
Expressive Power of Graph Languages

Timos Antonopoulos

University of Cambridge

Computer Laboratory

St. Catharine’s College

This dissertation is submitted for
the degree of Doctor of Philosophy

Abstract

Finite model theory is a field of logic that originated from computer science and studies properties
of finite logical structures. Algorithmic properties of problems are interpreted over structures
and inspected using logical languages, and thus connections are made between the latter and
computational models. The expressive power of such logical languages is examined and matched
with classes of problems and algorithmic classifications.

In this thesis, we look into the expressive power of Graph Logic and also its extension with a
recursion operator, that was introduced by Cardelli, Gardner and Ghelli, and later systematically
investigated by Dawar, Gardner and Ghelli. Graph Logic was introduced as a query language
on labelled directed graphs and is an extension of first-order logic with a spatial connective
that allows one to express that a graph can be decomposed into two subgraphs, and reason
thereafter about the properties definable over the two subgraphs in isolation from each other.
It was known that Graph Logic is contained in monadic second-order logic over graphs and we
show that the containment is strict. Furthermore, we investigate the expressive power of the
logic over restricted classes of graphs.

In addition, the expressive power of Graph Logic with the recursion operator, which over
many classes of graphs exceeds the one of monadic second-order logic, is studied and compared
to the expressive power of other related languages.

2

Preface

First of all, I would like to thank my supervisor Dr. Anuj Dawar, without whose continued
support and guidance none of this work would have been possible. I am also very grateful for
his encouragement and patience throughout my studies.

I am especially thankful to Dr. Jerzy Marcinkowski for a series of valuable discussions and
sharing his insight with me. I would also like to thank Prof. Wolfgang Thomas and Prof. Martin
Lange for kindly discussing specific aspects relating to my work. Furthermore, I would like to
acknowledge Dr. Philippa Gardner for her advice prior to my taking up my PhD studies.

Finally, I would like to dedicate my thesis to my father, mother and sister, without whom I
could have never accomplished any of this work.

This dissertation is the result of my own work and includes nothing which is the outcome of
work done in collaboration except where specifically indicated in the text. Parts of Chapter 2
and Chapter 3 are based on [AD09]. This dissertation does not exceed 60,000 words, including
footnotes.

3

Contents

Abstract 2

Preface 3

1 Introduction 6
1.1 Preliminaries . 8

1.1.1 Graphs . 9
1.1.2 Words . 11
1.1.3 Trees . 12

1.2 Monadic Second-Order Logic . 13
1.2.1 MS1 and MS2 . 17

1.3 Word and Tree Automata . 19
1.4 Fixed-Point Logics . 20
1.5 Graph Logic . 21

1.5.1 GL Games . 24
1.6 Graph Logic with Recursion . 26
1.7 Contributions of this Thesis . 27

2 Graph Logic 29
2.1 On Graphs . 31
2.2 On Words . 32
2.3 On Trees . 37

2.3.1 Chain and Antichain Logic . 42
2.3.2 Tree Walking Automata . 50

3 GL(MSO on Forests 53
3.1 Main Theorem . 53
3.2 FO Interpretations and MSO Transductions . 68
3.3 Separation Logic . 73

4

4 Graph Logic with Recursion 78
4.1 On Graphs . 78
4.2 On Words . 79

4.2.1 PSPACE-complete problems on strings . 79
4.2.2 Conjunctive Grammars and their Boolean Closure 85

4.3 On Trees . 96

5 Conclusion 104
5.1 GL . 104
5.2 GLµ . 105

Bibliography 106

5

Chapter 1

Introduction

A connection between Mathematical Logic and Automata Theory was first established by Büchi
and Elgot’s result ([Büc60],[Elg61]) stating that the Monadic fragment of Second Order Logic
(the one where second order variables range over subsets of the universe of the structure) can
define exactly the same languages over finite words as the ones recognized by finite word au-
tomata. This result was among the first that established a connection between a logic and a
class of problems decidable by some theoretical machine model, such as automata or Turing
machines, which is one of the fundamental issues of Finite Model Theory, along with the search
for the exact expressive power of logical languages. Other similar connections made between a
machine model and a logic include Fagin’s famous result showing that ∃SO logic, the existential
fragment of Second-Order Logic, describes exactly the problems in NP ([Fag74]), as well as
Immerman and Vardi’s result on LFP and P over ordered structures ([Imm86],[Var82]).

It has been observed that Monadic Second-Order Logic (MSO), over some classes of graphs
which include words and trees, has linear data complexity. In other words, evaluating a fixed
MSO formula on some arbitrary structure contained in one of these classes, takes linear time
with respect to the size of the structure. This is possible due to a translation of MSO formulae
to finite automata. Due to this connection between MSO and finite automata, MSO has been
the standard to which many other logics are usually compared, especially when it comes to
structures such as words and trees.

Graph Logic (GL), introduced by Cardelli et al. in [CGG02], is a spatial logic for querying
graphs, with its characteristic operator being a spatial connective that allows for decomposing
a graph into two edge-disjoint components, akin to how Separation Logic ([Rey02],[IO01]) is
designed to work on memory heaps and other structures used for reasoning in programs with
direct memory management through pointer variables. In [CG00], Cardelli et al. introduced
Ambient Logic that allow for reasoning on the way the properties of processes change through
time as well as spatially. In other words, through the logic, one can express what are the allowable
changes on the spatial properties of a process, which are represented as a graph algebra, and for
this, Ambient Logic makes use of a composition operator, similar to the one in GL. On the other
hand, logics in finite model theory are traditionally used to reason on what is expressible over

6

CHAPTER 1. INTRODUCTION 7

certain classes of structures. The version of GL introduced in [CGG02] allows for expressing
properties about graphs, and in addition includes operators allowing for querying graphs, and
as a result creating new graphs from input graphs. Furthermore, one can also define transducers
through the logic, which are mappings from graphs to graphs.

A fragment of GL introduced in [CGG02], which includes only the connectives used for
expressing properties of graphs, was further studied in [DGG07] in order to resolve questions
regarding the expressiveness of the logic as well as the complexity of the graphs definable in it
and the complexity of evaluating the formulae. Two versions where investigated, one equipped
with a recursion operator similar to the one in [CGG02], and the other version being without
it. The two versions were termed GLµ and GL respectively.

The characteristic spatial connective in the version of Graph Logic considered in [DGG07],
is a composition operator that allows for reasoning about disjoint subgraphs in a graph. It
is essentially a restricted form of second-order quantification overs edges, where in particular,
one can express that a graph can be decomposed into two edge disjoint subgraphs, and then
reason in the same way about definable properties of the subgraphs in isolation from each other.
This spatial connective can be simulated in monadic second-order logic with quantification over
edges, as shown in [DGG07], and hence all properties definable in Graph Logic are definable in
MSO as well. The opposite direction of the containment is the one of interest.

Dawar et al. observed in [DGG07] that GL is of equal expressive power to MSO when
restricted to the class of words, and hence captures the regular word languages. Despite this
result, it was conjectured that it is strictly less expressive than MSO over graphs in general.
In [Mar06], Marcinkowski showed that this is indeed the case for the GL version studied in
[DGG07] and a corresponding extension of MSO that allows for quantification over a countable
set of labels which label the edges of the structures. The two logics were termed GL+ and
MSO+ in [Mar06], to avoid confusion with the version of GL and MSO that lacks this extra
quantification over edge labels. The question whether GL is strictly less expressive than MSO
was thus left open.

Graph Logic with an additional operator for recursion (GLµ) was also introduced in [CGG02]
and the expressive power of a version of it was studied further in [DGG07]. The latter operator
increases the expressive power of GL, and in some classes of graphs such as trees and words,
it is shown that it becomes more expressive than MSO. On the other hand, over graphs in
general it is believed that there are MSO definable properties, such as 3-colourability, that are
not definable in GLµ. Despite the fact that the expressive power is increased with the use of the
recursion operator, and the fact that PSPACE-complete problems are expressible in GLµ, model
checking as well as evaluating a fixed formula on an arbitrary graph, both remain in PSPACE.
This is interesting since not many logics have data complexity and model-checking complexity
that are both complete for the same complexity class. Least Fixed-Point Logic for example can
only define problems in P but its model-checking complexity is EXPTIME-complete and it should
be noted that model-checking of Graph Logic without the recursion operator is also PSPACE-
complete. In this thesis, we study the expressive power of GL with and without the recursion

CHAPTER 1. INTRODUCTION 8

operator.

1.1 Preliminaries

We proceed by giving a few definitions for notions that will be used in this thesis. For an intro-
duction to most of these notions we refer the reader to [EF99] and [Lib04].

Structures: A signature σ is defined as a tuple of the form 〈c1 . . . , cm, Rr11 , . . . , Rrnn 〉, where
the ci are symbols of constants and the Rrjj are relation symbols, of arity rj . The signatures we
consider are purely relational and do not have function symbols. Unless otherwise stated, they
do not contain constants either.

A finite structure A of signature σ is a tuple 〈A, c1 . . . , cm, Rr11 , . . . , Rrnn 〉, where A is a
finite set of elements and denotes the universe of the structure and c1, . . . , cm ∈ A are the
constants, namely fixed elements of the structure and each Ri, for 1 ≤ i ≤ n is a relation of
arity ri, or in other words a subset of Ari . The interpretation of the symbols of a signature
σ = 〈c1, . . . , cm, R1, . . . , Rn〉 in a structure A will be denoted by cA1 , . . . , c

A
m, R

A
1 , . . . , R

A
n when it

is not clear, and similarly the universe of A will be denoted by AA. Finally, the class of all finite
structures of signature σ is denoted as STRUC[σ].

If A and B are two structures of the same signature without constants, then A]B denotes
the structure that is the disjoint union of A and B. In other words, if A = 〈A,Rr11 , . . . , Rrnn 〉 and
B = 〈B,Rr11 , . . . , Rrnn 〉, then A]B is the structure with universe A] B, and for all 1 ≤ i ≤ n,
RA]B
i = RA

i] RB
i . Similarly if k ∈ N, then k × A is the structure that is a disjoint union of k

copies of A. Furthermore, if A and B are two structures with a tuple of elements ā common to
both, then A⊕ā B, denotes the disjoint union of the two structures A and B, while identifying
ā. For a set of structures Ai, for n ≤ i ≤ n′, we denote the disjoint union of these structures
using the notation

⊕n′

i=n Ai.

Queries: Let C be a class of structures. Then, an r-ary query Q on C is a mapping Q : C →
{S | S ⊆ (AA)r for A ∈ C} that maps each structure A ∈ C to an r-ary relation on its universe
AA, satisfying the condition that if f : A→ B is an isomorphism, then Q(B) = f(Q(A)). When
a query Q is 0-ary, it is called a boolean query.

Notation: If f : X → Y is a function, mapping elements of a set X to elements of a set Y ,
then, for x1 ∈ X, y1 ∈ Y , f [x1 7→ y1] is a function that maps x1 to y1, and for all x in the
domain of f such that x 6= x1, the function f [x1 7→ y1] maps x to f(x).

The lowercase letters x, y, z, . . . will usually denote variables and x̄ denotes a tuple (x1, . . . , xn)
for some n ∈ N, in which case we also write |x̄| = n. Similarly, the uppercase letters X,Y, Z, . . .
are used for second-order variables, with X̄ denoting a tuple of such variables.

Monadic Second Order Logic and First Order Logic will be denoted MSO and FO respec-
tively. Similarly, we use GL for Graph Logic and GLµ for Graph Logic with recursion. When it

CHAPTER 1. INTRODUCTION 9

is not clear, the satisfaction symbol ‘|=’ will be subscripted with the appropriate logic.

Model Checking: We refer the reader to [Pap94] for a formal introduction to complexity
classes. Considering the complexity of evaluating a formula ϕ of some logic L on some structure
A, depends on which of the two is given as input to the problem and what is fixed. Vardi defined
the following three classifications for these problems in [Var82]. First, we assume that a natural
encoding exists for both formulae and structures, denoted by enc(ϕ) and enc(A) respectively.
Such an encoding and the definition of the different classifications that are presented below can
be found in [Lib04] and [GKL+07].

Definition 1.1.1. Let C be some complexity class and L a logic. then

• The data complexity of L is C if for every sentence ϕ of L, the language {enc(A) | A |= ϕ}
is in C.

• The expression complexity of L is C if for every finite structure A, the language {enc(ϕ) | A |=
ϕ} is in C.

• The combined complexity of L is C if the language {(enc(A), enc(ϕ)) | A |= ϕ} is in C.

If for some sentence ϕ of L, the language {enc(A) | A |= ϕ} is C-hard, and also C, then the
data complexity of L is C-complete. Similarly for the expression and combined complexities.
Throughout this thesis, model checking of some logic L refers to the combined complexity of L.

1.1.1 Graphs

A graph G = (V,E), is a set of vertices or nodes V , and a set of edges E that is usually considered
as a binary relation defined as a subset of V × V . The binary relation denotes edges connecting
the vertices in the graph. Thus we consider only simple graphs, which are graphs that no two
vertices have more than one edge connecting them, and furthermore we restrict to graphs such
that ∀v ∈ V , E(v, v) does not hold, or in other words E is irreflexive. Graphs are in general
classified as directed and undirected. In the former case, if for two vertices v1, v2 ∈ V , E(v1, v2)
holds then E(v2, v1) does not necessarily hold, to the contrary of undirected graphs, where the
relation E is symmetric. For any graph G = (V,E), we define V (G) to be its set of vertices V
and E(G) to be its set of edges E.

As structures therefore, graphs are represented in mainly two ways in the literature ([Lib04],
[GKL+07], [Cou08]). A graph can be represented either using a universe for the vertices and
a binary relation on vertices for the edges, or having a universe for both the vertices and the
edges, and a binary relation, to describe which edges are adjacent to which vertices, where
the binary relation is defined differently for directed and undirected graphs. Although a single
binary relation can be used for directed graphs as well, we stick to a formulation similar to the
one presented in [Cou08], and is as shown below.

CHAPTER 1. INTRODUCTION 10

More formally, let G = (V,E) be a directed graph. Then let bGc be the structure with
universe VbGc = V , and a binary relation EbGc, such that for any two vertices v1, v2 ∈ VbGc,
EbGc(v1, v2) if and only if there is an edge in G, from v1 to v2. Similarly, let dGe be the structure
whose universe contains an element for each vertex and each edge of G. Let VdGe and EdGe de-
note these sets respectively, and let the signature of dGe comprise two binary relations inc1(e, x)
and inc2(e′, x′), such that for any two vertices v1, v2 ∈ VdGe, (v1, v2) ∈ E if and only if for the
element e ∈ EdGe, representing the edge (v1, v2), inc1(e, v1) and inc2(e, v2). Furthermore, for any
e ∈ EdGe,v1 ∈ VdGe, if inc1(e, v1), there exists a unique v2 different from v1 such that inc2(e, v2),
and vice versa. The signature of the structures in the first case is denoted by σbGc and by τdGe
in the second case. The case for undirected graphs is similar, where in particular one relation
symbol inc(e, v) is used for the representation of incidence graphs. The above notation is as the
one used in [Cou08].

In the sections below, we will need to deal with graphs, whose edges are labelled. We there-
fore define the following alternative notion of a graph. Let Σ be some finite alphabet, and let
G = (V,E) be a graph, where E = (Ea)a∈Σ, and where the Ea, for each a ∈ Σ, partition the
set E. The signatures σbGc and τdGe are extended appropriately to reflect this change in the
way edges are represented. In particular, the signature σbGc comprises a binary relation Ea for
each a ∈ Σ, and the signature τdGe contains two binary relations inca1 and inca2 for each a ∈ Σ.
We denote the modified versions of these signatures as σΣ,bGc and τΣ,dGe respectively. Graphs
with labelled edges will only be used for the representation of words and trees, and for reasons
that will be explained in Section 1.2.1, there is no need to consider both graph representations
for words and trees, and we will only consider the representation of graphs under the signature
σΣ,bGc.

We define two properties of graphs that will be used later. We refer the reader to [Pap94] for
more details. A Hamiltonian Cycle of a graph G, is a cycle that visits each vertex exactly once.
A matching of a graph G is a set of non-adjacent edges, and a perfect matching is a matching
were every vertex is adjacent to an edge of the matching.

In some results stated below, the notion of tree-width is briefly encountered and we proceed
by presenting an informal introduction to this concept. For further details, we refer the reader
to [Die05]. Tree decompositions and the tree-width of a graph were introduced by Robertson
and Seymour ([RS86]) and independently by Halin ([Hal76]) and have been used extensively in
Computer Science since. There are problems that are intractable over graphs in general, but
when restricted to classes of graphs of bounded tree width they become tractable. Essentially,
the tree-width of a graph is a measure for how much the graph resembles a tree. In a tree
decomposition T of a graph G, vertices of the graph are grouped together, in such a way that
each vertex corresponds to a connected subtree of the tree T , and each vertex of T corresponds to
a set of vertices of G. Hence, for many problems, an algorithm can be built that travels through

CHAPTER 1. INTRODUCTION 11

the tree T in a top-down or bottom-up manner, to compute the required result. This is essential
for dynamic programming algorithms that are based on finding solutions to subproblems of the
given problem. A graph is of tree width k, if there is a tree decomposition T of G, such that
each vertex of T corresponds to a set of vertices of G of size at most k − 1.

On classes of graphs that contain only graphs of tree-width less than k, for some fixed k ∈ N,
several problems become easier. Such a class of graphs is said to be of bounded tree-width. One
such result presented below in Section 1.2.1, regarding classes of graphs of bounded tree-width,
is that the two versions of MSO that differ on the ability of quantifying over sets of edges, have
the same expressive power on classes of graphs of bounded tree-width.

1.1.2 Words

A word is a sequence of letters from some fixed alphabet Σ and they are interchangeably called
strings both in the literature in general and in this thesis. Throughout this thesis we only
consider finite words. We present some of the ways words are represented as structures in
the literature. For words over some alphabet Σ the two signatures τs = 〈succ2, (P 1

a)a∈Σ〉 and
τo = 〈<2, (P 1

a)a∈Σ〉 are used. For example, in [Tho96], structures of signature τo are considered,
with an additional successor relation succ as the one in signature τs, which can be defined in
FO using the order relation <. In [Lib04] and [EF99], words are represented as structures of
signature τo. A word structure W ∈ STRUC[τs], with universe W , is such that for any v ∈ W ,
exactly one of the unary relations Pa holds, and succ is a binary relation representing the
partial successor function. Similarly a word structure W ∈ STRUC[τo] is as for τs, but with the
successor relation being replaced with a linear order over the elements of the word, representing
the order of the elements as they appear in the word.

Example. The word aabcb over the alphabet Σ = {a, b, c}, can be represented as a word
structure 〈{1, 2, 3, 4, 5}, <2, P 1

a , P
1
b , P

1
c 〉, where < is the usual linear order on natural numbers

restricted to {1, 2, 3, 4, 5} and Pa(1), Pa(2), Pb(3), Pc(4), Pb(5) hold. If the successor relation
is used instead of the linear order, then succ(i, i+ 1) holds for 1 ≤ i ≤ 4.

The second way of representing words, and the one which is used throughout this thesis, is
the one where words are seen as connected, directed graph structures. Namely, for words over
some alphabet Σ, the signature for word structures is defined as 〈(E2

a)a∈Σ, 〉, where for each
a ∈ Σ, Ea is a binary relation defined to hold for any two vertices that are connected with an
edge labelled with a.

Example. The word in the example above is represented as a graph by the structure G =
〈V,E2

a, E
2
b , E

2
c 〉 where V = {1, 2, 3, 4, 5, 6}, and Ea = {(1, 2), (2, 3)}, Eb = {(3, 4), (5, 6)} and

Ec = {(4, 5)}.

We saw above, that two different signatures are used for representing graphs. For reasons to
be explained below, there is no need to consider both these representations, and unless otherwise
specified a word is seen as a graph under the signature σbGc.

CHAPTER 1. INTRODUCTION 12

1.1.3 Trees

Trees are in general acyclic simple graphs and the first classification they undergo in the literature
is based on whether the neighbours of each vertex are ordered. For the case where the neighbours
of each vertex are ordered the trees are called ordered trees and are defined as follows. Let a
prefix of a sequence s be an initial subsequence of s. The set of sequences formed from elements
of some set S, is denoted as S∗. A set Z ⊆ S∗ is prefix-closed if for any sequence s ∈ Z, the set
of prefixes of s is a subset of Z. A tree T over an alphabet Σ, is a prefix-closed domain D ⊆ N∗

together with a labelling function f : D → Σ. A class of rank-k ordered trees, for k ∈ N, is a
class of trees all of whose domains are subsets of S∗, where S is equal to {1, . . . , k}. Otherwise,
when the domain is a subset of N∗, the trees are unranked.

On the other hand, unordered trees over an alphabet Σ are defined as T = (V,<, f) where <
is a partial order on the set V , such that for any v ∈ V , the set {v′ | v′ < v} is linearly ordered.
A vertex v2 is a child of another vertex v1 if and only if v1 < v2 and there exists no v3 such that
v1 < v3 < v2. Finally, f : V → Σ is the function labelling the vertices of the tree. There are a few
widespread ways of representing trees such as the ones described above, which we consider below.

Ranked trees: In general, for ranked ordered trees of maximum rank k, for k ∈ N, over some
alphabet Σ, the signature τr,o = 〈≺2, (child2

i)i≤k, (P
1
a)a∈Σ〉 is widely used (for example, in [Lib04]

and [Tho96]). In a tree structure T of signature τr,o, the relation childi contains (v1, v2), for
v1, v2 ∈ T , if v2 is the i-th child of v1, and for each a ∈ Σ, Pa contains all vertices that are
labelled with a. The binary relation ≺ defines a partial order on the vertices of T and is defined
as the transitive closure of the child relations. For ranked trees that are not ordered, the set of
relations (child2

i)i≤k is replaced by a single binary relation, child2, defining the child relation,
and the resulting signature is denoted as τr,u.

Unranked trees: For unranked trees over some alphabet Σ, one commonly used signature in
the literature is τu,o = 〈≺2,first-child2, <2,next-sibling2, (P 1

a)a∈Σ〉, where ≺ is as above and <

is a linear order ordering the children of each vertex. Similarly, first-child holds for any two
vertices v1, v2 when v2 is the first child of v1, according to the order of the children, and the
binary relation next-sibling contains (v1, v2), if v2 is the successor of v1 in the order of the
children. This is the signature used for unranked ordered trees in [Lib04], omitting the relations
first-child and next-sibling, which are FO-definable from the order relations in the signature.
For unordered unranked trees, the simple signature τu,u = 〈≺2, child2, (P 1

a)a∈Σ〉 can be used.
In all the above signatures, the binary relation ≺ is sometimes omitted. This does not make

a difference on the expressiveness of Monadic Second-Order Logic, but it does so for First-Order
Logic.

Trees as graphs: As graphs, trees are defined to be acyclic directed or undirected connected
graphs, where in the case of directed graphs each vertex has in-degree at most 1. In this

CHAPTER 1. INTRODUCTION 13

thesis, unless otherwise specified, trees are represented as directed graphs, with the edges being
labelled instead of the vertices. In other words, instead of the signature σbGc, labelled trees
are represented using graph structures of signature σΣ,bGc, that is defined in Section 1.1.1. In
particular, for trees with set of labels Σ, there is a binary relation Ea for each a ∈ Σ that holds
for any two vertices v1, v2 for which there is an edge from v1 to v2 labelled with a. Notice that
since trees are represented as graphs, the signature contains no order relation, as in some of the
cases described above.

As with words, by Theorem 1.2.4 that is stated below, there is no need to consider both ways
defined in Section 1.1.1 for representing graphs. For the logics we are considering the expressive
power remains the same regardless of the representation of trees as graphs structures used.

Notice that there is a natural way of mapping trees in the traditional sense, to trees with
labels on the edges, since each vertex can be associated with the edge connecting it to its parent
vertex, which in any case can be at most one. Therefore, all results can be seen to hold for trees
defined in the traditional way.

Rank-k trees are also called k-ary and in particular binary trees are rank-2 trees with out-
degree at most 2. Rank-k trees where all vertices have either exactly k children or are leaves,
are called proper.

A forest is a collection of trees, or in other words an acyclic directed graph, possibly discon-
nected, where each vertex has in-degree at most 1. The vertices of the graph with in-degree 0,
are called roots of the respective connected component they belong to, which is a tree.

1.2 Monadic Second-Order Logic

Monadic second-order logic (MSO) is a fragment of second-order logic, where quantification only
of set variables is allowed instead of relation variables of arbitrary arity. It is a well-studied logic,
that corresponds exactly to finite automata over trees and words. The data complexity of MSO
over classes of graphs of bounded tree-width has been shown by Courcelle in [Cou90] to be linear
with respect to the size of the structures, and the algorithm is bounded in time by f(|ϕ|) ·p(|A|),
with p a linear function. On trees and words this result can be established by translating MSO
formulae into automata. The translation, however, is not computationally easy and it has been
proved by Frick et al., in [FG04], that if there is a model checking algorithm with input an
MSO formula ϕ and a word A that is bounded in time by f(|ϕ|) · p(|A|) for p a polynomial and
f elementary, then P collapses to NP. For a more in-depth introduction to MSO we refer the
reader to [Cou08] and [Lib04].

MSO Syntax: Monadic second-order logic is an extension of FO with second-order quan-
tification over second-order variables of arity 1. The syntax in MSO extends the one for FO
appropriately. Suppose first that there are infinitely many second-order variables X1, X2, . . .,
ranging over sets. Since the semantics extend the ones for FO, first-order variables and quan-
tification are allowed in MSO and ϕ(x̄, X̄) denotes that the MSO formula ϕ has x̄ as its free

CHAPTER 1. INTRODUCTION 14

first-order variables and X̄ as its free second-order variables. Terms are defined as in the FO
case (first-order variables and constants) and MSO allows for all the atomic formulae of FO, is
closed under boolean connectives and first-order quantification, and allows additionally for the
following formation rules of formulae.

• If X is a monadic second-order variable and t a term, then X(t) is an atomic MSO formula.

• If ϕ(x̄, X̄, Y) is an MSO formula then ∃Y ϕ(x̄, X̄, Y) and ∀Y ϕ(x̄, X̄, Y) are MSO formulae
with free variables among x̄ and X̄.

MSO Semantics: The semantics of an MSO formula are the same as for FO for the common
connectives, and they are defined as follows for the additional ones defined above. Let A be
some finite structure of some signature σ with universe A, and let ρ and ζ be two mappings,
where ρ assigns elements of A to first order terms and ζ assigns subsets of A to second order
variables.

• A |=ρ,ζ X(t) if and only if ρ(t) ∈ ζ(X).

• A |=ρ,ζ ∃Y ϕ(x̄, X̄, Y) if and only if there exists C ⊆ A such that A |=ρ,ζ[Y 7→C] ϕ(x̄, X̄).

• A |=ρ,ζ ∀Y ϕ(x̄, X̄, Y) if and only if for all C ⊆ A it holds that A |=ρ,ζ[Y 7→C] ϕ(x̄, X̄).

Throughout this thesis, given a structure A with domain A over a signature σ, and given a for-
mula ϕ(x1, . . . , xn, X1, . . . , Xm) over the same signature with free first order variables x1, . . . , xn

and free second order variables X1, . . . , Xm, then for any a1, . . . , an ∈ A and any B1, . . . , Bm ⊆ A
we may write A |= ϕ(a1, . . . , an, B1, . . . , Bm) instead of A |=ρ,ζ ϕ(x1, . . . , xn, X1, . . . , Xm) where
ρ(xi) = ai and ζ(Xi′) = Bi′ for i ∈ {1, . . . , n}, i′ ∈ {1, . . . ,m}.

In Section 1.2.1 below, where MS2 is defined, slightly different syntax and semantics will be
presented for the second-order variables and quantifiers over graphs.

The quantifier rank of an MSO formula ϕ denotes the maximum depth of quantification
in a formula and is defined inductively as follows. For ϕ an MSO formula qr(ϕ) denotes the
quantifier rank of ϕ.

If ϕ is a literal then qr(ϕ) = 0.
If ϕ = ¬ψ then qr(ϕ) = qr(ψ).
If ϕ = ψ1 ∧ ψ2 then qr(ϕ) = max(qr(ψ1), qr(ψ2)).
If ϕ = ∃x ψ then qr(ϕ) = qr(ψ) + 1.
If ϕ = ∃X ψ then qr(ϕ) = qr(ψ) + 1.

Let MSOk denote the set of all MSO formulae of quantifier rank k. Then an MSO rank-k
m, l-type, is a consistent set S of formulae in MSOk with m free second-order variables and l

free first-order variables, such that for any formula ϕ(x1, . . . , xl, X1, . . . , Xm) ∈ MSOk, either
ϕ ∈ S or ¬ϕ ∈ S.

CHAPTER 1. INTRODUCTION 15

For A a structure and ā a tuple of elements of the universe A of A with |ā| = l, and V̄ a
tuple of sets of elements of A with |V̄ | = m, the MSO rank-k m, l-type of (A, ā, V̄) is denoted by
mso-tpm,lk (A, ā, V̄), and is defined as mso-tpm,lk (A, ā, V̄) = {ϕ(x̄, X̄) | A |= ϕ(ā, V̄), qr(ϕ) ≤ k}.
Informally, the latter is the set of formulae of quantifier rank less than or equal to k, with l

free first-order variables and m free second-order variables, that are satisfied by the structure
A, with the free variables of each formula being interpreted by ā and V̄ in A. If τ is the type
mso-tpm,lk (A, ā, V̄), we say then that (ā, V̄) realize the type τ in A.

When two structures A and B agree on all formulae of quantifier rank k, or equivalently
when they are of the same rank-k 0, 0-type, we write A ≡MSO

k B. We may also refer to the
MSO rank-k 0, 0-type of a structure A, simply as the MSO-k-type of A. For two structures A

and B such that A ≡MSO
k B, we say that A and B are ≡MSO

k -equivalent. Similarly, if for two
structures A and B it holds that mso-tpm,lk (A, ā, V̄) = mso-tpm,lk (B, b̄, W̄), for |ā| = |b̄| = l and
|V̄ | = |W̄ | = m being tuples of elements and sets of elements respectively of the corresponding
structures A and B, then we write (A, ā, V̄) ≡MSO

k (B, b̄, W̄). The corresponding types for FO
are denoted by fo-tplk(A, ā).

Ehrenfeucht-Fräıssé Games: Ehrenfeucht-Fräıssé (EF) Games is the main tool for proving
inexpressibility of a property in FO and it has been extended and adapted for additional logics
such as MSO or GL, as we will see below. EF Games are based on Ehrenfeucht and Fräıssé’s
Theorems as presented in [EF99] and [Lib04].

FO EF Games: EF Games are played on two structures A and B of the same signature σ,
by two players, called Spoiler and Duplicator, and consists of k rounds for some fixed k ∈ N.
At each round, Spoiler chooses a structure, say A, and picks an element, a, of the universe.
Duplicator responds by choosing an element b of the universe of the other structure B. Let
ā = a1, . . . , ak and b̄ = b1, . . . , bk, be the elements picked in the structures A and B respectively,
during the k rounds of the game. Duplicator wins if the mapping ai 7→ bi, for all i ≤ k, is a
partial isomorphism on A and B. Such a mapping is a partial isomorphism if the following hold:

1. For all i, j ≤ k, ai = aj if and only if bi = bj .

2. For all i ≤ k and for each constant in the signature σ, ai = cA if and only if bi = cB.

3. For each relation P of arity r in the signature σ, (ai1 , . . . , air) ∈ PA if and only if
(bi1 , . . . , bir) ∈ PB, for all i1, . . . , ir ≤ k.

It has been shown that types and EF Games are closely related according to the following
Theorem.

Theorem 1.2.1 (Ehrenfeucht-Fräıssé). For any relational signature σ, any structures A,B ∈
STRUC[σ] with sequences of elements c̄, d̄ respectively, and any k ∈ N, Duplicator wins the k-
round EF Game on (A, c̄) and (B, d̄), if and only if fo-tplk(A, c̄) = fo-tplk(B, d̄), with l = |c̄| = |d̄|.

CHAPTER 1. INTRODUCTION 16

Therefore, to prove that a property P of structures of some signature σ, is not expressible
in FO, it is sufficient to define for each k ∈ N, two structures Ak and Bk, such that Ak ∈ P
and Bk /∈ P , and Duplicator has a winning strategy for the k-round EF Game on these two
structures.

MSO EF Games: EF games for MSO are defined as an extension of the ones for FO. In
particular, at each round of a k-round game on two structures A and B, Spoiler has the choice
of making a first-order move as defined above, or a colouring move. In the first case, the players
move as they do in the first-order EF games. In the second case, Spoiler selects a set of elements
in the structure of his choice and Duplicator replies in a similar way in the other structure.

Let ā = a1, . . . , ak1 ∈ A and b̄ = b1, . . . , bk1 ∈ B be the elements selected during the first-
order rounds of the game, and let A1, . . . , Ak2 ⊆ A and B1, . . . , Bk2 ⊆ B be the sets selected
during the colouring rounds, for k1, k2 such that k1 + k2 = k. Then Duplicator wins if (ā, b̄)
defines a partial isomorphism from (A, A1, . . . , Ak2) to (B, B1, . . . , Bk2). In other words, in
addition to every relation of the signature of the structures, the sets Ai, Bi, for i ≤ k2, have to
be considered in the partial isomorphism.

As for the FO case, it can be shown that Duplicator has a winning strategy for the MSO EF
k-round game on A and B if and only if A ≡MSO

k B.
The second-order move described above is called a colouring move, since at each round the

players colour the elements of each structure by including them in the set or not. After k rounds
each element has one of the 2k possible colourings. We state below the corresponding Theorem
for MSO and MSO EF Games and refer the reader to [EF99] for further details.

Theorem 1.2.2. For any relational signature σ, any structures A,B ∈ STRUC[σ] with se-
quences of elements ā, b̄ respectively and sequences of sets of elements V̄ , W̄ , and any k ∈
N, Duplicator wins the k-round MSO EF Game on (A, ā, V̄) and (B, b̄, W̄), if and only if
mso-tpm,lk (A, ā, V̄) = mso-tpm,lk (B, b̄, W̄), with m = |V̄ | = |W̄ | and l = |ā| = |b̄|.

We recall the following special case of the Feferman-Vaught theorem ([FV59]) that will be
used later. More on the composition method can be found in [Mak04] and [Tho97].

Lemma 1.2.3. If (A1, ā) ≡MSO
k (B1, b̄) and (A2, ā) ≡MSO

k (B2, b̄) then

(A1 ⊕ā A2, ā) ≡MSO
k (B1 ⊕b̄ B2, b̄).

Proof. Let (A, ā) = (A1⊕āA2, ā) and (B, b̄) = (B1⊕b̄B2, b̄). It suffices to show that Duplicator
wins the k-round MSO EF Game on the two structures (A1 ⊕ā A2, ā) and (B1 ⊕b̄ B2, b̄). By
assumption Duplicator wins the k-round game on the two structures (A1, ā) and (B1, b̄) and
also on the two structures (A2, ā) and (B2, b̄). Suppose that at some round i ≤ k, the position
of the game is 〈(A, ā, c̄, C̄), (B, b̄, d̄, D̄)〉, and Spoiler selects a set of vertices Xi on one of the
two structures, say A. Then let Xi = X1

i ∪ X2
i , and let X1

i be the subset of Xi of vertices
in A1 and similarly X2

i the subset of Xi of vertices in A2. By assumption Duplicator has a

CHAPTER 1. INTRODUCTION 17

response Y 1
i for X1

i on the game 〈(A1, ā, c̄, C̄), (B1, b̄, d̄, D̄)〉 and similarly a response Y 2
i for X2

i

on the game 〈(A2, ā, c̄, C̄), (B2, b̄, d̄, D̄)〉. The response of Duplicator to Xi is then Y 1
i ∪ Y 2

i and
(A, C1, . . . , Ck2 , Xi, ā) ≡MSO

k−i (B, D1, . . . , Dk2 , Y
1
i ∪ Y 2

i , b̄). Duplicator’s response to first-order
moves is similar.

Suppose that at the end of the game c̄ = c1, . . . , ck1 and d̄ = d1, . . . , dk1 are the first or-
der moves made on (A, ā) and (B, b̄) respectively, and let C1, . . . , Ck2 and D1, . . . , Dk2 be
the second order moves made on (A, ā) and (B, b̄) respectively. Then the mapping ci 7→
di, for all i ≤ k1 is a partial isomorphism from (A1, C1, . . . , Ck2 , ā) to (B1, D1, . . . , Dk2 , b̄)
and from (A2, C1, . . . , Ck2 , ā) to (B2, D1, . . . , Dk2 , b̄), and therefore from (A, C1, . . . , Ck2 , ā) to
(B, D1, . . . , Dk2 , b̄), hence Duplicator wins the game. In the above, in (Ai, C1, . . . , Ck2 , ā), we
use the restrictions of C1, . . . , Ck2 to the structure Ai.

1.2.1 MS1 and MS2

On graphs, MSO turns out to have different expressive power depending on the signature of
the structures used to represent graphs. In section 1.1.1, the two different signatures σbGc and
τdGe were introduced, where in the latter case incidence graphs are considered. Essentially,
MSO in the second case, allows for second-order quantification over edges, with which certain
properties can be expressed that are not expressible otherwise. In particular, as was proved
by Turán ([Tur84]) and de Rougemont ([dR87]), the class of graphs that have a Hamiltonian
cycle or of the ones with a perfect matching, is not definable in the version of MSO without set
quantification over edges but is definable in the version with such quantification.

In the works of Courcelle, such as [Cou97] and [Cou03], these two ways of representing a
graph are investigated, and in particular, the expressive power of MSO over such structures is
discussed. To distinguish between the two situations, Courcelle uses MS1 for MSO over graphs
of the signature σbGc, and MS2 for τdGe. In [GHO02], the latter logic is referred to as guarded
second order logic (GSO). Over graphs in general, MS1 (MS2, but, in [Cou03] and [Cou94], it
is shown that over restricted classes of graphs the expressive power of the two logics coincide.
Before we state the Theorem in [Cou03], we give a few necessary definitions.

A finite graph G = (V,E) is k-sparse if |E| ≤ k · |V |. A finite graph G is uniformly k-sparse
if every subgraph of G is k-sparse. The graphs in any class of graphs of bounded degree, as
well as any class of planar graphs and any class of graphs of bounded tree-width are uniformly
k-sparse for some k ∈ N.

Theorem 1.2.4 (Courcelle, [Cou03]). For each integer k, one can effectively transform a given
monadic second-order formula using edge set quantifications into one that uses only vertex set
quantifications and is equivalent to the given one on finite, uniformly k-sparse, simple directed
or undirected graphs.

The above definitions and Theorem are given in [Cou03] more generally for finite or count-
able graphs, and furthermore for hypergraphs satisfying certain conditions. Throughout most

CHAPTER 1. INTRODUCTION 18

of this thesis, where classes of graphs are investigated for which MS1 = MS2 holds, we simply
write MSO. In cases when it is clear, a graph will simply be denoted by G = (V,E), where
V is the set of vertices and E the set of edges of a graph. Unless otherwise specified, graphs
will be represented as structures with signature σbGc. Notice that even when graphs are repre-
sented in this way, MS2 is well defined. In particular, it allows for additional atomic formulae
of the form Z(t1, t2), for terms t1, t2, and quantifiers ∃Z ϕ, where the latter formula holds in
a graph G = (V,E) if there exists a subset A ⊆ E of edges such that ϕ is true in G when all
free occurrences of Z are interpreted by the set A. For classes of graphs where MS1 = MS2,
the two different forms of atomic formulae and quantifiers may be used interchangeably, since a
translation of formulae can be produced for both directions.

MS2 EF Games: EF Games for MS2 on structures of signature σbGc are defined similarly
to the MSO EF Games described in Section 1.2, but with the colouring move changed so that
Spoiler can select at each round a set of edges in one of the two structures, and Duplicator
responds accordingly with a set of edges in the other structure. Similarly, in first order moves,
Spoiler can select an edge of one of the two graphs, and Duplicator responds with an edge in
the other graph. The condition for winning is extended to accommodate the second-order and
first-order moves on edges of the graph.

A lemma similar to Lemma 1.2.3 holds for MS2 as well. A lemma that will be needed later
is the following. If G = (V,E) is a graph with vertices V and edges E, and if A ⊆ E, then G↓A,
is the subgraph of G that contains exactly the edges in A.

Lemma 1.2.5. For any two graphs G = (V,E) and F = (V ′, E′), if G ≡MS2
k F , then for any

A ⊆ E there exists A′ ⊆ E′ such that G↓A≡MS2
k−1 F↓A′.

Proof. Since G ≡MS2
k F , for any colouring move A of Spoiler on G, Duplicator can respond with

a set of edges A′ of F such that (G,A) ≡MS2
k−1 (F,A′). Now suppose for contradiction that G↓A

and F↓A′ are not ≡MS2
k−1 -equivalent. Then there is an MS2 formula ϕ of quantifier rank k−1 that

distinguishes between the two graphs. We show that an MS2 formula ψ of quantifier rank k− 1
can be constructed that distinguishes the structures (G,A) and (F,A′), which is a contradiction.
Without loss of generality assume that ϕ is such that G↓A|= ϕ and F↓A′ |= ¬ϕ.

We define a translation by induction on the structure of the MS2 formula ϕ. All boolean
and atomic cases as well as the case of second-order quantification of edges and vertices remain
the same. The translation of formulae whose outermost connective is first-order quantification
is as follows. For each MS2 formula, [ϕ]X denotes the translation.

[∃e ϕ1]X = ∃e (e ∈ X ∧ [ϕ1]X),
[∀e ϕ1]X = ∀e (e ∈ X → [ϕ1]X).

The formula ψ = [ϕ]A distinguishes between the two structures (G,A) and (F,A′).

CHAPTER 1. INTRODUCTION 19

1.3 Word and Tree Automata

Since words and trees are represented as graphs with labels on the edges instead of the vertices, a
modified definition of automata on such structures needs to be stated, but because of the natural
correspondence between the two representations, this does not pose a significant problem.

Definition 1.3.1. A nondeterministic bottom-up tree automaton over ranked trees of maximum
rank k, for some fixed k ∈ N, is a tuple A = (Q,Σ, q0, (δi)i≤k, Qf), where Q is a finite set of
states, q0 is the initial state, Qf is a subset of Q denoting the accepting states, and for each
1 ≤ i ≤ k, δi : (Q× Σ)i → 2Q is the transition function for the vertices with i children.

A deterministic bottom-up tree automaton is as above, but with each transition function δi
being of type δi : (Q×Σ)i → Q. The language accepted by an automaton A is denoted as L(A).

If T is a ranked tree over the alphabet Σ, a run of the automaton A on T is a function
ρ : V (T)→ Q that associates a state with each vertex of T and satisfies the following condition.
If v ∈ V (T) is a leaf vertex, then ρ(v) = q0, and for any vertex v ∈ V (T) with children
v1, . . . , vj , for j ≤ k, and corresponding labels σ1, . . . , σj on the edges connecting them to v,
then ρ(v) ∈ δj(ρ(v1), σ1, . . . , ρ(vj), σj). In the case of deterministic automata, the last condition
is changed to ρ(v) = δj(ρ(v1), σ1, . . . , ρ(vj), σj). A run of A on a tree T with root r is accepting
if ρ(r) ∈ Qf . An accepting language of an automaton A is the set of trees for which there exists
an accepting run.

When it is clear from the context, for a tree automaton A = (Q,Σ, q0, (δi)i≤k, Qf), we denote
the collection of transition functions (δi)i≤k, simply as δ.

Notice that word automata under this definition are a special case of tree automata, namely
of rank-1 trees, where each vertex has at most one child. Word automata, deterministic or
nondeterministic, are usually defined to be top-down and not bottom-up as in this case, but a
natural correspondence exists between the two forms.

Definition 1.3.2. A tree language is regular if and only if it is accepted by some nondetermin-
istic bottom-up tree automaton A.

One important Theorem by Thatcher and Wright ([TW68]) and Doner ([Don70]) is the
following.

Theorem 1.3.3 (Thatcher-Wright). A set of trees is definable in MSO if and only if it is
regular.

Definition 1.3.4. Let A = (QA,Σ, qA0 , δ
A, QAf) and B = (QB,Σ, qB0 , δ

B, QBf) be two determinis-
tic bottom-up tree automata, over the same alphabet Σ. The product A×B of the two automata
is the deterministic bottom-up tree automaton A × B = (Q,Σ, q0, Qf , δ) where Q = QA × QB,
q0 = (qA0 , q

B
0), Qf = QAf ×QBf and δ = (δi)i≤k is the collection of transition functions defined as

follows.

CHAPTER 1. INTRODUCTION 20

For each i ≤ k, δi : (Q × Σ)i → Q, and for any (qA1 , q
B
1), . . . , (qA(i+1), q

B
(i+1)) ∈ Q and

σ1, . . . , σi ∈ Σ, it holds that δi((qA1 , q
B
1), σ1, . . . , (qAi , q

B
i), σi) = (qA(i+1), q

B
(i+1)) if and only if

δAi (qA1 , σ1, . . . , q
A
i , σi) = qA(i+1) and δBi (qB1 , σ1, . . . , q

B
i , σi) = qB(i+1).

If LA is some tree language accepted by some automaton A and LB some language accepted
by some automaton B, then the language accepted by the product of the two automata A×B,
can be shown to be LA ∩ LB.

1.4 Fixed-Point Logics

We give a brief introduction to the theory of fixed-points as well as LFP, a logic that extends
FO with an additional operator based on fixed-points. We refer the reader to [AN01] for more
information on fixed-point theory, and to [Lib04] for an in-depth introduction to LFP.

A complete lattice (U,≤) is a set U , partially ordered with respect to ≤, such that every
subset of U has a greatest lower bound and a least upper bound in the ordering of ≤. A mapping
F : U → U is defined to be an operator on U and furthermore the operator F is said to be
monotone if for all elements x, y of U , it holds that

x ≤ y ⇒ F (x) ≤ F (y).

An element x of U is a fixed point of F , if F (x) = x and it is a least fixed point of F if it
is a fixed point of F and is such that for any other fixed point y of F , x ≤ y. The least fixed
point of F is denoted by lfp(F), and x u y denotes the greatest lower bound of x and y.

Theorem 1.4.1 (Tarski-Knaster). Let (U,≤) be a complete lattice and F : U → U a monotone
operator on U . Then F has a least fixed point and furthermore is such that

lfp(F) =
l
{y | F (y) = y} =

l
{y | F (y) ≤ y}.

For the logics we are considering, the complete lattice is the powerset of a set. In particular,
let U be a set. Then the powerset ℘(U) of U is a complete lattice, since it is partially ordered
by the set inclusion relation, and any subset of ℘(U) has a least upper bound and a greatest
lower bound according to the set inclusion relation. An operator F : ℘(U)→ ℘(U) is monotone
in such a lattice if for all subsets X,Y of U , X ⊆ Y ⇒ F (X) ⊆ F (Y). For such a monotone
operator F , Theorem 1.4.1 guarantees the existence of a least fixed point and is defined as

lfp(F) =
⋂
{Y | F (Y) = Y } =

⋂
{Y | F (Y) ⊆ Y }.

For what follows, we consider complete lattices that are powersets of sets (not necessarily finite),
and we use the set inclusion relation to order the elements of such a lattice.

Let X0 = ∅, and for each k ∈ N, let Xk+1 = F (Xk). Let also X∞ =
⋃
k≥0X

k. It can be
shown that for every monotone operator F on a complete lattice (U,≤), the least fixed point of
F is equal to X∞. In other words,

lfp(F) = X∞ =
⋃
k≥0

Xk.

CHAPTER 1. INTRODUCTION 21

Logics such as LFP deal only with finite sets, but for logics such as GLµ and LFLC defined
below, infinite complete lattices need to be taken into account.

LFP: Let ϕ(X, x̄, ȳ) be an FO formula of signature σ, with X being a relation on variables with
arity equal to |x̄| = k, for some k ∈ N. For each A and each tuple b̄ where |b̄| = |ȳ|, we define the
operator F b̄ϕ : ℘(Ak)→ ℘(Ak) as F b̄ϕ(R) = {(a1, . . . , ak) | A |= ϕ(R, a1, . . . , ak, b̄)}, with R ⊆ Ak.

Checking whether the operator associated with an FO formula is monotone, is undecidable,
and therefore, in many cases the following sufficient syntactic restriction on the formulae is posed
to ensure monotonicity. It can be shown that if X appears under an even number of negations
in a formula ϕ(X, x̄), then the operator Fϕ is monotone, and this restriction will be used for the
logic LFP as well as GLµ defined below. In the case where X appears under an even number of
negations in a formula ϕ(X, x̄), we say that X appears positive in ϕ(X, x̄).

The logic LFP then is defined to extend FO with the following rule for formulae. If ϕ(X, x̄, ȳ)
is an LFP formula of signature σ, with X being of arity |x̄|, and X appears positive in ϕ(X, x̄, ȳ),
then [lfpX,x̄ϕ(X, x̄, ȳ)](t̄) is an LFP formula with free variables among the ones in t̄ and the ones
in ȳ. For any structure A ∈ STRUC[σ] and any tuple b̄ with |b̄| = |ȳ|

A |= [lfpX,x̄ϕ(X, x̄, ȳ)](ā, b̄) if and only if ā ∈ lfp(F b̄ϕ).

1.5 Graph Logic

Graph Logic (GL) is a spatial query language on graphs introduced in [CGG02]. It is based on a
view of graphs as a suitable algebra, with a composition operator. In this thesis it is treated as
an extension of First Order Logic, with a second order quantifier over edges of restricted form.
Informally, this second order quantifier allows one to express that a graph G can be split into
two edge-disjoint subgraphs G1, G2, one of which satisfies a formula φ and the other satisfies
some formula ψ. As is shown in [DGG07], treating Graph Logic as an extension of First-order
Logic is equivalent to the view of the logic introduced in [CGG02].

To define GL we represent graphs as follows. Let V be a countable set of vertex names. A
graph G consists of a finite set E of edges and an incidence map I : E → V ×V , that associates
with each edge a pair of vertices, namely its endpoints. Any such graph can be seen as a finite,
directed, unlabelled graph in the usual sense. The syntax of Graph Logic is then as follows.

Definition 1.5.1 (GL Syntax). Let X be a countable set of vertex variables. A GL formula is
defined to be one of the following, for ti ∈ V ∪X, x ∈ X and GL formulae ϕi:

ϕ := 0 | > | t1 = t2 | E(t1, t2) | ¬ϕ1 | ϕ1 ∧ ϕ2 | ∃x ϕ1 | ϕ1|ϕ2.

This seems to be simply an extension of FO with the additional operator ‘|’, but in the case
of GL, atomic formulae are interpreted slightly differently. In particular, for t1, t2 ∈ X ∪ V ,
the GL formula E(t1, t2) holds for a graph, exactly when this graph comprises a single edge.

CHAPTER 1. INTRODUCTION 22

The equivalent of the FO atomic formula E(v1, v2), for two vertices v1, v2, is given in GL as
E(v1, v2) | >, as will be explained below.

Let G1 and G2 be two graphs, with edge sets E1 and E2 respectively, and incidence maps
I1 and I2 respectively. The graph G = G1 | G2 is defined to be the graph whose edge set E
and incidence map I are the disjoint unions E1]E2 and I1] I2 respectively. According to this,
the two graphs G1 and G2 are allowed to share vertices, or in other words, the set of vertices
of G is the (non-disjoint) union of the set of vertices of G1 and G2. The formula ϕ1 | ϕ2, for
GL formulae ϕi, is defined to hold in a graph G, exactly when there are G1 and G2, such that
G = G1 | G2, and Gi |=GL ϕi, for i = 1, 2.

Definition 1.5.2 (GL Semantics). Let G be a graph with edge set E and incidence map I. Let
also α : X → V be an assignment of vertex names to variables, and α̂ to be the extension of α
to the domain V ∪X, by letting α̂(x) = x, for all x ∈ V . Then the following holds.

(G,α) |=GL 0 iff E is empty,
(G,α) |=GL > iff G is any graph,
(G,α) |=GL t1 = t2 iff α̂(t1) = α̂(t2),
(G,α) |=GL E(t1, t2) iff E = {e} and I(e) = (α̂(t1), α̂(t2)),
(G,α) |=GL ¬ϕ1 iff not (G,α) |=GL ϕ1,

(G,α) |=GL ϕ1 ∧ ϕ2 iff (G,α) |=GL ϕ1 and (G,α) |=GL ϕ2,

(G,α) |=GL ∃x ϕ1 iff there is v ∈ V s.t. (G, α̂[x 7→ v]) |=GL ϕ1,

(G,α) |=GL ϕ1 | ϕ2 iff there are G1, G2 s.t. G = G1 | G2 and (Gi, α) |=GL ϕi.

In spite of the different interpretation of atomic formulae in GL, any FO sentence can be
translated into a GL sentence such that they both agree on all graphs. In particular, the atomic
FO formula E(v1, v2) is equivalent to the GL one E(v1, v2) | >. On the other hand, it is shown
in [DGG07], that any GL formula can be translated into an MS2 one.

The version of GL introduced in [CGG02], works over graphs whose edges can have labels.
Labels can be introduced into the language of GL in two different ways. If the set of labels Σ
is finite, we can regard each label σ ∈ Σ to define a set of edges Eσ with the incidence map
I : Eσ → V ×V . For each σ ∈ Σ then, GL allows atomic formulae Eσ(t1, t2). On the other hand,
if the set of labels is unbounded, we include in the language the set Σ and a countable set of
variable names L. In this case, a graph is a set of edges E with an incidence map I : V ×Σ×V .
For each l, l′ ∈ Σ ∪ L, l′′ ∈ L and GL formula ϕ, GL allows the atomic formulae El(t1, t2) and
l = l′, as well as quantification over edge labels with the formula of the form ∃l′′ ϕ. Marcinkowski
termed this version of GL, GL+ in [Mar06], and showed that it is strictly less expressive than
MSO+, the corresponding extension of MS2.

For the case where the label alphabet Σ is bounded, many interesting applications of MSO are
included. It was shown in [DGG07] that GL and MSO are equi-expressive over the class of words.
Similarly, labelled edges on trees can be identified correspondingly with tree languages over some
alphabet. It remains an open question whether GL defines all the regular tree languages.

CHAPTER 1. INTRODUCTION 23

We define the quantifier rank of a GL formula by counting the first order quantifiers and the
splitting operators equally. In other words, the quantifier rank of a GL formula ϕ is denoted by
qr(ϕ), and defined as usual for the boolean connectives, and as follows for the rest:

If ϕ = 0,>, t1 = t2, E(t1, t2) then qr(ϕ) = 0.
If ϕ = ϕ1 | ϕ2 then qr(ϕ) = max(qr(ϕ1), qr(ϕ2)) + 1.
If ϕ = ∃x ψ(x) then qr(ϕ) = qr(ψ) + 1.

As stated above, any GL formula ϕ can be translated into an MS2 formula ψ, such that over
any graph G, G |=GL ϕ if and only if G |=MSO ψ. We present a modified version of the translation
defined in [DGG07]. We use a modified version so that qr(ψ) ≤ qr(ϕ)+2. The translation given
in [DGG07] guarantees instead that qr(ψ) ≤ 2 · qr(ϕ). For each GL formula ϕ, [[ϕ]]S , with S a
set of edges, denotes its translation into MS2 and is defined as follows.

Let Set be a set of set-expressions that is the smallest set, such that if S is a set, then
S ∈ Set, > ∈ Set, and for any S1, S2 ∈ Set, (S1 ∩S2) ∈ Set and (S1−S2) ∈ Set. For S ∈ Set,
we define inductively the formula e ∈ S to be shorthand notation for the following MS2 formulae,
depending on what the structure of S is.

If S is a set then e ∈ S is shorthand for e ∈ S.
If S = > then e ∈ S is shorthand for e = e.

If S = S1 ∩ S2 for S1, S2 ∈ Set then e ∈ S is shorthand for e ∈ S1 ∧ e ∈ S2.

If S = S1 − S2 for S1, S2 ∈ Set then e ∈ S is shorthand for e ∈ S1 ∧ e /∈ S2.

Given that, we inductively define the actual translation to MS2 below, with S, S′ ∈ Set.

[[0]]S = ¬∃e e ∈ S,
[[t1 = t2]]S = t1 = t2,

[[Ea(t1, t2)]]S = ∃e (e ∈ S ∧ inca1(e, t1) ∧ inca2(e, t2) ∧ ∀e′ (e′ ∈ S → e = e′)),
[[¬ϕ]]S = ¬[[ϕ]]S ,

[[ϕ1 ∧ ϕ2]]S = [[ϕ1]]S ∧ [[ϕ2]]S ,
[[∃x ϕ]]S = ∃x [[ϕ]]S ,

[[ϕ1 | ϕ2]]S = ∃S1 ([[ϕ1]]S1∩S ∧ [[ϕ2]]S−S1).

The set S given as a parameter to the translation can be seen as the set of edges, to which
the translation of the formulae are relativized. We remind the reader that qr(ϕ1 | ϕ2) =
max(qr(ϕ1), qr(ϕ2)) + 1 and therefore all the connectives preserve the quantifier rank of the
GL formula, and only the atomic formulae Ea(t1, t2) and 0 increase the quantifier rank. There-
fore for a GL formula ϕ, qr([[ϕ]]>) ≤ qr(ϕ) + 2.

The translation given in [DGG07] is similar, with the only inductive case that is different
being the one for the separation connective. In [DGG07], the translation is given by

[[ϕ1 | ϕ2]]S = ∃S1, S2 (S = S1 | S2) ∧ ([[ϕ1]]S1 ∧ [[ϕ2]]S2)

where S = S1 | S2 is shorthand notation for the MS2 formula ∀e (e ∈ S → (e ∈ S1 ∨ e ∈
S2)) ∧ (e ∈ S1 ↔ e /∈ S2). Note that in this translation, the set of set-expressions Set is not

CHAPTER 1. INTRODUCTION 24

required. The proof of the correctness of the translation given above is similar to the one in
[DGG07] and we skip the details. The following Theorem follows from that translation.

Theorem 1.5.3. For any k ∈ N, and any two graphs A,B, if A ≡MS2
k+2 B then A ≡GL

k B.

Proof. Fix k and suppose for contradiction that there are two graphs A and B such that A ≡MS2
k+2

B and it is not the case that A ≡GL
k B. Then, there is a GL formula ϕ of quantifier rank k

such that A |=GL ϕ and B |=GL ¬ϕ. But then A |=MSO [[ϕ]]> and B |=MSO ¬[[ϕ]]>, which is a
contradiction.

It should be noted that the following derived operator is defined in [DGG07] and is also used
in this thesis. We write ϕ |⇒ ψ for ¬(ϕ | ¬ψ), meaning that for any graph G, G |=GL (ϕ |⇒ ψ)
if and only if for any G1, G2 such that G = G1 | G2, if G1 |=GL ϕ then G2 |=GL ψ.

1.5.1 GL Games

The main tool for proving non-expressibility of a property in FO or MSO is Ehrenfeucht-Fräıssé
games (EF games), as described above and in [Lib04] and [EF99]. EF games have been adapted
for spatial logics such as in [DGG04], and here we present how they are adapted for GL.

A GL game is played by two players, which are called Spoiler and Duplicator. The game is
played on two graphs F and G and consists of k rounds for some k ∈ N. The position at each
round i, is defined to be a pair of structures with distinguished vertices, 〈(F i, ā), (Gi, b̄)〉, where
ā = a1, . . . , ap and b̄ = b1, . . . , bp, for some p ≤ i, and the graphs F i, Gi are subgraphs of F and
G respectively.

At each round, Spoiler picks one of the two structures and makes either a first order move or
a colouring move. Assume that the position at round i is 〈(F i, ā), (Gi, b̄)〉, and assume, without
loss of generality, that Spoiler picks the graph F i. In a first order move, he picks a vertex ap′

in F i, and Duplicator replies by picking a vertex bp′ in Gi. The position at the next round is
〈(F i, ā, ap′), (Gi, b̄, bp′)〉.

If Spoiler chooses to make a colouring move, he chooses two graphs F i1, F
i
2 such that F i =

F i1 | F i2, and Duplicator responds with two graphs Gi1 and Gi2 such that Gi = Gi1 | Gi2. Spoiler
finally chooses which is the position at the next round, either 〈(F i1, ā), (Gi1, b̄)〉 or 〈(F i2, ā), (Gi2, b̄)〉.

The game ends after k rounds, or if one of the graphs in some position is empty or consists
of a single edge. Let h : X ⇀ X be the partial map defined by aj 7→ bj . Spoiler wins at the end
of the game if one of the following conditions hold.

1. Exactly one of the graphs is empty.

2. One of the graphs is a single edge, with both its endpoints in the domain of h, and h is
not an isomorphism between the graphs restricted to the non-isolated vertices.

3. The mapping h is not one-to-one.

The following Lemma is given in [DGG07] and follows the usual methods of Ehrenfeucht-
Fräıssé games.

CHAPTER 1. INTRODUCTION 25

Lemma 1.5.4 ([DGG07]). Duplicator has a winning strategy for the k round game on two
graphs F and G, if and only if for any GL formula with qr(ϕ) ≤ k, it holds that

F |= ϕ⇔ G |= ϕ.

To show that a property P is not expressible in GL we use the above Lemma in the following
way.

Corollary 1.5.5. A property P is not expressible in GL if and only if for every k ∈ N, there
exist graphs Fk and Gk such that Fk ∈ P and Gk /∈ P , and Duplicator has a winning strategy
for the k round game on 〈Fk, Gk〉.

We write F ≡GL
k G for two graphs F and G that cannot be distinguished by any GL formula

ϕ with qr(ϕ) ≤ k. The following lemma is analogous to Lemma 1.2.3, for GL.

Lemma 1.5.6. Let G1, G2, F1 and F2 be graphs where ā is a tuple of elements of the graphs
G1 and G2, and b̄ is a tuple of elements of the graphs F1 and F2. If (G1, ā) ≡GL

k (F1, b̄) and
(G2, ā) ≡GL

k (F2, b̄) then
(G1 ⊕ā G2, ā) ≡GL

k (F1 ⊕b̄ F2, b̄).

Proof. We show by induction on the number of rounds i, that for any G1, G2, F1 and F2, and any
tuple of vertices v̄ ∈ G1 ⊕ā G2 and w̄ ∈ F1 ⊕b̄ F2, if (G1, ā, v̄) ≡GL

i (G2, ā, w̄) and (F1, b̄, v̄) ≡GL
i

(F2, b̄, w̄) then
(G1 ⊕ā G2, ā, v̄) ≡GL

i (F1 ⊕b̄ F2, b̄, w̄).

Let G = G1 ⊕ā G2 and F = F1 ⊕b̄ F2. For the base case let i = 0 and suppose for contradiction
that Spoiler wins the 0-round GL Game on 〈(G, ā, v̄), (F, b̄, w̄)〉. Let h be the function that maps
aj 7→ bj and vj′ 7→ wj′ , and let hi, for i = 1, 2, be the restriction of h that maps the vertices from
Gi to Fi. Then by definition, either exactly one of the graphs is empty, or one of the graphs
is a single edge with endpoints in the domain of h and h is not an isomorphism, or finally h

is not one-to-one. Suppose that exactly one of the graphs is empty, and let this be G. Then
both G1 and G2 are empty and at least one of F1 or F2 is not empty, which is a contradiction.
Suppose then that one of the graphs is a single edge with endpoints in the domain of h and
h is not an isomorphism. Without loss of generality assume that this is the case for G. Then
one of the graphs G1 or G2 is a single edge, and the other is empty. Let this be G1 and G2

respectively, and let the endpoints of the edge in G1 be x1, x2, each an element of ā or v̄. Since
h is not an isomorphism then either F is not a single edge or if it is a single edge, then x1 and
x2 are not mapped to the endpoints of the edge. Both these conditions lead to a contradiction,
since by assumption, h1 and h2 are isomorphisms from (G1, ā, v̄) to (F1, b̄, w̄) and from (G2, ā, v̄)
to (F2, b̄, w̄) respectively. Finally, if h is not one-to-one then either h1 or h2 is not one-to-one,
which is a contradiction.

Suppose then that the statement holds for all i ≤ K, for some K ∈ N, and let i = K+1. We
need to show that the position at the next round, is a winning position for Duplicator. Suppose

CHAPTER 1. INTRODUCTION 26

that Spoiler decides to make a first-order move, and does so by choosing a vertex x in one of
the two graphs, say G. Then this vertex is in G1 or G2. If the vertex is one of the vertices
in ā then Duplicator responds with the appropriate vertex in b̄, and (G, ā, v̄) ≡GL

i−1 (F, b̄, w̄). If
the vertex that Spoiler chose in G is not one of the vertices in ā, then the vertex is in G1 or in
G2, but not both. Without loss of generality assume that it is in G1. Duplicator has a winning
strategy for the i-round GL Game on 〈(G1, ā, v̄), (F1, b̄, w̄)〉 and uses this strategy to respond
with a vertex y in F1. The position at the next round is 〈(G, ā, v̄, x), (F, b̄, w̄, y)〉 and by the
inductive hypothesis this is a winning position for Duplicator.

Suppose then that Spoiler decides to make a colouring move, and splits G into G1 and G2

such that G = G1 | G2. Then there are graphs G1
1, G

1
2, G

2
1 and G2

2, where G1 = G1
1 ⊕ā G1

2

and G2 = G2
1 ⊕ā G2

2, and are such that G1 = G1
1 | G2

1 and G2 = G1
2 | G2

2. By the assumption,
Duplicator can find subgraphs F 1

1 , F
1
2 , F

2
1 , F

2
2 of F , such that F1 = F 1

1 | F 2
1 and F2 = F 1

2 | F 2
2 , and

are such that Duplicator wins the (i−1)-round game on the corresponding subgraphs. Therefore,
he replies with F 1 and F 2, where F 1 = F 1

1⊕b̄F 1
2 and F 2 = F 2

1⊕b̄F 2
2 . By the inductive hypothesis,

both 〈(G1, ā, v̄), (F 1, b̄, w̄)〉 and 〈(G2, ā, v̄), (F 2, b̄, w̄)〉 are winning positions for Duplicator.

1.6 Graph Logic with Recursion

Graph Logic with recursion, which is denoted as GLµ, is equipped with an additional operator
which helps reasoning about fixed-point operators, and it was also introduced in [CGG02]. The
syntax of GL is extended with an additional atomic formula R, for each recursion variable R,
and the operator µR.ϕ, where ϕ is a GLµ formula and, in order to ensure monotonicity, R
appears positive in ϕ, or in other words under an even number of negations. For the following
let G be the class of all graphs, let V be a countable set of vertices, and X be a set of vertex
variables, as in Section 1.5. Similarly, for any graph G, let EG be its set of edges.

Definition 1.6.1 (GLµ Semantics). Let α : X → V be an assignment of vertex names to
variables and let α̂ be its extension to the domain X ∪V using the identity function for mapping
elements of V . Let ρ map recursion variables to subsets of G. The semantics are defined
inductively as follows:

[[0]]α;ρ = {G | G is empty},
[[>]]α;ρ = G,

[[El(t1, t2)]]α;ρ = {G | EG = {e}, e ∈ El and I(e) = (α̂(t1), α̂(t2))},
[[t1 = t2]]α;ρ = G if α̂(t1) = α̂(t2), ∅ otherwise,

[[R]]α;ρ = ρ(R),
[[¬ϕ]]α;ρ = G \ [[ϕ]]α;ρ,

[[ϕ1 ∧ ϕ2]]α;ρ = [[ϕ1]]α;ρ ∩ [[ϕ2]]α;ρ,

[[ϕ1|ϕ2]]α;ρ = {G | G = G1|G2 and G1 ∈ [[ϕ1]]α;ρ, G2 ∈ [[ϕ2]]α;ρ},
[[∃x ϕ]]α;ρ =

⋃
v∈V [[ϕ]]α[x 7→v];ρ,

[[µR.ϕ]]α;ρ =
⋂
{S ⊆ G | [[ϕ]]α;ρ[R 7→S] ⊆ S}.

CHAPTER 1. INTRODUCTION 27

The semantics for the recursion operator are defined as usual, taking the complete lattice to
be ℘(G).

1.7 Contributions of this Thesis

In this thesis we investigate the expressive power of GL and GLµ over various classes of graphs.
For GL, a comparison to MSO is made and the expressibility in GL of some MSO-definable
properties over trees is studied. Although we do not present inexpressibility results for GL over
trees, we do give such a result for GL over forests. The expressive power of GLµ over words is
investigated and compared to a few graph grammars in the literature. Similarly, over trees the
expressive power of GLµ is compared to other logics, and it is shown to be more expressive than
some.

In Chapter 2, the expressive power of GL is studied over graphs in general as well as over
words and trees specifically. The chapter focuses on properties that are definable in GL over
the classes of graphs mentioned. Over words, GL and MSO are known to be equi-expressive by
results in [DGG07], and it is shown here that this extends to graphs that comprise a disjoint
union of words.

For trees, it is shown that the class of trees containing binary trees with an even number
of leaf vertices, and more generally any set of trees accepted by some deterministic bottom-up
automaton with 2 states, is definable in GL. This establishes that this natural candidate for
separating GL from MSO over the class of trees cannot be used for this purpose.

Comparison of GL is made to specific automata and logics that cannot define all regular tree
languages, for the purpose of separating GL from MSO, by showing that the set of GL-definable
languages is subsumed by one of the languages definable in the logics and automata we consider.
In particular, for some of these logics it is established that GL is incomparable to them, as there
exist properties definable in GL that are not in the logics considered.

In Chapter 3, the main result is presented, separating GL from MSO over forests, and a few
consequences of this are investigated. In particular, it is shown that GL is strictly less expressive
than MSO over graphs, and furthermore the case is so even when restricted over the class of
forests. Marcinkowski showed in [Mar06] that GL+ and MSO+, two extensions of GL and
MSO equipped with quantification over edge labels, do not have the same expressive power over
graphs in general, and thus GL+ is strictly contained in MSO+. The main result we present in
Chapter 3, strengthens this result.

Additionally, it is established that GL is not closed under FO-definable interpretations of
width 1 and MSO transductions or more specifically, not even transductions specified by FO
formulae.

In [BDL08], Brochenin et al. show that a syntactic fragment of Separation Logic called
SL(−∗), that includes the magic wand connective, but not the separation connective ‘∗’, is equi-
expressive to Second-order Logic over memory heaps. Furthermore, they consider an additional
syntactic fragment, SL(∗), which includes the separation connective ‘∗’, but omits the magic

CHAPTER 1. INTRODUCTION 28

GL GLµ
On Words GL = MSO (†) MSO (ConjCF⊆ GLµ (†)
On Sets of Words GL = MSO MSO (GLµ
On Trees MSO (GLµ (†)
On Forests GL (MSO
On Graphs GL (MS2

Table 1.1: Summary of known inclusions. The ones marked with ‘(†)’ were
first shown in [DGG07].

wand connective, and conjecture that this fragment is strictly less expressive than MSO over
memory heaps. We show that this is indeed the case using our main result in Chapter 3. In
particular, it is shown that the MSO property that is not expressible in GL, can be translated
in a straightforward way to a property not definable in the fragment of Separation Logic SL(∗).

In Chapter 4, the expressive power of GLµ is examined, over graphs in general, as well as
words and trees in particular. It is shown that even when restricted to words, GLµ can express
properties that are PSPACE-complete. Its expressive power is compared with graph grammars,
more specifically word grammars, such as Conjunctive Grammars, that are shown to be sub-
sumed by GLµ. Over trees, GLµ is shown to be strictly more expressive than MSO and on
graphs in general it is conjectured that GLµ and MSO are incomparable, as it is established
that there are GLµ-definable properties that are not expressible in MSO, but also that there
are properties such as 3-colourability of graphs, which are MSO-definable, and are conjectured
to be inexpressible in GLµ. Table 1.1 gives a summary of known inclusions regarding GL and
GLµ.

Chapter 2

Graph Logic

In this chapter we look into the expressive power of Graph Logic over graphs in general. Dawar
et al. in [DGG07] have already proved some intriguing results about GL. One of them is that
MSO and GL over words have the same expressive power. This is also the motivation behind
big part of the research we conduct in this thesis, namely to see whether this result extends to
other classes of graphs as well.

Useful GL Formulae: Throughout the next chapters, some properties of structures will be
inspected, and it is worth collecting some of them and describe how one could express them in
GL. Some simple examples are the formulae used to describe the degree of some vertex in a
graph.

In0(x) = ∀y ¬(E(y, x) | >),
Out0(x) = ∀y ¬(E(x, y) | >),
In≥k(x) = ∃x1, . . . , xk

∧
i≤k(E(xi, x) | >) ∧

∧
i6=j≤k xi 6= xj ,

In=k(x) = In≥k(x) ∧ ¬In≥(k+1)(x),
deg=0(x) = In0(x) ∧Out0(x),
deg≥k(x) =

∨
(i+j=k)

(
In≥i(x) ∧Out≥j(x)

)
,

deg=k(x) = deg≥k(x) ∧ ¬deg≥(k+1)(x).

Because in general the graphs that are dealt with have directed edges, the formulae In≥k(x)
and Out≥k(x) express the number of incoming and outgoing edges of x respectively. The formula
deg≥k(x) above, uses the former formulae to depict the number of overall edges adjacent to the
vertex x. It is important to note that a formula of the above such as deg=k(x), will usually be
denoted as degk(x).

When we write ∀x ϕ, the latter is an abbreviation for the formula ∀x (Here(x)→ ϕ), where

Here(x) = In≥1(x) ∨Out≥1(x).

As was stated in Section 1.5, the semantics for GL is defined in such a way where a graph is a
set of edges with an incidence map, associating with each edge a pair of vertex names, namely

29

CHAPTER 2. GRAPH LOGIC 30

its endpoints. The set of vertex names is a countable set, and not all of them are adjacent to
some edge. The formula above is used to ensure that the quantifier selects only vertices that are
present in the graph, namely adjacent to some edge.

Another property that will recurrently appear throughout the next sections, is the one ex-
pressing the existence of a path between two nodes. The formula Path(x, y) will be used to
express Graph Connectivity as well.

Path+(x, y) =
(
deg1(x) ∧ deg1(y)

)
∧ ∀z

(
x 6= z ∧ y 6= z → deg2(z)

)
,

Connected = ∀x, y
(
> | Path+(x, y)

)
,

Path(x, y) = Path+(x, y) ∧ Connected.

The formula Path+(x, y) is satisfied by a graph comprising an undirected path from x to
y together with a set of disjoint cycles. If such a path exists between any two vertices of the
graph, then the graph is connected. The formula Path(x, y) makes the condition stricter so that
a graph satisfies the latter if and only if it is exactly an undirected path from x to y. A formula
expressing the existence of a directed path between two vertices x and y is defined in a similar
manner to Path+(x, y), and we skip the details. We proceed by showing how a path of even
length can be expressed in GL, using the two formulae below.

disjointEdges = ∀x deg1(x),
EvenPath(x, y) = Path(x, y) ∧

(
deg1(x) ∧ disjointEdges | deg1(y) ∧ disjointEdges

)
.

The above formula EvenPath(x, y) defines the class of even paths. Notice that, although
the formula disjointEdges specifies that all vertices have degree 1, this is so for all the vertices
present in the subgraph satisfying it. Therefore, it is stated explicitly that, say x in the first
subgraph, has degree 1, to ensure that x in that subgraph is present, or in other words an edge
adjacent to it is present. A formula for the odd paths can be defined similarly, with

OddPath(x, y) = Path(x, y) ∧
(
deg1(x) ∧ deg1(y) ∧ disjointEdges | disjointEdges

)
,

by specifying that both endpoints are present in the same subgraph of disjoint edges. All trees
and words are represented as acyclic graphs with directed edges where each node has at most one
incoming edge. The root has no incoming edges. The following formulae define basic properties
of vertices in a tree or word.

root(x) = ∀y ¬(E(y, x) | >)
leaf(x) = ∀y ¬(E(x, y) | >)
one-child(x) = ∃!y (E(x, y) | >)
fork(x) = ∃y, z (y 6= z ∧ (E(x, y) | E(x, z) | >))

When dealing with graphs that are sets of disjoint words, or simply words, we will use
the formulae first(x) and last(x) instead of root(x) and leaf(x), where the former are defined
identically to the latter respectively.

CHAPTER 2. GRAPH LOGIC 31

2.1 On Graphs

In [DGG07] the authors have proved that GL can express complete problems at every level
of the Polynomial Hierarchy. This is done by encoding instances of the Quantified Boolean
Formula problem (QBF) into graphs and then defining a GL formula that is true if and only if
the Quantified Boolean Formula at hand is satisfiable.

Many useful properties can be expressed in GL. As explained in [DGG07], a graph G satisfies
the formula ϕcyc below exactly when the graph G is a disjoint union of cycles.

ϕcyc = ∀x (deg=2(x)),
ϕeven = ϕcyc ∧ (disjointEdges | disjointEdges).

Similarly, a graph G satisfies the formula ϕeven, exactly when G is a set of disjoint cycles all
of which are of even length, as it is only then that a cycle can be split into two sets of disjoint
edges. Hence using the formula ϕtwo−col one can express that a graph is 2-colourable.

ϕodd = ϕcyc ∧ ¬(disjointEdges | disjointEdges),
ϕtwo−col = ¬(ϕodd | >).

This is so since ϕtwo−col states that we cannot find a subgraph of G that satisfies ϕodd. The
latter is satisfied by a graph comprising a set of disjoint cycles, at least one of which being of
odd length.

The class of graphs that are 2-colourable is in P and a natural question is whether any NP-
complete colouring problem is definable in GL. We show with the help of edge-disjoint subgraphs
and 2-colourability, that one can express 4-colourability of graphs in GL. Unfortunately, the
method used to show this cannot be easily extended to express 3-colourability of graphs, and
furthermore it is conjectured here, as well as in [DGG07], that the class of 3-colourable graphs
is not definable in GL. The next lemma helps us define the formula to express 4-colourability
or more generally 2k-colourability for any k ∈ N.

Lemma 2.1.1. A graph G is (m ·n)-colourable if and only if it can be split into two edge-disjoint
subgraphs, one of which is m-colourable and the other is n-colourable.

Proof. Let G be a (m · n)-colourable graph. Then there is a colouring function c : V (G) → C

where |C| = m ·n and without loss of generality we can assume that C = {(c1, c2)| c1 ∈ C1, c2 ∈
C2}, for sets C1 and C2 of cardinality m and n respectively. In other words the function c maps
vertices from V (G) to the set C1 ×C2. Consider the two projections c1 and c2 of this colouring
function, where ci : V (G)→ Ci, for i ∈ {1, 2}. Let G1 be the graph that contains exactly those
edges (x, y) such that c1(x) 6= c1(y). Let also G2 be the graph that contains the edges between
vertices x′, y′ such that c1(x′) = c1(y′) but c2(x′) 6= c2(y′). The graph G1 is m-colourable and
the graph G2 is n-colourable. Furthermore, no edge of G belongs to both G1 and G2, and every
edge of G belongs to one of the graphs since for any two vertices x and y connected with an
edge in G either c1(x) 6= c1(y) or c2(x) 6= c2(y).

CHAPTER 2. GRAPH LOGIC 32

For the other direction assume that the graph G can be split into two edge-disjoint graphs G1

and G2 such that G1 is m-colourable and G2 is n-colourable. Then there are colouring functions
c1 and c2 such that ci : V (Gi)→ Ci, for i ∈ {1, 2}, where C1 and C2 are of cardinality m and n
respectively. Then we can define a colouring c for G such that c : V (G) → C1 × C2 and where
c(x) = (c1(x), c2(x)) for any vertex x ∈ V (G). This colouring function c is a witness to the
graph G being (m · n)-colourable.

Corollary 2.1.2. For any m,n ∈ N such that m-colourability and n-colourability are definable
in GL, (m · n)-colourability is also definable in GL.

Proof. If the GL formula ψm defines m-colourability and ψn defines n-colourability, then the
GL formula ψ = (ψm | ψn) defines (m · n)-colourability, by Lemma 2.1.1.

Since in the example above we have shown that 2-colourability is definable in GL we get the
following:

Corollary 2.1.3. For any k ∈ N there exists a GL formula ϕk such that for any graph G it is
the case that G |= ϕk if and only if G is 2k-colourable.

According to this Corollary there exists a GL formula ϕ such that for any graph G, G |= ϕ

if and only if G is 4-colourable. This constitutes an example of a colouring problem definable
in GL, that lies in NP, and in fact is NP-complete, unlike 2-colourability that is in PTIME. The
lowest k for which k-colourability is NP-complete, is k = 3, for which it is thought to not be
definable in GL. Furthermore, for any k > 1, 2k-colourability is an NP-complete problem as
well.

2.2 On Words

As stated above, Dawar et al. showed in [DGG07] that GL and MSO are equi-expressive when
the two logics are restricted to the class of finite words. This result is the main motivation
behind looking into what is the case when restricted to other, more general classes of graphs.
A few more general classes of graphs will be investigated below, but earlier a few things about
GL on words and related structures should be examined further.

Theorem 2.2.1 (Dawar et. al.). A word language is GL definable if and only if it is regular.

The result of GL and MSO being equi-expressive on words relies on a direct translation
from regular expressions to GL formulae. An important subclass of regular word languages
is the class of star-free languages. This class is exactly the class of languages definable in
First Order Logic in the presence of order. A language is star-free if the regular expression
that describes the language does not use the Kleene star, but can use the boolean operations,
including complementation. Similarly, on a word structure of the usual signature together with
a predicate < for linear order, one can define in First Order Logic over this signature exactly
the star-free languages, as explained in [RS71] and [Tho96].

CHAPTER 2. GRAPH LOGIC 33

The signature of the structures in GL though, does not include an order relation, and there-
fore restricting GL to the first order fragment, namely the fragment of GL that lacks the sep-
aration connective, is not enough for defining all star-free regular languages. For example, the
word language L = {w ∈ Σ∗ | there is an a preceding a b} with Σ = {a, b, c}, is star-free but is
not definable in first order logic without order. The star-free expression for L is the following:

L = ∅a∅b∅.

It can be shown that this language is not definable in FO without order. In particular let
L1 = {w | w = c∗ac∗bc∗} and L2 = {w | w = c∗bc∗ac∗}. Then it holds that L1 ⊆ L and
L2 ∩ L = ∅. It can be proved that in a first-order Ehrenfeucht-Fräıssé game, for any k there
exist words w1 ∈ L1, w2 ∈ L2 such that Duplicator wins the k-round game on these two words.

Since it is known that GL is closed under all boolean operations and given the direct transla-
tion from regular expressions to GL formulae as it appears in [DGG07], one can ignore the case
of the Kleene star operator in the inductively defined translation in [DGG07], include a case
for complementation, and get a translation from star-free regular expressions to GL formulae.
It should be noted that if only the rest of the cases of the translation in [DGG07] are used to
translate a star-free regular expression into a GL formula, it holds that in the resulting formula,
at each application of the splitting operator ‘|’ of GL, a word is split in at most one place,
so that the two subgraphs after the split are each a connected component. This operation is
hence similar to the Chop operator defined in [Lan02], which essentially works by splitting a
word into two subwords. Therefore, star-free regular languages can be defined in the syntac-
tic fragment of GL in which each time a word is split into two connected subwords and not more.

One more class of structures most closely related to the class of finite words, is the one of
structures that are disjoint unions of words. As we will see, MSO without the presence of order
can only count the number of different words up to some threshold, and from this it follows that
GL has the same expressive power as MSO over sets of words. Informally, any MSO sentence
is equivalent to one that expresses which MSO-k-types of words appear in the set and in what
number each, up to some threshold value K. The same can be done in GL using First Order
quantification and the fact that GL and MSO are equi-expressive on words.

The reason why such structures are of interest is the following. In the translation given
in [DGG07] from MSO to GL over words, the case of the Kleene star operator is dealt with
by splitting up a word in many subwords, and it is interesting to know that GL continues to
be equi-expressive to MSO over the structures comprising subwords, which are disjoint sets of
words.

Furthermore, in [Mar06], where Marcinkowski shows that GL+ is strictly less expressive
than MSO+, the separating example is an appropriately constructed structure comprising a set
of disjoint words, with labels on the edges of these words. We remind the reader that GL+ and
MSO+ allow for first-order quantification over edge labels, and the structures are defined over
countably many labels. Marcinkowski in the paper explains that the same method would not

CHAPTER 2. GRAPH LOGIC 34

work over sets of disjoint words of a finite alphabet for GL and MSO, and we show here that
over structures composed of disjoint words, GL and MSO are equi-expressive.

We proceed by giving a lemma required for establishing the above and remind the reader of
the following. The disjoint union of two structures in MSO results in a structure containing the
disjoint union of the universes of the two original structures, and hence in the case of graphs
in particular, no two edges from two graphs G1, G2 are adjacent in the graph resulting from
the disjoint union of G1 and G2. It should be noted that Lemma 2.2.2 below also follows from
results in [Com89].

Lemma 2.2.2. For any k there exists s ∈ N such that:

1. For any structures B1, . . . ,Bs,C1, . . . ,Cs+1 of some signature σ, if Bi ≡MSO
k Cj for all

1 ≤ i ≤ s and 1 ≤ j ≤ s+ 1, then B1
⊎
. . .
⊎

Bs ≡MSO
k C1

⊎
. . .
⊎

Cs+1.

2. For any structures A,B and C, if (s×A)
⊎

B ≡MSO
k C then for any m, (m×A)

⊎
C ≡MSO

k C.

Proof. For (1), let T = {τ1, . . . , τn} be an enumeration of all MSO-k-types realized in structures
of some signature σ. For each 1 ≤ t ≤ n, let At be the smallest structure of type τt, and let
m = max{|At| |1 ≤ t ≤ n}. Furthermore, let s = 2k·m. For what follows let i range over the
set {0, . . . , s} and j, j′ over the set {0, . . . , s+ 1}. First notice that since for all i and j it holds
that Bi ≡MSO

k Cj , it is also true for any j, j′ that Cj ≡MSO
k Cj′ . Similarly for the structures Bi.

Note that there exists At, being the structure of smallest size of type τt as defined above, such
that for all structures Bi and Cj , it is the case that Bi ≡MSO

k At ≡MSO
k Cj . Without loss of

generality let this structure be A1.
We want to prove that Duplicator has a winning strategy for the k-round game on the pair

of structures (B1
⊎
. . .
⊎

Bs,C1
⊎
. . .
⊎

Cs+1). Note that, by the Feferman-Vaught Theorem
(Theorem 1.2.3), since Bi ≡MSO

k A1 and Cj ≡MSO
k A1 for all i and all j, it is enough to establish

that Duplicator has a winning strategy for the k-round game on (s× A1, (s+ 1)× A1).
We proceed to show that Duplicator has a winning strategy for the k-round MSO EF game

on (s×A1, (s+1)×A1). We prove by induction on the number of remaining rounds ` that there
is a colouring c that colours at least 2`·m copies of A1 in both structures, with no distinguished
elements from the previous First Order rounds, and for all other colourings c′, an equal number
of copies in each structure is coloured with c′. In particular, if the position at some round `

is 〈(s × A1, ā, X̄), ((s + 1) × A1, b̄, Ȳ)〉 then there are at least 2`·m copies of A1 in s × A1 and
(s+1)×A1, such that for each such copy A in s×A1 and A′ in (s+1)×A1, none of the elements
of ā and b̄ are in A and A′ respectively, and (A, X̄) ∼= (A′, Ȳ) and the following condition is
satisfied. For the substructures D of s× A1 and E of (s+ 1)× A1, obtained when disregarding
the identically coloured copies defined above, it holds that (D, ā, X̄) ∼= (E, b̄, Ȳ).

For ` = k there are at least 2k·m copies of A1 in each structure by definition, with no
distinguished elements. Assume now that the claim is true for `′ > 0 rounds remaining. We
want to prove that it is also the case for `′ − 1 considering the two possible moves Spoiler can
make.

CHAPTER 2. GRAPH LOGIC 35

First Order move: Suppose Spoiler selects an element x that lies in a copy of A1 in one of
the two structures, say s× A1. By the induction hypothesis there are 2`

′·m identically coloured
copies of A1 with no distinguished elements. If the element x lies inside one of these copies,
then Duplicator replies with an element x′ inside a copy of the corresponding 2`

′·m copies that
have been coloured identically in the other structure. Otherwise Duplicator can find a copy of
A1 in (s + 1) × A1 and an element x′ in that copy since the rest of the colourings appear in
equal numbers. In the next round the claim holds for 2(`′−1)·m. The case is similar when Spoiler
chooses an element of (s+ 1)× A1.

Colouring move: Spoiler chooses one of the two structures, say the structure s × A1, and
chooses also a set X colouring the elements of the copies. Each copy of A1 has at most m
elements and by induction hypothesis at least 2`

′·m copies have been coloured identically as a
result of the previous rounds. There are at most 2m possible colourings of each copy of A1 using
X and so at least 2`

′·m/2m = 2(`′−1)·m copies of A1 will be coloured identically after applying X.
Duplicator then colours s of the copies in (s+1)×A1 as they are coloured in s×A1 and colours
the last copy using the colouring that appears more than 2(`′−1)·m times in s× A1. Duplicator
acts similarly in the case where Spoiler colours (s+ 1)× A1.

Consider now the statement (2). By (1) we know that for anym, (m×A)
⊎

(s×A) ≡MSO
k s×A,

and therefore by a composition argument (m × A)
⊎

(s × A)
⊎

B ≡MSO
k (s × A)

⊎
B. Also,

(m × A)
⊎

(s × A)
⊎

B ≡MSO
k (m × A)

⊎
C. This completes the proof since by assumption

(s× A)
⊎

B ≡MSO
k C.

A similar lemma to Lemma 2.2.2 can be shown for graphs and MS2.

Lemma 2.2.3. For any MSO sentence φ there exists a MSO formula χ(x, y) such that for any
word W and its leftmost vertex a and rightmost vertex b, it is the case that W |= φ if and only
if W |= χ(a, b). Furthermore, if A is any structure then A

⊎
W |= χ(a, b) if and only if W |= φ.

Proof. Let φ be some MSO formula. We define χ(x, y) to be the MSO formula with free variables
x and y, presented below. We use the formulae Ink(x) and Outk(x) defined above, since they
are essentially first-order formulae.

χ(x, y) = In0(x) ∧Out0(y) ∧ ExistsPath(x, y)∧

∃X

 ∀z (X(z)↔ ExistsPath(x, z))
∧ X(x) ∧X(y)
∧ φX

 ,

ExistsPath(x, z) = ∀Y
(
Y (x) ∧

(
∀w, u (Y (u) ∧ E(u,w)→ Y (w))

)
→ Y (z)

)
.

The notation φX denotes φ relativized to the vertices of X. According to the above definitions,
if W |= φ then there exist vertices x, y at the endpoints of W , and a set of vertices X containing
exactly the vertices between x, y, such that relativizing φ to the set of verticesX holds. Therefore
if a and b are the endpoints of W , it is the case that W satisfies χ(a, b).

CHAPTER 2. GRAPH LOGIC 36

Likewise, if W |= χ(a, b) for W a word with endpoints a and b, then φ is satisfied when
restricted to the vertices of W and therefore W |= φ. The argument for the second case, where
structures of the form A

⊎
W are considered, follows similar lines.

Since the MSO formula φ can be translated to an equivalent over words formula φ′ in GL,
one can also translate χ(x, y) into an equivalent GL formula χ′(x, y). The formula χ′(x, y) =
In0(x) ∧ Out0(y) ∧ (> | Path(x, y) ∧ φ′), where Path(x, y) is satisfied only by the subgraph
comprising the word from x to y, is a translation of χ into GL.

Theorem 2.2.4. For every MSO formula ϕ there exists a GL formula ψ such that for any
structure A that is a set of strings, it is the case that A |=MSO ϕ if and only if A |=GL ψ.

Proof. Fix an MSO formula ϕ of quantifier rank k and let s be given by Lemma 2.2.2 for k.
The formula ϕ is equivalent to a disjunction of MSO-k-types. Let T be the finite set of MSO-
k-types of structures that are sets of words, and let Tϕ ⊆ T denote the set of types in the latter
disjunction that is equivalent to ϕ.

Similarly, define Tk to be the finite set of MSO-k-types of words and let F k = {f | f : Tk →
{0, . . . , s}} be the finite set of functions from Tk to {0, . . . , s}. With each structure A that is a
set of words, we associate a function fA ∈ F k which is such that for each MSO-k-type τ ∈ Tk,
fA(τ) = z if there are exactly z words in A of MSO-k-type τ and z ≤ s, and fA(τ) = s if
there are more than s words in A of MSO-k-type τ . Notice that for each such structure A, fA

is well-defined and that any two structures A1,A2 with which the same f ∈ F k is associated,
can only disagree on the number of types that appear at least s times. But then, according to
Lemma 2.2.2, two such structures are ≡MSO

k -equivalent.
Then, F k can be partitioned into sets Fτ1 , . . . , FτM , for M = |T |, such that for each τj ∈ T

and any structure A of type τj there is f ∈ Fτj associated with A. Furthermore, any structure
with which some function f ∈ Fτj is associated, for some 0 ≤ j ≤ M , is of type τj . Then let
F =

⋃
τj∈Tϕ

Fτj .
With each MSO rank-k word type τi, we associate the formula Ψi(x, y), given by Lemma

2.2.3, such that for any word w, w is of type τi if and only if a, b are the endpoints of w and
w |=MSO Ψi(a, b). For n ∈ N, we define the formula Φ≥n

i to be the formula

Φ≥n
i = ∃x1, y1, . . . , xn, yn

∧
1≤` 6=`′≤n

(
x` 6= x`′ ∧ y` 6= y`′ ∧ x` 6= y`′

)
∧
∧

1≤`≤n
Ψi(x`, y`),

which expresses that there are at least n distinct pairs of vertices that are endpoints of words
of type τi. Similarly the formula

Φ=n
i = Φ≥n

i ∧ ¬Φ≥n+1
i ,

expresses that there are exactly n distinct pairs of vertices that are endpoints of words of type

CHAPTER 2. GRAPH LOGIC 37

τi. According to this, the formula ϕ is equivalent to the following formula Φ.

Φ =
∨
f∈F



∧
i:f(τi)=si,0<si<s

Φ=si
i

∧
∧

j:f(τj)=s

Φ≥s
j

∧
∧

h:f(τh)=0

∀x, y ¬Ψh(x, y)


.

Therefore, since the formulae Ψj(x, y) are expressible in GL, so is the formula Φ.

2.3 On Trees

GL is equi-expressive to MSO on words and a natural question is whether this equivalence
generalizes to other classes of graphs. One of the simplest extensions to the class of words is the
class of trees and inspecting the expressive power of GL on trees is most reasonable.

A prominent weakness of GL is for example the fact that if a tree T satisfies a formula ψ of
the form ψ = (ψ1 | ψ2), then neither of the ψi for i ∈ {1, 2} can express that a vertex is a leaf
vertex of the original tree. This is because some of the information may have been lost when
splitting the tree, into two disjoint forests.

A natural property, therefore, that one should inspect whether it is GL definable is the
property of evenness of the number of leaves of a tree, and in general checking whether the
number of leaves of ranked trees is equal to 0 (mod k), for some k ∈ N. Such properties are
MSO definable. Although it still remains an open question whether, for example, one can define
in GL the class of binary trees with 0 (mod 4) number of leaves, a positive answer is given for
evenness on binary trees.

The latter is a corollary of a more general result that states that any language of binary trees
accepted by some product of bottom-up deterministic 2-state tree automata, is GL definable.
It should be noted that such a property shows that GL is in some respect quite expressive,
and that this property distinguishes GL from many of the logics in the literature. It will also
be shown that this is not enough for defining any regular binary tree language, since, for any
fixed alphabet, it is a finite number of languages that are accepted by products of deterministic
bottom-up 2-state tree automata.

Theorem 2.3.1. Any language of binary trees accepted by a product of bottom-up deterministic
2-state tree automata, is GL definable.

Proof. We only need to show that any language of binary trees accepted by a deterministic
automaton with 2 states is definable in GL, since conjunction of two GL formulae can be used
to define the product of two such automata. Furthermore, although we allow binary trees with
unary branches, we assume here that the root of any tree considered has two children. If this is
not the case for some tree, we can split the tree into the unary branch from the root to the first
fork x, and the tree rooted at that fork. The tree rooted at x will be dealt with using the GL

CHAPTER 2. GRAPH LOGIC 38

F2 |= ψF1 |= ψ

T |= (ψ | ψ)

Figure 2.1: The black-filled nodes (•) are assigned the state q1 and the white-
filled nodes (◦) are assigned the state q2 by the automaton.

formulae presented below, whereas the unary branch will be dealt with as a special case, using
the fact that GL and MSO are equi-expressive over words.

Suppose that A = (Q,Σ, q0, δ1, δ2, Qf) is a deterministic bottom-up tree automaton as de-
fined in Section 1.3, where Q = {q1, q2}, the initial state q0 is defined to be equal to q1, and δ1,δ2
are the two transition functions of type δ1 : Q×Σ→ Q and δ2 : Q×Σ×Q×Σ→ Q, respectively.
Let T be the class of binary trees T ′ each with a root that is a fork, where A assigns the state
q1 to all the leaves and the root of T ′, and assigns the state q2 for all forks other than the root
of T ′. Suppose there exists a GL formula ψ such that for any forest F , F |= ψ if and only if for
every tree T ′ in F , T ′ ∈ T . Before we present such a GL formula ψ explicitly, we show how it
can be used to define the class of trees accepted by A.

In particular, we show that for any binary tree T , T |= (ψ | ψ) if and only if A assigns the
state q1 to the root of T . For the only if direction fix a tree T and suppose that T |= (ψ | ψ).
Then, the tree T can be split into two forests F1 and F2, where each one satisfies ψ. Therefore,
for any tree T ′′ in F1 or F2, A assigns the state q1 to the leaves and the root of T ′′. Notice, that
since every tree in the two forests has a root with two children, if a tree T1 in F1 is connected
to a tree T2 in F2 within the original tree T , then the root of one is the same vertex as a leaf
of the other. In other words the tree T is split into F1 and F2 in such a way that every vertex

CHAPTER 2. GRAPH LOGIC 39

that is shared between both forests, is a leaf of a tree in one forest and root of another tree in
the other forest. Therefore, a run of A can be constructed that assigns the state q1 to the leaves
and the root of T , and in addition assigns the state q1 to all the vertices that appear in both
forests.

For the if direction, suppose that A assigns the state q1 to the root of T . For each fork x in
T such that A assigns the state q1 to x, we define Yx to be the set of descendants closest to x
that are either leaves or forks to which A assigns the state q1. The subtree Tx is defined to be
the subtree rooted at x, with leaves the vertices in Yx. We define F1 and F2 to be two forests
comprising of trees Tx for some fork x satisfying the assumption given above, and furthermore
we define the two forests to be such that no two trees Tx and Tx′ that are connected in T , are
both in the same forest. By definition, every fork other than the root in a tree Tx is assigned
the state q2 by A, and hence Fi |= ψ, for i = 1, 2. A simple example of a tree T with an odd
number of leaves, and the run of an automaton accepting such trees, is shown in Figure 2.1. We
skip the definition of such an automaton.

We proceed by defining explicitly the GL formula ψ. A unary branch from some vertex x to
a vertex y, is a path in the tree from x to one of its descendants y, where all vertices in that path
apart from y are unary nodes. On a unary branch, a tree automaton works as a word automaton
and in particular uses only the transition function δ1 defined above. On words, MSO and GL
are equi-expressive, so let the GL formula ϕqi,qj , for qi, qj ∈ {q1, q2}, be the formula defining the
set of words on which the automaton, assigning the state qi to the first vertex, reaches the state
qj at the last one.

Two vertices a and b in a tree T , are endpoints of a unary branch if and only if T |=
unaryBranch(a, b), where:

unaryBranch(x, y) = one-child(x) ∧ (leaf(y) ∨ fork(y)) ∧ (Path(x, y) | >)∧
∧∀z (z 6= y ∧ (Path(x, z) | Path(z, y) | >)→ one-child(z)).

Notice that in the definition above, the formula (Path(x, y) | >) is used, since, whenever T |=
unaryBranch(a, b) for some tree T with vertices a, b, we don’t require T to be a unary branch,
but instead we require the vertices a and b in T to be the endpoints of a unary branch in T . The
following formulae assist with the definition of the formula ψ and are defined for i, j ∈ {1, 2}.

unary-q1qj(x) = ∃y (leaf(y) ∧ unaryBranch(x, y) ∧ (Path(x, y) ∧ ϕq1,qj | >)),
unary-q2qj(x) = ∃y (fork(y) ∧ unaryBranch(x, y) ∧ (Path(x, y) ∧ ϕq2,qj | >)),

unary-qi(x) = one-child(x) ∧ (unary-q2qi(x) ∨ unary-q1qi(x)),
state-q1(x) = leaf(x) ∨ root(x) ∨ unary-q1(x),
state-q2(x) = (fork(x) ∧ ¬root(x)) ∨ unary-q2(x).

The formula unary-q1qj(x) expresses that x is the top vertex of a unary branch from a vertex
y, a descendant of x, where y is a leaf vertex and the unary branch from y to x belongs to the
set of words on which the automaton A starting with state q1 finishes with the state qj . The

CHAPTER 2. GRAPH LOGIC 40

case is similar for the formula unary-q2qj(x), which expresses that there exists a fork y which is
a descendant of x and the path from y to x is a unary branch that belongs to the set of words
on which A, starting with state q2, ends with the state qj . The formula unary-qj(x) is simply
the disjunction of the two formulae above. The formula state-q1(x) holds at any vertex x that
is either a leaf, a root or the top vertex of a unary branch where A reaches q1 according to the
assumptions above. Similarly, the formula state-q2(x) holds at any vertex x that is a non-root
fork or the top vertex of a unary branch, at which A reaches q2 under the assumptions above.

Remember that T is the class of trees where A assigns the state q1 to all leaves and the root,
and assigns the state q2 to all forks that are not roots. We show below, that for any vertex a of
any tree T ∈ T , A assigns the state qi to a if and only if T |= state-qi(a). The definition of the
formula ψ follows below.

ϕq1(x, y, z) =
∨
δ2(qi,σ,qj ,σ′)=q1

(state-qi(y) ∧ (Eσ(x, y) | >) ∧ state-qj(z) ∧ (Eσ′(x, z) | >)),

fork-roots = ∀x (root(x)→ fork(x)),

ψ = 0 ∨
(
fork-roots ∧ ∀x

((
∃y, z (y 6= z ∧ ϕq1(x, y, z))

)
↔ root(x)

))
.

Notice that for any forest F , F |= ψ if and only if for every tree T in that forest, T |= ψ.
This is because ψ expresses that a combination of states and symbols that leads to the state
q1, occurs at a fork if and only if that fork is the root of the tree it belongs to. Furthermore,
whether a vertex satisfies any of the formulae given above, depends only on the tree it belongs
to. It remains to show that for any tree T , T |= ψ if and only if T ∈ T .

Claim 1. For any tree T , T |= ψ if and only if T ∈ T .

Proof. For the only if direction, suppose that for some tree T , T |= ψ. We say that a node x
in a tree T is of height h if the height of the subtree of T rooted at x is of height h. We prove
that for any vertex a, T |= state-qi(a) if and only if A assigns the state qi to a in T . Suppose
this is not the case and let a be the vertex of minimal height such that T |= state-qi(a) but A
does not assign the state qi at a. We consider the three possible cases for a, namely that a is
either a leaf, a unary vertex or a fork. Notice that for the latter two cases, the statement holds
for all vertices below a by assumption. We show that each case leads to a contradiction. If a is
a leaf, then A assigns the state q1 to a by definition of the automaton A. But it also holds that
T |= state-q1(a) and T |= ¬state-q2(a), by definition of the two formulae.

Suppose then that a is a unary node, and let b be the closest descendant of a that is either a
fork or a leaf. By the minimality of the height of a, T |= state-qj(b) if and only if A assigns the
state qj to b in T . Let it be the case that A assigns the state qj to b. Then, T |= state-qi(a) if
and only if the unary branch from b to a satisfies φqj ,qi . This is the case if and only if the unary
branch from b to a belongs to the set of words on which if A starts at the state qj , finishes at
the state qi, which is a contradiction.

Finally, suppose a is a fork of minimal height on which A and the formula state-qi(x) disagree.
Let b and c be the two children of a and notice that by the minimality of the height of a, the
statement holds for b and c. Assume that a is a fork other than the root. By definition of the

CHAPTER 2. GRAPH LOGIC 41

formulae given above, if this is the case then T |= state-q2(a) and T |= ¬state-q1(a). Since by
assumption the statement does not hold for a, A assigns the state q1 to a. Therefore, there
must be qj , qj′ , σ, σ′ such that δ2(qj , σ, qj′ , σ′) = q1 and A assigns the state qj to b, the state qj′

to c and the edges from b to a and from c to a have labels σ and σ′ respectively. But T |= ψ

and according to the formula ϕq1(a, b, c) this can only be the case if a is the root, which is
a contradiction. The argument for when a is the root and not an inner fork of the tree T is
similar, and therefore, for any a, T |= state-qi(a) if and only if A assigns the state qi to a in T ,
for qi ∈ {q1, q2}.

For the if direction, fix a tree T and suppose that T ∈ T . Therefore, A assigns the state q1
to the leaves and the root of the tree T , and the state q2 to all forks other than the root. To
show that T |= ψ we only need to show that for any x, (∃y, z y 6= z ∧ ϕq1(x, y, z)) ↔ root(x),
since the root of T by assumption is a fork. For any vertex x that is not a fork, the formula
holds. Suppose for contradiction that there is a vertex a other than the root that is a fork,
with children b and c, such that T |= ϕq1(a, b, c). First note that for any vertex x′ in T , the
formulae state-qi(x′) and the automaton A agree. This is because of the following. If x′ is a
leaf, then by definition of the formulae state-qi(x′) and the assumption that T ∈ T , it holds
that T |= state-q1(x′), T |= ¬state-q2(x′) and A assigns the state q1 by definition. Similarly, if
x′ is a fork other than the root, it holds that T |= state-q2(x′), T |= ¬state-q1(x′) and A assigns
the state q2 to x′, and if x′ is the root, the statement holds for similar reasons. Finally, if x′ is
a unary vertex, then there exists y′ that is either a leaf or a fork and the path from y′ to x′ is
a unary branch. Furthermore, according to the above, A and the formulae state-qi(x) agree on
y′, and therefore A agrees with the formulae on the vertex x′ as well, by the definition of ϕqi,qj .

Therefore, for the vertices b and c, which are the two children of a, it is the case that T |=
state-qi(b) (respectively, T |= state-qj(c)) if and only if A assigns the state qi to b (respectively, A
assigns the state qj to z). If a, b and c satisfy the formula ϕq1(x, y, z), then there exist qj , qj′ , σ, σ′

such that δ2(qj , σ, qj′ , σ′) = q1, and furthermore T |= state-qj(b), T |= state-qj′(c) and σ, σ′ are
the labels of the edges from b to a and form c to a, respectively. But since, the automaton A

and the formulae state-qi(x) agree on b and c, it means that A assigns the state q1 to a, which
is a contradiction by the assumption that T ∈ T . The argument is similar for the case where a
is the root of the tree T .

This completes the proof of Theorem 2.3.1.

The following Corollary is a direct consequence of Theorem 2.3.1.

Corollary 2.3.2. The class of binary trees with an even number of leaves is GL definable.

A natural question that arises is whether the languages accepted by a product of 2-state
deterministic bottom-up tree automata, capture all the regular languages. This question can be
refuted though by a counting argument. The set of regular languages is not finite, but the set
of languages accepted by a product of 2-state automata is.

CHAPTER 2. GRAPH LOGIC 42

Lemma 2.3.3. For any two deterministic bottom-up binary tree automata A and B, the language
accepted by their product A×B is equal to the intersection of the languages of A and B.

Proof. For each tree T , by Definition 1.3.4, T ∈ L(A × B) if and only if there is an accepting
run of A on T and also an accepting run of B on T . Therefore T ∈ L(A × B) if and only if
T ∈ L(A) ∩ L(B).

Using the lemma above we can prove that there are regular languages that are not accepted
by any product of 2-state automata.

Theorem 2.3.4. For any fixed alphabet Σ, the set of languages on the alphabet Σ accepted by
a product of 2-state deterministic bottom-up tree automata, is finite.

Proof. If the size of the alphabet Σ is m then even without considering possible symmetries
there are at most k = 2m

2·2·2 different transition functions on 2 states, and hence depending
on which states are in the set of accepting states we have at most 4 · k different automata on
Σ with 2 states. Therefore, since the operation of taking intersection of two sets is associative,
commutative and idempotent, the number of different languages accepted by products of 2-state
deterministic bottom-up tree automata, is finite.

2.3.1 Chain and Antichain Logic

It is shown in [Tho84] and [PT93], that for binary ordered trees that do not allow unary branch-
ing, Antichain Logic, a variant of MSO which is defined below, is enough to express all properties
definable in MSO. In the same paper it is also shown that on binary trees with unary branching
Antichain Logic is not enough to express all MSO definable properties. Another version of MSO,
termed Chain Logic, is shown similarly to express some MSO definable properties on trees with
unary branching, and in particular is equivalent to MSO over words, over which Antichain Logic
is equivalent to FO. In [Tho84], Thomas shows that there is a regular binary tree language that
is expressible in neither of the two logics. We show that this language is expressible in GL and
therefore, GL is not included in the union of Chain and Antichain Logic, and therefore also not
included in either of them.

Consider the partial order on vertices of a tree obtained by taking the transitive closure of
the child relation. In other words, let x ≺ y hold for two vertices x and y when x is an ancestor
of y. It is known that ≺ is definable in MSO even when it is not present as a relation in the
signature. Despite that, we use MSO[≺] to denote the logic MSO, when such a relation is given
explicitly. We remind the reader of the following.

Definition 2.3.5. Let S be a word or a tree, and let ≺ denote the transitive closure of the child
relation of S. Then a subset X of the vertices of S is an antichain if for all x and y in X,
neither x ≺ y nor y ≺ x holds.

Definition 2.3.6 ([Tho84]). Antichain Logic defined over the class of trees, is a version of
MSO[≺] having the same syntax as MSO[≺] and is such that for any tree T , T |= ∃X ϕ, with X

CHAPTER 2. GRAPH LOGIC 43

being a set variable, if and only if there exists a subset A of the vertices of T that is an antichain
and T satisfies ϕ when all the free occurrences of the set X are interpreted by A.

Therefore the syntax of Antichain Logic is like the one for MSO, but the semantics allow
the second order variables to range only over antichains. Chain Logic is defined in a similar
manner with the difference that second order variables range over chains. A set Y is a chain if
for any w, z ∈ Y , either w ≺ z or z ≺ w. According to the definition of antichains, any second
order variable in Antichain Logic over words, can only contain a single element of the universe,
and therefore an Antichain Logic formula over words is equivalent to a First Order Logic one.
Similarly, Chain Logic over words is equi-expressive to MSO, since any subset is a chain.

In a tree without unary branching, Antichain Logic is as expressive as MSO and informally
this can be achieved as follows. We give an illustration of the argument presented in [PT93],
for binary ordered trees in particular. For any tree T let V L

T be the set of leaf vertices and V I
T

the set of all non-leaf vertices of T . According to this, for any tree T , let fT : V I
T → V L

T be an
injection from the set V I

T to the set V L
T , defined as follows. For any x ∈ V I

T , let x1 be its right
child. Then the leaf fT (x) is the unique leaf node that can be reached from x1 using only the
edges connecting the vertices to their left child. In the presence of the relation ≺, this function
is definable in FO, as shown in [PT93]. Suppose that ψf (x, y) is such an FO formula that holds
exactly for any two vertices x and y when fT (x) = y.

By Theorem 1.3.3 given by Thatcher and Wright, and in particular as a result of the for-
mulae constructed in the proof of the theorem, any MSO formula over trees is equivalent to an
existential one, namely one of the form ∃X1, . . . , Xn χ(X1, . . . , Xn), with χ(X1, . . . , Xn) being
an FO formula. In this form, an MSO formula over binary ordered trees is translated inductively
by replacing any occurrence of ∃X ϕ in the formula, with ∃X1, X2 ϕ

′, where ϕ′ is the translation
of ϕ, and similarly every atomic formula X(x) is replaced with

(leaf(x) ∧X1(x)) ∨ (¬leaf(x) ∧ ∀y (ψf (x, y)→ X2(y))).

Essentially, each set variable X is translated into two sets, one containing the leaves of X and
the other containing leaves that encode through the function fT , the non-leaves of X. For a
formal introduction to this idea we refer the reader to [PT93].

Since words are trees, Antichain Logic is not expressive enough to define all regular tree
languages. Furthermore, in [Tho84], it is proved that there exists a binary tree regular language
that is neither Antichain nor Chain definable. We shall see that this tree language is GL
definable. We present the theorem given in [Tho84] slightly changed below.

In what follows, for any n ∈ N, and some fixed alphabet Σ = {a, b, c}, let Sn denote a string
with n edges whose leaf, and only its leaf, is labelled with a. For a, b ∈ Σ, let Ta,b denote the
class of proper binary trees whose leaf vertices, and only those, are labelled with either a or b.
Finally, if T1 and T2 are two classes of trees, with T1 having leaves (not necessarily all of them)
labelled with some label d ∈ Σ, we denote with T1 ·d T2, the class of all trees T that result from
concatenating trees of the class T2 to all the leaves of a tree in T1, which are labelled with d.

CHAPTER 2. GRAPH LOGIC 44

Theorem 2.3.7 (Thomas). From the tree languages below, the tree languages T1 and T2 are
Chain definable but not Antichain definable, the tree language T3 is Antichain definable but not
Chain definable, and the tree language T4 is a regular language but is neither Chain definable
nor Antichain definable.

T1 = {Sn | n even},
T2 = {Sn | n odd},
T3 = {t ∈ Ta,b | t contains an odd number of a’s},
T4 = (T3 ·a T1) ·b T2.

The alphabet of the binary tree classes Ti defined above, was only included to define the tree
classes and is not used in what follows. Therefore, the class of binary trees T4 above, contains
trees that comprise a proper binary tree T (every vertex has either no children or two children),
with strings of even length concatenated to an odd number of leaves of T , and strings of odd
length concatenated to the rest of the leaves of T .

Antichain Logic is strictly less expressive than MSO over words and we already know that
GL captures MSO on words. Therefore there is a tree language definable in GL and not definable
in Antichain Logic. In particular the languages T1, T2 are GL definable. In order to prove that
there is a property definable in GL but not in Chain Logic, we must consider trees that are not
simply words. To this end, it is enough to show that T4 is GL definable.

Note that, ignoring the alphabet used, T4 can be accepted by the product of two 2-state
automata A and B, where B checks that the tree has no unary node that is an ancestor of
a fork, and A essentially checks the parity condition given above. In particular, let A be the
2-state automaton of the form (Q,Σ, q0, Qf , δ), where Q = {q1, q2}, Σ = ∅, q0 = q2, Qf = {q2},
and the transition function δ is defined as:

δ1(q1) = q2,

δ1(q2) = q1,

δ2(q1, q1) = q1,

δ2(q1, q2) = q2,

δ2(q2, q1) = q2,

δ2(q2, q2) = q1.

An example of a run of the automaton A on a binary tree is shown in Figure 2.2.
By Theorem 2.3.1 this class of binary trees is expressible in GL. We proceed to give a more

direct proof of definability of the language T4 in GL that also illustrates the ideas presented
earlier in the form of an example. Let us first define the following GL formulae.

Let T be any tree, and x a vertex where its parent has two children and the subtree of
T rooted at x is a single string of even length. Then we call this node x an even-path-node.
Similarly, a vertex y whose parent has two children and the subtree rooted at y is a single string
of odd length, is called an odd-path-node.

odd(x) = ∃y (leaf(y) ∧ (OddPath(x, y) | >))
∧∃w ((E(w, x) | >) ∧ fork(w))
∧∀z ((Path(x, z) | >)→ ¬fork(z)),

CHAPTER 2. GRAPH LOGIC 45

T ∈ T4

Figure 2.2: A run of the automaton A on a tree T ∈ T4. The black-filled nodes
(•) are assigned the state q1 and the white-filled nodes (◦) are assigned the
state q2 by the automaton A.

even(x) = ∃y (leaf(y) ∧ (EvenPath(x, y) | >))
∧∃w ((E(w, x) | >) ∧ fork(w))
∧∀z ((Path(x, z) | >)→ ¬fork(z)).

The two formulae above define the odd-path-nodes and even-path-nodes respectively. A
node that is an even-path-node will be called an Even-node and a node that is either a node
with two children or an odd-path-node will be called an Odd-node. Notice that a leaf whose
parent is a fork is also an even-path-node, and therefore also an Even-node. A vertex b in a
tree T is an Even-node (respectively Odd-node) if and only if T |= EvenType(b) (respectively
T |= OddType(b)) defined below.

ϕ1 = ∀x, y, z


 z 6= y

∧ (E(x, y) | >)
∧ (E(x, z) | >)

→ (
DiffType(y, z)↔ root(x)

) ,

ϕ2 = ∀x (root(x)→ fork(x)),
DiffType(y, z) = (EvenType(y) ∧OddType(z)) ∨ (OddType(y) ∧ EvenType(z)),
EvenType(y) = even(y),
OddType(z) = fork(z) ∨ odd(z).

Let also the formula χ defined below, be the GL formula that defines the set of trees where
no unary node is an ancestor of a fork.

χ = ∀x, y
(
one-child(x) ∧ fork(y)→ ¬(Path(x, y) | >)

)
.

Using the above formulae, one can define the language T4 in GL using the formula ψT =

CHAPTER 2. GRAPH LOGIC 46

χ ∧ (ϕ1 ∧ ϕ2 | ϕ1 ∧ ϕ2). This formula essentially splits the tree into two subgraphs, each one of
them comprising a set of components, the roots of which have two children.

Lemma 2.3.8. If a connected tree T ′ satisfies ϕ1 then the set X containing the Even-nodes of
T ′ is of odd cardinality. Furthermore, for every node y in the tree with two children other than
the root, the set Xy of Even-nodes below it, is of even cardinality.

Proof. Suppose a tree T ′ satisfies ϕ1. We first prove the second statement of the Lemma by
induction on the height of the subtree rooted at each node. For nodes whose two children are
leaves or even-path-nodes, the statement is true. Assume the statement is true for nodes with
subtrees rooted at them of height less than h for some h ∈ N. Let y be a fork where the subtree
of T ′ rooted at y is of height h. By inspecting the formula ϕ1, if y is not a root, then either
both its children are Even-nodes, or they are both Odd-nodes.

In the first case, where both children of y are leaves or even-path-nodes, the case is similar
to the base case above and Xy is of even cardinality. In the second case, suppose y1, y2 are the
children of y. If one of them, say y1, is a fork, then by the inductive hypothesis Xy1 is of even
cardinality. If it is an odd-path-node then again Xy1 is of even cardinality. Therefore for each
yi, for i = 1, 2, Xyi is of even cardinality and hence so is Xy.

For the first statement of the lemma note that if r is the root of the tree T ′ and r1, r2 are
its children, one of them (say r1) is an Even-node and the other one (r2) is an Odd-node. The
set Xr1 = {r1} is hence of odd cardinality and as it follows from the second statement of the
Lemma, that we proved above, the set Xr2 is of even cardinality. Therefore Xr = X is of odd
cardinality as required.

Theorem 2.3.9. A tree T satisfies the GL formula ψT = χ ∧ (ϕ1 ∧ ϕ2 | ϕ1 ∧ ϕ2) if and only if
T ∈ T4.

Proof. For the only if direction assume T satisfies ψT . Then T can be split up into subgraphs
G1, G2, each satisfying ϕ1 ∧ ϕ2. Because of ϕ2, in each of the two subgraphs, all components
have a root with two children. This respects the degree of the nodes with exactly one child in a
tree, in the sense that if a node z has a single child in one of the subgraphs that satisfy ϕ1 ∧ϕ2

then it also has exactly one child in T as well, and vice versa. Consequently, for any connected
component of G1 that in the original tree T is connected to a component of G2, or the other
way round, it is the case that the root of one of them will be the leaf of the other in the original
tree T .

Now since each component in each of the two subgraphs satisfies ϕ1, by Lemma 2.3.8 we
have that for each such component the set containing the Even-nodes of this component has
odd cardinality. Connecting any two such components, preserves the first property of Lemma
2.3.8, since T satisfies χ and therefore the vertex that is common to these two components is a
leaf in one of the two, with a parent that is a fork, and consequently is in the set of Even-nodes
of that component. Hence the tree T belongs to the class of trees T4. An example is shown in
Figure 2.3.

CHAPTER 2. GRAPH LOGIC 47

T |= (ϕ1 ∧ ϕ2 | ϕ1 ∧ ϕ2)

T1 |= ϕ1 ∧ ϕ2 T2 |= ϕ1 ∧ ϕ2

Figure 2.3: A tree T that satisfies (ϕ1 ∧ ϕ2) | (ϕ1 ∧ ϕ2).

For the if direction we proceed by induction on the number of nodes n of the tree T that
have two children. The base cases of n = 1 and n = 2 satisfy ψT . There are three possible cases
for n = 2, but only in one of them do we need to split the tree in two components, each of which
satisfies ϕ1 ∧ ϕ2.

Assume then that for any tree T ′ where n is less than h, for some h ∈ N, if T ′ ∈ T4 then
T ′ |= ψT . We have already proved that if T ′ |= ψT then T ′ ∈ T4. Let us consider a tree T in the
class of trees T4 where n = h. For every path P from the root to a leaf, there is a non empty
set XP of nodes in P other than the root of T , that are either leaf nodes or even-path-nodes or
nodes where the subtree rooted at them is in T4. Let X be the largest set of nodes in

⋃
P XP

that have no ancestor in
⋃
P XP . Finally let Y be the subset of the nodes in X that are nodes

where the tree rooted at them is in T4.
For each y ∈ Y the subtree rooted at y, which will be denoted by Ty, is by definition in T4

and has less than h nodes with two children. Hence, by the inductive hypothesis, each Ty can be
split up into two subgraphs, each containing connected trees satisfying (ϕ1 ∧ ϕ2). It remains to
show that the tree obtained from T by removing the trees Ty for each y ∈ Y , satisfies (ϕ1 ∧ϕ2).

CHAPTER 2. GRAPH LOGIC 48

Let us call T−Y the tree obtained after this transformation. The root of T and both its children
remain in T−Y and hence T−Y |= ϕ2.

Any node with two children in T−Y other than the root has, in the original tree T , a subtree
rooted at it that is not a member of T4, since otherwise it would be in the set Y defined above.
Now consider such a node x in T−Y with two children, other than the root. It cannot be the
case that one of its children is an Even-node and the other one an Odd-node since that would
entail that the subtree Tx rooted at x is a member of T4, by the inductive hypothesis. Similarly
if r is the root of T , and since by assumption T is in the class of trees T4, one of its children
must have a subtree rooted at it that belongs to T4 and the other one must not. This is what
ϕ1 says about the root, and therefore T |= ϕ1 ∧ ϕ2.

Corollary 2.3.10. There exists a regular tree language that is neither Chain definable nor
Antichain definable, but is GL definable.

In the paper [Tho84] by Thomas, a connection is given between the Chain definable tree lan-
guages and the class of tree languages recognized by deterministic top-down automata. Since,
the latter does not form a Boolean algebra, its closure under boolean operations is considered
and named Boolean Deterministic Tree Languages. It is stated in that paper, that the languages
in this class can be defined in Chain Logic. We prove here a similar result for the relationship
between Boolean Deterministic Tree Languages and GL, namely that the former are GL defin-
able.

We will mainly consider ranked trees and in particular binary ones. In any binary ordered
tree recognized by a deterministic top-down tree automaton, the state assumed at some node
depends only on the state of its parent node. Ordered binary trees are represented in GL by
indexing the labels used for the edges using the indices 0 and 1 for left and right child respectively.
If the alphabet of the trees is Σ, we define the labels for the edges in the tree representation for
GL to be the set {(σ, i) | σ ∈ Σ, i ∈ {0, 1}}. An edge labelled by (a, 1) for a ∈ Σ, is thus a right
edge with letter a.

In order to show that the Boolean Deterministic Tree Languages are GL definable, we only
need to establish that any binary tree language recognized by a deterministic top-down tree
automaton is GL definable, since GL is closed under boolean operations.

Let A = (Q,Σ, qi, δ, Qf) be a deterministic top-down binary tree automaton, with transition
function δ : Q × Σ → Q × Q. We define the path automaton of A to be the automaton
B = (Q,Σ, qi, δ′, Qf) on words, where the transition function is given by δ′ : Q×Σ×{0, 1} → Q.
The function δ′ is the projection of δ to the first or second output states according to the input
{0, 1}. Thus for any states q1, q2, q3 and alphabet symbol σ, it is the case that δ(q1, σ) = (q2, q3)
if and only if δ′(q1, σ, 0) = q2 and δ′(q1, σ, 1) = q3. Note that the path automaton is unique up
to the renaming of states.

Lemma 2.3.11. Let A = (Q,Σ, qi, δ, Qf) be a deterministic top-down binary tree automaton
and let B = (Q,Σ, qi, δ′, Qf) be the path automaton associated with A. Then a binary tree T is
accepted by A if and only if for every leaf, the path from the root to the leaf is accepted by B.

CHAPTER 2. GRAPH LOGIC 49

Proof. For the only if direction assume that T is accepted by A. Then the automaton A reaches
an accepting state at the end of each path of the tree T and so the path automaton B using the
transition function δ′ will also reach an accepting state at the end of each path.

For the if direction assume that every path from the root to a leaf in T is accepted by B.
Take any two paths P1 and P2 from the root to leaf vertices y1 and y2 respectively. These two
paths will have some initial segment in common. Let x be the vertex at which the two paths
split, and let P denote the initial segment that is common to both paths and starts at the root
and finishes at the vertex x. Since the path automaton is deterministic, in every run that goes
through x the same state is always assumed there. Let that state be qx, and let the symbol at
x be σx. Denote with ρ1 the run of the path automaton according to the transition function δ′,
on the path P1, and similarly denote with ρ2 the run on P2. The children of x, will be assigned
a state by the runs ρ1 and ρ2, say q0 at the left child x2, and q1 at the right child x1. Hence
δ′(qy, σy, 0) = q0 and δ′(qy, σy, 1) = q1. By the definition of a path automaton, this can be the
case only if δ(qy, σy) = (q0, q1) and since A is deterministic only one output is possible. This
means there is a successful run of the automaton A on T as well, since the above hold for any
node such as x. The latter follows from the fact that the two paths P1 and P2 were chosen
arbitrarily.

Theorem 2.3.12. Let L be any tree language of binary ordered trees, recognized by some de-
terministic top-down tree automaton A. There exists a GL formula ψL such that for any binary
ordered tree T , T |= ψL if and only if T ∈ L.

Proof. Fix a deterministic top-down tree automaton A and let B be the path automaton asso-
ciated with A. We define a word automaton C = (Q,ΣC , qi, γ,Qf) according to the following.
The state space is the same as the one used for A and B and ΣC = {(σ, i) | σ ∈ Σ, i ∈ {0, 1}}.
Furthermore we define the transition function γ of C, to be such that for any q, (σ, i) and q′, it
is the case that γ(q, (σ, i)) = q′ if and only if δ′(q, σ, i) = q′.

Remember that the representation of binary ordered trees in GL is using indexed labels on
edges as symbols for the alphabet, and the index indicates whether the edge leads to the left
or right child of a node. The two automata B and C are essentially the same and according to
Theorem 2.2.1, any language accepted by some regular word automaton is GL definable. Let
I be the path language or equivalently word language, accepted by the automaton C, and let
r and φr be the regular expression and the GL formula corresponding to it, respectively. We
define ψL to be the following formula:

ψL = ∀x, y
(
root(x) ∧ leaf(y)→ ¬

(
> | (Path(x, y) ∧ ¬φr)

))
.

In the above formula Path(x, y) is defined as usual. In addition, ψL states that we cannot
find a subgraph that is exactly a path from the root to a leaf, that does not satisfy φr. In other
words, ψL expresses that any path from the root to a leaf satisfies φr and therefore it is accepted
by the automaton C. The theorem follows by the definition of C and Lemma 2.3.11.

CHAPTER 2. GRAPH LOGIC 50

Hence the class of tree languages definable in GL contains any boolean combination of binary
ordered tree languages accepted by some deterministic top-down automaton. This result can be
extended to ranked trees in general for any rank k.

2.3.2 Tree Walking Automata

Aho and Ullman introduced the tree-walking automata in [AU71], and although it is clear that
the set of languages they can define is a subset of regular tree languages, the other inclusion
remained open until Bojańczyk et al. gave a negative answer to the problem in [BC08]. This
means that the set of tree languages definable by tree-walking automata is a proper subset of
regular tree languages, and showing that GL over trees is subsumed by tree-walking automata
would be sufficient for separating GL from regular tree languages. On the contrary, however, we
show that the class of GL-definable tree languages is not included in the class of tree languages
accepted by tree-walking automata. In particular, we show that the separating language used
by Bojańczyk et al., which is not accepted by any tree-walking automaton, is GL definable.

A tree walking automaton is one that informally starts at the root of a binary tree and
traverses the tree visiting each node three times. Once when traveling down the vertices of the
tree, once when going up and having visited all the nodes of the left subtree, continuing to the
nodes of the right subtree, and finally once more when having finished visiting the nodes of the
latter as well.

A tree-walking automaton is defined as a tuple A = 〈Q,Σ, qI ,∆〉, where Q is the set of
states, Σ is the alphabet used to label the nodes of the tree, qI ∈ Q is the initial state and ∆
is the transition relation. When the automaton is over some node x of the tree, it can check
whether x is a right child, a left child, a root or a leaf and it can also check the label of the node.
According to the results of such possible tests and the state the automaton has assumed over
the particular node x, the transition relation describes possible combinations of what command
to execute and what state to assume next. The commands range over moving to the parent of
x, or moving to the left or right child of x.

Every tree-walking automaton can be translated into a bottom-up tree automaton, and
therefore any language accepted by some tree-walking automaton is a regular tree language.
Bojańczyk et al. showed in [BC08] that this inclusion is actually proper.

Definition 2.3.13. Let T be some binary tree of alphabet Σ = {a, b}, where the label a is allowed
only at the leaves of T . The branching structure of T is defined as the tree S obtained from T ,
by keeping all the leaves labelled with a, and the closest common ancestors (of minimum height)
between any two such leaves labelled with a, and finally contracting the paths between these nodes
that exist in T , into single edges.

Let K be the language that contains the binary trees for which it is the case that for every
leaf labelled with a there is an even number of proper ancestors in the branching structure of
the tree.

CHAPTER 2. GRAPH LOGIC 51

Theorem 2.3.14 (Bojańczyk et al., [BC08]). Tree-walking automata, even nondeterministic
ones, do not capture all regular tree languages. In particular, there is no tree-walking automaton
accepting the language K.

We proceed by showing that binary tree languages definable in GL are not contained in the
set of languages accepted by tree-walking automata. In particular, we prove that K is definable
in GL. Consider the following GL formulae that define the binary tree language K.

TwoBranches = ∀z
(
fork(z)→ ∃!w (fork(w) ∧ (Path(z, w) ∨ Path(w, z) | >))

)
,

Split = TwoBranches | TwoBranches,
Trunk(x, y) = ∀z (fork(z)→ (Path(x, z) | Path(z, y) | >))∧

∧Split ∧ root(x) ∧ leaf(y) ∧ Connected,
fork-roots = ∀x (root(x)→ fork(x)),
Even(x, y) = (fork-roots | Trunk(x, y)),

EvenBranch = ∀x, y ((root(x) ∧ leaf(y))→ Even(x, y)),

Only-a = ∀x, y
((

leaf(x) ∧ (E(y, x) | >)
)
→ (Ea(y, x) | >)

)
,

Only-b = ∀x, y
((

leaf(x) ∧ (E(y, x) | >)
)
→ (Eb(y, x) | >)

)
,

ϕK = (Only-b | (Only-a ∧ Connected ∧ fork-roots ∧ EvenBranch)).

The formula TwoBranches above, is satisfied by graphs comprising disjoint subtrees where
each subtree has exactly 2 forks. We remind the reader that a fork is a vertex with 2 children.
The formula Trunk(x, y) is satisfied by any tree where x is the root, y is a leaf, every fork in the
tree is in the path from x to y, and finally the tree can be split into two subgraphs that satisfy
TwoBranches. Therefore every tree of this form that satisfies Trunk(x, y) has an even number
of forks.

The formula EvenBranch with the help of Even(x, y), expresses that if x and y is the root and
a leaf of a tree respectively, then this tree can be split into a forest and a connected tree, where
each tree in the forest has a root that is a fork, and the connected tree satisfies Trunk(x, y).
Thus, the formula ϕK expresses that in the subgraph S of a tree T resulting from removing
all subgraphs with leaves labelled b and leaving all leaves of T labelled a, for every leaf y of
the remaining tree S there is a subtree of S that satisfies Trunk(x, y), with x the root of S.
Essentially, the number of forks in S between the root and any leaf is of even number.

Theorem 2.3.15. A binary tree T satisfies the GL formula ϕK if and only if T is in the tree
language K.

Proof. Let S be the branching structure of a tree T and rS the root of S. We call a substructure
of a tree T the extended branching structure of T if it can be obtained from the branching
structure S of T by replacing each edge e of S, with endpoints v1, v2, with a path of the same
length as the path in T between the vertices corresponding to v1 and v2, and furthermore the
vertex corresponding to rS is the root of the extended branching structure of T .

CHAPTER 2. GRAPH LOGIC 52

Note first that a tree T satisfies (Only-b | (Only-a∧Connected∧ fork-roots∧ψ)) if and only
if its extended branching structure satisfies ψ. This is because if T = T1 | T2 where T1 |= Only-b
and T2 |= Only-a∧Connected∧ fork-roots∧ψ then T1 contains only leaf edges that are labelled
with b and T2 contains only leaf edges that are labelled with a. Therefore, since a appears only
at the leaves of T2, and since T2 is connected, it must be the case that T2 is a subtree of T and
the formula fork-roots ensures that it is the extended branching structure of T .

It remains to show that the extended branching structure of a tree T satisfies EvenBranch
if and only if the number of proper ancestors of any leaf in the branching structure S of T , is
even. The latter condition is exactly what is needed for a tree T to be in the language K.

For the if direction, suppose that the branching structure of T satisfies the required con-
dition. Then the path between any leaf and the root of the branching structure has an even
number of nodes. These nodes in the branching structure always have two children unless they
are leaves. In the extended branching structure, these nodes correspond to the nodes with two
children, and therefore the extended branching structure must have an even number of forks on
the path from the root to any leaf. We need to prove that this is what the formula Even(x, y)
asserts about the extended branching structure, with x being the root of it and y any leaf.

Let B be the extended branching structure of T with root x and fix a leaf y. Let X be the
nodes on the path from x to y that have two children. Note that the nodes in X correspond
exactly to the nodes on the path from y to rS in the branching structure S. Remove from B

all subtrees rooted at nodes with two children that are descendants of the nodes in X in B,
and are such that contain no node x ∈ X. This is a tree B′ where for any two nodes with two
children, one is an ancestor of the other. Finally split B′ into two substructures each containing
only connected components, each with exactly two nodes from X. This is possible from the
assumption. The transformation above is exactly what the formula Even(x, y) asserts and hence
B satisfies EvenBranch.

For the only if direction assume that the extended branching structure B of T satisfies
EvenBranch. Then for the root x′ and any leaf y′ of B the following holds. One can remove
subtrees of B each with a root being a fork so that the remaining graph is a connected one such
that for any two forks, one is an ancestor of the other, and x′ and y′ are in the remaining sub-
graph. Let this tree be B′. The formula Split asserts that B′ can be split into two substructures
each with connected components that have exactly two forks. Since these forks are the ancestors
of y′ in the branching structure S of T , the above can only hold if the number of ancestors in S
is even.

As previously stated, this result establishes that GL-definable binary tree languages are not
included in the ones definable by tree-walking automata. For our purposes this shows that
tree-walking automata cannot be used to prove that the class of GL-definable tree languages is
a strict subset of the class of regular tree languages. It does however show that there are GL
definable classes of trees that are not definable by tree walking automata.

Chapter 3

GL(MSO on Forests

In this chapter we present the main result of this thesis, together with a few of its consequences.
In particular we show that GL is strictly less expressive than MSO over finite graphs in general,
and the case is so even when restricted to the class of forests. Whether GL is strictly less
expressive than MSO on trees remains open. Because of the properties expressible in MSO
being nonlocal, it is expected that any hard enough property on trees would require at least one
use of the separation connective of GL, and in particular applied on the whole tree, resulting in
many smaller subtrees in each of the two subgraphs. In other words, one would expect a splitting
of the tree, not in just one particular vertex, but in many. The two resulting subgraphs in such
a case though, would be forests, and as stated above, we show that over forests GL is strictly
less expressive. Therefore we conjecture that GL does not define all regular tree languages.

GL was introduced to work over graphs where edges can have a labelling, but the main result
below is on forests of only 1 label, namely a graph in the traditional sense, and thus holds for
both the class of graphs with no labelling and the class of graphs with labelling.

In addition, we establish that GL is not closed under most natural mappings defined on
graphs, such as FO definable interpretations and MSO transductions. Finally, in the last section
we show, how our main result can be used to show that Separation Logic without the magic
wand operator is strictly less expressive than MSO on memory heaps, with the latter being
structures representing pointer variable mappings and are used to reason about programs that
involve pointers for memory management.

3.1 Main Theorem

We show that GL is strictly less expressive than MSO over forests, structures comprising disjoint
trees. The property we show that is not expressible in GL, but is definable in MSO, is that of
a forest containing only trees that have 1 (mod 3) number of leaves. This is accomplished by
giving a winning strategy of Duplicator for a GL game on appropriately constructed forests, as
defined below. Essentially, the forests are composed of a binary tree and a set of disjoint strings.
The existence of these strings is crucial to the proof, and this is shown explicitly in the next

53

CHAPTER 3. GL(MSO ON FORESTS 54

︷ ︸︸ ︷

t ′

︷ ︸︸ ︷

︷
︸︸

︷

r t

length s
teeth of length s

n teethCn,s

segment of length s

Figure 3.1: The comb Cn,s.

section (Section 3.2) where these structures are interpreted to single trees on which the property
is GL definable. Therefore, the question of whether GL can define all regular tree languages
remains open. We proceed by giving a few definitions required for the construction of the forests
on which the GL game is played.

Definition 3.1.1. A comb is a binary tree T such that for any two forks v1 and v2 in T , either
v1 is an ancestor of v2 or v2 is an ancestor of v1.

Let C be a comb with root r. As long as there is at least one fork, there are two leaves t
and t′, such that all forks of C lie in the path from r to t and in the path from r to t′. For each
such comb C, we fix t to be one of these two leaves, and define the path from r to t to be the
spine of C. Each fork a in a comb C has two children, one of which is in the spine of C, and
the other is the root of a subtree of C that consists of a single path to a leaf b. For each such
fork a, we call the path from a to b, a tooth of C. Note that the number of leaves of C is one
more than the number of teeth of C.

Suppose that a and a′ are two forks such that no fork lies in the path from a to a′. We call
such two forks successive and the path between them is called a segment as shown in Figure 3.1.
Furthermore, the segment from a to a′ together with the tooth attached to a′ is called a block.
For any n, s ∈ N, we denote by Cn,s the comb with spine r-t that has n teeth (or equivalently
has n forks), and the length of each segment and of each tooth is s. Furthermore, if a′ is the
fork of Cn,s such that the path from a′ to t contains no forks, the length of this path is also s.
The distance from the root to the first fork is also s. Similarly, for 1 ≤ i ≤ n, we denote by C−i

n,s

the comb that is isomorphic to the comb Cn,s, but with the i-th tooth removed. In other words,
the comb C−i

n,s has n− 1 teeth and the segment from the (i− 1)-th tooth to its successive one is
of length 2s. Finally, we denote by Ss a string of length s, where a string is a graph consisting
of a single path.

Lemma 3.1.2. For each k ∈ N, there exist s, n, l ∈ N, such that:

1. for any w ≥ s and any m, Sw ≡MSO
k Sw+ms,

CHAPTER 3. GL(MSO ON FORESTS 55

2. for any t > n, and any m, Ct−2l,ms ≡MSO
k Ct+2,ms.

Proof. For the statement (1), let Φk be the set of all MSO formulae of rank k up to equivalence,
over the class of strings, and for each ϕ ∈ Φk, let Lϕ be the string language that ϕ defines.
Notice that the set Φk is finite. By the Pumping Lemma, for each such language there exist
p, q ∈ N such that for any string Sw of length w, where w > p, and for all m, Sw ∈ Lϕ if and
only if Sw+mq ∈ Lϕ, which is of length w +m · q. Therefore for any string S of length w > pq

and any m, Sw ∈ Lϕ if and only if Sw+mpq ∈ Lϕ. For each language L that is equal to Lϕ, for
some ϕ ∈ Φk, let sL be equal to the appropriate p · q, and let s of the Lemma be the product of
all those sL. Then for each Lϕ and each w ≥ s,

Sw ∈ Lϕ ⇔ Sw+ms ∈ Lϕ

and therefore Sw ≡MSO
k Sw+ms.

For (2), fix k, let s be as above, and let Φk be the set of MSO formulae of rank k up to
equivalence. Since Φk is finite, there exists minimum m and r such that the combs Cm,s ≡MSO

k

Cm+r,s. Notice that by a composition argument, as by Lemma 1.2.3, for any m′′, Cm′′+m,s ≡MSO
k

Cm′′+m+r,s, and therefore for all m′ ≥ m it is the case that Cm′,s ≡MSO
k Cm′+r,s ≡MSO

k Cm′+2r,s.
Let 2l = 2r − 2 and n = m+ 2l.

One consequence of Lemma 3.1.2 is that Cn,s ≡MSO
k C−i

n+1,s, for any n and the s given by
the Lemma. This is because there are subgraphs C1, C2 and S such that S is a string of length
s, and Cn,s = C1 ⊕c1 S ⊕c2 C2 for some vertices c1, c2, and similarly there are subgraphs C ′

1, C
′
2

and S′, with S′ a string of length 2s, such that C−i
n+1,s = C ′

1 ⊕c′1 S
′ ⊕c′2 C

′
2 for vertices c′1, c

′
2. In

addition to that, C1
∼= C ′

1 and C2
∼= C ′

2, and by (1) of Lemma 3.1.2, Ss ≡MSO
k S2s. Therefore,

by the composition argument given by Lemma 1.2.3, Cn,s ≡MSO
k C−i

n+1,s.

Lemma 3.1.3. For any k ∈ N, there exists λ, such that if A is the disjoint union of λ pairwise
≡MSO
k -equivalent structures, and B is the disjoint union of λ + 1 such structures, each also

equivalent with respect to ≡MSO
k to the ones in A, then A ≡MSO

k B.

Proof. Follows from Lemma 2.2.2

Theorem 3.1.4. The class of forests that contain only trees with 1 (mod 3) number of leaves,
is not definable in GL.

Proof. Let F be the class of forests that contain only trees which have 1 (mod 3) number of
leaves. We show that for any k, there exist forests F and G, such that F ∈ F , G /∈ F and
Duplicator wins the k-round game on F and G. By Corollary 1.5.5, this is sufficient for showing
that the class F is not GL definable.

Fix k ∈ N such that k ≥ 2, and let s, n, l be as given by the Lemma 3.1.2, for k. Let also
λ be as given by Lemma 3.1.3 for k. Notice that by Lemma 3.1.2, for every w ∈ N, there is
w′ ∈ {1, . . . , 2s}, such that Sw ≡MSO

k Sw′ . We define N =
∏

1≤i,j≤2s(i + j). Then N has the
property that for any i, j ≤ 2s, (i+ j) | N .

CHAPTER 3. GL(MSO ON FORESTS 56

.

︸ ︷︷ ︸
λ·23skS(2s+1)

. . .

︸ ︷︷ ︸
λ·23skS(2s+2)

. . .

︸ ︷︷ ︸
λ·23skS(3s)

.

︸ ︷︷ ︸
λ·23skS(2s+1)

. . .

︸ ︷︷ ︸
λ·23skS(2s+2)

. . .

︸ ︷︷ ︸
λ·23skS(3s)

F






G






Cfk+2,N






Cfk,N






Figure 3.2: The forests F and G.

For each k let fk = (25 · λs2N)k · 6n · λ · 26N . For k ∈ N, we define the forests F and G to
be as follows.

F = Cfk,N ⊕
⊕3s

i=2s+1(λ · 23skSi),
G = Cfk+2,N ⊕

⊕3s
i=2s+1(λ · 23skSi).

In both forests F and G, the collection of strings isomorphic to
⊕3s

i=2s+1(λ · 23skSi), is
called the noise of the forests F and G respectively. Each individual string Si for some i ∈
{2s+ 1, . . . , 3s}, is called a noise-string, and when such a noise-string is of length h, for h ∈ N,
it is called an h-noise-string. The forests F and G are depicted in Figure 3.2.

By Theorem 1.5.3, for each ` ≥ 2, and for any two graphs H1 and H2, H1 ≡MSO
` H2 implies

that H1 ≡GL
`−2 H2. In the following, to simplify notation we show that for any k ≥ 2, Duplicator

can win the (k − 2)-round GL game on F and G. To show that F ≡GL
k−2 G, we establish that

Duplicator can maintain the following condition in the (k − 2)-round game on F and G.

If the game position after i rounds is (Fi, ā) and (Gi, b̄) then one of the following
conditions hold for k′ = k − i.

1. (Fi, ā) ≡MSO
k′ (Gi, b̄) or,

2. Fi = F ′ ⊕c1,c2 F ′ and Gi = G′ ⊕d1,d2 G′, where:

(a) (F ′, c1, c2) ∼= (Cfk′ ,N , r, t)⊕
⊕3s

i=2s+1(λ · 23sk′Si),

(b) (G′, d1, d2) ∼= (Cfk′+2,N , r, t)⊕
⊕3s

i=2s+1(λ · 23sk′Si),

(c) no element of ā is in F ′ and no element of b̄ is in G′, and

CHAPTER 3. GL(MSO ON FORESTS 57

(d) (F ′, ā, c1, c2) ≡MSO
k′ (G′, b̄, d1, d2).

Notice that in the above, if j is the number of remaining rounds in the game, then k′ = j+2. The
condition above essentially states, that at each round of the game with k′− 2 rounds remaining,
either both graphs are ≡MSO

k′ -equivalent, and thus by Theorem 1.5.3, Duplicator wins the game,
or the following holds. In both graphs Fi and Gi after i rounds, there exists a subgraph F ′

and G′ respectively, composed of a large enough comb and enough noise-strings. The set of
noise-strings are identical in both subgraphs, but the combs are of different sizes, namely in one
of them the number of teeth is 0 (mod 3), whereas in the other it is 2 (mod 3). Furthermore, the
complements of these subgraphs F ′ and G′ inside Fi and Gi are ≡MSO

k′ -equivalent, and if they
are connected to the rest of the structure, they are connected through the edges of the comb.
We proceed by showing how Duplicator can guarantee this condition.

Clearly, if (Fi, ā) ≡MSO
k′ (Gi, b̄), then for any move that Spoiler can make, Duplicator has a

response that ensures this condition still holds at the next stage. So, we need to prove that if
(2) holds, Duplicator can respond to any move by Spoiler and guarantee that the condition still
holds. Notice that by definition, condition (2) holds in the beginning of the game, and that even
if the game ends with condition (2) being true, Duplicator still wins the game.

In the following, if C is a comb with spine c1-c2, and x, y are two vertices in the spine of C,
we denote by [C]xy the part of the comb between x and y. In other words, [C]xy is such that there
are C1, C2 such that (C, c1, c2) ∼= (C1, c1, x)⊕x ([C]xy , x, y)⊕y (C2, y, c2). For short, we may write
the latter as C ∼= C1 · [C]xy · C2.

We denote by (D, d1, d2) the comb isomorphic to (Cfk′+2,N , r, t) inside the graph G′. We
denote similarly by (C, c1, c2) the subgraph of F ′ that is isomorphic to the comb (Cfk′ ,N , r, t).
By FS and GS we denote the remaining of the graphs F ′ and G′ respectively, that are both
isomorphic to

⊕3s
i=2s+1(λ · 23sk′Si). We therefore have that F ′ = C ⊕ FS . Similarly for G′ =

D ⊕GS .
Duplicator’s strategy for the second case of the condition is as follows. Let us first consider

the case where Spoiler makes a first order move and let us assume that Spoiler chooses a vertex
on the graph Fi. The argument is similar for when he chooses a vertex on the graph Gi. By
(2), Fi = F ′ ⊕c1,c2 F ′. If he chooses to pick a vertex in F ′, then, since (F ′, ā, c1, c2) ≡MSO

k′

(G′, b̄, d1, d2), Duplicator can use the strategy for the game on F ′ and G′ and respond to the
vertex Spoiler chose. Duplicator then, can define subgraphs F ′1 and G′1 of F ′ and G′ respectively
such that

F ′1 ∼= (Cfk′−1,N
, r, t)⊕

⊕3s
i=2s+1(λ · 23s(k′−1)Si), and

G′1 ∼= (Cfk′−1+2,N , r, t)⊕
⊕3s

i=2s+1(λ · 23s(k′−1)Si).

which are the appropriate subgraphs for k′ − 1 and can be such that F ′ − F ′1 ∼= G′ − G′1 in
order to ensure that the condition holds at the next round. Similarly, if Spoiler chooses to pick a
vertex in FS , the subgraph of F ′ consisting of the noise, a response can be given by Duplicator,
since FS ∼= GS and subgraphs isomorphic to F ′1 and G′1, with F ′ − F ′1 ∼= G′ − G′1, can be
found. If Spoiler chooses a vertex c in C, then there are subgraphs C1 and C2 of C, such that

CHAPTER 3. GL(MSO ON FORESTS 58

C = C1 ⊕c C2, and at least one of C1 and C2 has a subgraph isomorphic to Cfk′−1,N
. Suppose

C2 has such a subgraph. Therefore, Duplicator can respond with a vertex d in D, such that
D = D1 ⊕d D2, for some subgraphs D1, D2 of D, where C1

∼= D1. Then subgraphs isomorphic
to F ′1 and G′1 can be defined, similarly to the cases above, such that the condition holds in the
next round.

We now proceed to the more interesting case where Spoiler decides to make a splitting move.
A colouring move by Spoiler is considered in cases depending on how he colours the subgraph F ′

or G′. The argument is similar for whichever graph Spoiler chooses to colour, and therefore we
assume that he colours Gi, as in this case the argument is slightly more interesting. Each edge
of the graphs is coloured either black or white, and therefore, for each noise-string of length h,
in either Fi or Gi, there are at most 2h ways of how its edges are coloured. Since at each round
there are more than λ · 23sk′ noise-strings of length h, there must be a colouring that is repeated
on many noise-strings of length h. We call the most frequently occurring colouring c (or any
one of them if there is a tie), the primary colouring of the noise-strings of length h. Notice
that at any round and any h, a primary colouring colours more than λ noise-strings of length
h identically. In what follows, after Fi (respectively Gi) has been split into two subgraphs by
Spoiler or Duplicator in the colouring move, a component is a maximally connected component of
Fi (respectively Gi) in one of the two subgraphs. Similarly a string-component is a component
that in addition is a string. A subgraph of Fi or Gi is said to be coloured entirely in black
(respectively white) in a colouring move, if all the edges of the subgraph are coloured in black
(respectively white).

We give an outline of the main procedure that Duplicator applies as a reply to Spoiler’s moves
in many of the cases below. Since (2) holds at the current stage we know that (G′, c1, c2) ∼=
(Cfk′+2,N , r, t)⊕

⊕3s
i=2s+1(λ · 23sk′Si).

Note that Duplicator’s reply is composed of a colouring of C,FS and F ′. For FS and F ′, such a
colouring is given by the strategy in the GL game on FS and GS , and on F ′ and G′ respectively,
since (F ′, ā, c1, c2) ≡MSO

k′ (G′, b̄, d1, d2) and FS ∼= GS . By Lemma 1.2.5, it is sufficient for
Duplicator to provide a colouring of C as a response to the colouring of D. Duplicator defines
vertices c3, c4 in C and d3, d4 in D such that, for some C1, C2, C3 and D1, D2, D3:

(C, c1, c2) = (C1, c1, c3)⊕c3 (C2, c3, c4)⊕c4 (C3, c4, c2),
(D, d1, d2) = (D1, d1, d3)⊕d3 (D2, d3, d4)⊕d4 (D3, d4, d2),

and such that (C1, c1, c3) ≡MSO
k (D1, d1, d3) and (C3, c4, c2) ≡MSO

k (D3, d4, d2). Furthermore,
Duplicator ensures the following for C2 and D2. Given a choice of vertices d3 and d4 in D, then
either the black and white components of D1 and D3 are disconnected from the ones in D2, or
not. In the first case, Duplicator ensures the same for the vertices c3 and c4, and also makes sure
that all the black and white components of D2 appear in equal numbers up to ≡MSO

k -equivalence
in C2, and that C2 has additional black and white components, all of which appear more than
λ times up to ≡MSO

k -equivalence in D1, D3 and GS , and thus they also appear enough times in
C1, C3 and FS , as described in Lemma 2.2.2, by definition. The resulting white (respectively

CHAPTER 3. GL(MSO ON FORESTS 59

black) subgraphs of F ′ and G′ are in this case ≡MSO
(k−1)-equivalent.

In the second case, Duplicator ensures that the spine of C2 is ≡MSO
k -equivalent to the whole

of D2, and the teeth of C2 are split into white and black components that appear enough times
up to ≡MSO

k -equivalence in C1, C3 and FS , as described by Lemma 2.2.2, and the splitting is
such that the resulting components from the teeth of C2 are disconnected from the spine of C2.
Again, the resulting white (respectively black) subgraphs of F ′ and G′ are ≡MSO

(k−1)-equivalent.
We call the vertices c3, c4 of C and d3, d4 of D, the bordering vertices of C and D respectively.

The structures C2 and D2 which are of more importance in the strategy are called middle
structures of C and D, and finally, the structures C1, C3 and D1, D3 are called the surrounding
structures of C and D. We refer to this procedure applied by Duplicator, as the main procedure.
Finally, using concatenation the above equations may be written as:

C = C1 · C2 · C3,

D = D1 ·D2 ·D3,

or as
C = [C]c1c3 · [C]c3c4 · [C]c4c2 ,
D = [D]d1d3 · [D]d3d4 · [D]d4d2 .

We split the argument according to the strategy Spoiler follows in colouring the graph Gi,
and in particular its subgraph D.

Case 1: Spoiler chooses to colour in black some substring of a segment in D, such that this
substring is longer than s edges.
Case 1.1: One of the following holds:

(a) For all h ∈ {2s + 1, . . . , 3s}, the h-noise-strings are primarily coloured entirely white by
Spoiler in G′.

(b) There exist h, h′ ∈ {2s + 1, . . . , 3s}, such that the h-noise-strings are primarily coloured
entirely white by Spoiler in G′, and the h′-noise-strings are primarily coloured black.

(c) There exists h ∈ {2s + 1, . . . , 3s}, such that the primary colouring of the h-noise-strings
uses both colours.

Suppose there exist vertices x1, x2 inside the same segment of the j-th block of D, for
some j ∈ {1, . . . , fk′ + 2}, such that the string w from x1 to x2 is coloured in black, and
such that |w| > s. The strategy of Duplicator is as follows. Duplicator applies the main
procedure discussed above and she defines x1 and x2 to be the bordering vertices of D. Then
D = [D]d1x1

· [D]x1
x2
· [D]x2

d2
.

By the definition of fk′ , [D]d1x1
or [D]x2

d2
has a subgraph isomorphic to Cf(k′−1)+2,N . Without

loss of generality, assume this is so for [D]x2
d2

. Duplicator then defines the bordering vertices of
C as follows. She picks a vertex y1 inside the j-th block, at the same distance from the tooth
preceding it as x1 is from the tooth preceding it inside the j-th block of D. Duplicator picks

CHAPTER 3. GL(MSO ON FORESTS 60

the second bordering vertex y2 to be the vertex at the (j+ 2l)-th block of C, at a distance from
the preceding tooth, as x2 is from its preceding tooth in the j-th block of D. Then it holds that
[C]c1y1

∼= [D]d1x1
and [C]y2c2 ≡MSO

k [D]x2
d2

. The latter is because [C]y2c2 has simply 2l + 2 less teeth
than [D]x2

d2
, and therefore follows from Lemma 3.1.2.

Duplicator has to colour [C]y1y2 in such a way that the connected components used, also
appear in the graph G′. Note that [D]x1

x2
is isomorphic to a string of length |w|. The spine

of [C]y1y2 is isomorphic to a string of length 2l · N + |w|, which according to Lemma 3.1.2, it
is ≡MSO

k -equivalent to a string of length |w|, such as [D]x1
x2

. Then Duplicator colours in black
the spine of [C]y1y2 . According to how the noise-strings are coloured by Spoiler in G′, Duplicator
hides the existence of the teeth of [C]y1y2 , in the following way.

If (a) holds, more than λ of the 3s-noise-strings are coloured entirely white. Therefore,
colouring all the teeth in white as well, makes the two resulting subgraphs ≡MSO

(k′−1)-equivalent.
If (b) holds, the h-noise-strings are primarily coloured entirely white and the h′-noise-strings

are primarily coloured black. Therefore, there exist hw and hb less than or equal to 2s, such
that Shw ≡MSO

k Sh and Shb
≡MSO
k Sh′ . Since (hw + hb) | N , Duplicator can split the teeth of

[C]y1y2 into strings whose lengths alternate between h and h′ up to ≡MSO
k -equivalence, starting

with h. The resulting black and white subgraphs are ≡MSO
(k′−1)-equivalent.

Finally if (c) holds, the h-noise-strings are primarily coloured using both colours. Then in
each h-noise-string, there are substring-components of length h1 and h2 coloured in white and
black respectively. There exist hw and hb less than or equal to 2s, such that Shw ≡MSO

k Sh1 and
Shb
≡MSO
k Sh2 . Since (hw +hb) | N , the teeth of [C]y1y2 can be split up into strings whose lengths

alternate between h1 and h2 up to ≡MSO
k -equivalence. Therefore, Duplicator can colour the teeth

using strings that are ≡MSO
k -equivalent to the h1-noise-strings and h2-noise-strings respectively,

starting at the top with the white coloured h1. The resulting subgraphs are ≡MSO
(k′−1)-equivalent.

Case 1.2: For all h ∈ {2s+ 1, . . . , 3s}, the h-noise-strings are primarily coloured black.
Case 1.2.1: Spoiler chooses to colour in white some part of a segment in D, that is larger than
s edges.

This case is analogous to Case 1.1 above, replacing white with black and vice versa.

Case 1.2.2: No substring of a segment, longer than s edges is coloured white in D by Spoiler.
This case is split further into the following subcases.

Case 1.2.2.1: Spoiler colours D in such a way that there are less than or equal to 8 · λ · s2 · N
blocks in D that have both edges coloured in white and edges coloured in black.

Let ν = 8 · λ · s2 ·N . Let B1, . . . , Bν′ , for ν ′ ≤ ν, be the blocks in D that are coloured using
both colours. Let also D0, . . . , Dν′ be such that for each i ∈ {1, . . . , ν ′}, Di is the subgraph
between Bi and Bi+1, and D0 is before B1. In other words, let the following hold:

D = D0 ·B1 ·D1 ·B2 · . . . ·Bν′ ·Dν′ .

CHAPTER 3. GL(MSO ON FORESTS 61

Then, by definition of fk′ , at least one of the Di has a subgraph isomorphic to the comb
Cf(k′−1)+2,N . This is because, even if the Bi are spread out as much as possible from each other,
and even if ν ′ = ν, there is i such that Di comprises at least (fk′ + 2− ν)/(ν + 1) many blocks.
But (fk′ + 2− ν)/(ν + 1) > f(k′−1) + 2. Fix i′ ∈ {0, . . . , ν ′}, such that Di′ contains a subgraph
isomorphic to Cf(k′−1)+2,N .

Each Dj for j ∈ {0, . . . , ν ′}, is coloured entirely in black, as the blocks B1, . . . , Bν′ are the
only ones coloured using both colours, and because Dj cannot be coloured entirely in white,
since there is no substring of a segment larger than s edges coloured in white, by assumption.
Duplicator’s strategy then is as follows. Let DC be a subgraph of Di′ that is isomorphic to the
comb Cf(k′−1)+2,N , and let x1, x2, y1 and y2 be the vertices such that

D = [D]d1x1
· [D]x1

x2
· [D]x2

d2
,

C = [C]c1y1 · [C]y1y2 · [C]y2c2 ,

where [C]c1y1
∼= [D]d1x1

, [C]y2c2 ∼= [D]x2
d2

and DC = [D]x1
x2

. We define CC to be the subgraph [C]y1y2 .
By definition of the above, (CC , y1, y2) is isomorphic to (Cf(k′−1),N

, r, t). By assumption, there
are at least λ · 23s(k′−1) copies of Sh for each h ∈ {2s + 1, . . . , 3s}, that have been coloured in
black.

If Duplicator colours entirely in black the subgraph CC , then according to the ≡MSO
k′ -

equivalence for the rest of Fi, the white subgraph of Fi is≡MSO
(k′−1)-equivalent to the white subgraph

of Gi, and the black subgraphs of both maintain the condition (2).

Case 1.2.2.2: Spoiler colours more than 8 · λ · s2 ·N blocks using both colours, and there exist
more than λ white string-components of some size β up to ≡MSO

k -equivalence in the colouring
of D.

By assumption there is a substring w in a segment of D, with endpoints x1, x2, such that w
is coloured in black, and |w| > s. Let x1 and x2 be in the segment of the j-th block. Duplicator
follows the main procedure, and defines the middle structure [D]x1

x2
of D, using the bordering

vertices x1 and x2. The argument is similar for whether [D]d1x1
or [D]x2

d2
has a subgraph isomorphic

to Cf(k′−1)+2,N , so let this be [D]x2
d2

. Then Duplicator defines y1 to be the vertex on the j-th
block of C, with equal distance from the tooth before it, as x1 is from the tooth before it in D.
Similarly, she defines y2 to be the vertex on the (j+2l)-th block, with the same distance from the
tooth before it as x2 is from its preceding tooth. Therefore [C]c1y1

∼= [D]d1x1
and [C]y2c2 ≡MSO

k [D]x2
d2

according to Lemma 3.1.2.
By definition of the vertices x1, x2, y1 and y2, it holds that the spine of [C]y1y2 is isomorphic to

S|w|+2lN and it is hence ≡MSO
k -equivalent to the substring w of D, by Lemma 3.1.2. Duplicator

colours in black the spine of [C]y1y2 . By assumption, there is a white string-component that ap-
pears more than λ times in the colouring of D, up to ≡MSO

k -equivalence. Notice, that since [D]x1
x2

is a string coloured in black, it follows that this white string-component appears more than λ

times in the colouring of [D]d1x1
and [D]x2

d2
. Thus, such a white string-component appears enough

CHAPTER 3. GL(MSO ON FORESTS 62

times, up to ≡MSO
k -equivalence, as described by Lemma 2.2.2, in the colouring of [C]c1y1 and [C]y2c2 .

To colour the teeth attached to the spine of [C]y1y2 , Duplicator uses the white string-component
above, together with the black h1-noise-strings, for some h1 ∈ {2s + 1, . . . , 3s}, ensuring that
the resulting black components of the teeth are not connected to the spine of [C]y1y2 . In this way,
the resulting white and black subgraphs of Fi and Gi are ≡MSO

(k′−1)-equivalent.

Case 1.2.2.3: Spoiler colours more than 8 · λ · s2 ·N blocks using both colours, but there exists
no white string-component that appears more than λ times up to ≡MSO

k -equivalence, in the
colouring of D.

Consider a vertex d that is a fork in D, such that the component d is on, is coloured white
in D. This component has in general the shape of the letter ‘T’. In other words, it can comprise
parts of the two segments to which d is attached together with part of the tooth to which it is
attached. Components of this form will be referred to as T-shaped components. Notice that the
isomorphism type of the T-shaped components is determined by the length of the portion of the
segments and the tooth included, and since, by assumption, there cannot be a white substring
that is part of a segment and larger than s edges, and since the tooth has N edges, there are at
most s2N isomorphism types for the possible T-shaped components coloured entirely white in
the colouring of D.

There are at most 2s strings up to ≡MSO
k -equivalence, and therefore, by assumption that no

string-component appears more than λ times in the colouring of D up to ≡MSO
k -equivalence,

there can be at most 2 · λ · s white string-components in the colouring of D, including the
string-components that may appear in the colouring of the teeth of D. Therefore there are
at most 4 · λ · s blocks that contain part of those white string-components. Hence, at least
8 · λ · s2 ·N − 4 · λ · s > 4 · λ · s2 ·N blocks will contain part of a T-shaped component coloured
white.

Each such T-shaped white component lies in at most 2 blocks, and therefore there are at
least 2 · λ · s2 ·N white T-shaped components, and since there are at most s2 ·N isomorphism
types for the possible white T-shaped components, there must be an isomorphism type that
appears at least λ times in the colouring of D. Let this type be τ and let j be such that a white
T-shaped component of type τ is at the junction between the j-th and (j + 1)-th blocks. Let
x1 be the endpoint of this component on the segment of the j-th block and similarly let x2 be
the one on the (j + 1)-th block. Let x3 be finally the endpoint of this component that is in the
tooth of D. It holds that D = [D]d1x1

· [D]x1
x2
· [D]x2

d2
, where [D]x1

x2
∼= Tτ ⊕x3 Sz for some z ≤ N

and with Tτ being the T-shaped component of isomorphism type τ . Then, [D]d1x1
or [D]x2

d2
has a

subgraph isomorphic to Cf(k′−1)+2,N . Without loss of generality, let this be [D]x2
d2

.
Duplicator then replies as follows. She defines y1 to be the vertex on the j-th block of C,

that is of equal distance from the tooth after it, as x1 is from the tooth after it in D. Similarly
she defines y2 to be the vertex in the (j + 1 + 2l)-th block, at the same distance from the
tooth before it, as x2 is from its preceding tooth in the (j + 1)-th block of D. It holds that
C = [C]c1y1 · [C]y1y2 · [C]y2c2 , where [C]c1y1

∼= [D]d1x1
and [C]y2c2 ≡MSO

k [D]x2
d2

by Lemma 3.1.2. Duplicator

CHAPTER 3. GL(MSO ON FORESTS 63

therefore has a reply to the colouring of [D]d1x1
and [D]x2

d2
. For the colouring of [C]y1y2 , Duplicator

colours in white all the junctions between the blocks that are in [C]y1y2 , creating white T-shaped
components of type τ . Furthermore, she colours in black all the string-components between
them as well as all the string-components that remain at the teeth. By assumption, the white
T-shaped components of isomorphism type τ appear more than λ times in the colouring of D,
and therefore more than or equal to λ times in the colouring of [D]d1x1

and [D]x2
d2

. Thus, such
white components appear enough times also in the colouring of [C]c1y1 and [C]y2c2 , as described by
Lemma 2.2.2. The black string components used in the colouring of the remaining subgraph of
[C]y1y2 , are each ≡MSO

k -equivalent to the h1-noise-strings for some h1 ∈ {2s + 1, . . . , 3s}, which
are all primarily coloured in black by assumption. This is because, even if the string remaining
below the T-shaped component of type τ , is of length smaller than or equal to s, Dulicator
can colour in white 2l of the 2l + 1 junctions in a way such that the resulting white T-shaped
components are ≡MSO

k -equivalent to the one of isomorphism type τ , but having a shorter string
as part of the tooth. In this way, the strings remaining below these components are longer than
s edges and therefore ≡MSO

k -equivalent to the h2-noise-strings for some h2 ∈ {2s + 1, . . . , 3s}.
The resulting white and black subgraphs of Fi and Gi are ≡MSO

(k′−1)-equivalent.
These subcases exhaust all possible ones for Case 1.

Case 2: Spoiler chooses to colour in white some substring of a segment in D, such that this
substring is larger than s edges.

This case is similar to Case 1, after replacing white with black and vice versa.

Case 3: Spoiler chooses to colour D in such a way that there exists no substring of a segment
longer than s edges coloured completely in black or completely in white.

The colouring of any segment of D, switches from black to white or vice versa at least N/s−1
times. Let a 3-block be 3 consecutive blocks of a comb and consider the structure D as a series
of connected 3-blocks as shown below and in Figure 3.3.

(D, d1, d2) ∼= (V1, d1, t1)⊕t1 (V2, t1, t2)⊕t2 . . .⊕tv (Vv, tv−1, tv)⊕tv (R, tv, d2),

where R is the structure remaining after considering the blocks before it, in triples. The vertices
t1, . . . , tv are the forks inD on which the different 3-blocks meet. In the above, v = fk′/3. Each 3-
block Vi, for i ∈ {1, . . . , v}, has 6·N edges, and therefore there are at most 26·N possible different
colourings of 3-blocks. For all k′ ≥ 1, fk′ ≥ 6λn · 26·N , and therefore there are at least µ = 2λn
3-blocks from the set {V1, . . . , Vv} that have been coloured identically. Let {Vc1 , . . . , Vcµ} be
a subset of {V1, . . . , Vv} of size µ containing 3-blocks that have been coloured using the same
colouring c. Let W be the set of all white string-components up to isomorphism that appear in
the 3 segments of the 3-blocks Vci . Similarly let B be the set of black string-components up to
isomorphism that appear in these segments. Notice that W and B contain only white or black
string-components appearing in the segments of the blocks, and therefore for any w1 ∈ W and

CHAPTER 3. GL(MSO ON FORESTS 64

V1 V2 Vv

d1 d2
t1 t2 tv

R

︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸. . .

. . .

Figure 3.3: D as a series of connected 3-blocks.

b1 ∈ B, |w1| ≤ s and |b1| ≤ s. Notice also for each w1 ∈ W and b1 ∈ B there are at least 2λn
white and black string-components in the colouring of D, that are ≡MSO

k -equivalent to w1 and
b1 respectively. We define w ∈W to be the longest string component in W . Similarly for b ∈ B.

Fix VI ∈ {Vc1 , . . . , Vcµ} comprising the j-th, (j + 1)-th and (j + 2)-th blocks of D for some
j ∈ {1, . . . , fk′ − 2}, and let V 1, V 2 and V 3 be these blocks respectively. Fix VI to also be more
than n blocks away from both 3-blocks V1 and Vv. Notice that such a 3-block always exists
since µ = 2 · λ · n. Let tI1 , tI2 ∈ {t1, . . . , tv} be the endpoints of the spine of VI so that for some
structures D1, D3 it holds that

(D, d1, d2) ∼= (D1, d1, tI1)⊕tI1 (VI , tI1 , tI2)⊕tI2 (D3, tI2 , d2).

The structure D1 or the structure D3 has a subgraph isomorphic to Cf(k′−1)+2,N . Let this be D3,
as the argument is similar for either case. Suppose the colouring of the segment in V 1 switches
from white to black ν1 times, and suppose similarly that the number of times is ν2 for V 2 and
ν3 for V 3. Let then {p1, . . . , pν1} be the set of points where the colour switches from white to
black in the segment of V 1. The sets {q1, . . . , qν2} and {r1, . . . , rν3} are defined similarly for V 2

and V 3 respectively. Since (|w|+ |b|) | N , the strings w and b can be used to colour a string of
length N . Let x1 and x2 be the top of the two teeth, in the middle of the 3-block VI , namely
the endpoints of the spine of V 2. It holds that

(VI , tI1 , tI2) = (V 1, tI1 , x1)⊕x1 (V 2, x1, x2)⊕x2 (V 3, x2, tI2).

Assume there exists a vertex pj for 1 ≤ j ≤ ν1 such that colouring the next N edges that
follow using w and b, the edges of the spine adjacent to x1 are of the same colour. Then
Duplicator replies to Spoiler’s move as follows. She defines the vertex p′ in the segment of the
j-th block of C and the vertex p′′ in the (j + 2l)-th block of C to be such that both of them are
at the same distance from the corresponding tooth after them as pj is from x1. Let C1, C2, C3

be such that
(C, c1, c2) = (C1, c1, p

′)⊕p′ (C2, p
′, p′′)⊕p′′ (C3, p

′′, c2).

Then C1 = [C]c1p′ ∼= [D]d1pj
and C3 = [C]p

′′
c2 ≡MSO

k [D]pj

d2
by Lemma 3.1.2. Duplicator’s response

for C is composed of a colouring of C1, C2 and C3, and therefore for C1 and C3 this is given by
the strategy she has for the game on [C]c1p′ and [D]d1pj

and also for the game on [C]p
′′
c2 and [D]pj

d2
.

By definition, the colour switches from white to black in D at the vertex pj . The substring u of
the spine of C, which is the spine of C2, with endpoints p′ and p′′ is 2l ·N edges and therefore

CHAPTER 3. GL(MSO ON FORESTS 65

can be coloured using the substrings b and w, starting with b. According to the assumption,
after colouring the string u using b and w, the edges of the spine adjacent to the vertices that
are at the top of teeth in u, namely the forks in C2, are coloured the same. Duplicator then
colours the teeth attached to u also using b and w, colouring the top with the opposite colour of
what the edges of the spine, attached at the top of the tooth, are coloured with. The resulting
white and black substructures of Fi and Gi are ≡MSO

(k′−1)-equivalent. A similar argument holds
for any point qj′ ∈ {q1, . . . , qν2} or rj′′ ∈ {r1, . . . , rν3}.

Assume that for every pj , qj′ and rj′′ , this is not the case, and therefore, colouring the next
N edges of any such vertex using w and b, causes one of the edges adjacent to the top of the
next tooth to be coloured in black and the other one in white. We will show that if this is the
case, then Duplicator can simulate the colouring of a 3-block inside a single block or inside a
2-block, depending on the following.

Let pI ∈ {p1, . . . , pν1} be the vertex in the segment of V 1, that is further than 2 · s+ 1 edges
away from, but as close as possible to, x1, the top of the tooth of V 1. Let the case be similar
for qJ ∈ {q1, . . . , qν2} and rK ∈ {r1, . . . , rν3}, for x2 and tI2 respectively, the top vertices of the
respective teeth after them. By assumption, the distance between pI and x1 is equal to either
z · (|b| + |w|) or z′ · (|b| + |w|) + |b| for some z, z′ ∈ N. In other words colouring the substring
with endpoints pI and x1, starting with the black substring b, will either result in finishing the
colouring with b or with w. So is the case for the distances of qJ from x2 and of rK from tI2 .
Therefore for at least two substrings from the ones starting at pI , qJ or rK , and ending at the
corresponding teeth after them, will result in finishing the colouring with black or with white.
The cases are symmetrical, therefore assume that for two such substrings the colouring finishes
using the white substring w, and are hence of length z1 ·(|b|+ |w|) and z2 ·(|b|+ |w|), respectively,
for some z1, z2 ∈ N. For which pair of substrings this is the case, is similar, but it is slightly
more interesting for the ones starting at the vertices pI and rK .

It will be shown that the lengths of these two substrings are actually equal. Let the substring
starting at the vertex pI be of length z1 · (|b|+ |w|) and that of the substring starting at rK be
of length z2 · (|b| + |w|) for some z1, z2 ∈ N. Suppose that z2 > z1. Let br be the black string-
component adjacent to rK that is part of the substring from rK to tI2 , and let wr be the white
string-component that is in the same substring and is adjacent to the black string-component
br. Let wr have endpoints r1 and r2, with r1 being the vertex common to both br and wr. Then,
r2 is less than or equal to 2 · s+ 1 edges away from the vertex tI2 , since otherwise r2 would have
been selected instead of rK , and therefore

z2 · (|b|+ |w|)− (|br|+ |wr|) ≤ 2 · s+ 1. (3.1)

Let z1,2 be the difference in the sizes of the two substrings, namely z1,2 = (z2 − z1) · (|b|+ |w|).
Also, since both pI and rK are further than 2 · s+1 edges away from their respective next teeth,
it holds that

z2 · (|b|+ |w|)− z1,2 > 2 · s+ 1. (3.2)

CHAPTER 3. GL(MSO ON FORESTS 66

Therefore, from (3.1) and (3.2), (|br| + |wr|) > z1,2 = (z2 − z1) · (|b| + |w|). But w and b are
defined to be the largest white and black string-components in W and B respectively, where W
and B are the sets of white and black string-components respectively, appearing in the segments
of V 1, V 2 and V 3. Hence |w| ≥ |wr| and |b| ≥ |br|, which is a contradiction. Therefore z1 ≥ z2.
A similar contradiction can be shown for z1 > z2, and hence it is the case that z1 = z2. This
means that there are two vertices pI and rK , one in the segment of V 1 and the other in the
segment of V 3, which have equal distances from the respective teeth in V 1 and V 3, and where
the colour switches from white to black in the colouring given by Spoiler.

In this case Duplicator responds as follows. Let C2 be the j-th block of C, with endpoints
y1 and y2, and let p be the vertex in C2 whose distance from y2 is equal to the distance of pI
from x1 and of rK from tI2 . Let C1 = [C]c1p and C3 = [C]pc2 such that C = C1 · C3. Let D1, D2

and D3 be such that D1 = [D]d1pI
, D2 = [D]pI

rK , D3 = [D]rKd2 and D = D1 ·D2 ·D3. Then it holds
that (C1, c1, p) ∼= (D1, d1, pI) and (C3, p, c2) ∼= (D3, rK , d2), and the colour switches in D from
white to black at both pI and rK . Duplicator colours C1 and C3 according to the colourings
of D1 and D3. Since the colouring of VI appears more than µ = 2λn times, all components in
D2 appear more than λ times in the colouring of D1 and D3, and hence also appear enough
times in the colouring of C. Therefore, Duplicator has a reply and the resulting white and black
substructures of Fi and Gi are ≡MSO

(k′−1)-equivalent.
As was stated above, Duplicator can simulate the colouring of a 3-block inside a single block.

In the case where pI and qJ have the same distance from their respective next teeth, or where
this is the case for qJ and rK , Duplicator would be able to simulate the colouring of a 3-block
coloured with c, inside a 2-block. Then she has to apply the same method on two different
3-blocks of D, and their respective replies in C.

Even more interesting is when Spoiler makes a colouring move on the graph Fi instead of
Gi, for this last case. So assume that there exists a colouring c of 3-blocks, such that there are
vertices pI and rK , with the properties mentioned above. It is known that there are at least
2 ·λ ·n such 3-blocks and therefore at least 2l such 3-blocks. Let then, V C

1 , . . . , V
C
l be l 3-blocks

coloured using c in C. Let C1, . . . , Cl+1, and x1, . . . , x2l be such that the following holds.

(C, c1, c2) = (C1, c1, x1)⊕x1 (V C
1 , x1, x2)⊕x2 . . .

. . .⊕x2j (Cj+1, x2j , x2j+1)⊕x2j+1 (V C
j+1, x2j+1, x2(j+1))⊕x2(j+1)

. . .

. . .⊕x2l−1
(V C
l , x2l−1, x2l)⊕x2l

(Cl+1, x2l, c2).

Then, because of the size of C, for at least one j′ ∈ {1, . . . , l+1}, Cj′ has a subgraph isomorphic
to Cf(k′−1),N

. Assume that it holds for some fixed j′ = j0. For each j the vertices pjI , q
j
J and rjK

are the vertices with the above properties, that are inside the V C
j 3-block. Duplicator replies

according to the following. She chooses subgraphs D1, . . . , Dl+1, single blocks V D
1 , . . . , V D

l and
vertices y1, . . . , y2l such that

(D, d1, d2) = (D1, d1, y1)⊕y1 (V D
1 , y1, y2)⊕y2 . . .

. . .⊕y2j (Dj+1, y2j , y2j+1)⊕y2j+1 (V D
j+1, y2j+1, y2(j+1))⊕y2(j+1)

. . .

. . .⊕y2l−1
(V D
l , y2l−1, y2l)⊕y2l

(Dl+1, y2l, d2).

CHAPTER 3. GL(MSO ON FORESTS 67

All structures V D
j for j ∈ {1, . . . , l} are single blocks. Furthermore, for j0, the subgraph Dj0

is chosen to be 2l + 2 blocks larger than Cj0 and for all j′ 6= j0, Dj′
∼= Cj′ . By Lemma 3.1.2,

Cj0 ≡MSO
k Dj0 . This is possible because we know that D has 2 more blocks than C, and for

all j′ 6= j0, Cj′ and Dj′ comprise the same number of blocks. Only the sizes of V D
j and V C

j for
j ∈ {1, . . . , l} need to be considered together with the difference in size of Cj0 and Dj0 . Each
V C
j is a 3-block, and each V D

j is a single block. Therefore 3l must be two less than l + 2l + 2,
which is indeed the case. This way Duplicator has a reply for all Dj and V D

j in D and the
components that appear in each V C

j that are not used, appear more than µ = 2λn times in C

and therefore enough times in the colouring of D given by the strategy described. The resulting
white and black subgraphs of Fi and Gi are ≡MSO

(k′−1)-equivalent.
Similarly, if pI and qJ or if qJ and rK are the vertices that are guaranteed to be at equal

distances from their respective next teeth in the colouring c, then Duplicator chooses 2l 3-blocks
in C, with appropriate replies in D, and follows a similar strategy.

We show that the class of forests having only trees with 1 (mod 3) number of leaves is
expressible in MSO. Let F be some forest containing the trees T1, . . . , Tn. Let X be the set of
nodes of some tree Ti in F , and let X0, X1, X2 be a partition of X. Consider also a deterministic
binary tree automaton A, with 3 states q0, q1, q2, such that a vertex x is assigned the state qj ,
by A if and only if x is the root of a subtree of Ti, with j (mod 3) number of leaves. The formula
transition(X,X0, X1, X2) below, holds for any partition of the vertices in X, into X0, X1, X2

which agree respectively with the states q0, q1, q2 of A. In other words, for a vertex x, x ∈ Xj if
and only if x is assigned the state qj . The formula Tree1mod3(X), given the assumption that
X is the set of nodes of a tree Ti in F , expresses that the root of Ti is assigned the state q1 by
A, and therefore has 1 (mod 3) number of leaves.

partition(X,X0, X1, X2) = ∀x ∈ X (X0(x) ∨X1(x) ∨X2(x)) ∧
∧
i6=j(Xi ∩Xj = ∅),

transition(X,X0, X1, X2) = ∀x, y, z ∈ X (leaf(x)→ X1(x))∧(
E(x, y) ∧ E(x, z)→

→
∧
i,j(Xi(y) ∧Xj(z)→ Xi+j (mod 3)(x))

)
∧

∧
∧
i(E(x, z) ∧ one-child(x) ∧Xi(z)→ Xi(x)),

Tree1mod3(X) = ∀X0, X1, X2∀x ∈ X (partition(X,X0, X1, X2)∧
∧transition(X,X0, X1, X2) ∧ root(x)→ X1(x)).

The formula Tree(X) is true in some forest F , if and only if X is the set of vertices of one of
the trees Ti in F . According to the formulae above, the class of forests that contains only trees
with 1 (mod 3) number of leaves is defined by the formula Forest1mod3 below.

Tree(X) = ∀x, y
(
X(x) ∧X(y)→ ∃r (ExistsPath(r, x) ∧ ExistsPath(r, y))

)
∧

∧∀z, w (X(w) ∧ ExistsPath(w, z)→ X(z)),
Forest1mod3 = ∀X (Tree(X)→ Tree1mod3(X)).

The following Corollary is a direct consequence of the above and of Theorem 3.1.4.

CHAPTER 3. GL(MSO ON FORESTS 68

Corollary 3.1.5. Over the class of forests GL is strictly less expressive than MSO.

Corollary 3.1.6. Over the following classes of finite simple graphs, GL is strictly less expressive
than MS2.

1. The class of finite graphs.

2. The class of forests.

3. The class of planar graphs.

4. The class of bounded-degree graphs.

5. The class of graphs of bounded tree-width.

6. The class of graphs of bounded clique-width.

Notice that, by Theorem 1.2.4, GL is strictly less expressive than MS1 over the classes 2-5
given above.

3.2 FO Interpretations and MSO Transductions

In this section we investigate whether GL is closed under First Order interpretations and MSO
transductions. FO interpretations and MSO transductions are mappings from structures of some
signature to structures of some other signature. Since GL is defined only on graphs, we restrict
our attention to graphs regarding these mappings, but we give the definitions below in terms of
structures in general. One reason FO interpretations are useful is because they provide a way of
encoding a structure into a graph, and then define properties of the original structure in terms
of definable properties of the graph that corresponds to the structure. This idea is captured
when a logic is closed under some particular type of interpretations. Closure of a logic under
such mappings is in general regarded as a natural property, and both FO and MSO are closed
under most of these mappings. We give an introduction to these notions and refer the reader to
[Hod97],[Ott97] and [EF99] for further details about FO interpretations, and [Cou08] for MSO
transductions.

Definition 3.2.1. Let σ, τ be two relational signatures, with σ = 〈R1, . . . , Rs〉 where each Ri is
ri-ary for some ri ∈ N. Let Φ be an (s+ 1)-tuple of FO formulae over the signature τ , each one
with free variables among the ones displayed below, where x̄, x̄1, . . . , x̄ri , . . . have all length k.

Φ = (Φuni(x̄),Φ1(x̄1, . . . , x̄r1), . . . ,Φs((x̄1, . . . , x̄rs))).

Then Φ is an FO-definable interpretation of σ in τ of width k, written as an FO-definable
(σ, τ)-interpretation.

CHAPTER 3. GL(MSO ON FORESTS 69

Suppose A is a τ -structure. An FO-interpretation Φ of σ in τ defines a σ-structure AΦ over
k-tuples of the elements of A. In particular the universe of AΦ is equal to {ā ∈ Ak | A |= Φuni(ā)}
and for each i ∈ {1, . . . , s}, the interpretation of Ri is given by {(ā1, . . . , āri) ∈ Ak·ri | ∀i āi ∈
Ak, A |= Φi(ā1, . . . , āri) ∧

∧ri
i=1 Φuni(āi)}.

In what follows, if R is a r-ary query on STRUC[σ], and Φ is a (σ, τ)-interpretation of width
k, then R(Φ(.)) maps each structure A of STRUC[τ] to an r-ary query on Φ(A).

Definition 3.2.2. Let σ, τ be relational signatures. Then a logic L is closed under FO-definable
(σ, τ)-interpretations if the following holds. If Φ is an FO-definable (σ, τ)-interpretation, and R
is an L-definable query on STRUC[σ], then R(Φ(.)) is L-definable.

As explained in [EF99], MS1 is not closed under FO-definable (σ, τ)-interpretations of width
k, for k ≥ 2, but it is closed under such interpretations of width 1. On the other hand, on graphs
represented as structures with the set of vertices as the universe of the structure and with a
single binary relation for edges, MS2 is not closed under FO-definable interpretations of width
k = 1, either.

The following example will illustrate how FO interpretations work and why MS2 is not closed
under FO-definable interpretations of width 1. Let us consider the signature τ = 〈E〉 of graphs.
Let Φ be the FO-definable (τ, τ)-interpretation Φ = (Φuni(x),ΦE(x1, x2)) where

Φuni(x) = x = x,

ΦE(x1, x2) = x1 6= x2.

The formula ΦE expresses that there is an edge between any two vertices different from each
other. Let C be the class of graphs with an even number of vertices. This class of graphs is
known to be definable neither in MS1 nor in MS2.

Lemma 3.2.3. Let G be a graph. Then G is in C if and only if Φ(G) has a perfect matching.

Proof. First consider the only if direction. Fix G = (V,E) and assume that G ∈ C. The universe
of the interpretation is the same as V . Also there is an edge in the interpretation between any
two vertices v1, v2 ∈ V such that v1 6= v2. If V is of even size, then the set V can be split into
pairs, and the set of edges between the vertices of each pair forms a perfect matching in the
interpretation.

Consider then the if direction. Fix G = (V,E) and assume that Φ(G) has a perfect matching.
Then the number of vertices in Φ(G) is even and since this set of vertices is the same as V , V
is also of even cardinality.

Corollary 3.2.4. MS2 is not closed under FO-definable (σ, τ)-interpretations of any width.

Proof. For k ≥ 2, the result follows from the fact that MS1 is not closed under FO-definable
(σ, τ)-interpretations of such width. For k = 1, note that the property of a graph having an even
number of vertices is not definable in MS2. A perfect matching on the other hand is definable
by saying there is a set of edges S and expressing that each vertex is adjacent to exactly one
edge in S. The result follows from Lemma 3.2.3 and Definition 3.2.2.

CHAPTER 3. GL(MSO ON FORESTS 70

It should be noted that the property of a graph having a perfect matching is only definable in
MS2, where the second order quantification is over edges and not only over vertices. In the above,
we give an interpretation of width 1 from structures of signature σbGc to structures of the same
signature, where MS2 is well-defined. But MS2 is closed under FO (τdGe, τdGe)-interpretations,
namely when graphs are represented as structures with a universe containing elements for both
the vertices and the edges of the graph. This is because, MS2 over such graph structures is
simply MSO.

In the works of Courcelle, a variation of interpretations of width 1, named MSO transductions
is considered ([Cou08]). Both MS1 and MS2 are closed under these transductions. The formal
definition follows. We show that GL is closed neither under FO transductions (and therefore
MSO transductions), nor under FO-definable interpretations of width 1 over incidence graphs.

Monadic second-order transductions are transformations of structures specified by monadic
second-order formulae. We consider here a simpler form of the monadic second-order transduc-
tions defined in [Cou08], since this simpler form is enough to show that GL is not closed under
such transductions, and therefore nor under the generalized ones. For simplicity the definition
of MSO transductions below is given for signatures with binary relations only. The definition
can be extended to r-ary relations for r ∈ N.

Definition 3.2.5. A k-copying monadic second-order transduction from structures of signature
σ to structures of signature τ = 〈R1, . . . , Rn〉, for k ∈ N, is a mapping f : STRUC[σ] →
STRUC[τ] that associates with each structure A ∈ STRUC[σ] a structure B ∈ STRUC[τ] and
is specified by the definition scheme ((δi)i≤k, (θ1;i,j)i,j≤k, . . . , (θn;i,j)i,j≤k) as follows. For the
universe of the structure B, B ⊆ A1×{1}∪. . .∪Ak×{k} where the sets Ai are defined in A by the
monadic second-order formulae δi, and for each relation Rh of B, Rh = {((v, i), (u, j)) | (v, u) ∈
Rh;i,j}, where the sets Rh;i,j are defined in A by the monadic second-order formulae θh;i,j.

It should be noted that each copy of a ∈ A of the structure A in the resulting structure B, is
essentially marked with 1, . . . , k, and that a first-order transduction is defined similarly, with the
difference that all the formulae in the definition scheme are first-order instead of monadic second-
order. Notice that a 1-copying FO transduction is essentially the same as an FO interpretation
of width 1. In fact, k-copying transductions are generalizations of interpretations of width 1.
With a k-copying transduction, the universe of the resulting structure consists of k subsets of the
universe of the input structure, as permitted by the formulae (δi)i≤k in the definition scheme.
An interpretation of width k, may increase the size of the resulting universe to |A|k, where A
is the universe of the input structure A. On the other hand, for a k-copying transduction, the
size of the resulting structure is always linearly bounded by the size of the input structure,
namely |B| ≤ k · |A|, where A and B are the universes of the input structure A and the resulting
structure B respectively. One of the main reasons why MSO transductions are of interest is the
following Theorem, adapted from [Cou08].

Theorem 3.2.6 ([Cou08]). If L ⊆ STRUC[τ] is MSO-definable, and f : STRUC[σ]→ STRUC[τ]
is a k-copying MSO transduction for some k ∈ N, then f−1(L) is MSO-definable.

CHAPTER 3. GL(MSO ON FORESTS 71

To show that GL is closed neither under FO-definable interpretations of any width k, nor
under FO k′-copying transductions for any k′, we consider the two signatures σbGc and τdGe

defined in Section 1.1.1. The results mainly follow from Lemma 3.2.7 below and Theorem 3.1.4.

Lemma 3.2.7. Let C be a comb. Then the property of C having 1 (mod 3) number of leaves is
GL definable.

Proof. In the absence of noise-strings, one can express in GL that a comb has 1 (mod 3) number
of leaves. It can be expressed using the following formula φ. The formula ψcomb expresses that
a graph is a comb.

φ = ψcomb ∧ (SetOf3Blocks | SetOf3Blocks),

ψcomb = ∀x, y
(
fork(x) ∧ fork(y)→

(
(Path(x, y) | >) ∨ (Path(y, x) | >)

))
,

forks(x1, x2, x3) =
(∧

i6=j(xi 6= xj)
)
∧ fork(x1) ∧ fork(x2) ∧ fork(x3),

SetOf3Blocks = ∀x root(x)→ ∃!x1, x2

(
forks(x, x1, x2) ∧

(
(Path(x, x1) | >)
∧(Path(x1, x2) | >)

))
.

The formula φ expresses that a graph is a comb and that it can be split into two subgraphs,
each one comprising disconnected components, where all of them contain exactly 3 fork vertices,
where for every component one of the 3 forks is the root of the component.

Let F and G be the graphs constructed in the proof of Theorem 3.1.4 for GL formulae of
quantifier rank k for some k ∈ N, and let H be the structure containing a single directed edge.
Then F ≡GL

k G and therefore also F]H ≡GL
k G]H. Let single-edge-root(x) be a first-order

formula defining the vertices that are the first vertices of a directed string, and the string consists
of a single edge. Essentially it will be used to identify one of the two vertices in H. Let, similarly,
first-edge(e) be the first-order formula over the signature of incidence graphs, defining the edges
that are incident to roots of trees.

We show that GL is not closed under FO-definable (τdGe, τdGe)-interpretations of width 1,
and also that it is not closed under FO non-copying transductions from σbGc structures to σbGc
structures. The results for GL not being closed under (σbGc, σbGc)-interpretations of width 1
and FO transductions from τdGe structures to τdGe structures follow similar lines. Notice that
showing that GL is not closed under FO transductions implies that it is not closed under MSO
transductions either. We proceed with the FO-definable interpretation.

Let Ψ = (Ψuni,Ψinc1 ,Ψinc2) be the following FO-definable (τdGe, τdGe)-interpretation.

Ψuni(x) = x = x,

Ψinc1(e, y) =
(
¬first-edge(e) ∧ inc1(e, y)

)
∨
(
first-edge(e) ∧ single-edge-root(y)

)
,

Ψinc2(e, y) = inc2(e, y).

Let f : STRUC[τdGe] → STRUC[τdGe], be the FO transduction with definition scheme
(δf , θinc1 , θinc2), along the same lines as the interpretation Ψ. Similarly, we define the MSO

CHAPTER 3. GL(MSO ON FORESTS 72

transduction g : STRUC[σbGc] → STRUC[σbGc], with definition scheme (δg, θE) according to
the following.

δg(x) = x = x,

θE(x, y) =
(
¬root(x) ∧ E(x, y)

)
∨
(
single-edge-root(x) ∧ ∃z (root(z) ∧ E(z, y))

)
.

Consider the forest F]H, where H is a single edge. Then both transductions f and g and
the interpretation Ψ, given the forest F]H, produce a structure with the roots of all trees being
the root of the single disconnected edge in H.

Using the interpretation Ψ, a graph comprising a comb together with the noise, as described
in the proof of Theorem 3.1.4, becomes a tree where the root is essentially connected to all the
noise-strings and the comb. Therefore it is possible to remove all the noise-strings to end up
with just the comb of the graph, and then reason along the lines of Lemma 3.2.7 defining the
combs that have 1 (mod 3) number of leaves.

Theorem 3.2.8. GL is not closed under:

1. FO-definable (τdGe, τdGe)-interpretations of width 1.

2. FO non-copying transductions from σbGc-structures to σbGc-structures.

3. FO non-copying transductions from τdGe-structures to τdGe-structures.

Proof. Let Ψ be the FO-definable interpretation of width 1, presented above. Similarly let f
and g be the transductions above. We show that there exists a sentence ψ such that for any
sentence ψ−, there exist A,B where Ψ(A) and Ψ(B) disagree on ψ (respectively, f(A) and f(B)
disagree on ψ; g(A) and g(B) disagree on ψ), but A and B agree on ψ−.

Let ψ = ϕD displayed below, let ψ− be any sentence and let k be the quantifier rank of ψ−.
Let F and G be two graphs constructed in the proof of Theorem 3.1.4 for ψ−, such that the
comb in F has 1 (mod 3) number of leaves and the other one has 0 (mod 3) number of leaves.
Let A = F]H and B = G]H. In the formulae below, let φ be the GL formula from Lemma
3.2.7.

Spider(x) = root(x) ∧ ∀y (x 6= y → ¬fork(y) ∧ (Path(x, y) | >)),
first-fork(x, y) = root(x) ∧ fork(y) ∧ (Path(x, y) | >)∧

∧¬∃z
(
(Path(x, z) | Path(z, y) | >) ∧ fork(z)

)
,

ϕD = ∃!x, y
(
first-fork(x, y) ∧ (Spider(x) | Connected ∧ root(y) ∧ fork(y) ∧ φ)

)
.

The formula first-fork(x, y) above holds when x is the root of a tree and y is the unique fork
that is closest to the root. The GL formula ϕD defines the class of trees where each tree can be
split up into a graph whose non-root vertices are either leaves or have exactly one child, and a
comb with a root that is a fork and such that it has 1 (mod 3) number of leaves.

Consider first Ψ(A). The interpreted structure is a tree, exactly one of the children y of
its root having a comb as a subtree, and the subtrees rooted at the rest of the children being

CHAPTER 3. GL(MSO ON FORESTS 73

strings. The same holds for exactly one child y′ of the root of the tree Ψ(B). Furthermore,
the comb rooted at y of Ψ(A) has 1 (mod 3) number of leaves and hence Ψ(A) |= ϕD. On the
other hand, Ψ(B) |= ¬ϕD. By definition, A |= ψ− ⇔ B |= ψ−, therefore GL is not closed under
FO-definable (τdGe, τdGe)-interpretations.

The case is similar for the transductions f and g.

3.3 Separation Logic

Separation Logic is a logic for analyzing programs that involve pointer variables for memory
management. It was introduced by Reynolds in [Rey02] and by Ishtiaq and O’Hearn in [IO01],
and has been widely studied since then. We give a short introduction here, while the reader
may refer to [BDL08] for more information. The two main connectives of Separation Logic are
the separation connective, that works similarly to the separation operator of GL, and its adjoint
for which something similar is absent from GL. In the latter paper, the authors consider the ex-
pressive power of two syntactic fragments of Separation Logic, namely SL(−∗) and SL(∗) defined
below, and show that the former is equi-expressive to second-order logic and they conjecture
that the latter is strictly less expressive than MSO, over memory states. We give a positive
resolution to this conjecture.

The structures on which Separation Logic works, consist of a partial function representing
the memory heap of a program. Let Loc be a set of locations, namely memory addresses, and
let Var be a set of assigned variables. For a function f , we denote the domain of the function
by dom(f) and its range by ran(f).

Definition 3.3.1 ([BDL08]). A memory state is a pair (s, h) such that s : Var→ Loc and h is
a partial function of type h : Loc → Loc. The function s is the store and the function h is the
heap of the memory state.

When the domains of two partial functions h1 and h2 are disjoint, it is denoted by h1⊥h2

and their disjoint union is denoted by h1 ∗ h2. The syntax of a Separation Logic formula is
inductively defined as:

ψ := x = y | x ↪→ y | ψ1 ∧ ψ2 | ¬ψ1 | ∃x.ψ1(x) | ψ1 ∗ ψ2 | ψ1 −∗ ψ2,

where x, y ∈ Var and ψ1, ψ2 are SL formulae. The semantics is as follows.

(s, h) |= x = y ⇔ s(x) = s(y),
(s, h) |= x ↪→ y ⇔ h(s(x)) = s(y),
(s, h) |= ψ1 ∧ ψ2 ⇔ (s, h) |= ψ1 and (s, h) |= ψ2,

(s, h) |= ¬ψ1 ⇔ not (s, h) |= ψ1,

(s, h) |= ∃x.ψ1 ⇔ there is l ∈ Loc such that (s[x 7→ l], h) |= ψ1,

(s, h) |= ψ1 ∗ ψ2 ⇔ there are h1, h2 such that h = h1 ∗ h2 and (s, hi) |= ψi, i ∈ {1, 2},
(s, h) |= ψ1 −∗ ψ2 ⇔ for any h′ disjoint from h such that (s, h′) |= ψ1, (s, h ∗ h′) |= ψ2.

CHAPTER 3. GL(MSO ON FORESTS 74

Two important syntactic fragments of SL are SL(∗) and SL(−∗). The latter uses all constructs
from the above apart from the separation connective ‘∗’. In [BDL08], it is shown that SL(−∗) is
equi-expressive to Second Order Logic over structures represented as memory states. Similarly
the syntactic fragment SL(∗) omits the use of the magic wand ‘−∗’. In the same paper the
authors conjecture that SL(∗) is strictly less expressive than MSO over structures represented
by memory states. We prove that this is indeed the case.

Definition 3.3.2. For any memory heap h with H = ran(h) ∪ dom(h), its associated graph is
defined to be a graph Gh = (V,E), such that V = H and for any l, l′ ∈ H, E(l, l′) holds in Gh

if and only if h(l) = l′.

Definition 3.3.3. For any memory state (s, h) where S = dom(s) and H = ran(s) ∪ dom(h) ∪
ran(h), its associated structure is defined to be the tuple (Gh, ρ) where Gh is the graph associated
with the memory heap h, and ρ is the mapping assigning vertices of Gh to first order variables,
such that for each xi ∈ S and for each l ∈ H, s(xi) = l if and only if ρ(xi) = l.

For any SL(∗) formula ψ, we denote with [ψ]GL its translation into GL, according to the
following inductive definition.

[x = y]GL := x = y,

[x ↪→ y]GL := (E(x, y) | >),
[ψ1 ∧ ψ2]GL := [ψ1]GL ∧ [ψ2]GL,

[ψ1 ∗ ψ2]GL := [ψ1]GL | [ψ2]GL,

[¬ψ′]GL := ¬[ψ′]GL,

[∃x.ψ′]GL := ∃x [ψ′]GL.

Lemma 3.3.4. For any memory state (s, h) and any SL(∗) formula ψ, (s, h) |=SL(∗) ψ if and
only if (Gh, ρ) |=GL [ψ]GL, where (Gh, ρ) is the graph and assignment associated with the memory
state (s, h).

Proof. We proceed by induction on the structure of the formula.

ψ = x = y. Assume that (s, h) |=SL(∗) x = y. Then s(x) = s(y) and by the definition of the
graph associated with a memory state, (Gh, ρ), it holds that ρ(x) = ρ(y). Therefore,
(Gh, ρ) |=GL x = y For the opposite direction assume that (Gh, ρ) |=GL x = y and hence
ρ(x) = ρ(y). Then s(x) = s(y) and hence (s, h) |=SL(∗) x = y.

ψ = x ↪→ y. Assume that (s, h) |=SL(∗) x ↪→ y. Then h(s(x)) = s(y) and by the definition of
(Gh, ρ) it holds that (Gh, ρ) |=GL (E(x, y) | >). Similarly, if (Gh, ρ) |=GL (E(x, y) | >),
then h(s(x)) = s(y) and (s, h) |=SL(∗) x ↪→ y.

ψ = ψ1∧ψ2. It holds that (s, h) |=SL(∗) ψ1∧ψ2 if and only if (s, h) |=SL(∗) ψ1 and (s, h) |=SL(∗) ψ2.
By the inductive hypothesis, for i ∈ {1, 2}, (s, h) |=SL(∗) ψi if and only if (Gh, ρ) |=GL [ψi]GL.
Finally this is the case if and only if (Gh, ρ) |=GL [ψ1 ∧ ψ2]GL.

CHAPTER 3. GL(MSO ON FORESTS 75

ψ = ¬ψ′. By the inductive hypothesis (s, h) |=SL(∗) ψ
′ if and only if (Gh, ρ) |=GL [ψ′]GL, and

therefore (s, h) |=SL(∗) ¬ψ′ if and only if (Gh, ρ) |=GL [¬ψ′]GL.

ψ = ψ1 ∗ ψ2. Assume that (s, h) |=SL(∗) ψ1 ∗ ψ2. Then there exist disjoint h1, h2 such that
for i ∈ {1, 2}, (s, hi) |=SL(∗) ψi. By the inductive hypothesis this is the case if and only if
(Ghi

, ρ) |=GL [ψi]GL. By the definition of a graph associated to a memory state, if h1 and h2

are disjoint, then the graphs Gh1 and Gh2 are disjoint. Therefore, (Gh, ρ) |=GL [ψ1 | ψ2]GL.

Similarly, if (Gh, ρ) |=GL [ψ1 | ψ2]GL then there exist G1, G2 such that Gh = G1 | G2 and
(Gi, ρ) |=GL [ψi]GL, for i ∈ {1, 2}. These two graphs (G1, ρ) and (G2, ρ) are associated with
some memory states (s, h1) and (s, h2), where h1 and h2 are disjoint. By the inductive
hypothesis, (s, hi) |=SL(∗) ψi for i ∈ {1, 2}, and therefore, since h1 and h2 are disjoint, it
holds that (s, h) |=SL(∗) ψ1 ∗ ψ2.

ψ = ∃x.ψ′. Assume that (s, h) |=SL(∗) ∃x.ψ′. Then there a location l such that (s[x 7→
l], h) |=SL(∗) ψ

′. By the inductive hypothesis, (Gh, ρ[x 7→ l]) |=GL [ψ′]GL and therefore,
(Gh, ρ) |=GL [∃x ψ′]GL.

For the opposite direction, if (Gh, ρ) |=GL ∃x [ψ′]GL, then there exists lx in Gh such
that (Gh, ρ[x 7→ lx]) |=GL [ψ′]GL. By the inductive hypothesis it is the case that (s[x 7→
lx], h) |=SL(∗) ψ

′ and therefore (s, h) |=SL(∗) ∃x.ψ′.

In addition to the boolean connectives and the atomic cases introduced for SL, MSO formulae
use the two syntactic connectives ∃P.ψ and P (x), where x ∈ Var and P ⊆ Var. The satisfaction
relation is defined similarly for the rest of the connectives and for the two additional ones, it
makes use of an additional environment E and is as shown below.

(s, h), E |= ∃P.ψ ⇔ there is R ⊆ Loc, such that (s, h), E [P 7→ R] |= ψ,

(s, h), E |= P (x) ⇔ s(x) ∈ E(P).

We associate with any memory state (s, h) and environment E for set variables, the tuple
(Gh, ρ, ζ), where (Gh, ρ) is the graph and assignment associated with (s, h) and ζ is the map-
ping assigning subsets of the set of vertices H of Gh to second-order variables such that for any
Pi ∈ dom(E), and any L ⊆ H, ζ(Pi) = L if and only if E(Pi) = L.

Let ψ be some MSO formula over the structures represented as memory states. Then we
define [ψ]MSO to be the translation of ψ over structures as graphs. The translation is defined
inductively, identical to the GL case for the boolean connectives, equality and the heap function,
and is as follows for the two additional connectives.

[∃X.ψ1]MSO = ∃X [ψ1]MSO,

[X(x)]MSO = X(x).

CHAPTER 3. GL(MSO ON FORESTS 76

Lemma 3.3.5. For any memory state (s, h), environment E and any MSO formula ψ over
structures represented as memory states, (s, h), E |=MSO ψ if and only if (Gh, ρ, ζ) |=MSO [ψ]MSO,
where (Gh, ρ, ζ) is the graph associated with the memory state (s, h) and the environment E.

Proof. The proof of this lemma is identical to the proof of Lemma 3.3.4 for the relevant cases
of boolean connectives and so it only needs to be shown for the two additional cases below.

ψ = P (x). Assume that (s, h), E |=MSO P (x). Then s(x) ∈ E(P). Therefore ρ(x) ∈ ζ(P)
and hence (Gh, ρ, ζ) |=MSO P (x). Similarly assume that (Gh, ρ, ζ) |=MSO P (x). Then
ρ(x) ∈ ζ(P) which implies that s(x) ∈ E(P). Therefore (s, h), E |=MSO P (x).

ψ = ∃P.ψ1. Assume that (s, h), E |=MSO ∃P.ψ1. Therefore there exists R ⊆ Loc such that
(s, h), E [P 7→ R] |=MSO ψ1. By the inductive hypothesis (Gh, ρ, ζ[P 7→ R]) |=MSO [ψ1]MSO,
and hence (Gh, ρ, ζ) |=MSO ∃P [ψ1]MSO.

For the opposite direction assume that (Gh, ρ, ζ) |=MSO [∃P ψ1]MSO. Then there exists R ⊆
Loc such that (Gh, ρ, ζ[P 7→ R]) |=MSO [ψ1]MSO. By the inductive hypothesis (s, h), E [P 7→
R] |=MSO ψ1 and therefore (s, h), E |=MSO ∃P.ψ1.

Definition 3.3.6. A graph G is compatible to heaps if it is such that for all v1, v2, v3 ∈ V (G) it
is not the case that E(v1, v2) and E(v1, v3).

In other words, a graph G is compatible to heaps if it is the graph of a partial unary function.

Lemma 3.3.7. For any graph G, if G is compatible with heaps, then there exists a heap h, such
that G is the graph associated with the heap h.

Proof. Let G be some graph that is compatible with heaps. Let h be the partial function such
that for any v1, v2 ∈ V (G) = Loc, it holds that h(v1) = v2 if and only if E(v1, v2). Then
it remains to show that h is indeed a function, which follows from the assumption that G is
compatible.

Similarly there is a translation of GL formulae into SL(∗) ones and a translation of MSO
formulae over graphs compatible to memory states, to MSO formulae over structures represented
as memory states. The proof is very similar to the ones for Lemma 3.3.4 and Lemma 3.3.5
respectively, and it is omitted.

Lemma 3.3.8. For any GL formula ψ, there exists a SL(∗) formula ψ′ over structures repre-
sented as memory states such that for any graph G compatible to memory states, (s, h) |=SL(∗) ψ

′

if and only if (G, ρ) |=GL ψ, where (G, ρ) is the graph associated with (s, h).

Lemma 3.3.9. For any MSO formula ψ, there exists an MSO formula ψ′ over structures repre-
sented as memory states such that for any graph G compatible to memory states, (s, h), E |=MSO

ψ′ if and only if (G, ρ, ζ) |=MSO ψ, where (s, h), E is the memory state and environment associated
with (G, ρ, ζ).

CHAPTER 3. GL(MSO ON FORESTS 77

Theorem 3.3.10. SL(∗) is strictly less expressive than MSO over structures represented as
memory states.

Proof. We use Theorem 3.1.4 and the translations from GL to SL(∗) and vice versa that were
given above, to show that a particular class of memory heaps resembling the class of forests used
in Theorem 3.1.4, is not definable in SL(∗).

Consider the function that maps each vertex to its parent, and let all trees be represented in
a way such that the set of edges E of a tree is that function. This way all forests are compatible
with memory states, and therefore according to Lemma 3.3.7 for every forest there exists a heap
with which it is associated. Let ϕMSO be an MSO formula that defines the set of forests in which
every tree has 1 (mod 3) number of leaves. Then according to Lemma 3.3.9, there exists an
MSO formula ψMSO over structures represented as memory states, such that for any forest F ,
F |=MSO ϕMSO if and only if (s, h), E |=MSO ψMSO, where F is the graph associated with (s, h), E .

Suppose that there exists an SL(∗) formula ψSL(∗) such that for any memory state (s, h),
(s, h) |=MSO ψMSO if and only if (s, h) |=SL(∗) ψSL(∗). According to Lemma 3.3.4, there exists
a GL formula ϕGL, such that for any memory state (s, h), (s, h) |=SL(∗) ψSL(∗) if and only if
(G, ρ) |=GL ϕGL, where (G, ρ) is the graph associated with (s, h).

According to Theorem 3.1.4, there exist forests G1, G2 such that G1 |=MSO ϕMSO and G2 |=MSO

¬ϕMSO, but are such that, G1 |=GL ϕGL ⇔ G2 |=GL ϕGL. Let h1 and h2 be the heaps associated
with the graphs G1 and G2 respectively according to Lemma 3.3.7. According to the definition
of the GL formula ϕGL, (s, h1) |=SL(∗) ψSL(∗) ⇔ (s, h2) |=SL(∗) ψSL(∗). Furthermore, by definition
of ψMSO, (s, h1) |=MSO ψMSO and (s, h2) |=MSO ¬ψMSO, which is a contradiction.

Chapter 4

Graph Logic with Recursion

The expressive power of GL is greatly increased when a construct for fixed point operations is
added to the logic. The resulting logic is called GLµ and is formally defined in Section 1.6.

It was shown in [DGG07] that PSPACE-complete problems are expressible in GLµ while the
combined complexity remains in PSPACE as is the case for GL (without the recursion operator).
We show that GLµ is strictly more expressive than MSO over words and trees and in the case
of words, we compare it to other grammars that strictly contain regular languages.

4.1 On Graphs

The relationship between GLµ and MSO over graphs in general is still not clear in terms of
whether MSO definable graph properties are included in the GLµ ones. As was mentioned,
there are known examples of properties definable in GLµ and not in MSO, but there are also
MSO definable properties, such as 3-colourability, that are not known to be expressible in GLµ,
although, as shown by Corollary 2.1.3 in Section 2.1, 4-colourability is expressible in GL without
the use of recursion.

Apart from 3-colourability on graphs, the class of graphs having a Hamiltonian Cycle is
thought to be not definable in GL. It should be noted that Hamiltonicity is not definable in
MS1 either, only MS2, and is an example often used to specify that over graphs in general MS2

is more expressive than MS1. Despite that the class of 3-colourable graphs is thought to remain
not definable even when recursion is present in the logic, Hamiltonicity of undirected graphs,
becomes expressible in GLµ, and in particular it can be expressed using the formulae below.

HamCycle = ∀x deg2(x) ∧ Connected.

ϕHC = µR.
(
HamCycle ∨

(
∀y
(
deg>1(y)

)
∧ ∃z, w

(
E(z, w) | R

)))
,

Theorem 4.1.1. A graph G has a Hamiltonian Cycle if and only if G satisfies ϕHC .

Proof. Fix a graph G. For the only if direction assume that G has a Hamiltonian Cycle. Then
G is either a cycle or contains a cycle through all of its vertices. In the first case, every vertex
of G has degree 2, which means that G satisfies HamCycle and consequently G |= ϕHC .

78

CHAPTER 4. GRAPH LOGIC WITH RECURSION 79

In the second case, where G contains a cycle through all of its vertices, it is the case that all
vertices have degree larger than 1. Let G be a graph with a Hamiltonian Cycle C. If there are
n edges in G that are not part of the cycle C, we write G = Hn]C, where Hn is the graph with
all the edges outside C, all of whose endpoints are in C by definition. We prove by induction on
k, that for any G such that G = Hk] C for some k ∈ N, G |= ϕHC . For k = 0, G = C and by
the argument above G |= ϕHC . Suppose the statement holds for k = K for some K ∈ N, and
consider a graph G = H(K+1)] C. Since G has a Hamiltonian Cycle, all of the vertices have
degree larger than 1, therefore it only needs to be shown that there exists an edge e such that
G − {e} |= ϕHC . Let e be any edge in H(K+1). Then G − {e} has a Hamiltonian Cycle and
therefore satisfies ϕHC by the inductive hypothesis.

For the if direction, assume that G is a model of ϕHC . We prove by induction on the number
of recursion steps that G contains a Hamiltonian Cycle. If G satisfies ϕHC in the first recursive
step, then G |= HamCycle, and hence is a Hamiltonian Cycle. Assume that the statement is
true for any graph satisfying ϕHC after k recursive steps, and assume that G satisfies ϕHC at
the (k + 1)-th recursive step. Then there exists an edge e in G such that G − {e} satisfies R
and hence satisfies ϕHC after k recursive steps. Since G |= ϕHC , all vertices have degree greater
than 1, and therefore removing any edge from G, no vertex is removed. Hence G and G − {e}
have the same set of vertices. By the inductive hypothesis, G− {e} has a Hamiltonian Cycle C
and therefore, since G has no more vertices, C is also a Hamiltonian Cycle of G.

4.2 On Words

We have already mentioned that GL has the same expressive power as MSO over words. In
this section we examine what can be expressed in GLµ over words, which intuitively should
be strictly more than what can be expressed in MSO. In particular consider the non-regular
language L = {anbn | n ∈ N}. The language L can be proved to be not regular by applying
the Pumping Lemma for regular languages. This means that L is not MSO-definable, but on
the other hand it is GLµ-definable. Let ψL be the following GLµ formula defining this class of
words.

ψL = µR.
(
ϕab ∨

(
∃x, y, z, w (In0(x) ∧Out0(y) ∧ ϕR(x, y, z, w))

))
,

ϕR(x, y, z, w) = (Ea(x, z) | Eb(w, y) | Path(z, w) ∧R),
ϕab = ∃x, y, z (Ea(x, y) | Eb(y, z)).

The formula is satisfied by a word if that word is ab or if we can recursively remove an edge
with label a from the left and an edge labelled with b from the right, until we get the word ab.

4.2.1 PSPACE-complete problems on strings

In [DGG07] the authors show that the model-checking complexity of GLµ is in PSPACE and that
the data complexity of GLµ on graphs is PSPACE-complete. Here we show that even on strings

CHAPTER 4. GRAPH LOGIC WITH RECURSION 80

the data complexity of GLµ is PSPACE-complete.
We present an encoding of Quantified Boolean Formulae (QBF) into strings together with a

GLµ formula which is satisfied by the string if and only if the QBF instance has a solution. The
encoding of Quantified Boolean Formulae into strings is as follows. First, all variables present
in the formula are listed, and then the formula is presented. During the encoding of the latter,
there are letters in the alphabet available for denoting the start and finish of clauses, variables
and quantifiers. Before giving the details for the QBF case, we give an encoding and a GLµ
formula for the Boolean Satisfiability Problem (SAT) instances.

In both the QBF and SAT cases, the string encoding a particular instance, begins with
encoding all the variables that appear in the formula, and the encoding of the actual formula
follows.

A variable x` in the beginning of the string is encoded as]bin(`), where bin(`) denotes the
binary representation of `. Each variable appears in at least one clause and in the clauses it
appears in positive form or negative. To denote that it appears in positive form we append the
symbol + and for the negative form we use −. The beginning of a clause is denoted with ‘〈’ and
the end of it with ‘〉’.

For example, the SAT clause (x1 ∨ x2 ∨ ¬x3) is encoded as 〈+1 + 10− 11〉. The symbol ‘‖’
denotes the point where the listing of the variables finishes and the formula starts. Therefore,
the formula (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) is encoded as shown below:

]1]10]11 ‖ 〈+1 + 10− 11〉〈−1 + 10 + 11〉.

We write the variables listing encoding, for the first part of the string that simply encodes the
variables used in the formula. Similarly the formula encoding is the part of the string encoding
the actual formula. The delimiter ‘‖’ is simply separating the variables listing encoding from
the formula encoding.

The method with which GLµ can express that a SAT formula is satisfiable, is applied with
the formulae given below and is as follows. If a SAT instance, encoded into a string s as
described earlier, is satisfiable, then one can split this string into two subgraphs, say s1 and
s2, where one of them (say s1) contains part of the variables listing encoding, and the other
one contains the rest. The idea is that s1 contains all the variables that are assigned the false
value, and s2 contains all the variables that are assigned the true value together with the actual
encoded formula. One then needs to check that for every clause in the SAT formula in s2, either
there exists a positive variable in the clause that also appears in the variables listing encoding
subgraph of s2, or otherwise there exists a negative variable in the clause that does not appear
in the latter subgraph of s2.

Checking whether the encoding of a literal in a clause matches the encoding of a variable in
the variables listing encoding, is where the recursion operator of GLµ is needed, going through
each edge one by one ensuring they have the same label.

For each label in the alphabet of the encodings, we define a formula expressing that in the
string, this particular label appears in only one position. Let σ below denote a label in the

CHAPTER 4. GRAPH LOGIC WITH RECURSION 81

alphabet.

uniqueσ = ∃x, y
(
(Eσ(x, y) | >) ∧ ∀w, v (x 6= w ∧ y 6= v)→ ¬(Eσ(w, v) | >)

)
.

Similarly, we define the following two formulae, one to express that a set of strings contains only
bits and one to express that such a set of strings contains no bits.

OnlyBits = ∀x, y
(
(E(x, y) | >)→ (E0(x, y) ∨ E1(x, y) | >)

)
,

NoBits = ¬(> | OnlyBits).

The free variable of the formulae below, expressing a particular encoding, denotes the position
at which this encoding starts.

Var(x) = first(x) ∧ Connected ∧ ∀w ((E(x,w) | >)→ (E](x,w) | OnlyBits)),
Pos(x) = first(x) ∧ Connected ∧ ∀w ((E(x,w) | >)→ (E+(x,w) | OnlyBits)),
Neg(x) = first(x) ∧ Connected ∧ ∀w ((E(x,w) | >)→ (E−(x,w) | OnlyBits)),

Clause(x) = first(x) ∧ Connected ∧ ∀w ((E(x,w) | >)→ (E〈(x,w) | >))∧
∧unique〈 ∧ unique〉,

SetOfVars = ∀x, y
(
first(x) ∧ last(y)→ ¬(> | Path(x, y) ∧ ¬Var(x))

)
,

SetOfClauses = ∀x, y
(
first(x) ∧ last(y)→ ¬(> | Path(x, y) ∧ ¬Clause(x))

)
.

The formulae Var(x),Pos(x) and Neg(x) define respectively the set of strings that are en-
codings of variables in the variables listing encoding, the positive and the negative literals in the
clauses. The formula Clause(x) defines the set of strings that are encodings of a single clause.
Finally the formulae SetOfVars and SetOfClauses define the graphs that are sets of disconnected
strings, each one of which encodes a single variable and a single clause respectively. The above
formulae assist in defining the following ones.

False = (SetOfVars | SetOfVars),
True = (SetOfVars | SetOfVars),

RestClause = ∀x, y
(
first(x) ∧ (E(x, y) | >)→

(E〈(x, y) ∨ E〉(x, y) ∨ E+(x, y) ∨ E−(x, y) | >)
)
,

Rest = (SetOfVars | SetOfVars | RestClause),

Equal = ∃x, y
(
first(x) ∧ first(y)∧

∧∃z, w
(
E](x, z) | (E+(y, w) ∨ E−(y, w) | EqualBit)

))
,

EqualBit = µR.
(
ε ∨ ∃x, y, z, w first(x) ∧ first(y)∧

∧
(
(E0(x, z) | E0(y, w) |R) ∨ (E1(x, z) | E1(y, w) | R)

))
.

The formula False will be used to split in two subgraphs the encodings of the variables that
are assigned to false. This is because a string contains encodings of variables if and only if that
string can be split into two subgraphs, both comprising disconnected substrings, where each
such substring is the encoding of a single variable. The formula RestClause is used to denote

CHAPTER 4. GRAPH LOGIC WITH RECURSION 82

the subgraphs that remain when we pick a variable from a clause. Similarly the formula Rest
defines the set of graphs comprising strings satisfying RestClause together with some strings
encoding variables.

The formula EqualBit is the one formula using the recursion operator, and is satisfied by a
graph consisting of two strings with edges labelled with 1 and 0, if these two strings encode the
same bitstrings. The formula EqualBit is used by the formula Equal, that is satisfied by a graph
of two strings, when one of these strings encodes a variable in the variables listing encoding and
the other encodes the same variable appearing as a literal in the clauses.

Finally the formula expressing satisfiability of a SAT formula encoded into a string according
to the above is the one presented below.

Assign = ∃x (Pos(x) ∨Neg(x) | Rest)∧
∧
(
(Pos(x) | Rest)→ ∃y

(
Rest | (Pos(x) | Var(y)) ∧ Equal

))
∧

∧
(
(Neg(x) | Rest)→ ∀y ¬

(
(Rest | (Neg(x) | Var(y)) ∧ Equal)

))
,

TruePart =
(
(SetOfClauses | SetOfClauses) |⇒

(
∃x (Clause(x) | True)→ Assign

))
,

NPSat = ∃x, y (E‖(x, y) | False | TruePart),

where the operator ‘|⇒’ is defined in Section 1.5.
Assuming that a subgraph is composed of a single clause together with a substring of the

variables listing encoding, the formula Assign expresses then that there either exists a positive
literal in the clause that matches the encoding of a variable, or otherwise there exists a negative
literal in the clause that matches no variable in the substring of the variables listing encoding
that appears in the graph.

This way, if all the variables assigned the value false are removed from a string, one can find
for each clause, a literal that makes it true. This is what the formula NPSat expresses with the
help of the formula TruePart. The latter formula holds when, for every subgraph comprising a
set of variables and a single clause, the formula Assign holds.

Extending the string encoding of the formulae to accommodate for alternating quantifiers
of a formula, one can define classes of strings that are complete for any level of the Polynomial
Hierarchy. Furthermore, by defining a GLµ sentence that recursively deals with the different
alternating levels of quantification, it is possible to define a class of strings that is PSPACE-
complete.

Theorem 4.2.1. There exists a GLµ formula ϕ that defines a class of strings that is PSPACE-
complete.

Checking validity of Quantified Boolean Formulae is complete for PSPACE, and so we give
an encoding of QBF instances into strings and a formula ϕ which a string S satisfies if and only
if the QBF instance it encodes is valid. Consider the following encoding in addition to what
was described above, to accommodate for quantifiers. The variables listing encoding, and in

CHAPTER 4. GRAPH LOGIC WITH RECURSION 83

particular the encoding of the variables in it, is extended with an additional index corresponding
to the quantifier block in which the variable gets bound. The variable index from the encoding
described for SAT instances, and which is unique for each variable, also remains in the encoding
of QBF instances, with additional symbols in the alphabet to denote the limits of these indices.
Let then the alphabet used for the encoding, include the symbols ‘∀’,‘∃’,‘d’ and ‘e’.

The encoding initially describes the quantifier blocks appearing in the formula by listing the
variables bound and the quantifier type that precedes them, both accompanied by the quantifier
index, which is given, again, in binary. The part of the string encoding the variables that appear
in the formula, is again called the variables listing encoding. As an example, let ψ be the formula
∀x1, x2 ∃x3(x1 ∨ ¬x2 ∨ x3). Then ψ is encoded into the following string:

∀d01e]d01e01]d01e10︸ ︷︷ ︸
∀x1,x2

∃d10e]d10e11︸ ︷︷ ︸
∃x3

‖ 〈+d01e01− d01e10 + d10e11〉︸ ︷︷ ︸
clause of formula ψ

.

A variable xn that is bound by the m-th quantifier, is thus encoded as]dbin(m)ebin(n),
where bin(n) denotes the number n in binary. Similarly, when the variable appears in a clause
instead of the variables listing encoding, the symbol ‘]’ is omitted at the beginning of the
variable encoding, and instead one of the symbols ‘+’ or ‘−’ is used to denote whether the
variable appears in a positive or negative form.

The formula Index below defines the strings that encode a quantifier index, as a connected
sequence of 0’s and 1’s that starts and ends with the appropriate symbols ‘d’ and ‘e’. The
formulae given earlier expressing that a string encodes a variable are redefined accordingly:

Index = Connected ∧ ∃x1, x2, y1, y2(
first(x1) ∧ last(y2) ∧ (Ed(x1, y1) | Ee(x2, y2) | >)

)
∧

∧uniqued ∧ uniquee,

Var(x) = first(x) ∧ Connected ∧ ∀w
(
(E(x,w) | >)→

(
E](x,w) | OnlyBits | Index

))
,

Pos(x) = first(x) ∧ Connected ∧ ∀w
(
(E(x,w) | >)→

(
E+(x,w) | OnlyBits | Index

))
,

Neg(x) = first(x) ∧ Connected ∧ ∀w
(
(E(x,w) | >)→

(
E−(x,w) | OnlyBits | Index

))
.

The GLµ formula that checks satisfiability of the encoded Quantified Boolean Formula, needs
to be extended to accommodate for the alternating quantifiers. This is done by recursively going
through the alternating quantifier blocks and assigning the value true or false to the variables.
First, a formula is needed to check that the indices of the variables being assigned at each
recursive step match the index of the respective quantifier at hand.

EqualIndices =
(
> |⇒

(
(Index | Index)→ (NoBits |(OnlyBits ∧ EqualBit))

))
.

The formula EqualIndices expresses that whenever two indices are separated from the rest of
the graph, then the two sequences of bits, between the index delimiter symbols, are equal to
each other.

CHAPTER 4. GRAPH LOGIC WITH RECURSION 84

A few more formulae are defined next, essentially used to define that a string is a quantifier
together with its index. This is accomplished with QuantE and QuantA as shown below, for
the cases where the quantifier is ∃ and ∀ respectively.

FirstE(x) = ∃y (E∃(x, y) | >) ∧ ∀w,w′
(
(E∃(w,w′) ∨ E∀(w,w′) | >)→ (Path(x,w) | >)

)
,

FirstA(x) = ∃y (E∀(x, y) | >) ∧ ∀w,w′
(
(E∃(w,w′) ∨ E∀(w,w′) | >)→ (Path(x,w) | >)

)
,

QuantE(x) = Connected ∧ ∃y (E∃(x, y) | Index),
QuantA(x) = Connected ∧ ∃y (E∀(x, y) | Index),

NoQuant = ¬∃x, y (E∃(x, y) ∨ E∀(x, y) | >).

The formula FirstE(x) is satisfied at some vertex x, if a quantifier block begins at x, and is
such that all the rest of the quantifiers are after this one in the encoding of the string. Essentially,
as shown below, at each recursion step, after a quantifier block has been dealt with, the edge
containing the quantifier of that block is removed. Thus, the first quantifier in the string after
k recursive steps is the (k + 1)-st quantifier. The definition of the formula Equal is changed to
the following one, to accommodate the different encoding of variables.

Equal = ∃x, y
(
first(x) ∧ first(y)∧

∧∃z, w
(
E](x, z) |

(
E+(y, w) ∨ E−(y, w)

)
|(

(Index | Index) ∧ EqualIndices
)
| EqualBit

))
.

The formulae that follow use the bit checking between the indices of variables, that was
defined earlier, to make sure that at each recursive step only the appropriate variables are
assigned a truth value.

TrueClause = NoQuant ∧ ∃x, y (E‖(x, y) | TruePart),

ExistsAssign = ∃x FirstE(x) ∧
((

(QuantE(x) | False) ∧ EqualIndices
)
| R
)
,

ForallAssign = ∃x FirstA(x) ∧
((

(QuantA(x) | False) ∧ EqualIndices
)
|⇒ R

)
,

QBFSat = µR.
(
TrueClause ∨ ExistsAssign ∨ ForallAssign

)
.

Informally, the formula QBFSat above, using the formulae ExistsAssign and ForallAssign,
removes at each recursive step the substring encoding the first quantifier that has not been
dealt with yet, and a few substrings encoding variables that are bound by that quantifier. The
substrings encoding variables that are removed at each step correspond to the ones that are
assigned the truth value false. The difference between what ExistsAssign and ForallAssign
express, is that the latter uses the connective ‘|⇒’ so that any such assignment of truth values
to the variables bound by a universal quantifier will do. When no more quantifiers exist in the
substring remaining, the formula TrueClause expresses that the assignment given is such that
all clauses are satisfied. The recursion operator is necessary for checking that two bit strings
are equal and to go through the arbitrarily many quantifier blocks of the Quantified Boolean
Formula. Therefore, a string encoding a QBF instance, satisfies QBFSat if and only if the
encoded Quantified Boolean Formula is true.

CHAPTER 4. GRAPH LOGIC WITH RECURSION 85

One can also define a formula expressing that a Quantified Boolean Formula encoded in the
same way on a string, is not satisfiable, and therefore also define a formula saying that it is
valid. Note that in the formula ForallAssign the recursion variable R is under an even number
of negations.

4.2.2 Conjunctive Grammars and their Boolean Closure

In this section a brief comparison will be made between the word languages definable in GLµ,
and various classes of formal languages. The simplest of these classes is the class of regular
languages, which was shown in [DGG07] to be exactly the languages definable in GL. The next
important class of languages is the class of context-free ones which is strictly larger than the
regular languages. A famous example for separating the two classes, through the use of the
Pumping Lemma, is the language {anbn | a, b ∈ Σ}.

Informally, a language is context-free if it can be generated by a context-free grammar, which
is a set of rewriting rules where non-terminal symbols can be replaced by strings of terminal and
non-terminal symbols according to the rules of the given grammar. A class that extends the
context-free languages is the class of context-sensitive languages, where as the name implies, the
rules applicable to any non-terminal symbol depend also on the context in which this symbol
appears. We refer the reader to [RS97] for further details.

Various different other classes of languages have been defined that lie between the context-
free and the context-sensitive ones, such as the class of conjunctive grammars, the boolean
grammars and the deterministic context-sensitive ones. Conjunctive grammars, defined below,
were introduced by Okhotin (see [Okh01],[Okh03]) and extend the rules of context-free gram-
mars, by allowing the use of conjunction. An example language given in [Okh01] that separates
conjunctive grammars from context-free grammars, is the language {wcw | w ∈ Σ∗, c ∈ Σ},
which can be shown to be undefinable by a context-free grammar using the Pumping Lemma for
this class of languages. It is worth noting that in [AK08], Aizikowitz et al. introduce a variant
of alternating pushdown automata that accept the same class of languages as the ones that can
be derived by conjunctive grammars.

Boolean grammars make use of all boolean connectives, and it is because of negation that the
semantics of boolean grammars are defined according to language equations and not rewriting
terms as is done with the ones mentioned earlier. Boolean grammars are at least as expressive
as the conjunctive ones, but a strict inclusion is not yet known. A thorough introduction in
Boolean grammars is given in [Okh04].

The data complexity of both the Boolean Grammars and of the Conjunctive Grammars is
PTIME, whereas for the case of the context-sensitive ones, PSPACE-complete problems can be ex-
pressed. In particular, the data complexity of context-sensitive grammars is exactly NLINSPACE,
and therefore every language accepted by a non-deterministic linear space Turing machine is ac-
cepted by some context-sensitive grammar. A subclass of context-sensitive languages, named
deterministic context-sensitive, is defined to be exactly the languages accepted by some determin-

CHAPTER 4. GRAPH LOGIC WITH RECURSION 86

istic linear space Turing machine. Although this class is included in the class of context-sensitive
languages by definition, the inclusion is not known to be strict. As was shown in the previous
section, the languages definable in GLµ are also PSPACE-complete. A summary of the inclusions
between the above languages is shown below:

L(reg) (L(CF) (L(ConjCF) ⊆ L(Bool) ⊆ L(DetCS) ⊆ L(CS),

where L(reg) is the class of regular languages, CF is shorthand for context-free and similarly
CS is for context-sensitive. Similarly, L(ConjCF) and L(Bool), denote the class of conjunc-
tive grammar languages and Boolean grammar languages respectively. The class of languages
L(DetCS) lies between L(Bool) and L(CS) with none of the two inclusions known to be strict.
The algorithm for model-checking GLµ given in [DGG07] uses non-linear space for any fixed GLµ
formula, and so it may be the case that L(GLµ) can define languages that are not contained in
L(DetCS) or L(CS).

In this section, a short introduction is given for these grammars and it is shown that any
language generated by a conjunctive grammar can be defined in GLµ, which is also presented in
[DGG07]. Hence all languages generated by context-free grammars can also be defined in GLµ.
In particular, since GLµ is closed under boolean operations, the boolean closure of conjunctive
grammars can be defined in GLµ. The boolean closure of conjunctive grammars is not necessarily
the same as the boolean grammars. Furthermore, it has to be noted that the class of languages
definable by conjunctive grammars is not known to be closed under complementation. If this
class is not closed under complementation then conjunctive grammars are strictly included in
the boolean grammars, as the latter class is closed under negation. The language {ww | w ∈
{a, b}∗} is not known to be definable by a conjunctive grammar, whereas the complement of this
language is actually context-free, as shown in [Sip05]. In particular, the language L1 = {x ∈
{a, b}∗ | x not of the form ww}, is the union of the words of odd length together with the words
of the form xiaxixjbxj or xibxixjaxj , for x ∈ {a, b}, which are both context-free languages. It
is easily shown to be GLµ definable as well, using the following formula.

Equal = µR.
(
ε ∨ ∃x, y, z, w

(
first(x) ∧ first(z) ∧

∨
α∈Σ(Eα(x, y) | Eα(z, w) | R)

))
,

ϕww = ∃x, y, z, w, first(x) ∧
∨
α∈Σ(Eα(x, y) | Eα(z, w) |Equal).

The formula ϕww expresses that there are two edges such that the two substrings obtained
when disregarding these two edges, are equal with respect to both size and labels. The latter is
expressed by Equal. The following sequence of inclusions illustrates where GLµ lies with respect
to the above languages.

L(reg) (L(CF) (L(ConjCF) ⊆ L(BoolClosConjCF) ⊆

{
L(GLµ)

L(Bool) ⊆ L(DetCS) ⊆ L(CS)

}
,

where L(BoolClosConjCF) denotes the boolean closure of conjunctive grammars. Neither direc-
tion of inclusion is known between L(GLµ) and the languages L(Bool), L(DetCS) and L(CS).

CHAPTER 4. GRAPH LOGIC WITH RECURSION 87

Definition 4.2.2 (Context-free Grammar,[RS97]). A context-free grammar G is a tuple
(Σ, N, S, P) where Σ is the set of terminal symbols, N is the set of non-terminal symbols, S is
an element of N and P is a set of production rules of the form N → (Σ ∪N)∗.

The relation of derivability, G
=⇒ , of a grammar G is defined as follows. For all sets of strings

s1As2 where s1, s2 ∈ (Σ∪N)∗, and for all P of the form A→ w with w ∈ (Σ∪N)∗ and A ∈ N ,
then s1As2

G
=⇒ s1ws2 holds. The relation G

=⇒∗ is the reflexive and transitive closure of G
=⇒ .

A language L is context-free if there exists a context-free grammar G such that for any word
w ∈ Σ∗ it is the case that w ∈ L if and only if S G

=⇒∗w, where S is a distinguished non-terminal
acting as the initial one.

Definition 4.2.3 (Conjunctive Grammar, [Okh01]). A conjunctive grammar is a quadruple
(Σ, N, S, P), where Σ is the set of terminal symbols, N is the set of non-terminal symbols and S
is an element of N representing the start symbol. P is a set of production rules in the form of
ordered pairs (A, {α1, . . . , αn}), respectively of a non-terminal A and a finite subset of (Σ∪N)∗.
The rules are written in the form A→ α1& . . .&αn.

A conjunctive grammar formula is defined to be an element of (Σ∪N ∪{(,),&})∗ and is such
that ε is a formula, every symbol in Σ∪N is a formula, if s1, s2 are formulae then s1s2 is a formula,
and if s1, . . . , sn are formulae then (s1& . . .&sn) is a formula. The relation of derivability of a
grammar G is defined as follows. For all s1, s2 ∈ (Σ∪N ∪{(,),&})∗ and for all A ∈ N , if s1As2
is a conjunctive grammar formula, then for all rules of the form A→ α1& . . .&αn in P , it is the
case that s1As2

G
=⇒ s1(α1& . . .&αn)s2. Furthermore, for all s1, s2 ∈ (Σ ∪N ∪ {(,),&})∗ and for

all w ∈ Σ∗, if s1(w& . . .&w)s2 is a formula then it holds that s1(w& . . .&w)s2
G

=⇒ s1ws2.
The relation G

=⇒∗ is the reflexive and transitive closure of G
=⇒ . For any language L, L ∈

L(ConjCF) if and only if there exists a conjunctive grammar G = (Σ, N, S, P), such that for any
word w ∈ Σ∗, w ∈ L if and only if S G

=⇒∗w. Note that context-free grammars are subsumed by
conjunctive grammars since the syntax and the semantics of the latter extend the syntax and
semantics respectively of the context-free ones.

An example of a language definable by some conjunctive grammar but no context-free gram-
mar is the language {anbncn | a, b, c ∈ Σ, n ∈ N}, as is shown in [Okh01]. This is accomplished
using the grammar G = (Σ, N, S, P), where N = {A,C,D, F,H, J, S} and where P contains the
following rules.

S → F&D,
F → HC,

H → aHb,

H → ε,

D → AJ,

J → bJc,

J → ε,

A → Aa,

A → ε,

C → Cc,

C → ε.

According to the grammar G, the non-terminal F produces exactly those words of the form
{anbncm | n,m ∈ N} and similarly D produces the set of words {anbmcm | n,m ∈ N}. Notice

CHAPTER 4. GRAPH LOGIC WITH RECURSION 88

that these two languages are context-free, as are the rules of the grammar G defining them. The
rule S → F&D simply says that a word has to be derivable from both F and D, or in other
words be in the language L = {anbncn | a, b, c ∈ Σ, n ∈ N}. Using a pumping lemma argument,
it can be shown that L is not context-free.

In [Mor89] another class of grammars, named alternating context-free, is defined which is
different from the class of grammars defined in [Lan02] with the same name. The latter are
essentially the same as conjunctive grammars, whose class of languages is in PTIME, whereas
the class of languages defined by the alternating context-free grammars of [Mor89] is in EXPTIME.
We refer the reader to [Mor89] for an introduction to the latter grammars.

Fixed Point Logic with Chop (FLC for short) is introduced and studied in [MO99] and is an
extension of the modal µ-calculus Lµ, with a sequential composition operator added. The logic
FLC is strictly more expressive than Lµ over words, as it can define languages that are not even
context-free. Linear Fixed Point Logic with Chop (LFLC), studied in [Lan02], is an extension
of linear modal µ-calculus, with the same sequential composition operator as FLC, where linear
modal µ-calculus, is the restriction of modal µ-calculus on words. It has been proved in [Lan02]
that LFLC over words is equi-expressive to the alternating context-free grammars defined in the
same paper, which, as stated earlier, are essentially the same as the conjunctive grammars.

Since GLµ is closed under all boolean operations, in order to show that L(BoolClosConjCF) ⊆
L(GLµ), it is sufficient to show that L(ConjCF) ⊆ L(GLµ). The latter was proved in [DGG07]
and it is shown here using a translation from Linear Fixed Point Logic with Chop.

Definition 4.2.4 (LFLC Formulae,[Lan02]). Let Σ be an alphabet and let Var be a set of
variables. If a ∈ Σ, Z ∈ Var and ϕ,ψ are LFLC formulae, then so are the following:

χ = tt | ff | a | Z | ϕ ∨ ψ | ϕ ∧ ψ | µZ.ϕ1 | νZ.ϕ1 | ϕ;ψ.

Notice that for any formula µZ.ϕ1, the recursion variable Z always appears positive in ϕ1,
namely under an even number of negations, since negation is not included in the syntax of
LFLC. Therefore the fixed point operator defined by ϕ1 is monotone.

Definition 4.2.5 (LFLC Semantics, [Lan02]). The semantics of a LFLC formula, where
ρ : Var → ℘(Σ∗) is the environment interpreting the recursion variables, is defined inductively
as follows.

[[tt]]ρ ≡ Σ∗,

[[ff]]ρ ≡ ∅,
[[a]]ρ ≡ {a},
[[Z]]ρ ≡ ρ(Z),

[[ϕ ∨ ψ]]ρ ≡ [[ϕ]]ρ ∪ [[ψ]]ρ,
[[ϕ ∧ ψ]]ρ ≡ [[ϕ]]ρ ∩ [[ψ]]ρ,
[[µZ.ϕ]]ρ ≡

⋂
{V ⊆ Σ∗ | [[ϕ]]ρ[Z 7→V] ⊆ V },

[[νZ.ϕ]]ρ ≡
⋃
{V ⊆ Σ∗ | V ⊆ [[ϕ]]ρ[Z 7→V]},

[[ϕ;ψ]]ρ ≡ {v ∈ Σ∗ | ∃v1, v2 ∈ Σ∗, s.t. v = v1v2, v1 ∈ [[ϕ]]ρ, v2 ∈ [[ψ]]ρ}.

CHAPTER 4. GRAPH LOGIC WITH RECURSION 89

Although negation is not included in the syntax of LFLC, any modal µ-calculus formula,
negated or not, is equivalent to a formula of LFLC, since all boolean constructs are included
in the syntax as well as both the least and greatest fixed point operators, and for any a ∈ Σ,
¬a is equivalent to

∨
b∈Σ,b6=a b. In other words, the negation outside a modal µ-calculus formula

can be pushed inside preserving the fact that each recursion variable Z appears positive in the
formula µZ.ϕ1 or νZ.ϕ1 where Z gets bound.

A direct translation from LFLC to LFP over words will be given, as well as one from LFLC
to GLµ. The proofs for the correctness of the translations make use of the following three useful
lemmas about LFLC.

It should be noted that LFP over words captures PTIME, and therefore a direct translation is
not required for Theorem 4.2.9 below, since any LFLC formula can be evaluated in polynomial
time. The difficulty of directly translating LFLC formulae into LFP ones is that the recursion in
LFLC works over potentially infinite lattices, whereas in LFP the recursion variables are always
mapped to tuples of elements of the structure that the LFP recursion operator is working on.
Lemma 4.2.7, essentially states that to see whether a word w satisfies some LFLC formula it is
enough to consider the set of subwords of w as a lattice in the recursion.

Lemma 4.2.6. For all sets V1, V2 ∈ ℘(Σ∗) such that V1 ⊆ V2, and for all LFLC formulae ϕ and
environments ρ it is the case that [[ϕ]]ρ[Z 7→V1] ⊆ [[ϕ]]ρ[Z 7→V2].

Proof. It follows from the monotonicity of the formula.

Lemma 4.2.7. For any word w and any LFLC formula ϕ and environment ρ, it holds that
[[ϕ]]ρ[Z 7→V] ∩ S = [[ϕ]]ρ[Z 7→V ∩S] ∩ S, where S is the set of all subwords of w.

Proof. The Lemma essentially states that for any subword wi of any word w, and for any LFLC
formula ϕ and environment ρ, it holds that wi ∈ [[ϕ]]ρ[Z 7→V] ⇔ wi ∈ [[ϕ]]ρ[Z 7→V ∩S], where S is
the set of all subwords of w. The direction wi ∈ [[ϕ]]ρ[Z 7→V] ⇐ wi ∈ [[ϕ]]ρ[Z 7→V ∩S] follows from
Lemma 4.2.6. We proceed on the proof of the opposite direction by induction on the structure
of the formula. For what follows, wi denotes a subword of a word w, and we let ρ1 = ρ[Z 7→ V]
and ρ2 = ρ[Z 7→ V ∩ S]. We want to show that wi ∈ [[ϕ]]ρ1 ⇒ wi ∈ [[ϕ]]ρ2 .

ϕ = a for some a ∈ Σ. Assume wi ∈ [[a]]ρ1 . Then wi ∈ [[a]]ρ′ for any environment ρ′.

ϕ = Z ′ for some Z ′ ∈ Var. Suppose first that Z ′ 6= Z and let wi ∈ [[ϕ]]ρ1 . Then wi ∈ ρ1(Z ′)
and ρ1 agrees with ρ2 on recursion variables other than Z and therefore wi ∈ [[ϕ]]ρ2 .

Similarly suppose that Z ′ = Z and let wi ∈ [[ϕ]]ρ1 . By the semantics definition, wi ∈
ρ1(Z) = V and therefore, since wi ∈ S, it is also the case that wi ∈ ρ2(Z) = V ∩S. Hence
wi ∈ [[Z]]ρ2 .

ϕ = ϕ1∧ϕ2. Let wi ∈ [[ϕ]]ρ1 . It follows that wi ∈ [[ϕ1]]ρ1 ∩ [[ϕ2]]ρ1 , and therefore by the inductive
hypothesis wi ∈ [[ϕ1]]ρ2 ∩ [[ϕ2]]ρ2 , which means that wi ∈ [[ϕ]]ρ2 .

CHAPTER 4. GRAPH LOGIC WITH RECURSION 90

ϕ = ϕ1 ∨ ϕ2. Similar case to the one above.

ϕ = ϕ1;ϕ2. Let wi ∈ [[ϕ1;ϕ2]]ρ1 . Then by the definition of the semantics, wi = v1v2, and for
j ∈ {1, 2} it holds that vj ∈ [[ϕj]]ρ1 . By the inductive hypothesis, and since S is closed
under subwords, [[ϕj]]ρ1 ∩ S = [[ϕj]]ρ2 ∩ S, for j ∈ {1, 2}, and since vj ∈ S and vj ∈ [[ϕj]]ρ1 ,
it holds that vj ∈ [[ϕj]]ρ2 . Therefore wi ∈ {v ∈ Σ∗ | ∃v1, v2 ∈ Σ∗, s.t. v = v1v2, v1 ∈
[[ϕ1]]ρ2 , v2 ∈ [[ϕ2]]ρ2}. Hence wi ∈ [[ϕ]]ρ2 .

ϕ = µZ ′.ψ. Assume first that Z ′ 6= Z and that wi ∈ [[µZ ′.ψ]]ρ1 . For the following we define
F` to be the function mapping V ′ to [[ψ]]ρ`[Z′ 7→V ′], for ` = 1, 2. Note that the inductive
hypothesis is that for any ρ′, Z ′, V ′, [[ψ]]ρ′[Z′ 7→V ′] ∩ S = [[ψ]]ρ′[Z′ 7→V ′∩S] ∩ S. According to
this, the following hold by the inductive hypothesis.

[[ψ]]ρ1[Z′ 7→V ′] ∩ S = [[ψ]]ρ1[Z′ 7→V ′∩S] ∩ S,
[[ψ]]ρ2[Z′ 7→V ′] ∩ S = [[ψ]]ρ2[Z′ 7→V ′∩S] ∩ S,

[[ψ]]ρ3[Z 7→V] ∩ S = [[ψ]]ρ3[Z 7→V ∩S] ∩ S,

where ρ3 = ρ[Z ′ 7→ V ′]. Notice that ρ3[Z 7→ V] = ρ[Z ′ 7→ V ′][Z 7→ V] = ρ1[Z ′ 7→ V ′], and
similarly ρ3[Z 7→ V ∩ S] = ρ2[Z ′ 7→ V ′]. Therefore using the F` notation we get:

F1(V ′) ∩ S = F1(V ′ ∩ S) ∩ S,
F2(V ′) ∩ S = F2(V ′ ∩ S) ∩ S,
F1(V ′) ∩ S = F2(V ′) ∩ S.

(4.1)

We want to show that [[µZ ′.ψ]]ρ1 ∩ S ⊆ [[µZ ′.ψ]]ρ2 ∩ S. It is enough to show then that for
every V2 where F2(V2) ⊆ V2, there exists V1 such that F1(V1) ⊆ V1 and V1∩S = V2∩S. Let
V2 be any set where F2(V2) ⊆ V2. We show that letting V1 to be equal to V∞ = F∞

1 (V2)
satisfies the condition. By definition V∞ is in {V1 | F1(V1) ⊆ V1}. We hence only need to
show that V∞ ∩ S = V2 ∩ S.

We proceed by induction on the number of recursion steps showing that for all ordinals k,
F k1 (V2) ∩ S = V2 ∩ S. For k = 0, we have that V2 ∩ S = V2 ∩ S.

For the case of the successor ordinal assume that for some j, F j1 (V2) ∩ S = V2 ∩ S, and
consider F j+1

1 (V2) ∩ S. This is equal to F1(F
j
1 (V2)) ∩ S and by equation 4.1 this is equal

to F1(F
j
1 (V2)∩ S)∩ S. By the inductive hypothesis, F1(F

j
1 (V2)∩ S)∩ S = F1(V2 ∩ S)∩ S.

Finally, equation 4.1 entails that the latter is equal to F1(V2) ∩ S = F2(V2) ∩ S, which is
equal to V2 ∩ S, since by assumption V2 is a fixed point of F2.

Finally, assume the statement holds for all j < λ, where λ is a limit ordinal. Then
F λ(V2) ∩ S = (

⋃
j<λ F

j(V2)) ∩ S =
⋃
j<λ(F

j(V2) ∩ S) which by the inductive hypothesis
is equal to

⋃
j<λ(V2 ∩ S) = V2 ∩ S. This completes the inductive proof.

Assume then that Z ′ = Z. We need to show that [[µZ.ψ]]ρ1 ∩ S ⊆ [[µZ.ψ]]ρ2 ∩ S. In other
words, by definition of the semantics for µZ.ψ, we need to show that⋂

{V | [[ψ]]ρ1[Z 7→V] ⊆ V } ∩ S ⊆
⋂
{V | [[ψ]]ρ2[Z 7→V] ⊆ V } ∩ S.

CHAPTER 4. GRAPH LOGIC WITH RECURSION 91

But these two sets are the same, since ρ1[Z 7→ V] = ρ2[Z 7→ V] = ρ[Z 7→ V].

ϕ = νZ ′.ψ. Let first Z ′ 6= Z and assume wi ∈ [[νZ ′.ψ]]ρ1 . By definition wi ∈
⋃
{V ′ ⊆ Σ∗ | V ′ ⊆

[[ψ]]ρ1[Z′ 7→V ′]}. We have to show that for any V ′ ∈ {V ′| V ′ ⊆ [[ψ]]ρ1[Z′ 7→V ′]} there exists a
V ′′ in {V ′′| V ′′ ⊆ [[ψ]]ρ2[Z′ 7→V ′′]}, such that V ′ ∩ S = V ′′ ∩ S.

Let V ′ ⊆ [[ψ]]ρ1[Z′ 7→V ′] = F1(V ′). Letting V ′′ be equal to F∞
2 (V ′) and using a similar

induction as the one used in the previous case, where ϕ = µZ ′.ψ, we get that V ′′ ∩ S =
V ′ ∩ S, and that V ′′ ⊆ [[ψ]]ρ2[Z′ 7→V ′′].

The argument for the case where Z ′ = Z, is similar to the one given earlier for ϕ = µZ ′.ψ.

Lemma 4.2.8. Let w be some word and let S be the set of subwords of w. Then for every
V1 ⊆ Σ∗ and any LFLC formula ϕ and environment ρ, such that [[ϕ]]ρ[Z 7→V1] ∩ S = V1 ∩ S, there
exists V2 ⊆ Σ∗, such that V1 ∩ S = V2 ∩ S and [[ϕ]]ρ[Z 7→V2] = V2.

Proof. Fix w, ϕ and ρ, and let V1 be some subset of Σ∗, such that [[ϕ]]ρ[Z 7→V1] ∩ S = V1 ∩ S.
For convenience we will denote with Fϕ the function that maps a subset V of Σ∗ to the set
[[ϕ]]ρ[Z 7→V] for the fixed environment ρ. Note that Fϕ is monotone and let V∞ be such that for
some k, V∞ = F kϕ(V1) = F k+1

ϕ (V1), where F kϕ(V1) = F (F k−1
ϕ (V1)) and F 1

ϕ(V1) = Fϕ(V1).
By definition, Fϕ(V∞) = V∞ and therefore [[ϕ]]ρ[Z 7→V∞] = V∞. It remains to be shown that

V∞ ∩ S = V1 ∩ S. Defining V2 to be equal to V∞ is sufficient for the Lemma to hold.
We prove by induction on k that F kϕ(V1)∩S = V1∩S. For k = 1, we have that Fϕ(V1)∩S =

V1∩S by the assumption of the statement. Suppose that the statement holds for some j, namely
F jϕ(V1) ∩ S = V1 ∩ S, and consider Fϕ(F jϕ(V1)) ∩ S. This is equal to Fϕ

(
F jϕ(V1) ∩ S

)
∩ S by

Lemma 4.2.7, which is then equal to Fϕ(V1 ∩ S) ∩ S by the inductive hypothesis. Again using
the Lemma 4.2.7, we have that Fϕ(V1 ∩ S) ∩ S = Fϕ(V1) ∩ S which is equal to V1 ∩ S by the
assumption of the statement.

Finally, suppose the statement holds for all j < λ, where is λ is some limit ordinal. Then
F λ(V1)∩S = (

⋃
j<λ F

j(V1))∩S =
⋃
j<λ(F

j(V1)∩S) which by the inductive hypothesis is equal
to
⋃
j<λ(V1 ∩ S) = V1 ∩ S.

The above three Lemmas will assist in proving the correctness of the two translations from
LFLC to LFP and GLµ. The inductive translation from LFLC to LFP is given first. The second
translation and its proof is along similar lines. In the following, for any LFLC formula ϕ, its
translation into an LFP formula is denoted by [ϕ]T .

A word w satisfies an LFLC formula ϕ if and only if it satisfies the LFP formula ∃x, y first(x)∧
last(y) ∧ [ϕ]T (x, y). A word structure for this case in LFP is represented as a structure with a
binary relation for each letter in the alphabet, as is done for words in GLµ. More formally, for
an alphabet Σ = {d1, . . . , dn} a word structure is defined as W = (A,Rd1 , . . . , Rdn) where A is
the universe, and each Rdi

is binary. In what follows, for a word W with vertices a and b, a ≺ b

CHAPTER 4. GRAPH LOGIC WITH RECURSION 92

expresses that a precedes b in the word W. Notice that this property is expressible in LFP. The
translation of LFLC formulae to LFP ones is given below.

[d]T (x, y) = Rd(x, y),
[Z]T (x, y) = SZ(x, y),
[ϕ1 ∧ ϕ2]T (x, y) = [ϕ1]T (x, y) ∧ [ϕ2]T (x, y),
[ϕ1 ∨ ϕ2]T (x, y) = [ϕ1]T (x, y) ∨ [ϕ2]T (x, y),
[ϕ1;ϕ2]T (x, y) = ∃z ([ϕ1]T (x, z) ∧ [ϕ2]T (z, y)),
[µZ.ϕ]T (x, y) = [lfpSZ ,x,y([ϕ]T ∧ x ≺ y)(SZ , x, y)](x, y),
[νZ.ϕ]T (x, y) = [gfpSZ ,x,y([ϕ]T ∧ x ≺ y)(SZ , x, y)](x, y).

In the following, for each LFLC word w, we define W = (A,Rd1 , . . . , Rdn) with universe A,
to be the word structure in LFP corresponding to w and if a, b ∈ A, are two vertices in W then
wa,b corresponds to the subword of W that starts at a and ends at b. Furthermore, for any
environment ρ : Var → ℘(Σ∗) interpreting recursion variables, we define ρ′ to be the function
assigning subsets of A2 to second order variables, such that for any a, b ∈ A, and any second
order variable SZ , (a, b) ∈ ρ′(SZ) if and only if wa,b ∈ ρ(Z).

Theorem 4.2.9. Let ϕ be any LFLC formula, w any LFLC word, ρ : Var → ℘(Σ∗) any
environment interpreting recursion variables and let W be the word structure for LFP with
universe A corresponding to w, and ρ′ the assignment corresponding to ρ. Then for any a, b ∈ A,
(W, ρ′) |=LFP [ϕ]T (a, b) if and only if for the subword wa,b of w, it holds that (wa,b, ρ) |=LFLC ϕ.

Proof. We proceed by induction on the structure of the formula.

ϕ = d for some d ∈ Σ. It is clear that for any a, b it holds that (W, ρ′) |= Rd(a, b) if and only if
wa,b is simply the one letter word d.

ϕ = Z for some Z ∈ Var. Then for any vertices a, b, (W, ρ′) |= SZ(a, b) if and only if (a, b) ∈
ρ′(SZ) if and only if wa,b ∈ ρ(Z).

ϕ = ϕ1∧ϕ2. Then for any a, b, (wa,b, ρ) |= ϕ1∧ϕ2 if and only if (wa,b, ρ) |= ϕ1 and (wa,b, ρ) |= ϕ2.
By the inductive hypothesis, this holds if and only if (W, ρ′) |= [ϕ1]T (a, b) and (W, ρ′) |=
[ϕ2]T (a, b). The required result follows.

ϕ = ϕ1 ∨ ϕ2. The case is similar to the one above.

ϕ = ϕ1;ϕ2. Then by definition of the semantics, for any a, b, (wa,b, ρ) |= ϕ1;ϕ2 if and only if
wa,b ∈ {v ∈ Σ∗ | ∃v1, v2 ∈ Σ∗, s.t. v = v1v2, v1 ∈ [[ϕ1]]ρ, v2 ∈ [[ϕ2]]ρ}. Consider first the
only if direction. We want to prove that (W, ρ′) |= [ϕ]T (a, b) ⇒ (wa,b, ρ) |= ϕ. Assume
(W, ρ′) |= ∃z ([ϕ1]T (a, z)∧[ϕ2]T (z, b)). Let c be such that (W, ρ′) |= [ϕ1]T (a, c)∧[ϕ2]T (c, b).
By the inductive hypothesis we know that the following hold.

(W, ρ′) |= [ϕ1]T (a, c)⇔ (wa,c, ρ) |= ϕ1

and (W, ρ′) |= [ϕ2]T (c, b)⇔ (wc,b, ρ) |= ϕ2.

CHAPTER 4. GRAPH LOGIC WITH RECURSION 93

Then it is the case that wa,b satisfies ϕ, by the definition of the semantics shown above,
since wa,b = wa,cwc,b.

For the if direction, assuming (wa,b, ρ) |= ϕ, we want to show that (W, ρ′) |= [ϕ]T (a, b).
Then by the definition of the semantics there are v1, v2, such that wa,b = v1v2 and (vj , ρ) |=
ϕj , for j ∈ {1, 2}. If there are such v1, v2 then there exists c in wa,b such that wa,c = v1

and wc,b = v2. Therefore, by the inductive hypothesis, it holds that (W, ρ′) |= [ϕ1]T (a, c)
and (W, ρ′) |= [ϕ2]T (c, b). The required result then follows.

ϕ = µZ.ψ. By definition, it holds that for any a, b, (wa,b, ρ) |= µZ.ψ if and only if wa,b ∈⋂
{V ⊆ Σ∗ | [[ψ]]ρ[Z 7→V] ⊆ V }. It needs to be shown that this is the case if and only if

(W, ρ′) |= [lfpSZ ,x,y([ψ]T ∧ x ≺ y)(SZ , x, y)](a, b). By Lemma 4.2.7 we have that for all
Z, V,w and any subword wi of w, it holds that wi ∈ [[ψ]]ρ[Z 7→V] ⇔ wi ∈ [[ψ]]ρ[Z 7→V ∩S], where
S is the set of subwords of w. By monotonicity of the mapping [[ψ]]ρ[Z 7→V], the equation
below holds.

wa,b ∈
⋂
{V | [[ψ]]ρ[Z 7→V] ⊆ V } ⇔

wa,b ∈
⋂
{V | [[ψ]]ρ[Z 7→V] = V } ⇔

wa,b ∈ S ∩
⋂
{V | [[ψ]]ρ[Z 7→V] = V } ⇔

wa,b ∈
⋂
{V ∩ S | [[ψ]]ρ[Z 7→V] = V }.

Now, {V ∩ S | [[ψ]]ρ[Z 7→V] = V } ⊆ {V ∩ S | [[ψ]]ρ[Z 7→V ∩S] ∩ S = V ∩ S}, since every V in
the first set, also belongs to the second set. So clearly if wa,b is in the intersection of the
V ’s of the second set, it is also in the intersection of the V ’s of the first set. Therefore it
holds that

wa,b ∈
⋂
{V ∩ S | [[ψ]]ρ[Z 7→V ∩S] ∩ S = V ∩ S} ⇒ wa,b ∈

⋂
{V ∩ S | [[ψ]]ρ[Z 7→V] = V }.

Consider the opposite direction and assume that wa,b ∈
⋂
{V ∩ S | [[ψ]]ρ[Z 7→V] = V }. For

contradiction assume that wa,b /∈
⋂
{V ∩ S | [[ψ]]ρ[Z 7→V ∩S] ∩ S = V ∩ S}. Then there must

be some V1 in the second set that does not belong to the first one, such that wa,b /∈ V1. We
need to show that there exists a set V2 ∈ {V ∩S | [[ψ]]ρ[Z 7→V] = V } such that V1∩S = V2∩S.
If this holds, then wa,b /∈ V2 and therefore wa,b /∈

⋂
{V ∩ S | [[ψ]]ρ[Z 7→V] = V }, which is a

contradiction.

It holds that V1 ∈ {V ∩ S | [[ψ]]ρ[Z 7→V ∩S] ∩ S = V ∩ S}. Then [[ψ]]ρ[Z 7→V1∩S] ∩ S = V1 ∩ S
by definition. From Lemma 4.2.7 we also have that [[ψ]]ρ[Z 7→V1∩S] ∩ S = [[ψ]]ρ[Z 7→V1] ∩ S.
Therefore, the set V2 we are looking for, is the one given by Lemma 4.2.8. Thus

wa,b ∈
⋂
{V | [[ψ]]ρ[Z 7→V] = V } ⇔

wa,b ∈
⋂
{V | [[ψ]]ρ[Z 7→V ∩S] ∩ S = V ∩ S}.

(4.2)

Therefore we need to show that wa,b ∈
⋂
{V | [[ψ]]ρ[Z 7→V ∩S] ∩ S = V ∩ S} if and only if

(W, ρ′) |= [lfpSZ ,x,y([ψ]T ∧ x ≺ y)(SZ , x, y)](a, b). By the inductive hypothesis and the
above, it holds that, for any a, b,

wa,b ∈ [[ψ]]ρ[Z 7→V ∩S] ∩ S ⇔ (W, ρ′V) |= [ψ]T (SZ , a, b), (4.3)

CHAPTER 4. GRAPH LOGIC WITH RECURSION 94

where ρ′V corresponds to ρ[Z 7→ V ∩ S]. Let W be any set of tuples (x, y) of posi-
tions in the word W such that each tuple can be seen as denoting the first and last
elements of a subword of W and let Fψ to be the function according to the mapping
W 7→ {(x, y) | (W, ρW) |= ([ψ]T ∧ x ≺ y)(SZ , x, y), ρW = ρ′[SZ 7→ W]}. By the in-
ductive hypothesis represented by the equation 4.3, we have that for any such set W ,
(a, b) ∈ Fψ(W) if and only if wa,b ∈ [[ψ]]ρ[Z 7→V ∩S] ∩ S, where V ∩ S is the set of subwords
wa,b such that (a, b) ∈W . Hence Fψ(W) = W if and only if [[ψ]]ρ[Z 7→V ∩S] ∩S = V ∩S. By
the definition of the semantics of LFP we have the following.

(W, ρ′) |= [lfpSZ ,x,y([ψ]T ∧ x ≺ y)(SZ , x, y)](a, b)⇔
(a, b) ∈ lfp(Fψ) =

⋂
{W | Fψ(W) = W}.

(4.4)

From the equations 4.2, 4.3 and 4.4 the required result holds, namely that (W, ρ′) |=
[lfpSZ ,x,y([ψ]T ∧ x ≺ y)(SZ , x, y)](a, b) if and only if (wa,b, ρ) |= µZ.ψ.

ϕ = νZ.ψ. The case is similar to the one above. It can be shown, using Lemma 4.2.8, that for
any V1 ∈ {V ∩S | [[ψ]]ρ[Z 7→V ∩S]∩S = V ∩S}, there exists a set V2 ∈ {V ∩S | [[ψ]]ρ[Z 7→V] = V }
such that V1 ∩ S = V2 ∩ S and therefore have that the following holds.

wa,b ∈
⋃
{V ∩ S | [[ψ]]ρ[Z 7→V] = V } ⇔ wa,b ∈

⋃
{V ∩ S | [[ψ]]ρ[Z 7→V ∩S] ∩ S = V ∩ S}.

An immediate consequence of Theorem 4.2.9 is the following Corollary, which establishes
that there is a translation from LFLC formulae to LFP ones on words.

Corollary 4.2.10. For any LFLC word w and its corresponding LFP word W, and any LFLC
sentence ϕ, w |=LFLC ϕ if and only if W |=LFP ∃x, y (first(x) ∧ last(y) ∧ [ϕ]T (x, y)).

In what follows we give an explicit translation from LFLC to GLµ, which follows similar
lines as the translation presented above, from LFLC to LFP. This translation however does not
pose the same difficulty, as the recursion operator in both logics works over the infinite lattice
of all words. For any LFLC formula ψ, the notation [ψ]µ is used to denote the translation of
this formula into a GLµ one. The inductive translation is given below.

[a]µ = ∃x, y (first(x) ∧ last(y) ∧ Connected ∧ Ea(x, y)),
[Z]µ = Connected ∧RZ ,
[ϕ1 ∧ ϕ2]µ = [ϕ1]µ ∧ [ϕ2]µ ∧ Connected,
[ϕ1 ∨ ϕ2]µ = [ϕ1]µ ∨ [ϕ2]µ ∧ Connected,
[ϕ1;ϕ2]µ = ∃x first(x) ∧

(
([ϕ1]µ ∧ first(x)) | [ϕ2]µ

)
∧ Connected,

[µZ.ψ]µ = Connected ∧ µRZ .[ψ]µ,
[νZ.ψ]µ = Connected ∧ νRZ .[ψ]µ.

In the translation above, the formulae of GLµ, with the use of the formula Connected, are
simulating the chop operator that splits a word in two connected subwords. In the following,

CHAPTER 4. GRAPH LOGIC WITH RECURSION 95

lowercase w will denote a word structure as it is represented in LFLC and uppercase W will
denote a word structure for GLµ. Similarly, if ρ : Var → ℘(Σ∗) is an environment interpreting
recursion variables in LFLC, then ρ′ denotes the corresponding environment interpreting recur-
sion variables in GLµ, such that for any LFLC word w′ and the corresponding GLµ word W ′,
w′ ∈ ρ(Z) if and only if W ′ ∈ ρ′(RZ).

Theorem 4.2.11. For any LFLC formula ϕ and any word structures w,W that represent
the same word, and any environment ρ interpreting variables in LFLC and its corresponding
environment ρ′ in GLµ, it holds that (w, ρ) |=LFLC ϕ if and only if (W,ρ′) |=GLµ [ϕ]µ.

Proof. The statement is proved by induction on the structure of the formula.

ϕ = a for some a ∈ Σ. Then it holds that (w, ρ) |= a, if and only if the word w is simply
the letter a, which finally is the case if and only if (W,ρ′) |= ∃x, y (first(x) ∧ last(y) ∧
Connected ∧ Ea(x, y)).

ϕ = Z for some Z ∈ Var. Then (w, ρ) |= Z if and only if w ∈ ρ(Z), which holds if and only if
W ∈ ρ′(RZ). Thus (w, ρ) |= Z if and only if W |= Connected ∧RZ .

ϕ = ϕ1∧ϕ2. Then (w, ρ) |= ϕ1∧ϕ2 if and only if (w, ρ) |= ϕ1 and (w, ρ) |= ϕ2. By the inductive
hypothesis, this is the case respectively if and only if (W,ρ′) |= [ϕ1]µ and (W,ρ′) |= [ϕ2]µ.
Finally this holds if and only if (W,ρ′) |= [ϕ1]µ ∧ [ϕ2]µ ∧ Connected.

ϕ = ϕ1 ∨ ϕ2. The case is similar to the one above.

ϕ = ϕ1;ϕ2. Consider the only if direction first. We want to prove that (w, ρ) |= ϕ⇒ (W,ρ′) |=
[ϕ]µ. Assume (w, ρ) |= ϕ1;ϕ2. Then w ∈ {v | v = w1w2 s.t. (wj , ρ) |= ϕj , j = 1, 2}. By
the inductive hypothesis (w1, ρ) |= ϕ1 if and only if (W1, ρ

′) |= [ϕ1]µ. Similarly for w2 and
W2. Therefore (W,ρ′) |= ∃x first(x) ∧

(
([ϕ1]µ ∧ first(x)) | [ϕ2]µ

)
∧ Connected as required.

For the if direction, assume that (W,ρ′) |= ∃x first(x) ∧
(
([ϕ1]µ ∧ first(x)) | [ϕ2]µ

)
∧

Connected. Then it is the case that W can be split into two connected subwords W1,W2

such that W1 is the one appearing first in the original W and (W1, ρ
′) |= [ϕ1]µ and

(W2, ρ
′) |= [ϕ2]µ. The required result then follows from the inductive hypothesis.

ϕ = µZ.ψ. By the LFLC and GLµ semantics this case is equivalent to showing the following.

w ∈
⋂
{V ⊆ Σ∗ | [[ψ]]ρ[Z 7→V] ⊆ V } ⇔

W ∈
⋂
{H ⊆ G | [[[ψ]µ ∧ Connected]]µρ′[RZ 7→H] ⊆ H}.

Since all subwords are also subgraphs, {V ⊆ Σ∗ | [[ψ]]ρ[Z 7→V] ⊆ V } ⊆ {H ⊆ G | [[[ψ]µ ∧
Connected]]µρ′[RZ 7→H] ⊆ H}. Hence the direction that needs some attention is the one from
left to right in the equivalence above.

Suppose there exists a word w ∈
⋂
{V ⊆ Σ∗ | [[ψ]]ρ[Z 7→V] ⊆ V } and suppose for contra-

diction that there is an H such that [[[ψ]µ ∧ Connected]]µρ′[RZ 7→H] ⊆ H and W /∈ H.

CHAPTER 4. GRAPH LOGIC WITH RECURSION 96

Let VH be the subset of H comprising the connected components of H. By the in-
ductive hypothesis, for any words w′,W ′ it holds that w′ ∈ [[ψ]]ρ[Z 7→VH] if and only if
W ′ ∈ [[[ψ]µ ∧ Connected]]µρ′[RZ 7→VH]. Everything in the latter is a connected component,
and since [[[ψ]µ∧Connected]]µρ′[RZ 7→VH] ⊆ H we have that it is also a subset of VH . There-
fore [[ψ]]ρ[Z 7→VH] ⊆ VH and VH is an element of {V ⊆ Σ∗ | [[ψ]]ρ[Z 7→V] ⊆ V }. If W /∈ H and
VH ⊆ H, then w /∈ VH and therefore also w /∈

⋂
{V ⊆ Σ∗ | [[ψ]]ρ[Z 7→V] ⊆ V }, which is a

contradiction.

ϕ = νZ.ψ. By the LFLC and GLµ semantics this case is equivalent to showing the following.

w ∈
⋃
{V ⊆ Σ∗ | V ⊆ [[ψ]]ρ[Z 7→V]} ⇔

W ∈
⋃
{H ⊆ G | H ⊆ [[[ψ]µ ∧ Connected]]µρ′[RZ 7→H]}.

Since all subwords are also subgraphs, {V ⊆ Σ∗ | V ⊆ [[ψ]]ρ[Z 7→V]} ⊆ {H ⊆ G | H ⊆
[[[ψ]µ ∧ Connected]]µρ′[RZ 7→H]}. Hence the direction that needs some attention is the one
from right to left in the equivalence above. We want to show that for any H in the second
set there exists a V in the first one such that the subset of H comprising exactly the
connected components, is equal to V .

Fix such an H, and let VH be the subset of H comprising the connected words of H.
By the inductive hypothesis, for any words w′,W ′ it holds that w′ ∈ [[ψ]]ρ[Z 7→VH] if and
only if W ′ ∈ [[[ψ]µ ∧ Connected]]µρ′[RZ 7→VH]. Notice that H = VH since by definition
H ⊆ [[[ψ]µ ∧ Connected]]µρ′[RZ 7→H] and therefore every graph in H is connected. Hence
also VH ⊆ [[[ψ]µ ∧ Connected]]µρ′[RZ 7→VH] and therefore VH ⊆ [[ψ]]ρ[Z 7→VH] and VH is an
element of {V ⊆ Σ∗ | V ⊆ [[ψ]]ρ[Z 7→V]}.

Corollary 4.2.12. For any language L generated by some conjunctive grammar G, there exists
a GLµ formula ϕ such that the word language Lµ = {w | w |= ϕ} is equal to L.

Proof. It follows from Theorem 4.2.11 and the equivalence between LFLC and conjunctive gram-
mars.

4.3 On Trees

An important thing to notice is that GLµ can be easily seen to be different from MSO in
expressive power over trees. This follows from the result on words above, but there are also
examples of properties on trees, that are not simply words, that establish the claim. Consider
the class of trees that contains trees of height 1 with the root having arbitrarily many children.
Over the class of these trees, as shown in [Lib04], MSO cannot express that a tree has a root with
an even number of children, but GLµ can do so using the following formula given in [DGG07].

EvenStar = ∃x
(
root(x) ∧ µR.

(
ε ∨
(
∃y, z (E(x, y) | E(x, z) | R)

)))
.

CHAPTER 4. GRAPH LOGIC WITH RECURSION 97

An immediate question is whether the properties definable in MSO over trees form a subset
of the ones defined in GLµ. We give a positive answer to this, and we do so in two different ways,
one through STL, a tree logic defined below, and one through a proof in similar lines to the one
presented in [GK04] for monadic Datalog. A short introduction into STL will be presented here,
while the reader can refer to [BTT05] for further details. The result regarding GLµ and STL is
also given in [DGG07].

Spatial Tree Logic (STL) is the quantifier-free fragment of TQL, which is presented in [CG01]
and [CG04]. The latter is a spatial query language on trees which makes use of spatial primitives,
a least fixed point operator and quantification over labels and trees. The spatial primitives of
STL are of two types. The first allows one to define a tree whose root has a single child, which
in turn is the root of some tree satisfying an STL formula. The second primitive allows one to
fuse the roots of two trees into one.

Let Λ be the alphabet of edge labels of the trees. Let ξ denote a recursion variable and let
α be a subset of Λ. The syntax and semantics of STL formulae are the following.

φ := 0 | α[φ1] | φ1|φ2 | > | ¬φ1 | φ1 ∨ φ2 | ξ | µξ.φ1.

where for any formula µξ.φ1, ξ appears positive in φ1, which ensures monotonicity.
Multisets are used for the representation of unordered and unranked trees. A single node

is denoted using the empty multiset {|}| , and multiset union is denoted with]. The set of all
trees Tree is the smallest set containing the empty multiset and is such that if t, t′ ∈ Tree, then
t] t′ ∈ Tree and α[t] ∈ Tree. A multiset {|t1, . . . , tn}| , where t1, . . . , tn ∈ Tree, can be seen as
a tree with n children, where each child is the root of a subtree isomorphic to one of t1, . . . , tn.

Let δ be a valuation function associating a set of trees to each recursion variable. The
interpretation of an STL formula ϕ under δ is denoted by [[ϕ]]δ. It is recursively defined as
follows.

[[0]]δ = {{|}| },
[[α[ϕ]]]δ = {{|a[t]}| |a ∈ α, t ∈ [[ϕ]]δ},
[[ϕ1 | ϕ2]]δ = {t1] t2 |t1 ∈ [[ϕ1]]δ, t2 ∈ [[ϕ2]]δ},
[[>]]δ = Tree,
[[¬ϕ]]δ = Tree \ [[ϕ]]δ,
[[ϕ1 ∨ ϕ2]]δ = [[ϕ1]]δ ∪ [[ϕ2]]δ,
[[ξ]]δ = δ(ξ),
[[µξ.ϕ]]δ =

⋂
{S |[[ϕ]]δ[ξ 7→S] ⊆ S}.

The authors of [BTT05] compare the expressive power of MSO with STL and prove that a
syntactic fragment of STL is equi-expressive to MSO over trees. In particular let a STL formula
ψ be a guarded STL formula if the occurrence of any recursion variable appears under the
operator α[.]. Let the set of STL formulae that are guarded be denoted by gSTL.

CHAPTER 4. GRAPH LOGIC WITH RECURSION 98

Theorem 4.3.1 (Boneva et al., [BTT05]). For any set of trees T , T is MSO definable if and
only if it is gSTL definable.

An example that separates STL from MSO, is the same as the one given in the beginning
of Section 4.3 for GLµ. In particular the same class of trees of height 1 with an even number of
edges is definable in STL by µξ.(α[0] | α[0] | ξ ∨ 0).

Theorem 4.3.2 (Boneva et al., [BTT05]). STL is strictly more expressive than MSO.

Using the above two theorems, and a translation of STL formulae into GLµ ones, we get
the required result, namely that over unranked, unordered trees, GLµ is strictly more expressive
than MSO. Let ‖.‖G denote the inductive translation of STL formulae into GLµ ones.

‖0‖G = 0,

‖α[ψ]‖G = ∃x, y
(
root(x) ∧

∨
a∈α

(
Ea(x, y) | (Connected ∧ root(y) ∧ ‖ψ‖G)

))
,

‖ψ1 | ψ2‖G = ∃x
(
root(x)

∧
(
root(x) ∧ ‖ψ1‖G ∧ Connected | root(x) ∧ ‖ψ2‖G ∧ Connected

))
,

‖>‖G = >,
‖¬ψ‖G = ¬‖ψ‖G,
‖ψ1 ∨ ψ2‖G = ‖ψ1‖G ∨ ‖ψ2‖G,
‖ξ‖G = Rξ,

‖µξ.ψ‖G = µRξ.‖ψ‖G.

For what follows, if δ is a valuation function associating a set of trees to each recursion
variable for STL, we define ρ to be the valuation function in GLµ, that corresponds to δ and
maps each recursion variable to a set of trees such that for any tree T and any recursion variable
ξ, T ∈ δ(ξ) if and only if T ∈ ρ(Rξ). The translation above leads to the following theorem.

Theorem 4.3.3. For any STL formula ϕ and any valuation function δ in STL, the set of
trees defined by ϕ according to δ is equal to the set of trees defined by ‖ϕ‖G according to ρ, the
valuation function in GLµ corresponding to δ.

Proof. The proof is by induction on the structure of the formula. The notation [[.]]Gσ;ρ is used
to denote the satisfaction interpretation of GLµ formulae, with the image of this interpretation
restricted to trees instead of graphs in general.

ϕ = 0. The statement is true for this case. Similarly for the case ϕ = >.

ϕ = ξ. Then [[ξ]]δ = δ(ξ), where the latter over trees is equal to ρ(Rξ), and therefore, for any
tree T , T ∈ [[ξ]]δ if and only if T ∈ [[Rξ]]Gσ;ρ.

ϕ = ψ1 ∨ ψ2. Then [[ψ1 ∨ ψ2]]δ = [[ψ1]]δ ∪ [[ψ2]]δ and by the inductive hypothesis we have that
[[ψ1]]δ = [[‖ψ1‖G]]Gσ;ρ and [[ψ2]]δ = [[‖ψ2‖G]]Gσ;ρ. Also [[‖ψ1∨ψ2‖G]]Gσ;ρ = [[‖ψ1‖G∨‖ψ2‖G]]Gσ;ρ =
[[‖ψ1‖G]]Gσ;ρ ∪ [[‖ψ2‖G]]Gσ;ρ and therefore [[ψ1 ∨ ψ2]]δ = [[‖ψ1 ∨ ψ2‖G]]Gσ;ρ

CHAPTER 4. GRAPH LOGIC WITH RECURSION 99

ϕ = ¬ψ. Then [[¬ψ]]δ = Tree \ [[ψ]]δ. By inductive hypothesis it holds that [[ψ]]δ = [[‖ψ‖G]]Gσ;ρ

and hence [[‖¬ψ‖G]]Gσ;ρ = [[¬ψ]]δ.

ϕ = α[ψ]. Then [[α[ψ]]]δ = {{|a[t]}| |a ∈ α, t ∈ [[ψ]]δ}. By the inductive hypothesis it is the case
that [[ψ]]δ = [[‖ψ‖G]]Gσ;ρ. Therefore the formula Connected ∧ root(y) ∧ ‖ψ‖G is satisfied
exactly by the trees t ∈ [[ψ]]δ, having root y. By the translation of STL formulae in GLµ,
we have that ‖α[ψ]‖G defines the set of trees that have some root x, an edge from x to
some node y with a label from the set α, and y is the root of a tree t ∈ [[ψ]]δ. Therefore
[[α[ψ]]]δ = [[‖α[ψ]‖G]]Gσ;ρ.

ϕ = ψ1 | ψ2. In this case, [[ψ1 | ψ2]]δ = {t1] t2 |t1 ∈ [[ψ1]]δ, t2 ∈ [[ψ2]]δ} and by the inductive
hypothesis it holds for i = 1, 2 that, [[ψi]]δ = [[‖ψi‖G]]Gσ;ρ. According to the definition of
the multiset representation for trees, the union of two multisets represents the fusion of
the roots of the trees represented by each of the two multisets. This is exactly what the
translation ‖ψ1 | ψ2‖G expresses in GLµ, and hence [[ψ1 | ψ2]]δ = [[‖ψ1 | ψ2‖G]]Gσ;ρ.

ϕ = µξ.ψ Then [[µξ.ψ]]δ =
⋂
{S |[[ψ]]δ[ξ 7→S] ⊆ S}. By the inductive hypothesis, it is true that

for any set of trees S, [[ψ]]δ[ξ 7→S] = [[‖ψ‖G]]Gσ;ρ[Rξ 7→S]. Therefore
⋂
{S |[[ψ]]δ[ξ 7→S] ⊆ S} =⋂

{S |[[‖ψ‖G]]Gσ;ρ[Rξ 7→S] ⊆ S}.

By Theorem 4.3.2, STL is strictly more expressive than MSO over trees which leads to the
following Corollary.

Corollary 4.3.4. GLµ is strictly more expressive than MSO on trees.

We proceed by establishing this same result for ranked trees using a proof of similar lines to
the one used in [GK04] for Monadic Datalog or, more generally, the one used for MSO in the
literature, namely MSO types, or similarly, states of automata. The proof presented below is
closer to the one for Monadic Datalog.

Theorem 4.3.5 (Gottlob et al., [GK04]). A tree language is regular if and only if it is definable
in Monadic Datalog.

More precisely the above authors prove that for every unary MSO definable query there
exists a Monadic Datalog query such that the two queries return the same result on all ranked
trees. The proof for the latter uses rules that recursively define MSO k-types of trees by working
both bottom-up and top-down, which aids into selecting nodes in the tree towards the definition
of any unary query. In other words, suppose that x is a vertex of some tree T , and let Tx be
the subtree of T that is rooted at x. Then the MSO rank-k type tpk(T, x), of the node x in T

depends on the MSO rank-k type tpk(Tx) of the tree Tx and the type tpk(T \ Tx) of the tree
T \ Tx (see [Mak04]). The types of these trees are calculated recursively working bottom-up in
the first case and top-down in the second one, in the proof of the corresponding Theorem in

CHAPTER 4. GRAPH LOGIC WITH RECURSION 100

[GK04]. For the proof of a result such as Theorem 4.3.5, the rank-k 0-types of trees are required
only, and therefore one needs to recursively define the type of a tree by working bottom-up only.
We proceed by establishing a similar result for GLµ.

In order for this to work for GLµ, a useful result should be given first, regarding simultaneous
fixed points. Let the notation ϕ(R) denote a GLµ formula ϕ with the recursion variableR appear-
ing in it free and when R is a recursion variable appearing in a formula ϕ and F is a set of graphs,
[[ϕ]]σ;ρ[R 7→F] will sometimes be denoted with [[ϕ(F)]]σ;ρ. Let ϕ1(R1, . . . , Rm), . . . , ϕm(R1, . . . , Rm)
be a sequence of formulae of vocabulary τ ∪ {R1, . . . , Rm}. The next two lemmas are almost
identical to Lemma 10.9 and Theorem 10.8 in [Lib04] and Lemma 3.3.41 and Theorem 3.3.42 in
[GKL+07]. A more general introduction can be found in [AN01].

S :=


R1 ← ϕ1(R1, . . . , Rm)

...
Rm ← ϕm(R1, . . . , Rm)

.

Let the above be a system of update rules, that define a tuple of operators S = (S1, . . . , Sm)
such that for each tuple of sets of graphs (G1, . . . ,Gm) it is the case that Si(G1, . . . ,Gm) = G′i,
where G′i = [[ϕi(G1, . . . ,Gm)]]σ;ρ, for all 1 ≤ i ≤ m. These operators can be combined into a
single one,

S : ℘(G)× . . .× ℘(G)→ ℘(G)× . . .× ℘(G),

which is monotone and has a least fixed point. For each of the Ri in the above system of update
rules S, we define [[µRi : S]]σ;ρ to be the i-th component of the least fixed point of S.

Let us denote by S-GLµ the logic that is obtained by adding this form of simultaneous
recursion to GLµ. We will prove that adding simultaneous fixed points in GLµ does not increase
its expressive power. In particular, it is shown that every S-GLµ formula [[µRi : S]]σ;ρ, where S
is a system of simultaneous fixed points, is equivalent to a GLµ formula, by simulating S using
nested fixed points as explained in the proof of Lemma 4.3.7 below.

For simplicity we will consider a system of just two update rules.

S :=

{
R ← ϕR(R, T)
T ← ϕT (R, T)

.

The above two update rules define two monotone operators R : ℘(G) × ℘(G) → ℘(G) and
T : ℘(G) × ℘(G) → ℘(G), where G is the set of all graphs. The system of the two operators
define a combined, monotone one, S = (R, T) : ℘(G)× ℘(G)→ ℘(G)× ℘(G), whose fixed point
is denoted by S∞ or (R∞, T ∞). For any fixed set of graphs X ∈ ℘(G), we define the operator
TX : ℘(G)→ ℘(G) with TX(Y) = T (X,Y). The operator TX is monotone for each fixed X, and
hence has a least fixed point, denoted by T ∞X .

Lemma 4.3.6 ([Lib04],[GKL+07]). The operator V : ℘(G)→ ℘(G) defined by V(X) = R(X, T ∞X)
is monotone whose least fixed point (V∞) is equal to R∞.

CHAPTER 4. GRAPH LOGIC WITH RECURSION 101

Proof. Suppose X ⊆ X ′. Then for all stages α of the operators TX and TX′ , it is the case that
T αX ⊆ T αX′ . Hence T ∞X ⊆ T ∞X′ . Therefore V(X) = R(X, T ∞X) ⊆ R(X ′, T ∞X′) = V(X ′) and V is
monotone.

For the second part of the statement, and in particular the direction of V∞ ⊆ R∞ consider the
following. First, notice that T ∞ is a fixed point of TR∞ , since TR∞(T ∞) = T (R∞, T ∞) = T ∞.
Hence T ∞ contains the least fixed point of TR∞ and therefore T ∞R∞ ⊆ T ∞.

Notice also that V(R∞) = R(R∞, T ∞R∞). By the above this is a subset of or equal to
R(R∞, T ∞) = R∞. As the least fixed point of V is

⋂
{X| V(X) ⊆ X}, we have that V∞ ⊆ R∞.

For the direction R∞ ⊆ V∞ we proceed by induction on the stage α of the operator to prove
that Rα ⊆ V∞ and T α ⊆ T ∞V∞ . For stage 0 it is clear since R0 = ∅ and T 0 = ∅.

Assume that the case is so for stage α. Then Rα+1 = R(Rα, T α) and by the induction
hypothesis the latter is a subset of or equal to R(V∞, T ∞V∞) = V(V∞) ⊆ V∞.

Similarly we have that T α+1 = T (Rα, T α), where again the latter is, by the inductive
hypothesis, a subset of or equal to T (V∞, T ∞V∞) = TV∞(T ∞V∞) = T ∞V∞ .

For a limit ordinal λ, it is clear.

Lemma 4.3.7 ([Lib04],[GKL+07]). S-GLµ ≡ GLµ.

Proof. Only one direction of equivalence needs to be shown, and in particular that any formula
of S-GLµ representing a system of simultaneous fixed point operators can be expressed by a GLµ
formula. This is done by simulating a simultaneous fixed point by a simple nested one, using
a technique known as the Bekic principle ([AN01]). For simplicity we consider the following
system of only two update rules.

S :=

{
R ← ϕ1(R, T)
T ← ϕ2(R, T).

We claim that the following two equivalences hold:

µR : S ≡ µR.ϕ1

(
R, (µT.ϕ2)/T

)
,

µT : S ≡ µT.ϕ2

(
(µR.ϕ1)/R, T

)
.

In the above, the notation (µT.ϕ2)/T is used to denote the substitution of T with the formula
µT.ϕ2. The proof of the first equivalence is shown. We define the two monotone operators
R and T where R(X,Y) = [[ϕ1]]σ;ρ[R 7→X,T 7→Y] and similarly T (X,Y) = [[ϕ2]]σ;ρ[R 7→X,T 7→Y]. We
denote their least fixed points with R∞ and T ∞ respectively, as earlier. According to this, a
graph G is a model of µR : S if and only if G ∈ R∞.

Similarly we define V : X 7→ [[ϕ1]]σ;ρ[R 7→X,T 7→Z] where Z = [[µT.ϕ2]]σ;ρ[R 7→X]. A graph G

belongs to the least fixed point of V if and only ifG |= µR.ϕ1

(
R, (µT.ϕ2)/T

)
. By Lemma 4.3.6 we

have that V∞ = R∞ and it is hence the case that G |= µR.ϕ1

(
R, (µT.ϕ2)/T

)
⇔ G |= µR : S.

CHAPTER 4. GRAPH LOGIC WITH RECURSION 102

The above two Lemmas, by giving a way of transforming a set of simultaneous recursion
formulae into a single nested one, provide what is needed for the following result.

Theorem 4.3.8. Every regular tree language of ranked trees is GLµ definable.

Proof. Let L be some regular tree language of trees of rank M and alphabet Σ. Then this
language is definable by some MSO formula of rank k, for some k ∈ N. Let this MSO formula
be ϕL, and let TL = {τ0, . . . , τN} be an enumeration of all MSO k-types. The MSO k-type of a
tree t having a root with m children, is determined by the k-types of the trees rooted at these
m children together with the labels along the edges connecting them to the root of the tree t.

Let S be the set of multisets of at most M elements, where each element is of the form
(τ, σ) where τ ∈ TL and σ ∈ Σ. Let f : S → TL be the function that returns the type of a tree
according to the types of the trees beneath its root and the labels on the edges connecting the
root to these trees. Let <T be a linear order on the elements of TL and let τj ∈ TL for some
1 ≤ j ≤ N . Suppose f−1(τj) = {e1, . . . , e`}. For each r ≤ `, we define a GLµ formula of the
following form.

θrj = ∃x root(x) ∧ ∃x1, . . . , xi((
an1(x, x1) | (Rn1 ∧ Connected ∧ root(x1))

)
| . . .

. . . |
(
ani(x, xi) | (Rni ∧ Connected ∧ root(xi))

))
.

In the above formula, i is the size of the multiset er and (τnh
, anh

) for 1 ≤ h ≤ i, are elements
of this multiset er to which the formula corresponds. We then define a formula for each type τj
as shown below.

θj = θ1
j ∨ . . . ∨ θ`j .

Let S be the following system of update rules according to the formulae θj .

S :=


R1 ← θ1

...
RN ← θN

.

Any MSO formula ϕ of rank k is equivalent to the disjunction of some of the types. We
claim that any MSO formula ϕ is equivalent to a S-GLµ formula of the following form.

(µRn1 : S) ∨ (µRn2 : S) ∨ . . . ∨ (µRnp : S).

But due to Lemma 4.3.7 any formula of the form µRj : S for some 1 ≤ j ≤ N , is equivalent to
a nested GLµ formula. It remains to be proved that for any tree t, t is of type τj if and only if
t |= µRj : S. We proceed by induction on the height of the tree.

The base case is clear for the type of a single node. Assume the statement holds for all trees
of height less than h, for some h ∈ N, and let t be of height h and of type τj . The types of the

CHAPTER 4. GRAPH LOGIC WITH RECURSION 103

trees rooted at the children nodes of the root of t together with the edges connecting them to
it, will be given by some er ∈ f−1(τj). For each tuple (τj` , σj`) in er, we have by the induction
hypothesis that the subtree tj` rooted at the appropriate child of the root of t satisfies µRj` : S.
The tree t satisfies θrj , and therefore, according to the update rules S, t is in the least fixed point
of Rj of S. Hence t |= µRj : S.

For the other direction assume that t |= µRj : S for some j ∈ [N]. In order for t to be
in the least fixed point of Rj , it must satisfy θj under some assignment ρ of sets of trees to
recursion variables, and hence t must satisfy at least one of the formulae θij in the disjunction.
Let (t, ρ) |= θ`j . The latter formula describes the subtrees rooted at the children of the root of t,
together with the edges that connect them to it, and therefore, by the inductive hypothesis and
the definition of θ`j , the tree t is of type τj .

Notice that Theorem 4.3.8 and its proof can be adapted for unary queries in a similar way
as it is done for Monadic Datalog in [GK04]. It should also be noted, that by Lemma 4.3.7,
where it is shown that S-GLµ ≡ GLµ, it is possible to obtain a more straightforward and direct
translation from conjunctive grammars to GLµ formulae.

Chapter 5

Conclusion

5.1 GL

We investigated the expressive power of GL over finite graphs. In Chapter 2 we focused on
properties that are expressible in this logic over words, over trees and over graphs in general. We
showed that the result of [DGG07] which states that over words GL and MSO are equi-expressive,
extends to structures that are formed by taking the disjoint union of word structures. Over trees,
a natural candidate property for non-expressibility was investigated, namely whether the class
of binary trees with an even number of leaf vertices is definable in GL. It was shown that such a
property is expressible in GL, although it is speculated that this does not necessarily extend to
a more general result, such as whether the class of binary trees with 0 (mod k) number of leaves,
for some arbitrary k ∈ N, is definable in GL. More specifically, it was shown that any language
of binary trees accepted by a product of deterministic bottom-up binary tree automata with 2
states is definable in GL. Consequently, this excludes some natural candidates for separating
GL from MSO over trees.

A comparison of GL with other logics and machine models over trees, that are properly
included in MSO, was made in an attempt to separate the logic from MSO, but it was shown
that GL is not included and possibly incomparable to the other logics considered. In other
words, GL is able to express properties that the other logics cannot, and possibly vice versa.
In particular, we established that there are GL-definable properties that are not definable by
tree-walking automata and others that are not definable in Antichain Logic or Chain Logic.

Over graphs in general, it was shown that 4-colourability, and more generally 2k-colourability,
for any k ∈ N, is definable in GL. This result does not seem to be easily extended to 3-
colourability, and the question of whether the latter is definable in GL remains open.

In Chapter 3, we showed that GL is strictly less expressive than MSO over graphs, and this
is the case even when restricted over the class of unlabelled directed forests. This was done by
considering forests comprising binary trees and additional disjoint strings that distracted Spoiler
in the GL game between two such forests. The property shown to be inexpressible in GL over
such structures is whether the binary tree inside such forests has 1 (mod 3) number of leaves.

104

CHAPTER 5. CONCLUSION 105

When the graph is decomposed into subgraphs during the various rounds of the game, Spoiler
finds it difficult to distinguish between leaves of the additional disjoint strings in the forest, and
leaves of the binary tree. With appropriately constructed structures, Duplicator wins the game.

The importance of the additional disjoint strings in the structures on which the GL game is
played, is shown using first-order interpretations and monadic second-order transductions. Due
to the above separating result, it was established that GL is closed under neither of them. The
forests used in the separating result, were interpreted into single trees comprising both the binary
tree and the strings acting as noise, all connected to the root of the tree. Furthermore, this was
done using first-order formulae, and it was shown that over such structures, the property about
the leaves of the binary tree mentioned above, is GL definable. Thus, the importance of the
disjoint strings in the structures constructed for separating GL from MSO, is clearly illustrated.

As a corollary of GL being strictly less expressive than MSO over forests, we obtained a
result regarding Separation Logic, and more specifically one of its fragments, namely SL(∗),
that is considered by Brochenin et al. in [BDL08] and is the fragment lacking the magic wand of
Separation Logic. We give a positive answer to a conjecture of the authors, namely that SL(∗)
is strictly less expressive than MSO over memory heaps, structures similar to graphs of unary
functions.

5.2 GLµ

In a similar manner, we examined the expressive power of GLµ, the extension of GL with a
recursion operator. It was shown in [DGG07] that PSPACE-complete problems are expressible
in GLµ over graphs, and we similarly showed that the same holds even when restricted over the
class of words, which was done by encoding QBF instances into labelled words. Consequently,
we compared GLµ to grammars that derive word languages that strictly contain the regular ones,
and showed in particular that GLµ is at least as expressive as conjunctive grammars introduced
in [Okh01], using a different method that the one in [DGG07] where the same result is shown.

It was established though, that languages thought to be not definable by conjunctive gram-
mars, are definable in GLµ, which is also closed under complementation, unlike conjunctive
grammars where this is not known. Conjunctive grammars define languages in PTIME, and
GLµ defines PSPACE-complete languages, and therefore the inclusion in GLµ of more expressive
grammars than conjunctive ones is possible.

Over trees, it was established through Spatial Tree Logic introduced in [BTT05], that GLµ
is strictly more expressive than MSO. In particular an inductively defined translation was given
for formulae from STL to GLµ. Furthermore, it was shown that S-GLµ, the version of GLµ with
simultaneous fixed-points, is equivalent to GLµ and a direct proof was given of the containment
of MSO in GLµ. The equivalence between GLµ and S-GLµ provides an easier way to translate
other logics and grammars to GLµ, such as conjunctive grammars and Monadic Datalog.

Bibliography

[AD09] Timos Antonopoulos and Anuj Dawar. Separating graph logic from MSO. In Luca
de Alfaro, editor, FOSSACS, volume 5504 of Lecture Notes in Computer Science,
pages 63–77. Springer, 2009.

[AK08] Tamar Aizikowitz and Michael Kaminski. Conjunctive grammars and alternating
pushdown automata. In Wilfrid Hodges and Ruy J. G. B. de Queiroz, editors, WoL-
LIC, volume 5110 of Lecture Notes in Computer Science, pages 44–55. Springer,
2008.

[AN01] A. Arnold and D. Niwiński. Rudiments of µ-calculus, volume 146 of Studies in Logic
and the Foundations of Mathematics. North-Holland, 2001.

[AU71] Alfred V. Aho and Jeffrey D. Ullman. Translations on a context-free grammar.
Information and Control, 19(5):439–475, 1971.

[BC08] Mikolaj Bojanczyk and Thomas Colcombet. Tree-walking automata do not recognize
all regular languages. SIAM J. Comput., 38(2):658–701, 2008.

[BDL08] Rémi Brochenin, Stéphane Demri, and Étienne Lozes. On the almighty wand. In
Michael Kaminski and Simone Martini, editors, Proceedings of the 16th Annual
EACSL Conference on Computer Science Logic (CSL’08), volume 5213 of Lecture
Notes in Computer Science, pages 323–338. Springer, September 2008.

[BTT05] Iovka Boneva, Jean-Marc Talbot, and Sophie Tison. Expressiveness of a spatial logic
for trees. In LICS, pages 280–289. IEEE Computer Society, 2005.

[Büc60] J. Richard Büchi. Weak second order arithmetic and finite automata. Z. Math. Logik
Grundlagen Math., 6:66–92, 1960.

[CG00] Luca Cardelli and Andrew D. Gordon. Anytime, anywhere: Modal logics for mobile
ambients. In POPL, pages 365–377, 2000.

[CG01] Luca Cardelli and Giorgio Ghelli. A query language based on the ambient logic.
In David Sands, editor, ESOP, volume 2028 of Lecture Notes in Computer Science,
pages 1–22. Springer, 2001.

106

BIBLIOGRAPHY 107

[CG04] Luca Cardelli and Giorgio Ghelli. TQL: a query language for semistructured data
based on the ambient logic. Mathematical Structures in Computer Science, 14(3):285–
327, 2004.

[CGG02] Luca Cardelli, Philippa Gardner, and Giorgio Ghelli. A spatial logic for query-
ing graphs. In Peter Widmayer, Francisco Triguero Ruiz, Rafael Morales Bueno,
Matthew Hennessy, Stephan Eidenbenz, and Ricardo Conejo, editors, ICALP, vol-
ume 2380 of Lecture Notes in Computer Science, pages 597–610. Springer, 2002.

[Com89] Kevin J. Compton. A logical approach to asymptotic combinatorics ii: Monadic
second-order properties. J. Comb. Theory, Ser. A, 50(1):110–131, 1989.

[Cou90] Bruno Courcelle. Graph rewriting: An algebraic and logic approach. In Handbook of
Theoretical Computer Science, Volume B: Formal Models and Sematics (B), pages
193–242. 1990.

[Cou94] Bruno Courcelle. The monadic second order logic of graphs VI: on several repre-
sentations of graphs by relational structures. Discrete Applied Mathematics, 54(2-
3):117–149, 1994.

[Cou97] Bruno Courcelle. The expression of graph properties and graph transformations
in monadic second-order logic. In Grzegorz Rozenberg, editor, Handbook of Graph
Grammars, pages 313–400. World Scientific, 1997.

[Cou03] Bruno Courcelle. The monadic second-order logic of graphs XIV: uniformly sparse
graphs and edge set quantifications. Theor. Comput. Sci., 1-3(299):1–36, 2003.

[Cou08] Bruno Courcelle. Graph algebras and monadic second-order logic. 2008.

[DGG04] Anuj Dawar, Philippa Gardner, and Giorgio Ghelli. Adjunct elimination through
games in static ambient logic. In Kamal Lodaya and Meena Mahajan, editors,
FSTTCS, volume 3328 of Lecture Notes in Computer Science, pages 211–223.
Springer, 2004.

[DGG07] Anuj Dawar, Philippa Gardner, and Giorgio Ghelli. Expressiveness and complexity
of graph logic. Inf. Comput., 205(3):263–310, 2007.

[Die05] Reinhard Diestel. Graph Theory (Graduate Texts in Mathematics). Springer, 2005.

[Don70] John Doner. Tree acceptors and some of their applications. J. Comput. Syst. Sci.,
4(5):406–451, 1970.

[dR87] Michel de Rougemont. Second-order and inductive definability on finite structures.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 33:47–63, 1987.

BIBLIOGRAPHY 108

[EF99] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, second edition
edition, 1999.

[Elg61] Calvin Elgot. Decision problems of finite automata design and related arithmetics.
Trans. Amer. Math. Soc., 98:21–52, 1961.

[Fag74] R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets.
Complexity and Computation, 7:43–73, 1974.

[FG04] Markus Frick and Martin Grohe. The complexity of first-order and monadic second-
order logic revisited. Ann. Pure Appl. Logic, 130(1-3):3–31, 2004.

[FV59] Feferman and Vaught. The first-order properties of algebraic systems. Fund. Math.,
47:57–103, 1959.

[GHO02] Erich Grädel, Colin Hirsch, and Martin Otto. Back and forth between guarded and
modal logics. ACM Trans. Comput. Log., 3(3):418–463, 2002.

[GK04] Georg Gottlob and Christoph Koch. Monadic datalog and the expressive power of
languages for web information extraction. J. ACM, 51(1):74–113, 2004.

[GKL+07] Erich Grädel, Phokion G. Kolaitis, Leonid Libkin, Maarten Marx, Joel Spencer,
Moshe Y. Vardi, Yde Venema, and Scott Weinstein. Finite Model Theory and Its
Applications (Texts in Theoretical Computer Science. An EATCS Series). Springer,
2007.

[Hal76] R. Halin. S-functions for graphs. Journal of Geometry, 8:171–186, 1976.

[Hod97] Wilfrid Hodges. A Shorter Model Theory. Cambridge University Press, 1997.

[Imm86] Neil Immerman. Relational queries computable in polynomial time. Information and
Control, 68(1-3):86–104, 1986.

[IO01] Samin S. Ishtiaq and Peter W. O’Hearn. Bi as an assertion language for mutable
data structures. In POPL, pages 14–26, 2001.

[Lan02] Martin Lange. Alternating context-free languages and linear time mu-calculus with
sequential composition. Electr. Notes Theor. Comput. Sci., 68(2), 2002.

[Lib04] Leonid Libkin. Elements of Finite Model Theory. Springer-Verlag, 2004.

[Mak04] Johann A. Makowsky. Algorithmic uses of the Feferman-Vaught theorem. Ann. Pure
Appl. Logic, 126(1-3):159–213, 2004.

[Mar06] Jerzy Marcinkowski. On the expressive power of graph logic. In Zoltán Ésik, editor,
CSL, volume 4207 of Lecture Notes in Computer Science, pages 486–500. Springer,
2006.

BIBLIOGRAPHY 109

[MO99] Markus Müller-Olm. A modal fixpoint logic with chop. In Christoph Meinel and
Sophie Tison, editors, STACS, volume 1563 of Lecture Notes in Computer Science,
pages 510–520. Springer, 1999.

[Mor89] Etsuro Moriya. A grammatical characterization of alternating pushdown automata.
Theor. Comput. Sci., 67(1):75–85, 1989.

[Okh01] Alexander Okhotin. Conjunctive grammars. Journal of Automata, Languages and
Combinatorics, 6(4):519–535, 2001.

[Okh03] Alexander Okhotin. An overview of conjunctive grammars, formal language theory
column. Bulletin of the EATCS, 79:145–163, 2003.

[Okh04] Alexander Okhotin. Boolean grammars. Inf. Comput., 194(1):19–48, 2004.

[Ott97] Martin Otto. Bounded Variable Logics and Counting, volume 9 of Lecture Notes in
Logic. Springer-Verlag, Berlin, 1997.

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[PT93] Andreas Potthoff and Wolfgang Thomas. Regular tree languages without unary
symbols are star-free. In Zoltán Ésik, editor, FCT, volume 710 of Lecture Notes in
Computer Science, pages 396–405. Springer, 1993.

[Rey02] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In
LICS, pages 55–74. IEEE Computer Society, 2002.

[RS71] R. McNaughton and S. Papert. Counter-free Automata. MIT Press, Cambridge,
USA, 1971.

[RS86] Robertson and Seymour. Graph minors. II. Algorithmic aspects of tree-width. AL-
GORITHMS: Journal of Algorithms, 7:309–322, 1986.

[RS97] G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages (3 volumes).
Springer, 1997.

[Sip05] M. Sipser. Introduction to the Theory of Computation. CourseTechnology, 2005.

[Tho84] Wolfgang Thomas. Logical aspects in the study of tree languages. In CAAP, pages
31–50, 1984.

[Tho96] W. Thomas. Languages, automata, and logic. Handbook of Formal Language Theory,
III:389–455, 1996.

[Tho97] Wolfgang Thomas. Ehrenfeucht games, the composition method, and the monadic
theory of ordinal words. In Jan Mycielski, Grzegorz Rozenberg, and Arto Salomaa,
editors, Structures in Logic and Computer Science, volume 1261 of Lecture Notes in
Computer Science, pages 118–143. Springer, 1997.

BIBLIOGRAPHY 110

[Tur84] György Turán. On the definability of properties of finite graphs. Discrete Mathe-
matics, 49(3):291–302, 1984.

[TW68] James W. Thatcher and Jesse B. Wright. Generalized finite automata theory with
an application to a decision problem of second-order logic. Mathematical Systems
Theory, 2(1):57–81, 1968.

[Var82] Moshe Y. Vardi. The complexity of relational query languages (extended abstract).
In STOC, pages 137–146. ACM, 1982.

