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Abstract

We examine a class of collective coin-flipping games
that arises from randomized distributed algorithms with
halting failures. In these games, a sequence of local coin
flips is generated, which must be combined to form a
single global coin flip. An adversary monitors the game
and may attempt to bias its outcome by hiding the re-
sult of up to ¢ local coin flips. We show that to guaran-
tee at most constant bias, (¢?) local coins are needed,
even if (a) the local coins can have arbitrary distribu-
tions and ranges, (b) the adversary is required to de-
cide immediately whether to hide or reveal each local
coin, and (c) the game can detect which local coins have
been hidden. If the adversary is permitted to control
the outcome of the coin except for cases whose prob-
ability is polynomial in ¢, Q(#*/log®t) local coins are
needed. Combining this fact with an extended version
of the well-known Fischer-Lynch-Paterson impossibility
proof of deterministic consensus, we show that given
an adaptive adversary, any t-resilient asynchronous con-
sensus protocol requires Q(¢*/log® ¢} local coin flips in
any model that can be simulated deterministically using
atomic registers. This gives the first non-trivial lower
bound on the total work required by wait-free consensus
and is tight to within logarithmic factors.

1 Introduction

Our results divide naturally into two parts: a lower
bound for asynchronous randomized consensus in a wide
variety of models, and a still more general lower bound
for a large class of collective coin-flipping games that
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forms the basis of the consensus lower bound but is in-
teresting in its own right.

Consensus 1s a fundamental problem in distributed
computing in which a group of processes must agree on
a bit despite the interference of an adversary. (An addi-
tional condition forbids trivial solutions that always pro-
duce the same answer). In an asynchronous setting, it
has long been known that if an adversary can halt a sin-
gle process, then no deterministic consensus algorithm
is possible without the use of powerful synchronization

primitives [CIL87, DDS87, FLP85, Her91, LAAST].

In contrast, randomized algorithms can solve con-
sensus in a shared-memory system for n processes even
if the adversary can halt up to n — 1 processes. Such
algorithms are called wait-free [Her91] because any pro-
cess can finish the algorithm without waiting for slower
(or possibly dead) processes. These algorithms work
even under the assumption that failures and the tim-
ing of all events in the system are under the control of
an adaptive adversary— one that can observe and react
to all aspects of the system’s execution (including the
internal states of the processes).

The first known algorithm that solves shared-
memory consensus against an adaptive adversary is
the exponential-time algorithm of Abrahamson [Abr88];
since its appearance, numerous polynomial-time algo-
rithms have appeared [AH90, ADS89, SSW91, Asp93,
DHPW92, BR90, BR91, AW96]. Most of these algo-
rithms are built around shared coin protocols in which
the processes individually generate many random +1 lo-
cal coin flips, which are combined by majority voting.
The adversary may bias the outcome of the voting by
selectively killing processes that have chosen to vote the
“wrong” way before they can reveal their most recent
votes to the other processes. To prevent the adversary
from getting more than a constant bias, it is necessary
to collect enough votes that the hidden votes shift the
outcome by no more than a constant number of stan-
dard deviations. With up to n — 1 failures (as in the
wait-free case), this requires a total of Q(n?) local coin-
flips, and at least Q(n2) work in order to communicate
these coin-flips.!

'Some of the algorithms deviate slightly from the simple



Improvements in other aspects of consensus algo-
rithms have steadily brought their costs down, from the
O(n*) total work of [AH90] to the O(n? log n) total work
of [BR91]. But while these algorithms have steadily ap-
proached the Q(n2) barrier, none have broken it. How-
ever, no proof was known that consensus could not be
solved in less than Q(n2) time; the barrier was solely a
result of the apparent absence of alternatives to using
shared coins based on majority voting. Indeed, it was
asked in [Asp93]if it was necessarily the case that (a) ev-
ery consensus protocol contained an embedded shared
coin protocol; and (b) no shared coin protocol could
achieve better performance than majority voting.

1.1 Our Results

In this paper we answer both of these questions, though
the answers are not as simple as might have been hoped.
We show that (a) every ¢-resilient asynchronous consen-
sus protocol in the shared-memory model, with at least
constant probability, either executes a shared coin pro-
tocol with bias at most one minus a polynomial in ¢ or
carries out an expected Q(t2) local coin-flips avoiding
it; and (b) any such shared coin protocol requires an
expected Q(t?/log? t) local coin flips. It follows that
t-resilient asynchronous consensus requires an expected
Q(1?/log? t) local coin flips. Since protocols based on
majority voting require only O(t2) local coin flips, this
lower bound is very close to being tight.

Since we are counting coin-flips rather than opera-
tions, the lower bound is not affected by deterministic
simulations. So, for example, it continues to hold in
message-passing models with up to ¢ process failures
(since a message channel can be simulated by an un-
boundedly large register), or in a shared-memory model
with counters or cheap atomic snapshots. Furthermore,
since our lower bound assumes that local coin flips can
have arbitrary ranges and distributions, we may assume
without loss of generality that any two successive coin-
flips by the same process are separated by at least one
deterministic operation in any of these models— so the
lower bound on local coin-flips in fact implies a lower
bound on total work.

The lower bound on coin-flipping games is still more
general, and holds in any model in which the adversary
may intercept up to ¢ local coin-flips before they are re-
vealed, no matter what (deterministic) synchronization
primitives or shared objects are available. Furthermore,
it is tight in the sense that it shows that no constant-bias
shared coin can use less than Q(t2) local coins, a bound
achieved (ignoring constants) by majority voting.

majority-voting approach described here. In the algorithm of
Aspnes [Asp93], some votes are generated deterministically. In
the algorithm of Saks, Shavit, and Woll [SSW91], several coin-
flipping protocols optimized for different execution patterns are
run in parallel. In the algorithm of Aspnes and Waarts [AW96],
processes that have already cast many votes generate votes with
increasing weights in order to finish the protocol quickly. How-
ever, none of these protocols costs less than simple majority vot-
ing in terms of the expected total number of local coin flips
performed in the worst case.

1.2 Related Work

Many varieties of collective coin-flipping games have
been studied, starting with the work of Ben-Or and
Linial [BOL85]. Many such games assume that the lo-
cations of faulty coins are fixed in advance; under these
assumptions very efficient games exist [AN90, CL93,
BOLS85, Sak89]. Another assumption that greatly lim-
its the power of the adversary is to require that both
the locations and values of faulty coins are fixed in ad-
vance; this is the bit extraction problem [CFG85, Frig2,
Vaz85], in which it is possible to derive completely un-
biased random bits.

If none of these limiting assumptions are made, the
adversary gains considerably more power. An excellent
survey of results for a wide variety of models involving
fair or nearly fair two-valued local coins can be found
in [BOLS87]. Our work differs from these in that we
allow arbitrary distributions on the local coins. With a
restriction to fair coins, Harper’s isoperimetric inequal-
ity for the hypercube [Har66] implies that the majority
function gives the least power to an off-line adversary
that can see all coins before deciding which to change;
and Lichtenstein, Linial, and Saks [LLS89] have shown
that majority is also optimal against an on-line adver-
sary similar to the one we consider here. Without such a
restriction, the best previously known bound is a bound
of ©(1/+/n) on the influence of an adversary that can
hide one coin; this is an easy corollary of a theorem
about gaps in martingale sequences due to Cleve and
Impagliazzo [CI93].

A very nice lower bound on the space used by wait-
free shared-memory consensus is due to Fich, Herlihy,
and Shavit [FHS93]. They show that any such consensus
protocol must use Q(y/n) distinct registers to guaran-
tee agreement. Unfortunately, their techniques do not
appear to generalize to showing lower bounds on work.

2 Coin-Flipping Games

A collective coin-flipping game [BOL8&5] is an algorithm
for combining many local coins into a single global coin,
whose bias should be small even though some of the
local coins may be obscured by a malicious adversary.
Though the particular coin-flipping games we consider
here are motivated by their application to proving lower
bounds on distributed algorithms with failures, they ab-
stract away almost all of the details of the original dis-
tributed systems and are thus likely to be useful in other
contexts.

We assume that the local coins are independent ran-
dom variables whose ranges and distributions are arbi-
trary. The values of these variables are revealed one at
a time to an adversary who must immediately choose
whether to reveal or obscure each value. If the adver-
sary chooses to obscure the value of a particular local
coin, the effect is to replace it with a default value L.
Repeating this process yields a sequence of values, some



of which are the original values of the random variable
and some of which are L. A function is applied to this
sequence to yield an outcome, which may be arbitrary
but which we will usually require to be +1. The adver-
sary’s power is limited by an upper bound on how many
coins it may obscure.

Note that in this description we assume that the
adversary cannot predict future local coins; it can only
base its decision to reveal or obscure a particular coin on
its value and the values of earlier coins. In addition, the
adversary’s interventions are visible. The coin-flipping
game may observe and react to the fact that the adver-
sary has chosen to obscure particular local coins, even
though it has no access to the true values of those coins.

Formally, a coin-flipping game is specified by a tree.
The leaves of the tree specify the outcomes of the game.
Internal nodes correspond to local coin-flips. Coin-
flipping games are defined recursively as follows. Fix
a set of possible outcomes. A coin-flipping game G with
maximum length zero consists of a single outcome; we
will call such a game a constant game and abuse nota-
tion by writing its outcome simply as G. A coin-flipping
game G with maximum length n is either a constant
game or consists of

1. A random variable representing the first local coin-

flip in G.

2. A function mapping the range of this random vari-
able to the set of coin-flipping games with maxi-
mum length less than n (the subgames of G). For
each value o in this range, the resulting subgame
is denoted G..

3. A default subgame G with maximum length less
than n, corresponding to the effect of an adversary
choice to hide the first local coin-flip in G.

The above definition represents a coin-flipping game
as a tree; if we think of G as the root of the tree its chil-
dren are the subgames G, for each value of o and the
default subgame GG . The actual game tree correspond-
ing to playing the game against an adversary is a bit
more complicated and involves two plies for each level
of G. We may think of the states of this game as pairs
(G, k) specifying the current subgame G and the limit
k on how many local coins the adversary may hide (i.e.,
the number of faults). To execute the first local coin-
flip in G, two steps occur. First, the outcome o of the
coin-flip i1s determined. Second, the adversary chooses
between revealing «, leading to the state (Ga,k); or
hiding «, leading to the state (G'L, &k —1).

In order to prevent the adversary from being able to
predict the future or the game from being able to deduce
information about obscured coins, we demand that all
random variables on any path through the game tree be
independent.

An adversary strategy specifies for each partial se-
quence of local coin-flips whether to hide or reveal the

last coin. We will write G o A for the random variable
describing the outcome of G when run under the con-
trol of an adversary strategy A. If a game G has real-
valued outcomes, then for each number of faults &k there
exist adversary strategies to maximize or minimize the
expected outcome. Define MG to be the maximum ex-
pected outcome and miG to be the minimum expected
outcome. These values can be computed recursively as
follows:

o If G has length 0, MG = miG = G.
o If GG has positive length, then

Mk(G) = Ea[max(MkGa,Mk_1GJ_)] (1)
mi(G) = Eumin (mpGa, mr_1GL)]. (2)

Most of the time we will assume that the only possi-
ble outcomes of a game are 1. In this case the quanti-
ties My and my give a measure of how much influence an
adversary with the ability to hide k local coin-flips can
get over the outcome. It is necessary to consider both
at once: as we will see later, it is always possible to
find a game with maximum length n whose minimum
expected outcome my can be any value in the range
[—1,1]. We will be interested in the best such game,
i.e., the one that attains a particular value of my while
minimizing M} (or, symmetrically, the game that max-
imizes my for a particular fixed Mk) In general it will
turn out to be quite difficult to find this game exactly
(although much can be shown about its structure), and
so it will be necessary to settle for a lower bound on
MG as a function of n, k, and myG.

2.1 The Structure of Optimal Games

Fix a maximum length n and number of failures k. Let
us define the range of a game G to be the interval
[mxG, M G]. Then G (strictly) dominates G' just in
case the range of ¢ is a (proper) subset of the range
of G’'; in other words, if G gives the adversary no more
control than G’ does. A game G is optimal if it either
dominates all other games G with mpG' = miG or if it
dominates all other games G with MG’ = MiG. For
k < n, this definition will turn out to be equivalent to
saying that no game strictly dominates G.

With each & and game GG we can associate a point in
a two-dimensional space given by the coordinates miG
and MiG. From this geometric perspective the problem
we are interested in is finding for each value of n and
k the curve corresponding to the set of optimal games
with maximum length »n and up to k& failures.

For some values of n and k this task is an easy one. If
k =0, then the (n, 0) curve is just the diagonal running
from (—1,—1) to (1,1), since meG = MpG for all G.
If the other extreme holds and k¥ > n, then for any
G either mpG = —1 or MG = 1, depending on the
default outcome of G if all local coins are hidden. It
is not difficult to see that if M, G = 1, then m,G can



be any value between —1 and 1. For example, G could
set its outcome to be the value of the first local coin,
or 1 if that coin-flip is hidden; if the adversary wishes
to achieve an outcome lower than 1 it must let the first
local coin go through. Similar, if m,G = —1 then M, G
can be any value between —1 and 1. Thus the optimal
(n,n) curve consists of the line segment from (—1,—1)
to (—1,1) and the line segment from (—1,1) to (1, 1).

Equations (1) and (2) have a nice geometrical in-
terpretation that in principle allows one to determine
the (n, k) curves of optimal games of maximum length
n with k failures. This process is depicted in Figures 1
and 2. Fix a game GG. Each subgame G, corresponds to
a point (miGa, MxGys), which must lie somewhere on
or above the curve of optimal (n — 1,%k) games. The
contribution of G, to the position of G is given by
(min(mrGa, mr—1G 1), max(MpGa, Mr_1G 1)), which
is a point in the intersection of the region above the
(n —1,k) curve and the rectangle of points dominated
by G'1. Since the value of G is the average of these con-
tributions, it must correspond to some point in the con-
vex closure of this intersection. Provided the (n — 1, k)
curve is concave (which is easily proved by induction on
n — k as shown below), then all points in the convex
closure are dominated by some point on its lower right
edge: the line segment between the optimal (n, k) game
Go with MpGo = My_1G 1 and the optimal (n, k) game
G1 with mpG1 = mp_1G L.

Geometrically, this edge is the hypotenuse of a right
triangle inscribed between the (n—1, %) and (n—1,k—1)
curves such that its sides are parallel to the axes and
its right corner is on the (n — 1,k — 1) curve. To take
into account all possible choices of G, it is necessary to
consider all such triangles. By taking the minimum of
the hypotenuses of these triangles (as shown in Figure
2), we obtain the (n, k) curve of all optimal games of
maximum length n subject to up to k failures. Note
that if the (n —1, k) curve is nondecreasing and concave
(true for n — 1 = k, true as the induction hypothesis
for larger n — 1), we may extend each hypotenuse to its
containing line without affecting the minimum, and so
the (n, k) curve as the minimum of concave functions is
also nondecreasing and concave.

Let us summarize. From the discussion of the con-
straints on G given G 1, we have:

Theorem 1 For each coin-flipping game G with max-
imum length n and up to k failures, there is a G' such
that G’ dominates G, G'| dominates G, and G' has
two non-default subgames G§y and Gy with MG =
Mk_lG'J_ and mpG| = mk_lG'J_.

One consequence of this theorem is that we can re-
place any optimal G with an equivalent G’ in which
the first local coin has exactly two outcomes, and the
adversary never prefers hiding a local coin to revealing
one. Since the theorem also applies recursively to all
subgames of G, we may assume that these conditions
in fact hold throughout &’. Thus no additional power

is obtained by allowing more than two outcomes to a
coin. However, the theorem does not imply that we
can require that all local coins are fair; indeed, for most
optimal games they will not be.

In addition, we have shown the following about the
shape of the curves corresponding to optimal games:

Theorem 2 Fizx n and k with k < n. For each = in
[—1,1], let f(z) be the smallest value of MG for all
G such that mpG = x. Then f is nondecreasing and
concave.

Unfortunately, with the exception of some extreme
cases like k = n — 1, the (n, k) curves do not appear to
have nice algebraic descriptions. So while in principle
equations (1) and (2) and the minimum-of-hypotenuses
construction constrain the curves completely, to obtain
any useful bounds from them we will be forced to resort
to approximation.

2.2 Lower Bounds on Coin-Flipping Games

The essential idea of our lower bound for coin-flipping
games is to choose a family of functions to act as lower
bounds for the optimal curves as defined above, and
show by repeating the inscribed-right-triangle argument
with these functions that they do in fact provide lower
bounds on the optimal curves given appropriate param-
eters. The particular family of functions that we use
consists of all hyperbolas that are symmetric about the
diagonal from (—1,1) to (1,—1) and that pass through
the corner points (—1,—1) and (1,1).> These hyperbo-
las are conveniently given by

tanh ™'y —tanh 'z = ¢

for various values of ¢. The linear (n,0) curve corre-
sponds exactly to ¢ = 0; the (n,n) curve is the limit as
¢ goes to infinity. Our goal is to compute values of ¢ as
a function of n and k such that for all length-n games,

tanh™! MG — tanh ™! mx G > c(n, k).

Given ¢(n — 1,k) and ¢(n — 1,k — 1), repeating
the inscribed-right-triangle construction for the result-
ing hyperbolas is a not very difficult exercise in analytic
geometry. Unfortunately, finding the particular point
on the hypotenuse of the particular triangle that mini-
mizes ¢(n, k) is a bit more involved (details of both steps
are given in the full paper). The ultimate result of these
efforts is:

?We conjecture that a slightly tighter lower bound could be
proven using the curves given by ‘I>_1(y) - ‘I>_1(x) = ¢, where
® is the normal distribution function. An analog of Theorem
3 using ® instead of tanh would improve the consensus lower
bound in Theorem 6 by a logarithmic factor.
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Figure 1: Graphical depiction of constraints on minimum and maximum expected outcomes of a game G given n
and k. Each point in the figure corresponds to a pair of minimum and maximum expected outcomes. The diagonal
represents the & = 0 case where these values are the same. The outer edges of the figure represent the kK = n case. The
two inner curves represent all optimal games with n — 1 voters and either k or k — 1 failures. The default subgame G |
lies somewhere on or above the (n —1,k— 1) curve. All other subgames G, lie on or above the (n -1, k) curve. If G
is fixed, the value of G lies somewhere in the convex closure of the intersection of the region above the (n —1, k) curve
and the rectangle dominated by G 1. All points in this convex closure, shown shaded in the picture, are dominated
by some point on the hypotenuse of the right triangle inscribed between the (n — 1,%) and (n — 1,k — 1) curves.
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Figure 2: Effect of considering all choices of G';. Each point on the (n — 1,k — 1) curve corresponds to some possible
default subgame G ;. The hypotenuse of the right triangle with corners on this point and the (n — 1, %) curve gives
a set of games which dominate all other games with this fixed G 1. The set of optimal games with n voters and &
failures is thus the minimum of the hypotenuses of all such right triangles.



Theorem 3 Let G be a game of length n with outcome
set {—1,41}. Then for any k > 0, either MG = 1,
miG = —1, or

tanh ™! M, G — tanh ™! mx G > L (3)

2vn

With a little bit of algebra we can turn this into
a lower bound on the length of a general coin-flipping
game given lower bounds on the probabilities of any two
distinct outcomes:

Corollary 4 Let G be a coin-flipping game, let x be
one of its outcomes, and let A range over k-bullet ad-
versaries. If for some € < %, ming PrilGo A = z] > ¢
and min s Pr[G o A # z] > €, then the mazimum length

of G 1s at least

1 k?

16 In2 (L-1)

€

Using a truncation argument, we can show that a
similar result holds even if we are considering the ez-
pected length of G rather than its maximum length.
The theorem below covers both the worst-case expected
length (when the adversary is trying to maximize the
running time of the protocol) and the best-case expected
length (when the adversary is trying to minimize the
running time of the protocol). The worst-case bound
will be used later to get a lower bound on consensus.
The proof of the theorem is given in the full paper.

Theorem 5 Fix k, and let A range over k-bullet adver-
saries. Let G be a coin-flipping game with an outcome x
such that mina Pr[Go A = z] > € and mina Pr[Go A #
z] > €. Then the worst-case expected length of G is at

least
3 k2

64 1 o ( 1
and the best-case expected length is at least

i ek?
32 ’
In? (6}—2 — 1)

For constant bias, Corollary 4 and Theorem 5 imply
that we need Q(¢%) local coin flips in both the worst and
average cases. This is true even though the adversary’s
power is limited by the fact that (a) the local coin flips
may have arbitrary ranges and distributions; (b) the
adversary can hide coins, but cannot control them; (c)
the adversary must decide which coins to hide or reveal
immediately in an on-line fashion; and (d) the algorithm
may observe and react to the choices of which coins to
hide. These assumptions were chosen to minimize the
power of the adversary while still capturing the essence
of its powers in a distributed system with failures.

In contrast, it is not difficult to see that taking a
majority of @(t2) fair coins gives a constant bias even if
(a) local coins are required to be fair random bits; (b)
the adversary can replace up to ¢ values with new values
of its own choosing; (c) the adversary may observe the
values of all the local coins before deciding which ones
to alter; and (d) changes made by the adversary are
invisible to the algorithm. So the Q(¢?) lower bound for
constant bias is tight for a wide range of assumptions
about the powers of the algorithm and the adversary.”

2.3 Connection to Randomized Distributed Algo-
rithms with Failures

The importance of coin-flipping games as defined above
comes from the fact that they can often be found em-
bedded inside randomized distributed algorithms. Let
us discuss briefly how this embedding works.

Consider a randomized distributed algorithm in a
model in which (a) all random events are internal to
individual processes; and (b) all other nondeterminism
is under the control of an adaptive adversary. Suppose
further that the adversary has the power to kill up to &
of the processes. Then given any randomized algorithm
in which some event X that does not depend on the
states of faulty processes occurs with minimum proba-
bility m and maximum probability M, we can extract
a coin-flipping game from it as follows. Arbitrarily fix
all the nondeterministic choices of the adversary except
for the decision whether or not to kill each process im-
mediately following each internal random event. (Since
this step reduces the options of the adversary it can
only increase m and decrease M.) Each step of the
coin-flipping game corresponds to an execution of the
distributed algorithm up to some such random event,
which we interpret as the local coin. The adversary’s
choice to hide or reveal this local coin corresponds to
its power to kill the process that executes the random
event (thus preventing any other process from learning
its value) or to let it run (which may or may not eventu-
ally reveal the value). The outcome of the coin-flipping
game is determined by whether or not X occurs in the
original system.

3 Lower Bound for Randomized Consensus

Consensus is a problem in which a group of n processes
must agree on a bit. We will consider consensus in mod-
els in which at most ¢ processes may fail by halting.

3The theorem does not apply if the adversary cannot observe
local coin-flips, and so it cannot be used with an oblivious (as
opposed to the usual adaptive) adversary. However, the bound
on best-case expected length does imply that it is impossible
to construct a “hybrid” constant-bias coin-flipping protocol that
adapts to the strength of the adversary, finishing quickly against
an oblivious adversary but using additional work to prevent an
adaptive adversary from seizing control. This is not the case for
consensus; for example, Chandra’s consensus algorithm [Cha96]
for a weak adversary switches over to an algorithm that is robust
against an adaptive adversary if it does not finish in its usual
time.



Processes that do not halt (i.e., correct processes) must
execute infinitely many operations. (A more detailed
description of the model is given in the full paper).

It is assumed that each process starts with some in-
put bit and eventually decides on an output bit and
then stops executing the algorithm. Formally, consen-
sus 1s defined by three conditions:

e Agreement. All correct processes decide the
same value with probability 1.

e Non-triviality. For each value v, there exists
a set of inputs and an adversary that causes all
correct processes to decide v with probability 1.

e Termination. All correct processes decide with
probability 1.

Non-triviality is a rather weak condition, and for
applications of consensus protocols a stronger condition
is often more useful:

e Validity. If all processes have input v, all correct
processes decide v with probability 1.

As non-triviality is implied by validity, if we show
a lower bound on the total work of any protocol that
satisfies agreement, non-triviality, and termination, we
will have shown a fortior: a lower bound on any proto-
col that satisfies agreement, validity, and termination.
Thus we will concentrate on consensus as defined by the
first three conditions.

Since the agreement and termination conditions are
violated only with probability zero, we can exclude all
schedules in which they are violated without affecting
the expected length of the protocol or the independence
and unpredictability of local coin-flips. Thus without
loss of generality we may assume that not only do agree-
ment and termination apply to the protocol as a whole,
but they also apply even if one conditions on starting
with some particular finite execution a.

3.1 Overview of the Proof

In a randomized setting, we are concerned with the cost
of carrying out a consensus protocol in terms of the
expected total work when running against a worst-case
adversary. We show how the coin-flipping lower bound
can be used to show a lower bound on the worst-case
expected cost of ¢t-resilient randomized consensus in the
standard asynchronous shared-memory model. As in
the coin-flipping bound, we will measure the cost of a
consensus protocol by the total number of local coin-
flips executed by the processes. This measure is not
affected by deterministic simulations, so any results we
obtain for the shared-memory model will also apply to
any model that can be simulated using shared memory,
such as a t-resilient message-passing model.

For each adversary strategy and finite execution «
there is a fixed probability that the protocol will decide 1
conditioned on the event that its execution starts with
a. (We may speak without confusion of the protocol de-
ciding 1, as opposed to individual processes deciding 1,
because of the agreement condition.) For any set of ad-
versaries, there is a range of probabilities running from
the minimum to the maximum probability of deciding 1.

These ranges are used to define a probabilistic ver-
sion of the bivalence and univalence conditions used in
the well-known Fischer-Lynch-Paterson (FLP) impos-
sibility proof for deterministic consensus [FLP85]. We
will define an execution as bivalent if the adversary can
force either outcome with high probability. A v-valent
execution will be one after which only the outcome v can
be forced with high probability. Finally, a null-valent
execution will be one in which neither outcome can be
forced with high probability. The notions of bivalence
and v-valence (defined formally in the full paper) match
the corresponding notions for deterministic algorithms
used in the FLP proof; null-valence is new, as it cannot
occur with a deterministic algorithm in which the prob-
ability of deciding each value v must always be exactly
0orl.

In outline, the proof that consensus is expensive for
randomized algorithms retains much of the structure of
the FLP proof. First, it is shown that with at least con-
stant probability any protocol can be maneuvered from
its initial state into either a bivalent or a null-valent ex-
ecution. Once the protocol is in a bivalent execution,
we show that there is a fair, failure-free extension that
leads either to a local coin-flip or a null-valent execution.
The result of flipping a local coin after a bivalent exe-
cution 1s, of course, random; but we can show that with
high probability it leaves us with an execution which
is either bivalent or null-valent or from which we are
likely to return to a bivalent or a null-valent execution
after additional coin-flips. If we do reach a null-valent
execution, the coin-flipping bound applies.

Unlike a deterministic protocol, it is possible for a
randomized protocol to “escape” through a local coin-
flip into an execution in which it can finish the protocol
quickly. But we will be able to show that the probability
of escaping in this way is small, so that on average many
local coin-flips will occur before it happens.

Details of the lower bound proof are given in the full

paper. The result is:

Theorem 6 Against a worst-case adaptive adversary,
any t-resilient consensus protocol for the asynchronous
shared-memory model performs an expected

t—1 \’
log(t—1)

The bound counts the number of local coin-flips.
Because we allow coin-flips to have arbitrary values

local coin-flips.



(not just 0 or 1), local coin-flips performed by the
same process without any intervening operations can
be combined into a single coin-flip without increasing
the adversary’s influence. Thus the lower bound on lo-
cal coin-flips immediately gives a lower bound on to-
tal work. Furthermore, because the coin-flip bound is
not affected by changing the model to one that can be
deterministically simulated by shared memory, we get
the same lower bound on total work in any model that
can be so simulated, no matter how powerful its primi-
tives are. So, for example, wait-free consensus requires
Q(n?/log? n) work even in a model that supplies coun-
ters or O(1)-cost atomic snapshots.

4 Discussion

For those of us who like working with an adaptive ad-
versary, randomization has given only a temporary re-
prieve from the consequences of Fischer, Lynch, and
Paterson’s impossibility proof for deterministic consen-
sus with faulty processes. Theorem 6 means that even
though we can solve consensus using randomization, we
cannot hope to solve it quickly without a small upper
bound on the number of failures, built-in synchroniza-
tion primitives, or restrictions on the power of the ad-
versary.

Fortunately, there are a number of natural restric-
tions on the adversary that allow fast consensus proto-
cols without eliminating the faults that we might rea-
sonably expect to observe in real systems. One plau-
sible approach is to limit the knowledge the adversary
has of register contents, to prevent it from discriminat-
ing against coin-flips 1t dislikes. Various versions of this
can be found in the the consensus work of Chor, Israeli,
and Li [CIL87] and Abrahamson [Abr88], and in the
O(nlogn) total work protocol of Aumann and Bender
[AB96] and the O(logn) work-per-process protocol of
Chandra [Cha96]. Restrictions on the amount of asyn-
chrony can also have a large effect [AAT94, SSW91].
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