
CS 223: Data Structures and Programming Techniques. Instructor: Jim Aspnes

Exam 2
Work alone. Do not use any notes or books. You have approximately 75 minutes to complete

this exam.
Please write your answers on the exam. More paper is available if you need it. Please put your

name at the top of the first page.
There are four questions on this exam, for a total of 80 points.

1

1 The answer is always hash tables (20 points)

Suppose you want to build a grade database that supports the operations INSERT and FIND-
MEDIAN, where INSERT adds a new grade to the database and FIND-MEDIAN reports a median
grade, defined as a grade x such that the number of grades less than x in the database and the
number of grades greater than x in the database differ by at most one. Suppose also that we expect
to call FIND-MEDIAN at least as often as we call INSERT.

1. Briefly explain why a hash table is a bad choice for this database.

2. Give an alternative data structure that supports these operations efficiently. You do not need
to write any code for this. Describing what data structure you would use, how you would use
it, and how much it would cost, is enough.

Solution

1. Because hash tables do not preserve the order of their contents, there is no way to compute
the median other than looking at all of the elements, which will take at least Ω(n) time.

2. There are several options here. We were generally looking for a solution that runs in O(log n)
time (or better) for both INSERT and FIND-MEDIAN.

(a) An augmented balanced binary search tree, where each node includes a count of the
number of nodes in its subtree. This allows ranking and unranking elements at cost
O(log n), and maintains (at the root) a count of all elements, so we can just search
for the element with rank bn/2c. This gives a cost of O(log n) for both INSERT and
FIND-MEDIAN.

(b) Two heaps, with the invariant that every element in the left heap (a max-heap) is smaller
than every element in the right heap (a min-heap), and that the sizes of the heaps differ
by at most one. To perform an insert, put the new element in whichever heap will not
violate this invariant. If one heap is too big, perform a DELETE-MIN or DELETE-
MAX as appropriate on it and insert the element into the other heap (we will need to
do this at most once for every INSERT). The cost of INSERT is thus O(log n).

For FIND-MEDIAN, just return the top element in the bigger heap, or in either heap if
they are the same size. This takes O(1) time.

A popular idea was to use an AVL tree without keeping around size fields. Unfortunately
AVL trees are height-balanced but only very approximately size-balanced, so there is no way
to find the median without extra information.

2

2 Transposing a two-dimensional array (20 points)

Write a function that takes an argument that is an n-long array of pointers to n-long arrays of
ints, and transposes it, so that for each i and j, the value of a[i][j] after calling the function is
the value of a[j][i] before calling the function. We have provided the function header for you:

void transpose(int n, int **a)

Solution

{

int i;

int j;

int tmp; /* for swapping */

for(i = 0; i < n; i++) {

/* only do j < i so we don’t swap same pair twice */

for(j = 0; j < i; j++) {

tmp = a[i][j];

a[i][j] = a[j][i];

a[j][i] = tmp;

}

}

}

3

3 Summing a tree (20 points)

Suppose that you have a balanced binary search tree data structure declared as follows:

struct tree {

int key;

int value;

struct tree *child[2];

};

Write a function sumTree that, given a pointer to the root of the tree, computes the sum of the
value fields in all nodes in the tree (do not worry about overflow). We have provided the function
header for you:

int sumTree(const struct tree *root)

Solution

int sumTree(const struct tree *root)

{

int sum;

int i;

if(root) {

sum = root->value;

for(i = 0; i < 2; i++) { sum += sumTree(root->child[i]); }

} else {

sum = 0;

}

return sum;

}

4

4 A twisty program (20 points)

What output does the following program produce? Please draw a rectangle around your solution
to distinguish it from any notes you used to produce it.

#include <stdio.h>

void f(int n, int ***a, int **b) {

for(int i = 0; i < n; i++, a++) { *a = &b[(i+1) % n]; }

}

void g(int n, int **a, int *b) {

for(int i = 0; i < n; i++) { a[i] = b + ((i+1) % n); }

}

int main(int argc, char **argv) {

int **x[3]; int *y[3]; int z[3];

f(3,x,y); g(3,y,z);

for(int i = 0; i < 3; i++) { z[i] = i; }

for(int i = 0; i < 3; i++) { printf("%d ", **(x[i])); }

for(int i = 0; i < 3; i++) { printf("%d ", *(y[i])); }

putchar(’\n’);

return 0;

}

Solution

2 0 1 1 2 0

5

