that v0 · · · vn is a path from v0 to vn and that the
length of the path is n. The depth of a node v ∈ Nodest is equal to the length of the
(unique) path from root(t) to v. The height of a tree t is then defined as the maximum
of the depths of all its nodes.

The label of each node v in t must be defined and unique, that is, for each node
v ∈ Nodest there exists a unique σ ∈ � such that σ(v) holds. We denote the
label of v in t by labt (v). For a node v in a tree t , the ancestor-string of v, denoted
ancstrt (v), is the concatenation of the labels on all the nodes on the path from the
root to v, including the two latter nodes. More specifically, ancstrt (v) is the sequence
labt (v0) · · · labt (vn), where v0 · · · vn is the path from root(t) to v. For a tree t and a
node v ∈ Nodest , the subtree of t at v, denoted by subtreet (v), is the tree induced
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by all the nodes u such that there is a (possibly empty) path from v to u. In partic-
ular, for any tree t and leaf node v, subtreet (v) = labt (v) and, for any other node
u, subtreet (u) = labt (u)(subtreet (u1), . . . , subtreet (un)), where u1, . . . un are the
children of u from left to right.

Similarly, the context of t at v, denoted by contextt (v), is the tree induced by v and
all the nodes that are not reachable by a path from v and which has a special marker
at the position of v. In particular, contextt (v) is defined inductively as follows. Let
contextt (root(t)) = # for some # /∈ �. If v is not the root of t , let u be the parent of v

and let the children of u be v1, . . . , vn, from left to right. Assume that v = vi . Then,
contextt (v) is the tree obtained by replacing the unique #-labelled node in contextt (u)

with the tree

labt (u)
(
subtreet (v1), . . . , subtree

t (v(i−1)), #, subtree
t (v(i+1)), . . . , subtree

t (vn)
)

By t[v ← t ′] we denote the tree constructed from t by replacing subtreet (v) at
node v with t ′. In other words, assuming w.l.o.g. that the sets of nodes in t and t ′ are
disjoint, t[v ← t ′] is the tree obtained by replacing the #-labelled node in contextt (v)

with the tree t ′.

2.2 Expressions and Automata

Throughout the paper, � ⊆ � always denotes a finite alphabet. The set of reg-
ular expressions with symbols from a finite alphabet � is denoted by R� . We
use standard regular expressions using the operators · (concatenation), + (dis-
junction), and ∗ (Kleene star). For a regular expression r , L(r) is the language
of the expression, and Labels(r) is the set of labels occurring in r . The size
of a regular expression r , denoted by |r|, is defined as the length of its string
representation.

The twig pattern queries we consider in this paper (see Section 4 for a formal
definition) use only a finite set of labels, but the trees that match it can use arbitrary
labels from an infinite set. This is to conform with the XPath query language, on
which twig pattern queries are inspired. However, automata usually only use a finite
alphabet of labels. To overcome this discrepancy we will use a wildcard symbol “�”
that will give automata the same power. We assume that the single-symbol wildcard
symbol � is not in � and we denote � � {�} by ��.

We define non-deterministic finite automata (NFAs) and their languages in the
usual way, with the additional feature of a wildcard symbol that can match any �-
symbol not in �.

An NFAw (NFA with wildcards) is a tuple A = (�, Q, qI , δ, F ), where Q is the
finite set of states, qI ∈ Q is the initial state, F ⊆ Q is the set of final states, and
δ : Q × �� → 2Q is the transition function.

From the transition function δ, we define the extended transition function δ∗ :
(Q × �∗) → 2Q which can read entire �-strings. In particular, δ∗(q, ε) = {q},
δ∗(q, a) = δ(q, a) if a ∈ �, δ∗(q, a) = δ(q, �) if a ∈ � − �, and δ∗(q, a · w) =
∪q ′∈δ∗(q,a)δ

∗(q ′, w), where a ∈ � and w ∈ �∗. A word w ∈ �∗ is accepted by A if
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δ∗(qI , w) ∩ F �= ∅. The set of words accepted by A is denoted by L(A). The size of
A, denoted by |A|, is defined as |Q| + ∑

q∈Q,a∈�� |δ(q, a)|.
A nondeterministic tree automaton with wildcards or NTAw is a tupleN = (�, Q,

δ, F ) where Q is a finite set of states, F ⊆ Q is the set of final states, and the
transition function δ : Q × �� → RQ is a mapping from pairs of a state and a label
to regular expressions over Q. Again, transitions labelled by � can be followed by
reading any symbol not in �.

A run of N on a tree t is an assignment of states to nodes λ : Nodest → Q such
that, for every v ∈ Nodest with n children v1, . . . , vn from left to right, the following
holds: if labt (v) ∈ �, then

λ(v1) · · · λ(vn) ∈ L(δ(λ(v), labt (v))). (2.1)

and if labt (v) ∈ � − �, then

λ(v1) · · · λ(vn) ∈ L(δ(λ(v),�)). (2.2)

When v has no children, the criterion reduces to

ε ∈ L(δ(λ(v), labt (v))) or ε ∈ L(δ(λ(v),�)).

A run is accepting if the root is labelled with a state in F . A tree t is accepted
by N if there is an accepting run of N on t . The set of all trees accepted by N is
denoted by L(N). If L(N) = T�, we call N universal. The size of N is defined as
|Q| +∑

q∈Q,a∈�� |δ(q, a)|. We say that two NTAws are equivalent if they define the
same language.

For any p ∈ Q, let Np = (�, Q, δ, {p}). We call p universal in N if Np is
universal.

We say that a state p is reachable from a state q, if p = q, or if there is an a ∈ �

and w1q
′w2 ∈ L(δ(q, a)) such that p is reachable from q ′.

Notice that, in our automata definitions, we could have let a wildcard match
any �-symbol rather than any symbol in � − �. While at first sight it may seem
more natural to some to let the wildcard match any �-symbol, we note that the
variant we chose here is more powerful. Indeed, the former semantics can be sim-
ulated by the latter (by simply adding an extra transition for every �-symbol) but
not vice versa. For example, the latter variant can test if a label is in {a} ∪ (� − �)

with a ∈ �, whereas the former cannot. We therefore chose the more powerful
variant.

Unless explicitly mentioned otherwise, we will assume that NTAws do not have
useless states. That is, for each state q, there is at least one accepting run λ of
the NTAw on some tree t where λ(u) = q for some node u of t . We justify this
assumption by the following lemma.

Lemma 2.1 Each NTAw can be converted into an equivalent NTAw without useless
states in polynomial time.
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Proof An NTAw B = (�, Q, δ, F ) can be converted into an equivalent NTAw

without useless states in polynomial time as follows:

(1) Compute the set E of states q such that L(Bq) = ∅.
(2) Replace every occurrence of a symbol in E in all regular expressions in the

definition of δ by ∅ and remove all symbols of E from Q and F .
(3) In the resulting NTAw, compute the set U of states that are not reachable from

a state in F .
(4) Remove all states of U from all regular expressions in the definition of δ and

remove them from Q.

We note that this procedure closely follows the procedure that removes useless non-
terminals from an extended context-free grammar which was presented in [1, 22]
and where it is also explained that it can be performed in polynomial time. We note
that the ordering between steps (2) and (3) is important. If this ordering is reversed,
the algorithm does not remove all useless states from the NTAw with F = {q0} and
transition function defined as δ(q0, a) = q1q2, δ(q1, a) = q1, and δ(q2, a) = ε.

Since useless states can be removed efficiently, we also do not need to bother
about removing useless states in the NTAws we construct in our algorithms.

The proof of the following theorem is a straightforward reduction to and from
the finite alphabet case [35]. To represent the automata as used in [35], we use the
same structure as for NTAws. We call the latter NTAs without wildcards, and their
semantics is just as for NTAws, except that � is given no special meaning. That is, �
is allowed in �, and the rule (2.2) is not used.

Theorem 2.2 1. Deciding equivalence of NTAws is EXPTIME-complete.
2. Deciding universality of NTAws is EXPTIME-complete.

Proof We prove the EXPTIME upper bound for equivalence and the EXPTIME
lower bound for universality. Since an NTAw is universal if and only if it is equivalent
to some (fixed) NTAw that accepts T�, the whole theorem follows.

We first show that equivalence is in EXPTIME. Let N1 and N2 be two NTAws
over alphabet �1 and �2, respectively. In particular, let N1 = (�1, Q1, δ1, F1) and
N2 = (�2, Q2, δ2, F2). Notice that �1 might be different from �2. We define two
NTAs (without wildcards) M1 and M2 over the alphabet 
 = �1 ∪ �2 ∪ {�} as
follows. The automaton M1 = (
, Q1, δ

′
1, F1) has the following transitions for each

q ∈ Q1 and σ ∈ 
:

1. if σ ∈ �1 ∪ {�}, then δ′
1(q, σ ) = δ1(q, σ ), and

2. if σ ∈ �2 − �1, then δ′
1(q, σ ) = δ1(q, �).

The automaton M2 = (
, Q2, δ
′
2, F2) and δ′

2 are defined similarly.
We want to show that M1 is equivalent to M2 (over T
) if and only if N1 is

equivalent to N2 (over T�). For any tree t ∈ T�, let t� ∈ T
 be the tree obtained
from t by replacing the label of any node that is not in �1 ∪ �2, with �. Since the
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transitions of Ni and Mi agree on all labels σ /∈ �1 ∪ �2, it holds that for any tree
t ∈ T� and run λ on t , λ is an accepting run of Ni on t if and only if it is an accepting
run of Mi on t�, for i ∈ {1, 2}. Let t be a tree in T
 .

For the only if direction, suppose that t ∈ L(N1). Then there exists an accepting
run λ of N1 on t . By construction of M1, λ is also an accepting run of M1 on t�,
and hence t� ∈ L(M1). By assumption that M1 and M2 are equivalent, there is an
accepting run λ′ of M2 on t�. By construction of M2, λ′ is also an accepting run of
N2 on any tree t ′ which is such that t ′� = t�. Hence, λ′ is also an accepting run of N2
on t . The case is similar when t ∈ L(N2).

For the if direction, suppose that t ∈ L(M1). Then there is an accepting run λ

of M1 on t . Then, by construction of M1, the run λ is an accepting run of N1 on
any tree t ′ which is such that t ′� = t . By assumption that N1 and N2 are equiv-
alent, it holds that t ′ ∈ L(N2), with λ′ being the witness accepting run, and by
construction of M2, λ′ is an accepting run of M2 on t ′� = t . The case is similar when
t ∈ L(M2).

We continue by showing EXPTIME-hardness of universality. Let N be an NTA
without wildcards over alphabet �. Then let M be an arbitrary but fixed NTAw over
the alphabet � which accepts any tree containing at least one symbol from � − �.
In other words, M accepts exactly the trees in T� −T� . The NTAw M requires only
two states that are not states of N . Then N is universal over � if and only if N ∪ M

is universal over �.

2.3 Queries

The focus of this paper is on unary queries. Basically, a unary query maps each tree
to a subset of its nodes.

Definition 2.3 (Unary Query) A unary query Q is a mapping with domain T� that
is closed under isomorphism, and is such that for each t ∈ T�, Q(t) ⊆ Nodest .

For two unary queries Q, Q′, and � ∈ {⊆, ⊇, =}, we write Q � Q′ if, for all
t ∈ T�, we have Q(t) � Q′(t). In this paper we only consider unary queries and
“query” will therefore mean “unary query”.

To facilitate proofs, in the following, we will sometimes reduce unary queries to
Boolean ones. To this end, we will employ a standard technique (cf., e.g., [38]) which
extends the set of labels by�×{0, 1} and labels selected nodes by 1 and non-selected
nodes by 0.

We will in the following, without loss of generality, assume that (�×{0, 1}) ⊂ �.
This assumption simplifies the text in our proofs.

Definition 2.4 For a tree t ∈ T�, we denote the set of nodes labelled by a sym-
bol in �, as Nodest (�). Then, let bool�(·, ·) be the mapping defined as follows.
For each tree t ∈ T� and v ∈ Nodest (�), let bool�(t, v) ∈ T� be the tree
with the same nodes and edges as t , but with the labelling function defined as fol-
lows: labbool�(t,v)(v) = (labt (v), 1), for v′ ∈ Nodest (�) − {v}, labbool�(t,v)(v′) =
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(labt (v′), 0), and for v′ /∈ Nodest (�), labbool�(t,v)(v′) = labt (v′). Finally, for a unary
query Q, let

BoolQ�(Q) =
⋃

t∈T�

v∈Q(t)

{bool�(t, v)}.

Then, the image of the function bool� is:

Image(bool�) =
⋃

t∈T�

v∈Nodest (�)

{bool�(t, v)}.

Lemma 2.5 For any finite � ⊆ �:

1. bool� is injective.
2. BoolQ� is injective.

Proof (1) Let t1, t2 ∈ T�, v1 ∈ Nodest1 and v2 ∈ Nodest2 , and assume
bool�(t1, v1) = bool�(t2, v2). The latter implies immediately that t1 and t2 have
the same nodes and edges, since bool� preserves the structure of the tree. For
each node v ∈ Nodest1 , since labbool�(t1,v1)(v) = labbool�(t2,v2)(v), by definition
also labt1(v) = labt2(v). Finally, also v1 = v2, since otherwise bool�(t1, v1)

and bool�(t2, v2) would have different labels at the nodes v1 and v2.
(2) To prove this we reformulate the definition of BoolQ� to get

BoolQ�(Q) = {bool�(t, v)|(t, v) ∈ Q}
Assume unary queries Q1 and Q2 such that BoolQ�(Q1) = BoolQ�(Q2). But
since bool� is injective this implies that Q1 = Q2.

Lemma 2.5 implies that the mapping bool� has an inverse over its image. We
denote the inverse by bool−1

� .

2.4 Selecting Tree Automata

The general formalism we use for expressing unary queries is that of selecting tree
automata, which are defined as follows [16, 26].

Definition 2.6 (NSTAw) A non-deterministic selecting tree automaton (with wild-
cards) or NSTAw M , is a pair (N, S), where N is an NTAw with state set Q, and
S ⊆ Q is a set of selecting states. The query defined by M is denoted QM . Formally,
v ∈ QM(t) if there is an accepting run λ such that λ(v) ∈ S and labt v ∈ �. Note that
for all t �∈ L(N), QM(t) = ∅. The size of M is defined as the size of its underlying
NTAw.
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We refer to the class of queries defined by NSTAws as the (unary) regular queries.
An NSTAw M is called non-empty if there is a t such that QM(t) �= ∅.

We say that two NSTAws are equivalent if they define the same query. The follow-
ing theorem says that deciding equivalence of NSTAws is in EXPTIME. Although
the results seems to belong to folklore, for the sake of completeness, we provide a
proof below.

Specifically, Theorem 2.8 follows directly from the following lemma and Theo-
rem 2.2.

Lemma 2.7 For any finite � ⊆ � and any NSTAw, M = (NM, S) over �, we can
construct in polynomial time an NTAw N such that L(N) = BoolQ�(QM), and such
that |QN | = 2 · |QNM

|, where QN is the set of states of N and QNM
is the set of

states of NM .

Proof Let NM = (�, Q, δ, F ). We will construct two NTAws, N ′ and N ′′, such
that L(N ′′) = Image(bool�), and L(N ′) ∩ Image(bool�) = BoolQ�(QM). This
implies that BoolQ�(QM) = L(N ′) ∩ L(N ′′). Since the intersection of NTAws can
be done using a cross-product construction, the whole construction can be performed
in polynomial time.

The NTAw N ′′ = (� × {0, 1}, {q0, qU }, δ′′, {q0}), where for each a ∈ �,

δ′′(qU , (a, 0)) = q∗
U , δ′′(q0, (a, 0)) = q∗

Uq0q
∗
U , δ′′(q0, (a, 1)) = q∗

U ,

and the wildcard transitions are δ′′(qU , �) = q∗
U and δ′′(q0, �) = q∗

Uq0q
∗
U . To see

that L(N ′′) = Image(bool�) note first that N ′′
qU

recognizes all the trees where for
each node, there is no a ∈ �, such that the label is (a, 1). The state q0 can be assigned
to a node if it has a label of the form (a, 1) for a ∈ �, or if it is not labelled (a, 1),
for a ∈ �, and q0 is assigned to exactly one of its children, and qU is assigned to the
other nodes. Hence, q0 is reached at a node if exactly one node in the tree has a label
of the form (a, 1), where a ∈ �.

The NTAw N ′ = (� × {0, 1}, Q, δ′, F ) has δ′ defined as follows: for each a ∈ �

and q ∈ Q, δ′(q, (a, 0)) = δ(q, a), for each q ∈ S, δ′(q, (a, 1)) = δ(q, a), and for
each q ∈ Q, δ′(q, �) = δ(q, �).

We first show that

L(N ′) ∩ Image(bool�) ⊆ BoolQ�(QM)

Assume t ′ ∈ L(N ′) ∩ Image(bool�). Let (t, v) = bool−1
� (t ′). Hence labt ′(v) =

(labt (v), 1), while for each v′ ∈ Nodest (�) − {v}, labt ′(v′) = (labt (v′), 0). Let λ

be the run of N ′ on t ′. By construction, λ is also a run of (�, Q, δ, F ) on t , and
λ(v) ∈ S. Hence v ∈ QM(t), and therefore bool�(t, v) ∈ BoolQ�(QM), that is,
t ′ ∈ BoolQ�(QM).

Secondly we show that

BoolQ�(QM) ⊆ L(N ′) ∩ Image(bool�)
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First note that BoolQ�(QM) ⊆ Image(bool�), so we only need to show that

BoolQ�(QM) ⊆ L(N ′)

Assume t ′ ∈ BoolQ�(QM). Let (t, v) = bool−1
� (t ′). Hence, v ∈ QM(t), v ∈

Nodest (�), and there is an accepting run λ of (�, Q, δ, F ) on t such that λ(v) ∈ S.
But by construction λ is then also an accepting run of N ′ on t ′.

Finally, since N ′ has |Q| states and N ′′ has 2 states the cross product construction
defining the intersection of their languages has 2 · |Q| states as required.

Theorem 2.8 Deciding equivalence of NSTAws is EXPTIME-complete.

Proof For the lower bound, by Theorem 2.2 we can reduce the problem of NTAw

equivalence to NSTAw equivalence. Given any NTAw N , we convert it to an NSTAw

M with N as its underlying NTAw, that always selects the root of a tree in the
language of N .

For the upper bound, given two NSTAws M1 and M2, we construct in polynomial
time two NTAws N1 and N2 as in Lemma 2.7, such that L(N1) = BoolQ�(QM1)

and L(N2) = BoolQ�(QM2). By Lemma 2.5 QM1 = QM2 if and only if
BoolQ�(QM1) = BoolQ�(QM2). By Theorem 2.2, we can check in EXPTIME
whether N1 and N2 are equivalent.

3 Regular Path Definability

In this section, we consider regular path definability. Here, we use NFAws to define
regular paths. More precisely, we investigate in Section 3.1 whether a query given by
an NSTAw can already be defined by an NFAw. We further discuss in Section 3.2 the
relationship with definability of single-type EDTDs. Finally, we address tractability
in Section 3.3.

3.1 NFAw-Definability

We first formally introduce queries defined by NFAws.

Definition 3.1 (NFAw-definable Query) The query defined by an
NFAw A is denoted by QA and is defined as follows. For any tree
t ∈ T�, QA(t) = {v ∈ Nodest | labt (v) ∈ �, ancstrt (v) ∈ L(A)}. We say that a
query Q is NFAw-definable, if there is an NFAw A such that Q = QA.

As selection of a node only depends on the ancestor-string, NFAw-definable
queries are ancestor-based as defined next:

Definition 3.2 (Ancestor-based Query) A unary query Q is ancestor-based if for
each two trees t1, t2 ∈ T�, and for any nodes v1 ∈ Nodest1 and v2 ∈ Nodest2 , if
v1 ∈ Q(t1) and ancstrt1(v1) = ancstrt2(v2), then also v2 ∈ Q(t2).
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It is easy to see that each NFAw-definable unary query must be ancestor-based.

Lemma 3.3 If a unary query is NFAw-definable, then it is also ancestor-based.

Proof Let the unary queryQ be definable by an NFAw A, i.e.,Q = QA, and assume
t1, t2 ∈ T� such that v1 ∈ Q(t1), v2 ∈ Nodest2 and ancstrt1(v1) = ancstrt2(v2).
Since v1 ∈ QA(t1), by definition, ancstrt1(v1) ∈ L(A), and since ancstrt1(v1) =
ancstrt2(v2), also ancstrt2(v2) ∈ L(A), hence, v2 ∈ Q(t2).

In general, the converse of Lemma 3.3 does not hold. For example, the query
“select all nodes v such that ancstrt (v) has an equal number of a’s and b’s” is
ancestor-based but not NFAw-definable. We will show in the remainder of this
section, that ancestor-based regular queries do correspond precisely to the NFAw-
definable ones. The proof makes use of a specific construction on NSTAws. In
particular, for a given NSTAw M we construct an automaton NFA(M) such that M is
NFAw-definable iff QNFA(M) = QM .

Basically, the automaton NFA(M) is constructed from M by turning it into an
NFAw. That is, a state at a node is only dependent on the state assigned to its parent
(and no longer dependent on the states assigned to its siblings). Specfically, any state
in Labels(δM(q, a)) can be assigned to a node whose parent is labelled a and is
assigned state q where δM is the transition function of M .2 The formal construction
is given next:

Definition 3.4 For an NSTAw M = (N, S), where N = (�, Q, δ, F ), and for qI /∈
Q, define the NFAw

NFA(M) = (�, (Q × ��) ∪ {qI }, qI , δ
′, F ′),

where �� = � � {�} and
F ′ = {(p, a)|p ∈ S, a ∈ �� and δ(p, a) is defined and not empty},

for each a ∈ ��, let δ′(qI , a) = {(p, a) | p ∈ F }, and for q ∈ Q and b ∈ ��, let
δ′((q, a), b) = {(p, b)|p ∈ Labels(δ(q, a))}.

The query defined by NFA(M) is always complete, that is, it always selects at
least the nodes that are selected by M . Furthermore, if the query defined by M is
ancestor-based, then we have that NFA(M) is sound as well, i.e., each node selected
by NFA(M) is also selected by M .

To facilitate the proofs below, we introduce the notation labt,�(v). If labt (v) ∈ �,
then let labt,�(v) = labt (v). Otherwise, let labt,�(v) = �.

Lemma 3.5 Let M be an NSTAw. Then the following holds:

1. QM ⊆ QNFA(M); and,

2Recall that Labels(r) is the set of symbols occurring in regular expressions r .



Theory Comput Syst (2015) 57:967–1007 979

2. if QM is ancestor-based then QNFA(M) ⊆ QM .

Proof (1) Let M and NFA(M) be as in Definition 3.4. Assume v ∈ QM(t) for
some v and t . We will prove that also v ∈ QNFA(M)(t). Let v1 · · · vn be the path
from the root to v in t . (Hence v1 = root(t) and vn = v). Since v ∈ QM(t), there
is an accepting run λ of M on t which selects v, that is, such that λ(v) ∈ S. Let
q1, . . . , qn be the states assigned to the nodes v1, . . . , vn by such an accepting run.
Hence q1 ∈ F and qn ∈ S. By induction on i, where 1 ≤ i ≤ n, we prove that
(qi, labt,�(vi)) ∈ δ′∗(qI , ancstrt (vi)).

– For the base case i = 1 it suffices to show that

(q1, lab
t,�(v1)) ∈ δ′∗(qI , lab

t (v1))

But this follows from construction of δ′, the extended transition function δ′∗, and
that q1 ∈ F .

– For the induction case where i > 1, we can assume, by the induction hypothesis,
that

(qi−1, lab
t,�(vi−1)) ∈ δ′∗(qI , ancstr

t (vi−1))

and it remains to prove that

(qi, lab
t,�(vi)) ∈ δ′∗((qi−1, lab

t (vi−1)), lab
t (vi))

By construction of δ′ and δ′∗, this holds if

qi ∈ Labels(δ(qi−1, lab
t,�(vi−1)))

The latter holds, since λ is an accepting run.

Since qn ∈ S and λ is an accepting run, (qn, labt,�(vn)) ∈ F ′. This implies
ancstrt (v) ∈ L(NFA(M)), and hence v ∈ QNFA(M)(t).

(2) Let M = (N, S), where N = (�, Q, δ, F ), and

NFA(M) = (�, (Q × ��) ∪ {qI }, qI , δ
′, F ′)

as in Definition 3.4. Assume that for some tree t and node v ∈ Nodest , v ∈
QNFA(M)(t). We will show that there exists a tree t ′ and v′ ∈ Nodest ′ , such that v′ ∈
QM(t ′) and ancstrt (v) = ancstrt

′
(v′). By our assumption that QM is ancestor-based,

it will follow that v ∈ QM(t).
Let v1, . . . , vn be the nodes on the path from the root to v (including the root and

v), and let w = ancstrt (v). Furthermore, let

qI , (p1, lab
t,�(v1)), . . . , (pn, lab

t,�(vn))

be the states visited by NFA(M) (in order) when matching w. Specifically, this means
(pn, labt,�(vn)) ∈ F ′, pn ∈ S, and p1 ∈ F .

Recall that we have defined Np = (�, Q, δ, {p}) for p ∈ Q as the NTAw N with
single final state p. We prove (below) by induction on i, 0 ≤ i < n, that there is a tree
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t ′n−i ∈ L(Npn−i
) and a v′

n−i ∈ Q(Npn−i
,S)(t

′
n−i ) such that labt (vn−i ) · · · labt (vn) =

ancstrt
′
n−i (v′

n−i ), and that there is a run of Npn−i
on t ′n−i where the nodes on the path

from the root to v′
n−i are assigned the states pn−i , . . . , pn, respectively.

– The base case i = 0 is easy, since we know pn ∈ S and (pn, labt,�(vn)) ∈ F ′,
and by construction the latter implies δ(pn, labt,�(vn)) is defined. Therefore,
there is a tree t ′n with its root labelled with labt (vn), such that t ′n ∈ Npn as
required.

– For the induction case, we can by the induction hypothesis assume the statement
holds for i ≥ 0, and we prove it for i + 1 < n. From the run of NFA(M) on w

we must have that (pn−i , labt,�(vn−i )) is in

δ′((pn−i−1, lab
t,�(vn−i−1)), lab

t,�(vn−i ))

By definition of the transition function δ′, this implies

pn−i ∈ Labels(δ(pn−i−1, lab
t,�(vn−i−1))).

In particular, there is a string wq = q1 · · · pn−i · · · qr , such that

wq ∈ L(δ(pn−i−1, lab
t,�(vn−i−1)))

Since there are no useless states, for each state qj other than pn−i in wq there is
a tree sqj

such that sqj
∈ L(Nqj

), and by the inductive hypothesis, there is a tree
t ′ni

∈ L(Npn−i
) with the required properties. Then let

t ′n−i−1 = labt (vn−i−1)(sq1 · · · t ′n−i · · · sqr ).

This tree satisfies the induction hypothesis statement.

Since {p1} ⊆ F , it holds that L(N) ⊇ L(Np1), and therefore v′
1 ∈ QM(t ′1), as

required.

The following lemma relates NFAw-definability and ancestor-based regular
queries.

Lemma 3.6 For an NSTAw M , the following are equivalent

1. QM is NFAw-definable;
2. QM is ancestor-based; and,
3. QM = QNFA(M).

Proof (1) ⇒ (2) holds by Lemma 3.3.
(2) ⇒ (3) holds by Lemma 3.5.
(3) ⇒ (1) holds by definition of NFAw-definable query.
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We construct an NSTAw defining the same query as an NFAw. We remark that
there is a difference of one step between how an NSTAw and an NFAw matches an
ancestor-string: The path employed by an NFAw while recognizing a word, is by one
longer than the word (first the initial state, then one state for each letter), while the
NSTAw only labels each node with one state. We therefore need to introduce a one
step increase in the δ-function. To do this, the constructed NSTAw employs (Q×��)
for the states. We will prove the construction to be correct in Lemma 3.8.

Definition 3.7 Given an NFAw A = (�, Q, qi, δ, F ) we define the NSTAw

NSTA(A) = ((�, Q′, δ′, F ′), S)

where Q′ = (Q×��)�{qU }, S = (F ×��), F ′ = {(q, a)|a ∈ ��, q ∈ δ(qI , a)},
and δ′ is defined as follows: for each a ∈ �� put δ′(qU , a) = q∗

U , for each q ∈ F put
δ′((q, a), a) = rq + q∗

U , and for each q ∈ Q − F , put δ′((q, a), a) = rq , where

rq = q∗
U ·

⎛

⎝
∑

b∈��,p∈δ(q,b)

(p, b)

⎞

⎠ · q∗
U .

Lemma 3.8 For each NFAw A, QNSTA(A) = QA.

Proof Assume A = (�, Q, δ, qI , F ), and NSTA(A) = ((�, Q′, δ′, F ′), S) as in
Definition 3.7. We first need an auxiliary result: Note that the value of the transition
function δ′(q, a) for a state q ∈ Q′ and letter a ∈ �� is only defined if q = qU or
q = (q ′, a) for some q ′ ∈ Q. Hence, for any valid run λ of NSTA(A) on a tree t ,
and any node v ∈ Nodest , either λ(v) = qU , or λ(v) = (q, labt,�(v)) for some state
q ∈ Q.

We now proceed to prove that QNSTA(A) ⊆ QA. Assume that t ∈ T� and v ∈
QNSTA(A)(t), and λ : Nodest → Q′ a corresponding run such that λ(v) ∈ S. Let
v1, . . . , vn be the path starting in the root and ending in v. No node on this path can
be mapped to qU , since no state in S is reachable from qU . By the result above, there
are therefore q1, . . . , qn ∈ Q such that for i ∈ {1, . . . , n}, λ(vi) = (qi, labt,�(vi)).
We prove by induction on i, 1 ≤ i ≤ n, that qi ∈ δ∗(qI , ancstrt (vi)).

– For the base case i = 1, note first that qI ∈ δ∗(qI , ε). Secondly, since λ

is an accepting run, we must have that (q1, labt,�(v1)) is a final state of the
NTAw in A, and by construction therefore q1 ∈ δ(qI , labt,�(v1)), i.e., q1 ∈
δ∗(qI , ancstrt (v1)).

– For the induction case where 1 < i ≤ n, assume qi−1 ∈ δ∗(qI , ancstrt (vi−1)).
Since λ is an accepting run,

(qi, lab
t,�(vi)) ∈ Labels(δ′((qi−1, lab

t,�(vi−1)), lab
t,�(vi−1)))

By construction of δ′, this implies that qi ∈ δ(qi−1, labt,�(vi)), so we have qi ∈
δ∗(qI , ancstrt (vi)).

Since also λ(v) = (qn, labt,�(v)) ∈ S, we get qn ∈ F , hence A accepts ancstrt (v).
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Secondly, we prove that QNSTA(A) ⊇ QA. Assume t ∈ T� and v ∈ QA(t), that
is, ancstrt (v) ∈ L(A). Let v1, . . . , vn be the path starting at the root and ending in
v, and let qI , q1, . . . , qn be the states visited by a run that accepts ancstrt (v) in A.
Define λ : Nodest → (Q × ��) ∪ {qU } such that for v′ /∈ {v1, . . . , vn}, λ(v′) = qU ,
while for 1 ≤ i ≤ n, let λ(vi) = (qi, labt,�(vi)). Since qn ∈ F , we have that
(qn, labt,�(v)) ∈ S, and therefore we must only show that λ is an accepting run.
But this is immediate from the construction of δ′: qU is a universal state, and for
i, 1 ≤ i < n, and k1, k2 ∈ N, the word (qU )k1 · (qi+1, labt,�(vi+1)) · (qU )k2 is
in L(δ′((qi, labt,�(vi)), labt,�(vi))), while for any k3 ∈ N, the word (qU )k3 is in
L(δ′(qn, labt,�(vn)), labt,�(vn)). Finally, (q1, labt,�(v1)) is in F ′ be definition of
NSTA(A, since q1 ∈ δ(qI , labt,�(v1)).

We are now ready for the main result of this section:

Theorem 3.9 Deciding whether for an NSTAw M , QM is NFAw-definable, is
complete for EXPTIME.

Proof The lower bound follows from a reduction from the universality problem for
NTAws (cf. Theorem 2.2). The reduction takes as input an NTAw N = (�, Q, δ, F )

and constructs an NSTAw M = (N ′, S) as follows. Let qsel /∈ Q and let a be some
symbol in �. Then let N ′ = (�, Q ∪ {qsel}, δ ∪ {(qsel, a) �→ (

∑
p∈F p)∗}, {qsel})

and S = {qsel}. We show that QM is NFAw-definable iff L(N) = T�. The query
QM selects the root node in all trees t = a(t1, . . . , tn) where for all 1 ≤ i ≤ n,
ti ∈ L(N). If L(N) = T�, then QM is obviously NFAw-definable, namely by any
NFAw selecting exactly the first letter in words in a�∗. On the other hand, suppose
QM is NFAw-definable. By Lemma 3.6, the query is ancestor-based and hence for
every tree t ′ with a root labelled by a, the root of t ′ is in QM(t ′). Hence L(N) must
be exactly T�.

It remains to show the upper bound. By Lemmas 3.6 and 3.8, it suffices to test
QM = QNSTA(NFA(M)). The construction of NSTA(NFA(M)) can be done in polyno-
mial time and with polynomial increase in size. By Theorem 2.8 the test can be done
in exponential time.

3.2 Single-Type EDTDs

In [23], it was shown that deciding whether an NTA is equivalent to a single-type
extended DTD is complete for EXPTIME. As single-type EDTDs have ancestor-
based types, which are superficially similar to ancestor-based queries as defined here,
one might wonder what the relationship with the main result of the present section is.
Of course, single-type EDTDs do not define queries or process trees which can have
labels from an infinite set, but can easily be adapted to do so. Indeed, we can equip
them with a wildcard type as our automata and just designate a set of types as output
types. Then, the single-type EDTD selects those nodes which are assigned a selecting
type. We now informally argue that NFAs are a subset of single-type EDTDs w.r.t. the
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classes of unary queries they define. Indeed, a given NFA can be converted into an
equivalent DFA, which can then be directly used to specify an equivalent single-type
EDTD through its characterization as a DFA-based DTD [17, 23].

On the other hand, consider the query which selects the root when it has at least
two children. The latter is definable by a single-type EDTD but is not NFA-definable
as the query is not ancestor-based. To summarize, queries defined by single-type
EDTDs can take the branching structure of the tree into account as the formalism is
grammar-based, but at the same time type-assignment, and therefore selection, has to
be deterministic whereas NFA-definable queries allow for nondeterministic selection
but their expressiveness is restricted to single branches. In conclusion, Theorem 3.9
does not seem to imply or follow directly from the corresponding result on single-
type EDTDs in [23].

3.3 Tractability

The EXPTIME-hardness in Theorem 3.9 is solely due to the expressiveness of the
NSTAws. Indeed, when M as constructed in the proof is indeed equivalent to an
NFAw, that NFAw is very simple: it just selects the root of the input tree. This means
that, even for extremely simple subclasses of XPath (say, linear XPath), deciding
definability of NSTAws within that class remains hard for EXPTIME. To obtain a
tractability result we therefore need to restrict the class of regular unary queries.
In this regard, Lemma 3.6 and Lemma 3.5 provide already sufficient criteria for
tractability. Indeed, any subclass M of the regular unary queries (or any represen-
tation M of the regular unary queries) for which deciding QNFA(M) ⊆ QM is in
PTIME for every M ∈ M , renders the NFAw-definability problem tractable. The
latter is for instance the case for the single-type EDTDs as discussed in the previous
section.

4 Twig-Definability of NSTAws

In this section, we address twig-definability of NSTAws. We start by introducing
the necessary definitions for twigs including the concept of characteristic tree in
Section 4.1. In Section 4.2, we consider succinctness. In particular, we show that
twigs can be exponentially more succinct than NSTAws and vice versa. This means
that we cannot simply guess a small (i.e., polynomially bounded) twig equivalent
to a given NSTAw. Fortunately, the exponentially large twigs contain redundancy
which can be represented succinctly by folding them into directed acyclic graphs
(DAGs). We show in Section 4.3, that when an NSTAw is equivalent to a twig its
DAG-representation is at most of linear size. We further show in Section 4.4 that
equivalence of NSTAws and folded twigs can be tested in exponential time through
a reduction to emptiness of alternating tree-walking automata. In Section 4.5, we
then obtain our main result, stating that testing twig-definability of NSTAws is
EXPTIME-complete.
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4.1 Basics

We start by defining twigs:

Definition 4.1 (Twig Pattern) A twig pattern, or simply twig is a tuple T =
(�, t, o,Anc), where � is a finite subset of �, t is a labelled tree over �, Anc ⊆
Edgest is the set of ancestor edges, and o ∈ Nodest is a designated output node.

We say that T is a twig over the alphabet �. The semantics of twigs, however, is
always defined over �-trees. Formally, an embedding of T on a tree s is a total
mapping m from Nodest to Nodess such that

• the root of t is mapped to the root of s,
• labt (v) = labs(m(v)), for all v ∈ Nodest , and
• for every two nodes v1, v2 ∈ Nodest

– if (v1, v2) ∈ Edgest − Anc, then (m(v1), m(v2)) ∈ Edgess ;
– if (v1, v2) ∈ Anc, then m(v1) is an ancestor of m(v2).

The language defined by T is denotedL(T ) and consists of all�-trees s for which
there is an embedding of T into s. The query defined by T , denoted by QT , is the
function that maps a tree s to the set of nodes v ∈ Nodess for which there is an
embedding m of T into s for which m(o) = v. In Fig. 1 we give an example of a twig
and an embedding.

Definition 4.2 (Subtwig) For a twig T = (�, t, o,Anc) and a node v ∈ Nodest , let
T [v] be the subtwig rooted at v, that is,

T [v] = (�, subtreet (v), o,Anc ∩ {Edgessubtreet (v)})

Fig. 1 A twig T = (�, t, o,Anc) on the left, its characteristic tree cx(T ) on the right and the canonical
embedding idt . Edges of the twig in Anc are depicted as double edges and o is depicted with a rectangle
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We will use the following basic property of subtwigs.

Lemma 4.3 For a twig T = (�, t, o,Anc), a tree s ∈ L(T ), and an embedding m of
T into s, subtrees(m(v)) ∈ L(T [v]) for every v ∈ Nodest .

Proof The embedding m is easily modified (by restricting the domain) to an
embedding of T [v] into subtrees(m(v)).

Definition 4.4 Two twigs T and T ′ are language-equivalent if L(T ) = L(T ′). They
are query-equivalent if QT = QT ′ .

Definition 4.5 (Twig-Definable Query) A unary query Q is called twig-definable if
there is a twig T such that Q = QT . A tree language L is called twig-definable if
there is a twig T such that L = L(T ).

Next, we define a tree cx(T ) which is characteristic for a twig T . Basically,
the tree is obtained by replacing each ancestor-edge with a sequence of two child
edges where the new node is labeled with x /∈ �. This tree is a member of the
language defined by the twig. In addition, for a twig T ′, when cx(T ) ∈ L(T ′)
then L(T ) ⊆ L(T ′). The notion of characteristic trees is similar to the notion of
canonical models defined by Miklau and Suciu [25] where every ancestor edge is
replaced by a sequence of wildcards. Our notion is simpler because our twigs are
less complex than the tree patterns used by Miklau and Suciu. Concretely, the tree
patterns of Miklau and Suciu had nodes labeled by wildcards, which our twigs have
not.

Definition 4.6 (The Characteristic Tree) For a twig T = (�, t, o,Anc) and x a label
not in �, the characteristic tree cx(T ) of T is obtained from t by replacing all edges
e = (v1, v2) in Anc with a path v1, ve, v2 of length 2, with labels labt (v1), x and
labt (v2), respectively. Here, for every edge e, ve is a new node occurring nowhere
else in cx(T ).

So, if T = (�, t, o,Anc), every node v ∈ Nodest , corresponds to a unique node
of the tree cx(T ). And every node in cx(T ) not labelled x corresponds to a unique
node in t . Hence, the identity over Nodest is a bijection between Nodest and the
nodes in cx(T ) not labelled x. We denote by idt this identity function on Nodest .
Lemma 4.7 shows that idt is an embedding and we will refer to it as the canon-
ical embedding from T into its characteristic tree. Figure 1 illustrates cx(T ) and
idt .

Lemma 4.7 For any twig T = (�, t, o,Anc) and x /∈ �, the identity idt is:

– an embedding of T into cx(T )

– a bijective function between Nodest and the set of all nodes in cx(T ) not labelled
x.
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Proof We first show that idt is an embedding of T in cx(T ). This is shown by an
induction on the height of t . The base case where t has one node v is immediate,
since then also cx(T ) has one node, with the same label labt (v). For the induction
case, assume that the statement holds for all trees of height no more than K , for
some K ∈ N. Assume then that t is of height K + 1. The root r of t is mapped
to the root r of cx(T ). For each child v of the root, where (r, v) /∈ Anc, (r, v) is
also an edge in cx(T ), and is such that subtreecx(T )(v) = cx(T [v]). If (r, v) ∈ Anc,
r has in cx(T ) a child labelled x which has v as a single child, again such that
subtreecx(T )(v) = cx(T [v]). By the induction hypothesis the statement holds for the
subtrees cx(T [v]) for each child v of r in t and therefore idt is an embedding of T on
cx(T ).

The identity is of course a bijection. We only need to assert that the nodes labelled
x in cx(T ) are exactly those not in t . The latter follows from the construction in
Definition 4.6. Since the identity is its own inverse we will not introduce any new
notation for the inverse of idt .

We will often use the following observation in our proofs.

Remark 4.8 For every v ∈ Nodest , subtreecx(T )(v) = cx(T [v]).

The next lemma states that all embeddings and the inverses of all canoni-
cal embeddings preserve the ancestor relation. Its proof is immediate from the
definitions.

Lemma 4.9 For a twig T = (�, t, o,Anc) and two nodes u, v ∈ Nodest :

– if u is an ancestor of v in t then for any tree s ∈ L(T ), and embedding m of T

on s, m(u) is an ancestor of m(v) in s.
– if u is an ancestor of v in cx(T ), then u is also an ancestor of v in t .

The proof of the following lemma is similar to the proof of Proposition 3 of [25].

Lemma 4.10 For any two twigs T , U over an alphabet� with x /∈ �, cx(T ) ∈ L(U)

implies L(T ) ⊆ L(U).

Proof Let T = (�, tT , oT ,AncT ) and U = (�, tU , oU ,AncU), and m1 the embed-
ding of U on cx(T ). To prove that L(T ) ⊆ L(U), we assume a tree t ′ ∈ L(T ),
and prove t ′ ∈ L(U). Let m2 be an embedding of T on t ′. Since the image of m1
consists of nodes in cx(T ) not labelled x, which by Lemma 4.7 is exactly the nodes
of tT , we can compose m1 with m2. We will show that this composed mapping,
m′ = m2 ◦ m1, is an embedding of U on t ′. The composition of m′ is illustrated in
Fig. 2.

It remains to show that the conditions for an embedding given in Definition 4.1
hold for m′. Recall first that for v ∈ NodestU , m1(v) is not labelled x, hence m1(v)

is in NodestT and has the same label as v. The two first properties of Definition 4.1,
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Fig. 2 The relation between the mappings and trees used in the proof of Lemma 4.10

namely mapping of the root and preservation of labels, therefore carry over easily
from the same properties of m1 and m2. For the last property, let (v1, v2) ∈ EdgestU .
If (v1, v2) �∈ AncU , then, since m1 is an embedding onto cx(T ), (m1(v1), m1(v2)) ∈
Edgescx(T ). From the construction of a characteristic tree, Def. 4.6, we therefore get
(m1(v1), m1(v2)) ∈ EdgestT −AncT . Finally, fromm2 being an embedding of T on t ′
we therefore get (m′(v1), m′(v2)) ∈ Edgest ′ . On the other hand, if (v1, v2) ∈ AncU ,
then, sincem1 is an embedding onto cx(T ),m1(v1) is an ancestor ofm1(v2) in cx(T ).
By Lemma 4.9 m1(v1) is then also an ancestor of m1(v2) in tT . Further, from m2
being and embedding and applying Lemma 4.9 once more, m′(v1) is an ancestor of
m′(v2) in t ′. Hence, m′ is an embedding of U onto t ′ and t ′ ∈ L(U .

We conclude this section with showing that the characteristic tree of a (proper)
sub-twig is not in the language of the whole twig.

Lemma 4.11 For a twig T = (�, t, o,Anc) and a non-root node v ∈ Nodest ,

cx(T [v]) �∈ L(T )

Proof Let v1, . . . , vn be the n nodes on the longest path in t . Since v1 is the root of
t , and hence v1 �∈ Nodessubtree

t (v), all paths in subtreet (v) have less than n nodes.
Hence all paths in cx(T [v]) have less than n nodes with label different from x. Any
embedding of T on cx(T [v]) must map the nodes v1, . . . , vn to distinct nodes, each
an ancestor of the next, on the same path, none labelled x. As no such path exists in
cx(T [v]), there cannot be any embedding of T on cx(T [v]).

A useful corollary is that the language of the subtwig cannot be completely
included in the language of the whole twig:

Corollary 4.12 For a non-root node v of a twig T , L(T [v]) �⊆ L(T ).

4.2 Succinctness and Minimality

Next, we discuss succinctness and minimality of twigs. The size of a twig T , denoted
by |T |, is defined as the number of nodes in its underlying tree. We distinguish two
kinds of minimality.
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Definition 4.13 (Minimal twig) A twig is language-minimal (resp., query-minimal)
if there is no language-equivalent (resp., query-equivalent) twig of strictly smaller
size.

The following lemma summarizes basic facts on minimality used in this paper.

Lemma 4.14 1. If a twig is language-minimal, then it is also query-minimal.
2. There are query-minimal twigs which are not language-minimal.
3. If a twig T = (�, t, o,Anc) is query-minimal, then for all v ∈ Nodest where

o /∈ Nodessubtree
t (v), the twig T [v] is language-minimal.

4. If T = (�, t, o,Anc) is a language-minimal twig, then for all nodes v ∈ Nodest ,
T [v] is also language-minimal.

Proof 1. Assume a twig T is language-minimal. For any twig T ′ such that QT =
QT ′ it must be the case that L(T ) = L(T ′), so T ′ cannot be smaller than T .

2. Let T = (�, t, o,Anc), where t consists of three nodes: one root node having
two child nodes. Furthermore, all labels are �. Let o be one of the leaves, and
let the edge from the root to o be in Anc. Now, L(T ) is all trees where the root
and at least one child of the root is labelled �. Further, QT selects any non-root
node labelled � in a tree in L(T ). T is not language-minimal, since the node
o and the edge in Anc could be removed from the tree without affecting the
recognized language. But T is query-minimal. If it was not, there should be a
twig T ′ = (�, t ′, o′,Anc′) with two nodes, one the child of the other, and with
the leaf being the node o′. In both cases where the edge does or does not belong
in Anc′, the twig is not query equivalent to T .

3. By contradiction: If T [v] is not language-minimal, then T is not query-minimal,
since the smaller twig that is language-equivalent to T [v], can replace T [v] also
in T .

4. By an immediate contradiction: if T [v] is not language-minimal, then the smaller
twig that is language-equivalent to T [v], can be used at position v in T to give a
smaller twig recognizing L(T ).
In particular, let v ∈ Nodest and suppose T ′ = (�, t ′, o′,Anc′) is a language-
minimal twig and is such thatL(T ′ = L(T [v]). Suppose for contradiction that T ′
has less nodes than T [v]. We want to show that for any tree t1 ∈ L(T ), there is an
embedding m′ from T [v ← T ′] = (�, t ′′, o′′,Anc′′) to t1. Let m1 be the embed-
ding from T to t1 and let m2 be the embedding from T ′ to subtreet1(m1(v)).
Notice that contextt (v) = contextt

′′
(v) and subtreet ′′(v) = t ′. Define m′ as

m′(v′) =
{

m1(v
′) if v′ ∈ Nodescontext

t ′′ (v)

m2(v
′) if v′ ∈ Nodessubtree

t ′′ (v)
.

Then, m′ preserves the labelling of the nodes and the child and ancestor edges,

both over the disjoint domains Edgescontext
t ′′ (v) and Edgessubtree

t ′′ (v), and the

edge not in Edgescontextt
′′(v) ∪ Edgessubtree

t ′′ (v). Therefore m′ is an embedding
from T [v ← T ′] to t1, which is a contradiction to T being language-minimal.
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Twig-minimality plays an important role in the technical machinery developed in
the next section. The following lemma specifies two sufficient criteria for a twig not
to be language minimal.

Lemma 4.15 For a twig T = (�, t, o,Anc), x a label not in�, and two edges (v, v′)
and (v, v′′) in t with v′ �= v′′, then T is not language-minimal when either of the
following conditions holds:

– (v, v′′) �∈ Anc and cx(T [v′′]) ∈ L(T [v′]); or,
– (v, v′) ∈ Anc and ∃u ∈ Nodessubtree

t (v′′) : cx(T [u]) ∈ L(T [v′]).

Moreover, subtreet (v′) can be removed from the twig without affecting the recognized
language.

Proof We assume one of the two statements holds, and show that subtreet (v′) can be
removed from t without affecting the language recognized by the twig. This leads to a
twig T ′ = (�, t ′, o′,Anc′) with at least one less node. Note first that L(T ) ⊆ L(T ′),
since any embedding of T is easily modified into an embedding of T ′, by restricting
the domain of the embedding. It remains to show that L(T ′) ⊆ L(T ). Let t1 ∈ L(T ′)
and m1 an embedding of T ′ on t1. We show t1 ∈ L(T ) by a case distinction:

In the first case we have (v, v′′) �∈ Anc and cx(T [v′′]) ∈ L(T [v′]). Since the sub-
trees at v′ and v′′ have no common nodes we have that T ′[v′′] = T [v′′], and therefore
cx(T

′[v′′]) = cx(T [v′′]). Since cx(T [v′′]) ∈ L(T [v′]), we have that cx(T
′[v′′]) ∈

L(T [v′]). By applying Lemma 4.10 we therefore get L(T ′[v′′]) ⊆ L(T [v′]). By
Lemma 4.3,

subtreet1(m1(v
′′)) ∈ L(T ′[v′′]) and subtreet1(m1(v

′′)) ∈ L(T [v′])
Let m2 be an embedding of T [v′] on subtreet1(m1(v

′′)). Notice that m2(v
′) =

m1(v
′′), as the root of T [v′] must be mapped to the root of subtreet1(m1(v

′′)), which
is m1(v

′′).
Define the mapping m′ : Nodest → Nodest1 as follows. For all u ∈ Nodest ,

m′(u) =
{

m1(u) if u ∈ Nodescontext
t (v′)

m2(u) if u ∈ Nodessubtree
t (v′)

We want to show that m′ is an embedding of T on t1. By definition m′ pre-
serves the labelling of the nodes, and over the disjoint domains Edgescontext

t (v′) and
Edgessubtree

t (v′), the mapping m′ preserves child and ancestor edges. For the edge
(v, v′) /∈ Edgescontext

t (v′) ∪ Edgessubtree
t (v′), it holds that

(m′(v), m′(v′)) = (m1(v), m2(v
′)) = (m1(v), m1(v

′′))

is an edge in t1, since (v, v′′) /∈ Anc. Therefore, m′ is an embedding of T on t1,
irrespective of whether (v, v′) ∈ Anc or (v, v′) /∈ Anc in t .

In the other case, (v, v′) ∈ Anc and u ∈ Nodessubtree
t (v′′), such that cx(T [u]) ∈

L(T [v′]). Since the subtrees at u and v′ are non-overlapping, we have cx(T [u]) =
cx(T

′[u]), hence cx(T
′[u]) ∈ L(T [v′]). By Lemma 4.10, L(T ′[u]) ⊆ L(T [v′]),
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and by Lemma 4.3 subtreet1(m1(u)) ∈ L(T ′[u]). Therefore, subtreet1(m1(u)) ∈
L(T [v′]). Let m2 be an embedding of T [v′] on subtreet1(m1(u)). Notice that
m2(v

′) = m1(u), since the root of T [v′] must be mapped by m2 to the root of
subtreet1(m1(u)).

Define the mapping m′ : Nodest → Nodest1 as follows. For all z ∈ Nodest ,

m′(z) =
{

m1(z) if z ∈ Nodescontext
t (v′)

m2(z) if z ∈ Nodessubtree
t (v′)

We want to show that m′ is an embedding of T on t1. Firstly, notice that by defini-
tion, m′ preserves the labelling of the nodes. Furthermore, over the disjoint domains

Edgescontext
t (v′)

and Edgessubtree
t (v′), m′ preserves child and ancestor edges. For the

edge (v, v′) /∈ Edgescontext
t (v′) ∪ Edgessubtree

t (v′)
, notice that m′(v) = m1(v) and

m′(v′) = m2(v
′) by the definition of m′, and therefore m′(v) is an ancestor of m′(v′),

since m2(v
′) = m1(u), and m1(v) is an ancestor of m1(u).

Using Lemma 4.15, we can now show that for a minimal twig, the canonical
embedding is the only embedding on the characteristic tree.

Lemma 4.16 For a language-minimal twig T = (�, t, o,Anc), there is exactly one
embedding of T into cx(T ).

Proof Let m be an embedding from T to cx(T ) which is different from the canonical
embedding idt . Then, let v1 be a node in t of minimum height (closest to the root),
such that v1 �= m(v1), and let v be the parent of v1 in t . Note that no node of t can
be mapped by any embedding to a node labelled with x in cx(T ), and therefore let
v2 ∈ Nodest be such that v2 = m(v1). Notice also that by Definition 4.1 m must map
the root of t to the root of cx(T ), and therefore v1 is not the root.

We want to show that v1 cannot be mapped to m(v1). From the embedding m and
Remark 4.8, we have

subtreecx(T )(m(v1)) = subtreecx(T )(v2) = cx(T [v2]),

and by our assumption that m is an embedding from T to cx(T ), by Lemma 4.3
we have that subtreecx(T )(m(v1)) ∈ L(T [v1]), and hence cx(T [v2]) ∈ L(T [v1]).
Therefore, by Lemma 4.10, L(T [v2]) ⊆ L(T [v1]).

We consider two cases, one where v2 is a child of v, and one where it is
simply a descendant of v. Consider the first case. By our assumption that T is
language-minimal, the conditions of Lemma 4.15 cannot be satisfied, and hence, if
(v, v1) ∈ Anc then by the second condition of the lemma, cx(T [v2]) /∈ L(T [v1]).
Similarly, if (v, v2) /∈ Anc, by the first condition of the lemma, we have again
that cx(T [v2]) /∈ L(T [v1]). Therefore, (v, v2) ∈ Anc and (v, v1) /∈ Anc. But,
m(v1) = v2, and therefore, since (v, v2) ∈ Anc, m(v1) cannot be a child of v in
cx(T ), as there is an additional node between v and v2 labelled x. This contradicts the
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fact that (v, v1) /∈ Anc, and hence m violates the conditions for being an embedding.
Consider then the second case where v2 is a descendant of v in t , and suppose

firstly that v2 is not a descendant of v1. Then, let v′
2 be the ancestor of v2 that is a sib-

ling of v1 in t , but different from v1. The twig T is language-minimal and therefore
the conditions of Lemma 4.15 are not satisfied. Therefore, by the second condi-
tion of the lemma, if (v, v1) ∈ Anc there exists no node u ∈ Nodessubtree

t (v′
2) such

that cx(T [u]) ∈ L(T [v1]). In particular, this contradicts cx(T [v2]) ∈ L(T [v1]), and
therefore the edge (v, v1) must not be in Anc. But then m is not a valid embedding,
since m(v1) = v2 is not a child of m(v) = v in cx(T ).

Finally, consider the case where v2 is a descendant of v1 in addition to being a
descendant of v. But by Lemma 4.11, the node v2 cannot be a descendant of v1, since
cx(T [v2]) ∈ L(T [v1]), which is a contradiction.

We conclude our discussion on minimality with the following lemma. By con-
struction it always holds that cx(T ) ∈ L(T ) for x �∈ �. Assume T is minimal and let
u be one of its nodes. When we replace the subtree rooted at node u in cx(T ) by a
new tree t ′ resulting in the tree s = cx(T )[u ← t ′], then the lemma says that when s

still happens to be in the language defined by T then T [u], the twig rooted at u, can
always be mapped somewhere in t ′.

Lemma 4.17 Let x be a label not in �. For a language-minimal twig T =
(�, t, o,Anc) over �, a node u ∈ Nodest , and a tree t ′ ∈ T�, if cx(T )[u ← t ′] ∈
L(T ), then there is a node u′ ∈ Nodest ′ such that subtreet ′(u′) ∈ L(T [u]).

Proof Let t ′′ = cx(T )[u ← t ′] and suppose that t ′′ ∈ L(T . Then, there is an
embedding m of T on t ′′. Note first that u �∈ Nodest ′′ , since it is replaced by root(t ′).
Further, by Definition 4.1, for v′ ∈ Nodescontext

t (u), m(v′) is either in Nodest ′ or in

Nodescontext
t ′′ (u)−{u}. The latter case is equal to m(v′) ∈ Nodescontext

t (u)−{u}, since
contextt

′′
u = contextcx(T )u, and x /∈ �. We will show that m(u) can be the u′ in the

lemma. That is, we will show that subtreet ′(m(u)) ∈ L(T [u]). It suffices to prove
that m(u) ∈ Nodest ′ . We show a slightly stronger statement by induction on the path
from the root to u in t . For each node v on the path, either

1. m(v) ∈ Nodest ′ ; or,
2. m(v) is on the path from v to u in t .

The base case is the root root(t). If u = root (t), then m(root(t)) = root(t ′)
and the first part of the induction hypothesis holds. Otherwise, by Definitions 4.1
and 4.6 m(root(t)) = root(t), and the second condition of the induction hypothesis
holds.

For the induction case, assume v ∈ Nodest is the lowest node in the path in t from
the root to u for which the induction hypothesis has been shown to hold. If the first
statement holds, then it also holds for the children of v, and we are done. Otherwise,
m(v) is on the path from v to u in t . Let v1 be the child of v on the path from v

to u in t . If m(v1) ∈ Nodest ′ or if v1 = m(v1) we are done, since then the first or
the second statement, respectively, holds. Otherwise, that is, if m(v1) /∈ Nodest ′ and
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v1 �= m(v1), we treat separately the cases where the edge between v and v1 is or is
not in Anc.

Suppose first that the edge (v, v1) is not in Anc. This means, by definition of
embeddings, that m(v1) is a child of m(v) in t ′′. By the construction of cx(T ), m(v1)

is therefore also a child ofm(v) in t . We now treat separately the two cases depending
on whether m(v) = v.

If m(v) = v, then m(v1) �= v1 is a sibling of v1 in t , while v1, and therefore
not m(v1), is an ancestor of u, by definition of the canonical embedding. But then
subtreet ′′(m(v1)) = subtreecx(T )(m(v1)), and the latter is equal to cx(T [m(v1)]) by
Remark 4.8. By Lemma 4.3, and the embedding m, subtreet ′′(m(v1)) ∈ L(T [v1])
and therefore cx(T [m(v1)]) ∈ L(T [v1]). Furthermore, v1 and m(v1) are siblings
and (v, v1) /∈ Anc and (v, m(v1)) /∈ Anc. By Lemma 4.15, this contradicts our
assumption that T is language-minimal.

Since m(v) = v leads to a contradiction, we have m(v) �= v. From the induc-
tion hypothesis we then get that m(v) is a descendant of v in t . Since v1 and m(v)

both are on the path from v to u we get that m(v1) is either on the path from v1
to u, or is a sibling of a node on the path from v1 to u. In the last case, notice that
subtreet ′′(m(v1)) = subtreecx(T )(m(v1)), which in turn is equal to cx(T [m(v1)]), by
Remark 4.8. By Lemma 4.3 and the embedding m, subtreet ′′(m(v1)) ∈ L(T [v1]).
It follows that cx(T [m(v1)]) ∈ L(T [v1]). But T [v1] is a language-minimal twig,
and m(v1) is a descendant of v1, and by Lemma 4.11 this is a contradiction. There-
fore m(v1) is on the path from v1 to u, and the induction hypothesis holds for
v1.

Consider now the case where (v, v1) ∈ Anc. We remind the reader that v1 �=
m(v1), m(v1) /∈ Nodest ′ and the second condition of the inductive hypothesis holds
for v. That is, m(v) /∈ Nodest ′ . Note that m(v1) is a descendant of m(v) also in t . Let
v3 be the child of m(v) and ancestor of (or equal to) m(v1) in t .

We prove by contradiction that the second statement of the induction hypothesis
holds. That is, we assume thatm(v1) is not on the path from v1 to u in t , and show that
this leads to contradiction. From the latter assumption, we get that subtreet ′′(m(v1))

does not contain t ′. Therefore, since contextt
′′
(u) = contextcx(T )(u), we get

subtreet ′′(m(v1)) = subtreecx(T )(m(v1)).

By Remark 4.8 subtreecx(T )(m(v1)) = cx(T [m(v1)]). Combining the two latter
equalities we get

subtreet ′′(m(v1)) = cx(T [m(v1)]). (4.1)

By applying Lemma 4.3 to T ,m, t ′′ and v1 it holds that subtreet ′′(m(v1)) ∈ L(T [v1]).
Combining the latter with (4.1) we get

cx(T [m(v1)]) ∈ L(T [v1]). (4.2)

Now, m(v) is on the path from v to u by the inductive hypothesis, and we consider
the two cases where m(v) �= v and m(v) = v. In the first case, m(v) is a descendant
of v, and therefore v3 and m(v1) are descendants of v1. By Lemma 4.11, it holds
that cx(T [m(v1)]) /∈ L(T [v1]), which contradicts (4.2). In the case where m(v) = v,
v3 is either equal to v1 or a sibling of v1. If v3 = v1, m(v1) is a descendant of v1
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and a similar argument using Lemma 4.11 as above, leeds to a contradiction. If v3
is a sibling of v1, we have from Lemma 4.15, the fact that (v, v1) ∈ Anc, and our
assumption that T is language-minimal, that for any descendant of v3, and therefore
in particular m(v1) as well, cx(T [m(v1)]) /∈ L(T [v1]), which also contradicts (4.2).

We have shown that assuming that m(v1) is not on the path from v1 to u in t leads
to a contradiction. Therefore the induction hypothesis holds for v1 also in the case
where (v, v1) ∈ Anc.

Next, we discuss succinctness of twigs and NSTAs.

Theorem 4.18 1. There is a family of NSTAs Mn (for n ∈ N) of size O(n) such
that the smallest query-equivalent twig is of size �(2n).

2. For every twig T of size n, there exists an equivalent NSTA of size O(2n).
3. There is a family of twigs Tn (for n ∈ N) of size O(n) such that the smallest

query-equivalent NSTA is of size �(2n).

Proof (1) First, we define a few more notions regarding subtrees that will be
referred to in what follows. If S is a subset of Nodest , we say that S is con-
nected if, for every two nodes v1, v2 ∈ S, there is a node v and paths from v to
v1 and to v2 using only nodes in S. Notice that v may be equal to v1 or v2. For
a tree t and a connected subset S of Nodest , the subgraph t ′ of t induced by S,
is the tree with Nodest ′ = S and Edgest ′ = (S × S) ∩ Edgest .

Fix the alphabet � = {a, b}. For each n ∈ N, we define the NSTA Mn =
((�, Qn, δn, Fn), Fn), Qn = {qu, q0, q1,a, q1,b, . . . , qn,a, qn,b}, Fn = {q0}, and δn is
defined as follows. For 1 ≤ i < n, and σ ∈ �

δn(qi,σ , σ ) = (q∗
u · qi+1,a · q∗

u · qi+1,b · q∗
u) + (q∗

u · qi+1,b · q∗
u · qi+1,a · q∗

u),

δn(qn,σ , σ ) = q∗
u,

δn(q0, a) = (q∗
u · q1,a · q∗

u · q1,b · q∗
u) + (q∗

u · q1,b · q∗
u · q1,a · q∗

u),

δn(qu, σ ) = q∗
u,

δn(qu, �) = q∗
u.

For each n ∈ N, let S′
n be the set of complete binary trees of height n, where the

root is labelled with a and each non-leaf node has exactly two children, one labelled
with a and one with b. Then QMn contains exactly the pairs (s, root(s)) where s has
an induced subgraph s′ such that s′ ∈ S′

n and root(s) = root(s′).
Assume, for the purpose of proving a contradiction, that the twig T ′

n has less than
2n −1 nodes and is such that QT ′

n
= QMn . Let s

′ ∈ S′
n and m be the embedding of T ′

n

on s′. By the pidgeon-hole principle, there must be a node v ∈ Nodess′
which is not

in the image of m. Let serr be the same as s′ except that we change the label of v. m
is now obviously also an embedding of T ′

n on serr , but serr /∈ QMn . This contradicts
our assumption that QT ′

n
= QMn .

(2) We prove by induction on the size n of the twig T = (�, t, o,Anc), that there
is an equivalent NSTA M of size O(2n) and an NTA N of size O(2n) such that
L(N) = L(T ).
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As the base case, suppose that T = (�, t, o,Anc) is such that t has only one node.
Then the NSTA M requires two states, one of them final, to check that the root of
the tree is labelled with the same label as the root of t . The set of selecting states S

contains just the final state. The NTA N is defined exactly the same, but does not
have the set of selecting states.

For the induction case, suppose that for every m < n, the statement holds for
every twig of size m. Let T = (�, t, o,Anc) be of size n, and in particular, let t =
a(t1, . . . , tk), where the size of ti is mi , for all 1 ≤ i ≤ n. Hence, n = 1 + �n

i=1mi .
We make a first case distinction, depending on whether o = root(t) or not.

If o = root(t) then, by the induction hypothesis, for 1 ≤ i ≤ k, there exist NTAs
Ni , of sizeO(2mi ), such thatL(Ni) = L(Ti), where Ti = T [vi] and vi is the root of ti
in t . Denote Ti = (�, ti , o,Anci ). Then consider the twigs T ′

i = (�, a(ti), o,Anc′
i ),

where Anc′
i contains all edges from Anci . Furthermore, if the edge between the root

of a(t1, . . . , tn) and ti is in Anc, we also add the edge between the root of a(ti) and
the root of ti in Anc′

i . We now have that, for each i = 1, . . . , n, there exists an NTA
N ′

i which has at most two more states than Ni : one state for testing whether the root
is labelled a and one state for simulating the ancestor edge between root(a(ti)) and
root(ti) in Anc′

i , if present. Altogether, the size of N ′
i is O(2mi + 2) = O(2mi ) such

that L(N ′
i ) = L(T ′

i ).
Observe that the product N = N1 × · · · × Nk for the intersection of

these NTAs accepts precisely the language L(T ). Furthermore, the size of N is
O(2m1 · · · 2mk ) = O(2m1+...+mk ) = O(2n). Finally, the NSTA M is obtained
from N by defining the set of selecting states S to be the accepting states from
N .

The construction for the case where o is not the root node of t is analogous. The
difference is that we need to deal with the tj that contains the node o. For this tj , we
take the NSTA Mj = (Nj , S) from the induction hypothesis and adapt it for the twig
T ′

j , similarly as we did for the N ′
i . Finally, the NSTA M is then ((N1×· · ·×Nk), S

′),
where S′ = {(q1, . . . , qk)|qj ∈ S}.
(3) For n ∈ N, let �n = {a, a1, . . . , an} and let Tn = (�, tn, root(tn),Anc) be the

twig where tn = a(a1, . . . , an) and Anc = Edgestn . For each n, Tn contains
n+1 nodes, and the trees in L(Tn are exactly the trees s such that labs root(s) =
a and there are nodes v1, . . . , vn ∈ Nodess − {root(s)} such that labsv1 =
a1, . . . , labsvn = an.

For each (non-empty, strict) subset S of {a1, . . . , an}, fix an arbitrary tree tS such
that tS is labelled with exactly the labels from S. That is, for every ai in S, tS has a
node vi with labtS vi = ai and such that tS has no nodes v with labtS v /∈ S. Further-
more, for every such subset S, denote by S the set {a1, . . . , an} − S. Notice that, for
every S, the tree a(tS, tS) ∈ L(Tn).

Suppose then for contradiction, that there exists an NSTAM with fewer than 2n−2
states, accepting the language L(Tn). Consider the 2n − 2 strict (or proper) and non-
empty subsets of �n − {a}, and for each such subset Si , consider the tree a(tSi

, tSi
).

The NSTA M has an accepting run on each of these trees, and each of these runs
assigns some state to the node root(tSi

). By the pigeon hole principle, there must
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therefore be two different non-empty, strict subsets S1 and S2 of �n − {a}, such that
on the trees

a(tS1 , tS1) and a(tS2, tS2),

M has accepting runs λ1 and λ2 that assign the same state q to the root of tS1 and the
root of tS2 . We can assume w.l.o.g. that S2 � S1. (If S2 ⊆ S1 then we can switch S1
and S2.) Notice that M also has an accepting run λ on the tree t = a(tS1 , tS2). Indeed,
this accepting run λ is the same as λ1 on the subtree tS1 , it is the same as λ2 on subtree
tS2 and on the root of t . However, since S2 � S1, there exists an ai ∈ S2 − S1. As the
tree t = a(tS1 , tS2) does not contain the label ai , it is not in L(Tn). This means that
M does not accept L(Tn) and is a contradiction.

4.3 DAG-Twigs

Theorem 4.18 (1) excludes the possibility to simply guess an equivalent twig of small
size for a given NSTA. Fortunately, as we will show in this section, when an NSTA
is equivalent to a twig the latter has a small representation as a directed acyclic graph
(DAG).

Below, we use DAGs to represent the trees in twigs. As usual, a DAG G is a
directed graph G = (V , E), where V is the set of vertices and E ⊆ V × V is
the set of directed edges, and is such that there is no directed cycle in the graph.
Note that we do not consider multi-edges. A DAG G over the alphabet � has an
associated labelling function labG : V → �. We assume that all DAGs have exactly
one vertex with no incoming edges (called the root and denoted by root(G)) and
that they are connected. In what follows, we also refer to the vertices of the DAG as
nodes.

For any node v ∈ V , let cleanG(v) be the DAG obtained from G by removing
every node that is not reachable from v. We next recursively define the unfolding
of G into a tree unfold(G). When |V | = 1, unfold(G) is a single node with the
same label as root(G). When |V | > 1, let U = {u ∈ V |(root(G), u) ∈ E} and
let u1 <U · · · <U um be an arbitrary ordering of the nodes in U . Then, for each
1 ≤ k ≤ m, let Gk = cleanG−{root(G)}(uk). The tree unfold(G) is then defined
as

labG(root(G))(unfold(G1), . . . , unfold(Gm)).

We denote by foldG the canonical mapping from Nodesunfold(G) to V . We say that a
tree t is represented by a DAG G, if G can be unfolded into t .

Definition 4.19 (Dag-Twig) A DAG-twig is a tuple D = (�, G, o,Anc), where
G = (V , E) is a DAG over �, the node o ∈ V is such that there is exactly one path
from the root to o in G, and Anc ⊆ E. The query defined by D, denoted by QD , is
the query QT where T is the twig (�, unfold(G), oG,AncG) for which

– foldG(oG) = o; and,
– AncG = {(v, u) | (foldG(v), foldG(u)) ∈ Anc}.
We say that the DAG-twig D represents the twig T .
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Notice that, as there is only one path from the root to o there can only be a unique
node oG for which foldG(oG) = o. Furthermore, due to the possibly many ways in
which a DAG can be unfolded, there are multiple twigs that are represented by a
DAG. However, since all these twigs define the same query, we feel that it is justified
to refer to QD as the query defined by D.

The next theorem says that if an NSTAw is twig-definable, there exists an
equivalent DAG-twig of at most linear size.

Theorem 4.20 For an NSTAw M = (N, S) over an alphabet �, if QM is twig-
definable, then there exists an equivalent DAG-Twig D over alphabet �, with at most
2 · |QN | nodes, where QN is the set of states of N .

Before we start proving Theorem 4.20, we introduce a definition and some lem-
mas. Recall that in Definition 2.4 we defined the mappings bool� and BoolQ� and
how they reduce unary queries to Boolean ones.

We now expand on this notation to define a similar twig:

Definition 4.21 For a twig T = (�, t, o,Anc), the twig BoolT(T ) is defined as
(� × {0, 1}, bool�(t, o), o,Anc).

In the next lemma, we formulate the similarity between BoolT and BoolQ� more
exactly.

Lemma 4.22 For any twig T = (�, u, o,Anc),

L(BoolT(T )) ∩ Image(bool�) = BoolQ�(QT )

Proof We first show that BoolQ�(QT ) ⊆ L(BoolT(T )) ∩ Image(bool�). Since
we have that BoolQ�(QT ) ⊆ Image(bool�) by Definition 2.4, we only need to
show that BoolQ�(QT ) ⊆ L(BoolT(T )). Let t be a tree in BoolQ�(QT ). Hence,
we have t ∈ Image(bool�) and, by Lemma 2.5, we can let (t ′, v) = bool−1

� (t).
By Definition 2.4 this implies that v ∈ QT (t ′). From Definition 4.1 we then get
t ′ ∈ L(T ), and that there is an embedding m of T on t ′ is such that m(o) = v.
We show that m is also an embedding of BoolT(T ) on t . Recall that, by Def-
inition 2.4, t and t ′ have the same nodes and edges, as do u and bool�(u, o).
Anc is also the same in T and BoolT(T ), so it only remains to show that for
all v ∈ Nodesu, labt (m(v)) = labbool�(u,o)(v). Let v ∈ Nodesu. Since m is
an embedding of T on t ′, labt ′(m(v)) = labu(v). If labbool�(u,o)(v) /∈ �, then
labbool�(u,o)(v) = labu(v), and labt ′(m(v)) /∈ �, so labt (m(v)) = labt ′(m(v)) and
hence labt (m(v)) = labbool�(u,o)(v) holds. For v = o, note that labt (m(o)) =
(labt ′(m(o)), 1) and labbool�(u,o)(o) = (labu(o), 1), so labt (m(o)) = labbool�(u,o)(o)

holds. Otherwise, if v �= o, and labbool�(u,o)(v) ∈ �, labt (m(v)) = (labt ′(m(v)), 0)
and labbool�(u,o)(v) = (labu(v), 0), hence, labt (m(v)) = labbool�(u,o)(v) also in this
case.
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To show that L(BoolT(T )) ∩ Image(bool�) ⊆ BoolQ�(QT ), assume that t ′ ∈
L(BoolT(T )) ∩ Image(bool�), let m be an embedding of BoolT(T ) on t ′ and let
(t, v) = bool−1

� (t ′). By using similar arguments as in the other case above, we prove
that m is also an embedding of T on t , and v = m(o). Hence v ∈ QT (t), therefore
bool�(t, v) ∈ BoolQ�(QT ), that is, t ′ ∈ BoolQ�(QT ).

We can now prove that query-minimality is transformed by BoolT into language-
minimality.

Lemma 4.23 If a twig T is query-minimal, then BoolT(T ) is language-minimal.

Proof Let T = (�, t, o,Anc) be a query-minimal twig, and suppose for contra-
diction that BoolTT is not language-minimal. Then there exists a twig T ′ that is
smaller than BoolT(T ) and is such that L(T ′) = L(BoolT(T ). We will show that
there exists a twig T ′′ over alphabet � which is of same size as T ′ and such that
L(T ′ = L(BoolT(T ′′)). By Lemma 4.22 BoolQ�(QT ′′) = BoolQ�(QT ). By apply-
ing Lemma 2.5 we then get QT ′′ = QT . Furthermore, by Definition 2.4 T ′′ and T ′
then have the same size, that is, smaller than T . Hence T is not query-minimal which
is a contradiction. It remains to show the existence of such a twig T ′′.

Let T ′ = (�, t ′, o′,Anc′). We first show that t ′ ∈ Image(bool�). That is, we
must show that there is a node v ∈ Nodest ′ such that labt ′v ∈ � × {1} and that for
each v′ ∈ Nodest ′ − {v}, labt ′v′ ∈ (� × {0}) ∪ (� − �). This is shown applying
L(T ′) = L(BoolT(T )) and Definition 4.1. Note first that there are trees in L(T ′)
with node labels only from (� × {0, 1}) ∪ (� − �), so the node labels in t ′ must
also be from this set. Furthermore, there is exactly one node v ∈ Nodest ′ such that
labt ′v ∈ � × {1}, since L(BoolT(T )) only contains trees with exactly one such node.

We have now shown that t ′ ∈ Image(bool�), so we can let (t ′′, v) = bool−1
� (t ′).

By Definition 4.21 BoolT((�, t ′′, v,Anc′)) = (�, t ′, v,Anc′). The size of T ′ and
(�, t ′, v, Anc′) is the same, and by Definition 4.21, L(T ′) = L((�, t ′, v,Anc′)), so
we can let T ′′ = (�, t ′′, v,Anc′).

The remainder of this section is devoted to the proof of Theorem 4.20.

Proof Let D be the smallest DAG-twig representing a query-minimal twig equiv-
alent to M . Notice first that the DAG in D can only have labels from �. Oth-
erwise, D would require a label which M cannot test for, and hence M and D

could not be equivalent. This means that we can safely replace the alphabet of
D with �. Let T = (�, t, o,Anc) be the unfolding of D. Towards a contra-
diction, assume that the size of D, that is, its number of nodes, is larger than
2 · |QN | where N = (�, QN, δN, FN). We will identify two nodes in D which
can be merged leading to a strictly smaller DAG-twig which unfolds to a twig
of the same size as T and is equivalent to T . In other words, the merged DAG-
twig will be equivalent to a query-minimal twig as required to contradict our
assumption.
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Let x /∈ �. Recall that foldD is the canonical mapping from the nodes of T to
the nodes of D witnessing that T is represented by D. Next, we view M = (N, S)

and T from the perspective of the languages they define. Specifically, let Nb be the
NTA accepting bool�(QM) as is given by Lemma 2.7. Note that Nb has at most
2|QN | states. Furthermore, let Tb = BoolT(T ) as defined in Definition 4.21. Now,
by Lemma 4.23, Tb is language-minimal. The following lemma relates Nb and Tb:

Lemma 4.24 1. L(Nb) ⊆ L(Tb); and,
2. cx(Tb) ∈ L(Nb).

Proof From Lemma 2.7, we have that L(Nb) = BoolQ�(QM). By assumption,
the latter is equal to BoolQ�(QT ) which is equal to L(Tb) ∩ Image(bool�) by
Lemma 4.22.

(1): From the above it follows that L(Nb) ⊆ L(Tb).
(2): Notice that cx(Tb) ∈ L(Tb) and also cx(Tb) ∈ Image(bool�). Therefore,

cx(Tb) ∈ L(Nb).

Let ρ be a run of Nb on cx(Tb). As Nb has at most 2|QN | states and D has more
than 2|QN | nodes, by the pigeonhole principle, there are two nodes n1, n2 in cx(Tb),
not labelled by x, with ρ(n1) = ρ(n2) and corresponding to two different nodes in
D. This means, foldD(n1) �= foldD(n2). Recall that the nodes in cx(Tb) not labelled
x are exactly the nodes in Tb and that foldD(·) maps nodes from T to D. Since Tb

and T contain the same set of nodes the composition of these two functions is well-
defined (Fig. 3). Since ρ(n1) = ρ(n2), and since L(Nb) ⊆ L(Tb) by Lemma 4.24, it
follows that

Using (†) and (‡), we can show the following lemma:

Lemma 4.25 1. L(T [n1]) = L(T [n2]); and,
2. neither n1 nor n2 is an ancestor of or equal to the output node o.

Fig. 3 The DAG D, the unfolding of D into T , Tb = BoolT(T ), and the characteristic tree of Tb used in
the proof of Theorem 4.20
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Before we prove the lemma, let us first explain how it leads to the desired contra-
diction. From Lemma 4.25(1), it follows that in D the nodes foldD(n1) and foldD(n2)

can be merged to give a smaller (by at least one node) DAG-twig defining the same
query as defined by D. Let m1 = foldD(n1) and m2 = foldD(n2). By assumption,
m1 �= m2. Furthermore, by Corollary 4.12 and Lemma 4.25(1), neither of these
nodes can be an ancestor of the other. By merging m1 and m2, we mean replacing
m1 with m2 in all edges of the form (y, m1) (for any y), removing all edges of the
form (m1, z) (for any z), removing m1 from the set of nodes, and finally removing all
nodes and edges which are now not reachable from the root. Note that this merging
is not well-defined when m1 and m2 are siblings, because it introduces multi-edges.
However, when m1 and m2 are siblings then so are n1 and n2. But as both T [n1] and
T [n2] can be embedded on the same subtree of any tree in the language defined by
the query, this would mean that T is not query-minimal. Therefore, m1 and m2 can
not be siblings. Call the thus obtained DAG-Twig D′. Note that by Lemma 4.25(2)
there is only one path from the root to the output node o. As D′ is equivalent to D,
it defines the same query as T , but it still needs to be argued that D′ represents a
query-minimal twig. That is, the unfolding of D′ leads to a twig with the same num-
ber of nodes as T . From Lemma 4.25(2) and Lemma 4.14(3), it follows that both
T [n1] and T [n2] are language minimal which means that they have the same number
of nodes. So, the unfolding of D has the same number of nodes as T and is therefore
query-minimal. This leads to the desired contradiction and ends the proof of Theorem
4.20.

We now prove Lemma 4.25.

Proof Let

s1 = subtreecx(Tb)(n2) and s2 = subtreecx(Tb)(n1).

Then, s1 = cx(Tb[n2]) and s2 = cx(Tb[n1]), by Remark 4.8. To show that
L(T [n1]) = L(T [n2]), we first apply Lemma 4.17 to (†) and (‡), to obtain nodes
v1 ∈ Nodess1 and v2 ∈ Nodess2 such that

Note that, v1 and v2 are not labelled with x as the corresponding embeddings map
n1 and n2 to them. We provide a graphical illustration of the employed trees and
associated nodes in Fig. 4.

If v1 and v2 are the roots in the trees s1 and s2, respectively, or in other words
v1 = n2 and v2 = n1, then

subtrees2(v2) = subtrees2(n1) = s2 = cx(Tb[n1])
Similarly, subtrees1(v1) = cx(Tb[n2]). Therefore, by (�),

cx(Tb[n2]) ∈ L(Tb[n1]) and cx(T[n1]) ∈ L(Tb[n2]),
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Fig. 4 Illustration of the trees and associated nodes used in the proof of Lemma 4.25

and by Lemma 4.25, L(Tb[n1]) = L(Tb[n2]) which implies L(T [n1]) = L(T [n2]).
Suppose then that at least one of v1 and v2 is not the root, and w.l.o.g. let this

be the case for v2. Then we will argue towards a contradiction. Let the mapping m1
be the embedding showing that subtrees1(v1) ∈ L(Tb[n1]) and m2 the embedding
showing subtrees2(v2) ∈ L(Tb[n2]). Consider then the composition of mappings
m = m2 ◦ m1. The mapping m is an embedding from Tb[n1] to subtrees2(m2(v1)).
Since v1 is equal to or a descendant of n2, so is m2(v1) equal to or a descendant
of m2(n2), and the latter is equal to v2, because m2 is the embedding witness-
ing that subtrees2(v2) ∈ L(Tb[n2]). As we remarked above, s2 = cx(Tb[n1]). So,
subtrees2(m2(v1)) = cx(Tb[v]) where v = m2(v1), which is a strict descendant of
n1, by our assumption that v2 is a strict descendant of n1. This implies that the map-
ping m is a witness to cx(Tb[v]) ∈ L(Tb[n1]), for v a strict descendant of n1, and by
Lemma 4.11, this leads to a contradiction.

To show that neither n1 nor n2 is an ancestor of or equal to o, suppose for con-
tradiction that at least one of them is. If exactly one of them is an ancestor of
or equal to o, say n1, then Tb[n1] contains a node labelled with (a, 1) for some
a ∈ �, but Tb[n2] does not contain such a node, by definition of the mapping
bool� . Therefore L(Tb[n1]) �= L(Tb[n2]), which is a contradiction. If both n1 and
n2 are ancestors of or equal to o, then, either n1 is an ancestor of n2, or n2 is an
ancestor of n1. If n1 is an ancestor of n2, and L(Tb[n1]) = L(Tb[n2]), we have
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a contradiction by Corollary 4.12. The case is similar when n2 is an ancestor of
n1.

Hence, L(Tb[n1]) = L(Tb[n2]) and neither n1 nor n2 is an ancestor of or equal to
o. Then L(T [n1]) = L(T [n2]), as needed.

4.4 Testing Equivalence of DAG-Twigs and NSTAws

Now that we have a small model property of DAG-twigs compared to NSTAws
(Theorem 4.20), we can simply decide twig-definability of an NSTAw by guessing
the DAG-twig and testing equivalence. Here, we argue that equivalence of such an
NSTAw M and a DAG-twig D can be decided in exponential time. In particular,
we will reduce the latter problem to emptiness of alternating tree-walking automata
operating on BoolQ�(QM) and BoolQ�(QD).

Let D be a DAG-twig representing the twig T . The goal of this Section is to
describe a procedure that, given D, constructs an alternating tree-walking automaton
accepting L(T ), the tree language associated with T .

Although DAG-twigs operate directly on unranked trees, we will intermedi-
ately work with binary trees encoding these unranked trees. Following [27], for an
(unranked) tree t , let enc(t) be its binary encoding, obtained as follows: The nodes
of enc(t) are the nodes of t plus a set of leaf nodes marked #. Further, the root node
of enc(t) is the root node of t and for any node, its left child in enc(t) is its first child
in t (or # if its a leaf), and its right child in enc(t) is its next sibling in t (or # if it has
none). In Fig. 5, we depicted an example of an unranked tree and its binary encoding.

We start by recalling the definition of these alternating tree walking automata,
which operate on binary trees:

Definition 4.26 (Alternating Tree-Walking Automata) Let PosBool(P ) be the set
of positive Boolean formulas over propositions P (i.e., formulas without negation),

Fig. 5 An unranked tree and its binary encoding
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but including true and false. An alternating tree walking automaton with wildcards
(ATWA with wildcards) over binary trees is defined as a tuple W = (Q, �, δ, q0),
where

– Q is a finite set of states,
– � is a finite set of alphabet symbols,
– δ is a set of transition rules of the form (q, σ ) → θ , where q ∈ Q, σ ∈ ��, and

θ is a formula from

PosBool({↙,↘,−} × Q),

and
– q0 is the initial state.

Recall that �� = � � {�}, where � is the wildcard symbol.
The transition relation δ should be such that for each pair (q, σ ) ∈ Q × �� there

is at most one rule in δ with (q, σ ) as its left hand side. (If there would be two
rules with the same left hand side, we can merge them into one rule by taking the
disjunction of the right hand sides.) If (q, σ ) → θ ∈ δ, we also write rhsW(q, σ ) =
θ . Elements in {↙,↘,−} denote directions in the tree. For a node u of t , u· ↘
(respectively, u· ↙) denotes the right child of u (respectively, left child of u) if
lab(u) �= # and is undefined otherwise. Further, u·− is u itself (i.e.,− is used for stay
transitions).

Given a binary tree t , a run tree of W on t is an unranked tree R in which each
node is labelled by an element of Nodest × Q such that the following holds. We say
that an element a ∈ � matches σ ∈ �� if either a = σ or a /∈ � and σ = �.
• The label of the root of R is (root(t), q0) and
• for every node x of R with label (v, qv), if (qv, σ ) → θ ∈ δ and labt (v) matches

σ , then there is a set S ⊆ {↙, ↘,−} × Q such that,

– for every (i, q ′) ∈ S, v · i is defined and there is a child y of x in R

labelled (v · i, q ′);
– all children of x are labelled with (v · i, q ′) such that (i, q ′) ∈ S; and
– the truth assignment that assigns true to all elements of S, and false to

all other elements of {↙,↘,−} × Q, satisfies θ .

A run tree R is accepting if, for every leaf node of R labelled (u, q), there is a rule
rhsW(q, σ ) = true such that labt (u) matches σ . A binary tree t is accepted by an
ATWA W if there exists an accepting run tree of W on t .

By L(W) we denote the set of trees accepted by W .

We now show that, given a DAG-twig, we can efficiently construct an equiv-
alent tree walking automaton. We note that it is well known that there is a
connection between various XPath fragments and (two-way) alternating walking
automata. Benedikt, Fan and Geerts [3] have shown that it is possible to construct,
in linear time, a two-way alternating word automaton, accepting string encod-
ings of trees defined by an XPath query. This construction, however, only works
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when the considered trees have a fixed depth. Further, ten Cate and Lutz [36]
have shown that it is possible to construct, in quadratic time, a two-way alter-
nating tree automaton equivalent to a given XPath query. Our next lemma there-
fore uses rather standard techniques but, to be complete, we provide the full
construction.

Lemma 4.27 Let D be a DAG-twig representing the twig T . An alternating tree
walking automaton W with L(W) = {enc(t)|t ∈ L(T } can be constructed in time
O(|D|).

Proof Let D = (�, G, o,Anc) be a DAG-twig and let T be the corresponding
unfolded twig. We construct W = (Q, �, δ, q0), such that L(W) = {enc(t)|t ∈
L(T )}, as follows. The set Q, contains, for each node u of D, a state qu and, for each
edge e of G, the states qe and q ′

e. A state qu or qe can be seen as a pointer to a node
u or edge e in the DAG-twig D for which the automaton guesses that the subgraph
below u or e, respectively, can be matched at its current position in the tree T . The
starting state q0 is the state corresponding to the root of D.

Finally, the transition relation δ is given in Fig. 6. (Recall that rhsW(q, a) = θ

if and only if (q, a) → θ is the unique rule in δ with (q, a) as its left hand
side.)

For G = (V , E) and node u ∈ V let Out-Edges(u) denote the set of outgoing
edges of u, i.e., edges of the form (u, v) f for reasons of completeness.or some node
v of V . Then, for each node u and each edge e = (u, v) the transitions given in Fig. 6
apply.

As an example let us look at the transitions from a state corresponding to the
ancestor-edge (e ∈ Anc). At first there is one step to the first child of the current
node. From then on, the additional state q ′

e is used to search for a proper sibling or
descendant node.

It now follows by induction that, for a tree t and v ∈ V , there is an accepting
run tree of Wqv = (Q, �, δ, qv) on enc(t) if and only if, for each node v′ of T that
corresponds to v, we have t ∈ L(T [v′]).

Fig. 6 Transitions of the ATWA from the Proof of Lemma 4.27
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Finally, it is easy to see that the size of the resulting automaton is linear in the size
of D and that it can be computed in linear time.

The construction for proving Lemma 4.27 can be easily changed such that W

accepts encodings of L(BoolT(T )) instead of L(T ).

Corollary 4.28 Let D be a DAG-twig that represents the twig T . An alternating tree
walking automaton W with L(W) = {enc(t) | t ∈ L(BoolT(T ))} can be constructed
in time O(|D|).

Proof The proof is almost the same as the one for Lemma 4.27. The only difference
is that W needs to make a case distinction between the output node o from D and all
other ones. The transition for the output node o then needs to test whether the label of
the current node is (labD(o), 1) and all other transitions for nodes u of D test whether
the label of the current node is (labD(u), 0).

We now reduce equivalence between an NSTAw and a DAG-twig to the emptiness
problem for ATWAs.

Theorem 4.29 Given a DAG-twig D and an NSTAw M , both over the same alphabet
�, we can construct an ATWA W in polynomial time such that L(W) = ∅ if and only
if BoolQ�(QM) = BoolQ�(QD).

Proof Let D0,1 := BoolT(D). Let N0,1 be the NTA with L(N0,1) = BoolQ�(QM),
as obtained in Lemma 2.7. We construct an ATWA W that accepts a tree t if and only
if t is in the symmetric difference of L(N0,1) and L(D0,1). We assume w.l.o.g. that
D0,1 and N0,1 have disjoint state sets.

When reading a tree t , the ATWA W starts with a stay transition at the root and
guesses whether either

– D0,1 would accept t and N0,1 would reject t ; or
– D0,1 would reject t and N0,1 would accept t .

The ATWA W can do this in one transition:

(root(t), q0) →
((

−, q
D0,1
0

)
∧

(
−, q

N0,1
0

))
∨

((
−, q

D0,1
0

)
∧

(
−, q

N0,1
0

))

Here, q
D0,1
0 and q

N0,1
0 are the initial states of D0,1 and N0,1, respectively. The remain-

der of the run of W starting with q
D0,1
0 (resp., q

N0,1
0 ) therefore leads to acceptance

if and only if D0,1 (resp., N0,1) accepts t . Analogously, the states q
D0,1
0 and q

N0,1
0

are the states for the complement languages of D0,1 and N0,1. The remainder of the

run of W starting with q
D0,1
0 (resp., q

N0,1
0 ) accepts if and only if D0,1 (resp., N0,1)
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does not accept t . Notice that, since ATWAs can be complemented in polynomial
time (analogously to [14], chapter 7), W can be constructed in polynomial time as
well.

Theorem 4.30 Testing equivalence between a DAG-twig D and an NSTAw M is
EXPTIME-complete.

Proof The lower bound follows from a reduction from the language universality
problem for NTAws. The latter is EXPTIME-hard by Theorem 2.2. The reduc-
tion is similar to that in the proof of Theorem 3.9. It takes as input an NTAw

N = (�, Q, δ, F ). Let the NSTAw M and a ∈ � be as in the proof of Theorem 3.9.
Recall that QM selects the root node in all trees t = a(t1, . . . , tn) where for all
1 ≤ i ≤ n, ti ∈ L(N). Let the DAG-twig D have only one node labelled a. Hence,
QM = QD if and only if L(N) = T�.

The upper bound follows from Theorem 4.29, since testing language emptiness for
alternating tree walking automata with wildcards is the same as language emptiness
for alternating tree walking automata without wildcards, and the latter problem is
known to be in EXPTIME. (see, e.g., [7, 14]).

4.5 Main Result

We are now ready to state and prove the main result of this section.

Theorem 4.31 Deciding whether for an NSTAw M , QM is twig-definable, is
complete for EXPTIME.

Proof For the lower bound, similarly to Theorem 3.9, we will reduce the problem
of universality of NTAws to the problem considered here. Let N = (�, Q, δ, F ) be
an NTAw. We construct an NSTAw M such that QM is twig-definable if and only
if L(N) = T�. Let qsel /∈ Q and define the NSTAw M = ((�, Q � {qsel}, δ �
{(qsel, a) �→ (

∑
p∈F p)∗}), {qsel}). Then for any tree t ′ = a(t1, . . . , tn), we have that

root(t ′) ∈ QM(t ′) if and only if, for each 1 ≤ i ≤ n, ti ∈ L(N). In particular, we have
that QM selects the root of the tree tsmall = a, consisting of just one node. However,
by definition of twig queries, the only twigs that are able to select the root of tsmall
are of the form (�′, t, o,Anc) with t = a, o = root(t), Anc = ∅, and �′ ⊇ {a}.
Let T = ({a}, t, o,Anc) be such a twig. Then, QM is twig-definable if and only if
QM = QT . However, QM = QT if and only if L(N) = T�.

The upper bound is given by the following exponential-time algorithm. From
Theorem 4.20, we know that if there exists a DAG-twig equivalent to M =
((�, Q, δ, F ), S), there is one with alphabet �, and that has at most 2 · |Q| nodes.
Therefore, we can enumerate every possible DAG-twig D with alphabet � and at
most 2 · |Q| nodes and test whether D and M are equivalent. Theorem 4.30 states that
we can test in exponential time whether a given DAG-twig D and a given NSTAw

M are equivalent. Since the maximal size of each DAG-twig D is linear in our
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input, this means that our total algorithm has an exponential-time test for each of the
exponentially many DAG-twigs, which takes exponential time altogether.

5 Conclusion

In this paper we have shown that deciding twig-definability of NSTAs is complete
for EXPTIME.

There are many possible directions for future work. First of all, it would be
interesting to identify meaningful subclasses of NSTAs for which deciding twig-
definability is tractable. On the other hand, one could wonder how twig-queries can
be extended while remaining within EXPTIME for testing twig-definability. When
an NSTA is not equivalent to a twig, one could look at maximal sub- or mini-
mal super-approximations, as, for instance, done in [17] for single-type EDTDs.
Of course, other languages than XPath can be considered, like for instance, the
Region Algebra [15], caterpillar expressions [18], or even tree-walking automata
[7].

Another interesting question is the complexity of twig-definability in the finite
alphabet case. The NSTAws we consider in this paper have a wildcard symbol. How-
ever, what happens if we consider node-selecting tree automata without wildcard? In
other words, assume that we have a finite alphabet � and we should decide whether a
given NSTA (without wildcard transitions) can be rewritten to a twig that returns the
same result on every �-tree. It seems that this problem requires a different technique
than the one we developed here. Lemma 4.10, for instance, does not apply anymore
for the simple reason that the construction of the characteristic tree cx(T ) requires a
new alphabet symbol x.
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