
Notes on generating functions

James Aspnes

December 13, 2010

1 Basics

The short version: A generating function represents objects of weight n with zn,
and adds all the objects you have up to get a sum a0z

0+a1z
1+a2z

2+. . . , where
each an counts the number of different objects of weight n. If you are very lucky
(or constructed your set of objects by combining simpler sets of objects in certain
straightforward ways) there will be some compact expression that is expands
to this horrible sum but is easier to right down. Such compact expressions are
called generating functions, and manipulating them algebraically gives an
alternative to actually knowing HowToCount.

1.1 A simple example

We are given some initial prefixes for words: qu, s, and t; some vowels to put
in the middle: a, i, and oi; and some suffixes: d, ff, and ck, and we want to
calculate the number of words we can build of each length.

One way is to generate all 27 words1 and sort them by length:

sad sid tad tid
quad quid sack saff sick siff soid tack taff tick tiff toid
quack quaff quick quiff quoid soick soiff toick toiff
quoick quoiff

This gives us 4 length-3 words, 12 length-4 words, 9 length-5 words, and
2 length-6 words. This is probably best done using a computer, and becomes
expensive if we start looking at much larger lists.

An alternative is to solve the problem by judicious use of algebra. Pre-
tend that each of our letters is actually a variable, and that when we concate-
nate qu, oi, and ck to make quoick, we are really multiplying the variables
using our usual notation. Then we can express all 27 words as the product
(qu+s+t)(a+i+oi)(d+ff+ck). But we don’t care about the exact set of words,
we just want to know how many we get of each length.

1We are using word in the combinatorial sense of a finite sequence of letters (possibly even
the empty sequence) and not the usual sense of a finite, nonempty sequence of letters that
actually make sense.

1

http://pine.cs.yale.edu/pinewiki/HowToCount

So now we do the magic trick: we replace every variable we’ve got with a
single variable z. For example, this turns quoick into zzzzzz = z6, so we can
still find the length of a word by reading off the exponent on z. But we can also
do this before we multiply everything out, getting

(zz + z + z)(z + z + zz)(z + zz + zz) = (2z + z2)(2z + z2)(z + 2z2)

= z3(2 + z)2(1 + 2z)

= z3(4 + 4z + z2)(1 + 2z)

= z3(4 + 12z + 9z2 + 2z3)

= 4z3 + 12z4 + 9z5 + 2z6.

We can now read off the number of words of each length directly off the
coefficients of this polynomial.

1.2 Why this works

In general, what we do is replace any object of weight 1 with z. If we have
an object with weight n, we think of it as n weight-1 objects stuck together,
i.e., zn. Disjoint unions are done using addition as in simple counting: z + z2

represents the choice between a weight-1 object and a weight-2 object (which
might have been built out of 2 weight-1 objects), while 12z4 represents a choice
between 12 different weight-4 objects. The trick is that when we multiply two
expressions like this, whenever two values zk and zl collide, the exponents add
to give a new value zk+l representing a new object with total weight k+ l, and if
we have something more complex like (nzk)(mzl), then the coefficients multiply
to give (nm)zk+l different weight (k + l) objects.

For example, suppose we want to count the number of robots we can build
given 5 choices of heads, each of weight 2, and 6 choices of bodies, each of
weight 5. We represent the heads by 5z2 and the bodies by 6z5. When we
multiply these expressions together, the coefficients multiply (which we want,
by the product rule) and the exponents add: we get 5z2 ·6z5 = 30z7 or 30 robots
of weight 7 each.

The real power comes in when we consider objects of different weights. If
we add to our 5 weight-2 robot heads two extra-fancy heads of weight 3, and
compensate on the body side with three new lightweight weight-4 bodies, our
new expression is (5z2 + 2z3)(3z4 + 6z5) = 15z6 + 36z7 + 12z8, giving a possible
15 weight-6 robots, 36 weight-7 robots, and 12 weight-8 robots. The rules for
multiplying polynomials automatically tally up all the different cases for us.

This trick even works for infinitely-long polynomials that represent infinite
series (such “polynomials” are called formal power series). Even though there
might be infinitely many ways to pick three natural numbers, there are only
finitely many ways to pick three natural numbers whose sum is 37. By com-
puting an appropriate formal power series and extracting the coefficient from
the z37 term, we can figure out exactly how many ways there are. This works
best, of course, when we don’t have to haul around an entire infinite series,

2

but can instead represent it by some more compact function whose expansion
gives the desired series. Such a function is called a generating function, and
manipulating generating functions can be a powerful alternative to creativity in
making combinatorial arguments.

1.3 Formal definition

Given a sequence a0, a1, a2, . . . , its generating function F (z) is given by the
sum

F (z) =
∞∑

i=0

aiz
i.

A sum in this form is called a formal power series. It is “formal” in
the sense that we don’t necessarily plan to actually compute the sum, and are
instead using the string of zi terms as a long rack to store coefficients on.

In some cases, the sum has a more compact representation. For example,
we have

1
1− z

=
∞∑

i=0

zi,

so 1/(1− z) is the generating function for the sequence 1, 1, 1, This may
let us manipulate this sequence conveniently by manipulating the generating
function.

Here’s a simple case. If F (z) generates some sequence ai, what does se-
quence bi does F (2z) generate? The i-th term in the expansion of F (2z) will
be ai(2z)i = ai2izi, so we have bi = 2iai. This means that the sequence
1, 2, 4, 8, 16, . . . has generating function 1/(1 − 2z). In general, if F (z) repre-
sents ai, then F (cz) represents ciai.

What else can we do to F? One useful operation is to take its derivative
with respect to z. We then have

d

dz
F (z) =

∞∑
i=0

ai
d

dz
zi =

∞∑
i=0

aiiz
i−1.

This almost gets us the representation for the series iai, but the exponents
on the z’s are off by one. But that’s easily fixed:

z
d

dz
F (z) = z

∞∑
i=0

aiiz
i−1 =

∞∑
i=0

aiiz
i.

So the sequence 0, 1, 2, 3, 4, . . . has generating function

z
d

dz

1
1− z

=
z

(1− z)2
,

and the sequence of squares 0, 1, 4, 9, 16, . . . has generating function

z
d

dz

z

(1− z)2
=

z

(1− z)2
+

2z2

(1− z)3
.

3

As you can see, some generating functions are prettier than others.
(We can also use integration to divide each term by i, but the details are

messier.)
Another way to get the sequence 0, 1, 2, 3, 4, . . . is to observe that it satisfies

the recurrence:

• a0 = 0.

• an+1 = an + 1(∀n ∈ N).

A standard trick in this case is to multiply each of the ∀i bits by zn, sum
over all n, and see what happens. This gives

∑
an+1z

n =
∑

anzn +
∑

zn =∑
anzn + 1/(1 − z). The first term on the right-hand side is the generating

function for an, which we can call F (z) so we don’t have to keep writing it
out. The second term is just the generating function for 1, 1, 1, 1, 1, But
what about the left-hand side? This is almost the same as F (z), except the
coefficients don’t match up with the exponents. We can fix this by dividing
F (z) by z, after carefully subtracting off the a0 term:

(F (z)− a0)/z =

(∞∑
n=0

anzn − a0

)
/z

=

(∞∑
n=1

anzn

)
/z

=
∞∑

n=1

anzn−1

=
∞∑

n=0

an+1z
n.

So this gives the equation (F (z)− a0)/z = F (z) + 1/(1− z). Since a0 = 0,
we can rewrite this as F (z)/z = F (z) + 1/(1− z). A little bit of algebra turns
this into F (z)− zF (z) = z/(1− z)orF (z) = z/(1− z)2.

Yet another way to get this sequence is construct a collection of objects with
a simple structure such that there are exactly n objects with weight n. One way
to do this is to consider strings of the form a+b∗ where we have at least one a
followed by zero or more b’s. This gives n strings of length n, because we get
one string for each of the 1 through n a’s we can put in (an example would be
abb, aab, and aaa for n = 3). We can compute the generating function for this
set because to generate each string we must pick in order:

• One initial a. Generating function = z.

• Zero or more a’s. Generating function = 1/(1− z).

• Zero or more b’s. Generating function = 1/(1− z).

4

Taking the product of these gives z/(1− z)2, as before.
This trick is useful in general; if you are given a generating function F (z) for

an, but want a generating function for bn =
∑

k≤n ak, allow yourself to pad each
weight-k object out to weight n in exactly one way using n−k junk objects, i.e.
multiply F (z) by 1/(1− z).

2 Some standard generating functions

Here is a table of some of the most useful generating functions.

1
1− z

=
∞∑

i=0

zi

z

(1− z)2
=

∞∑
i=0

izi

(1 + z)n =
∞∑

i=0

(
n

i

)
zi =

n∑
i=0

(
n

i

)
zi

1
(1− z)n

=
∞∑

i=0

(
n + i− 1

i

)
zi

Of these, the first is the most useful to remember (it’s also handy for re-
membering how to sum geometric series). All of these equations can be proven
using the binomial theorem.

3 More operations on formal power series and
generating functions

Let F (z) =
∑

i aiz
i and G(z) =

∑
i biz

i. Then their sum F (z) + G(z) =∑
i(ai + bi)zi is the generating function for the sequence (ai + bi). What is their

product F (z)G(z)?
To compute the i-th term of F (z)G(z), we have to sum over all pairs of

terms, one from F and one from G, that produce a zi factor. Such pairs of
terms are precisely those that have exponents that sum to i. So we have

F (z)G(z) =
∞∑

i=0

 i∑
j=0

ajbj−i

 zi.

As we’ve seen, this equation has a natural combinatorial interpretation. If
we interpret the coefficient ai on the i-th term of F (z) as counting the number
of “a-things” of weight i, and the coefficient bi as the number of “b-things” of
weight i, then the i-th coefficient of F (z)G(z) counts the number of ways to

5

make a combined thing of total weight i by gluing together an a-thing and a
b-thing.

As a special case, if F (z) = G(z), then the i-th coefficient of F (z)G(z) =
F 2(z) counts how many ways to make a thing of total weight i using two “a-
things”, and Fn(z) counts how many ways (for each i) to make a thing of total
weight i using n “a-things”. This gives us an easy combinatorial proof of a
special case of the binomial theorem:

(1 + x)n =
∞∑

i=0

(
n

i

)
xi.

Think of the left-hand side as the generating function F (x) = 1+x raised to
the n-th power. The function F by itself says that you have a choice between
one weight-0 object or one weight-1 object. On the right-hand side the i-th
coefficient counts how many ways you can put together a total of i weight-1
objects given n to choose from—so it’s

(
n
i

)
.

4 Counting with generating functions

The product formula above suggests that generating functions can be used to
count combinatorial objects that are built up out of other objects, where our
goal is to count the number of objects of each possible non-negative integer
“weight” (we put “weight” in scare quotes because we can make the “weight”
be any property of the object we like, as long as it’s a non-negative integer—a
typical choice might be the size of a set, as in the binomial theorem example
above). There are five basic operations involved in this process; we’ve seen two
of them already, but will restate them here with the others.

Throughout this section, we assume that F (z) is the generating function
counting objects in some set A and G(z) the generating function counting ob-
jects in some set B.

4.1 Disjoint union

Suppose C = A ∪ B and A and B are disjoint. Then the generating function
for objects in C is F (z) + G(z).

Example: Suppose that A is the set of all strings of zero or more letters x,
where the weight of a string is just its length. Then F (z) = 1/(1−z), since there
is exactly one string of each length and the coefficient ai on each zi is always
1. Suppose that B is the set of all strings of zero or more letters y and/or z, so
that G(z) = 1/(1− 2z) (since there are now 2i choices of length-i strings). The
set C of strings that are either (a) all x’s or (b) made up of y’s, z’s, or both,
has generating function F (z) + G(z) = 1/(1− z) + 1/(1− 2z).

6

4.2 Cartesian product

Now let C = A × B, and let the weight of a pair (a, b) ∈ C be the sum of the
weights of a and b. Then the generating function for objects in C is F (z)G(z).

Example: Let A be all-x strings and B be all-y or all-z strings, as in the
previous example. Let C be the set of all strings that consist of zero or more
x’s followed by zero or more y’s and/or z’s. Then the generating function for C
is F (z)G(z) = 1

(1−z)(1−2z) .

4.3 Repetition

Now let C consists of all finite sequences of objects in A, with the weight of
each sequence equal to the sum of the weights of its elements (0 for an empty
sequence). Let H(z) be the generating function for C. From the preceding rules
we have

H = 1 + F + F 2 + F 3 + . . . =
1

1− F
.

This works best when H(0) = 0; otherwise we get infinitely many weight-0
sequences. It’s also worth noting that this is just a special case of substitution
(see below), where our “outer” generating function is 1/(1− z).

4.3.1 Example: (0|11)∗

Let A = {0, 11}, and let C be the set of all sequences of zeros and ones where
ones occur only in even-length runs. Then the generating function for A is
z + z2 and the generating function for C is 1/(1− z− z2). We can extract exact
coefficients from this generating function using the techniques below.

4.3.2 Example: sequences of positive integers

Suppose we want to know how many different ways there are to generate a
particular integer as a sum of positive integers. For example, we can express 4
as 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 2 + 1, or 1 + 3, giving 8
different ways.

We can solve this problem using the repetition rule. Let F = z/(1 − z)
generate all the positive integers. Then

H =
1

1− F

=
1

1− z
1−z

=
1− z

(1− z)− z

=
1− z

1− 2z
.

7

We can get exact coefficients by observing that

1− z

1− 2z
=

1
1− 2z

− z

1− 2z

=
∞∑

n=0

2nzn −
∞∑

n=0

2nzn+1

=
∞∑

n=0

2nzn −
∞∑

n=1

2n−1zn

= 1 +
∞∑

n=1

(2n − 2n−1)zn

= 1 +
∞∑

n=1

2n−1zn.

This means that there is 1 way to express 0 (the empty sum), and 2n−1 ways
to express any larger value n (e.g. 24−1 = 8 ways to express 4).

Once we know what the right answer is, it’s not terribly hard to come up
with a combinatorial explanation. The quantity 2n−1 counts the number of
subsets of an (n − 1)-element set. So imagine that we have n − 1 places and
we mark some subset of them, plus add an extra mark at the end; this might
give us a pattern like XX-X. Now for each sequence of places ending with a mark
we replace it with the number of places (e.g. XX-X = 1, 1, 2, X--X-X---X =
1, 3, 2, 4). Then the sum of the numbers we get is equal to n, because it’s just
counting the total length of the sequence by dividing it up at the marks and the
adding the pieces back together. The value 0 doesn’t fit this pattern (we can’t
put in the extra mark without getting a sequence of length 1), so we have 0 as
a special case again.

If we are very clever, we might come up with this combinatorial explanation
from the beginning. But the generating function approach saves us from having
to be clever.

4.4 Pointing

This operation is a little tricky to describe. Suppose that we can think of each
weight-k object in A as consisting of k items, and that we want to count not
only how many weight-k objects there are, but how many ways we can produce
a weight-k object where one of its k items has a special mark on it. Since
there are k different items to choose for each weight-k object, we are effectively
multiplying the count of weight-k objects by k. In generating function terms,
we have

H(z) = z
d

dz
F (z).

Repeating this operation allows us to mark more items (with some items
possibly getting more than one mark). If we want to mark n distinct items in

8

each object (with distinguishable marks), we can compute

H(z) = zn dn

dzn
F (z),

where the repeated derivative turns each term aiz
i into aii(i− 1)(i− 2) . . . (i−

n + 1)zi−n and the zn factor fixes up the exponents. To make the marks indis-
tinguishable (i.e., we don’t care what order the values are marked in), divide by
n! to turn the extra factor into

(
i
n

)
.

(If you are not sure how to take a derivative, look at HowToDifferentiate.)
Example: Count the number of finite sequences of zeros and ones where

exactly two digits are underlined. The generating function for {0,1} is 2z, so
the generating function for sequences of zeros and ones is F = 1/(1 − 2z) by
the repetition rule. To mark two digits with indistinguishable marks, we need
to compute

1
2
z2 d2

dz2

1
1− 2z

=
1
2
z2 d

dz

2
(1− 2z)2

=
1
2
z2 8

(1− 2z)3
=

4z2

(1− 2z)3
.

4.5 Substitution

Suppose that the way to make a C-thing is to take a weight-k A-thing and
attach to each its k items a B-thing, where the weight of the new C-thing is the
sum of the weights of the B-things. Then the generating function for C is the
composition F (G(z)).

Why this works: Suppose we just want to compute the number of C-things of
each weight that are made from some single specific weight-k A-thing. Then the
generating function for this quantity is just (G(z))k. If we expand our horizons
to include all ak weight-k A-things, we have to multiply by ak to get ak(G(z))k.
If we further expand our horizons to include A-things of all different weights,
we have to sum over all k:

∞∑
k=0

ak(G(z))k.

But this is just what we get if we start with F (z) and substitute G(z) for
each occurrence of z, i.e. if we compute F (G(z)).

4.5.1 Example: bit-strings with primes

Suppose we let A be all sequences of zeros and ones, with generating function
F (z) = 1/(1−2z). Now suppose we can attach a single or double prime to each
0 or 1, giving 0′ or 0′′ or 1′ or 1′′, and we want a generating function for the
number of distinct primed bit-strings with n attached primes. The set {′, ′′} has
generating function G(z) = z + z2, so the composite set has generating function
F (z) = 1/(1− 2(z + z2)) = 1/(1− 2z − 2z2).

9

http://pine.cs.yale.edu/pinewiki/HowToDifferentiate

4.5.2 Example: (0—11)* again

The previous example is a bit contrived. Here’s one that’s a little more practi-
cal, although it involves a brief digression into multivariate generating func-
tions. A multivariate generating function F (x, y) generates a series

∑
ij aijx

iyj ,
where aij counts the number of things that have i x’s and j y’s. (There is also
the obvious generalization to more than two variables). Consider the multivari-
ate generating function for the set {0,1}, where x counts zeros and y counts
ones: this is just x + y. The multivariate generating function for sequences of
zeros and ones is 1/(1−x−y) by the repetition rule. Now suppose that each 0 is
left intact but each 1 is replaced by 11, and we want to count the total number
of strings by length, using z as our series variable. So we substitute z for x and
z2 for y (since each y turns into a string of length 2), giving 1/(1−z−z2). This
gives another way to get the generating function for strings built by repeating
0 and 11.

5 Generating functions and recurrences

What makes generating functions particularly useful for algorithm analysis is
that they directly solve recurrences of the form T (n) = aT (n − 1) + bT (n −
2) + f(n) (or similar recurrences with more T terms on the right-hand side),
provided we have a generating function F (z) for f(n). The idea is that there
exists some generating function G(z) that describes the entire sequence of values
T (0), T (1), T (2), . . . , and we just need to solve for it by restating the recurrence
as an equation about G. The left-hand side will just turn into G. For the
right-hand side, we need to shift T (n− 1) and T (n− 2) to line up right, so that
the right-hand side will correctly represent the sequence T (0), T (1), aT (0) +
aT (1) + F (2), etc. It’s not hard to see that the generating function for the
sequence 0, T (0), T (1), T (2), . . . (corresponding to the T (n − 1) term) is just
zG(z), and similarly the sequence 0, 0, T (1), T (2), T (3), . . . (corresponding to
the T (n − 2) term) is z2G(z). So we have (being very careful to subtract out
extraneous terms at for i = 0 and i = 1):

G = az(G− T (0)) + bz2G + (F − f(0)− zf(1)) + T (0) + zT (1),

and after expanding F we can in principle solve this for G as a function of z.

5.1 Example: A Fibonacci-like recurrence

Let’s take a concrete example. The Fibonacci-like recurrence

T (n) = T (n− 1) + T (n− 2), T (0) = 1, T (1) = 1,

becomes
G = (zG− z) + z2G + 1 + z.

(here F = 0).

10

Solving for G gives
G = 1/(1− z − z2).

Unfortunately this is not something we recognize from our table, although
it has shown up in a couple of examples. (Exercise: Why does the recurrence
T (n) = T (n− 1) + T (n− 2) count the number of strings built from 0 and 11 of
length n?) In the next section we show how to recover a closed-form expression
for the coefficients of the resulting series.

6 Recovering coefficients from generating func-
tions

There are basically three ways to recover coefficients from generating functions:

1. Recognize the generating function from a table of known generating func-
tions, or as a simple combination of such known generating functions. This
doesn’t work very often but it is possible to get lucky.

2. To find the k-th coefficient of F (z), compute the k-th derivative dk/dzkF (z)
and divide by k! to shift ak to the z0 term. Then substitute 0 for
z. For example, if F (z) = 1/(1 − z) then a0 = 1 (no differentiating),
a1 = 1/(1− 0)2 = 1, a2 = 1/(1− 0)3 = 1, etc. This usually only works if
the derivatives have a particularly nice form or if you only care about the
first couple of coefficients (it’s particularly effective if you only want a0).

3. If the generating function is of the form 1/Q(z), where Q is a polynomial
with Q(0) 6= 0, then it is generally possible to expand the generating
function out as a sum of terms of the form Pc/(1− z/c) where c is a root
of Q (i.e. a value such that Q(c) = 0). Each denominator Pc will be a
constant if c is not a repeated root; if c is a repeated root, then Pc can be a
polynomial of degree up to one less than the multiplicity of c. We like these
expanded solutions because we recognize 1/(1 − z/c) =

∑
i c−izi, and so

we can read off the coefficients ai generated by 1/Q(z) as an appropriately
weighted some of c−i

1 , c−i
2 , etc., where the cj range over the roots of Q.

Example: Take the generating function G = 1/(1− z− z2). We can simplify
it by factoring the denominator: 1−z−z2 = (1−az)(1−bz) where 1/a and 1/b
are the solutions to the equation 1−z−z2 = 0; in this case a = (1+√5)/2, which
is approximately 1.618 and b = (1−√5)/2, which is approximately −0.618. It
happens to be the case that we can always expand 1/P (z) as A/(1 − az) +
B(1 − bz) for some constants A and B whenever P is a degree 2 polynomial
with constant coefficient 1 and distinct roots a and b, so

G = A/(1− az) + B/(1− bz),

and here we can recognize the right-hand side as the sum of the generating
functions for the sequences A · ai and B · bi. The A · ai term dominates, so we

11

have that T (n) = Θ(an), where a is approximately 1.618. We can also solve for
A and B exactly to find an exact solution if desired.

A rule of thumb that applies to recurrences of the form T (n) = a1T (n −
1) + a2T (n − 2) + . . . akT (n − k) + f(n) is that unless f is particularly large,
the solution is usually exponential in 1/x, where x is the smallest root of the
polynomial 1− a1z-a2z

2 . . . -akzk. This can be used to get very quick estimates
of the solutions to such recurrences (which can then be proved without fooling
around with generating functions).

Exercise: What is the exact solution if T (n) = T (n− 1) + T (n− 2) + 1? Or
if T (n) = T (n− 1) + T (n− 2) + n?

6.1 Partial fraction expansion and Heaviside’s cover-up
method

There is a nice trick for finding the numerators in a partial fraction expansion.
Suppose we have

1
(1− az)(1− bz)

=
A

1− az
+

B

1− bz
.

Multiply both sides by 1− az to get

1
1− bz

= A +
B(1− az)

1− bz
.

Now plug in z = 1/a to get

1
1− b/a

= A + 0.

We can immediately read off A. Similarly, multiplying by 1 − bz and then
setting 1− bz to zero gets B. The method is known as the “cover-up method”
because multiplication by 1− az can be simulated by covering up 1− az in the
denominator of the left-hand side and all the terms that don’t have 1 − az in
the denominator in the right hand side.

The cover-up method will work in general whenever there are no repeated
roots, even if there are many of them; the idea is that setting 1 − qz to zero
knocks out all the terms on the right-hand side but one. With repeated roots we
have to worry about getting numerators that aren’t just a constant, so things
get more complicated. We’ll come back to this case below.

6.1.1 Example: A simple recurrence

Suppose f(0) = 0, f(1) = 1, and for n ≥ 2, f(n) = f(n − 1) + 2f(n − 2).
Multiplying these equations by zn and summing over all n gives a generating
function

F (z) =
∑
n=0

∞f(n)zn = 0 · z0 + 1 · z1 +
∞∑

n=2

f(n− 1)zn +
∞∑

n=2

2f(n− 2)zn.

12

With a bit of tweaking, we can get rid of the sums on the RHS by converting
them into copies of F :

F (z) = z +
∞∑

n=2

f(n− 1)zn + 2
∞∑

n=2

f(n− 2)zn

= z +
∞∑

n=1

f(n)zn+1 + 2
∞∑

n=0

f(n)zn+2

= z + z

∞∑
n=1

f(n)zn + 2z2
∞∑

n=0

f(n)zn

= z + z(F (z)− f(0)z0) + 2z2F (z)

= z + zF (z) + 2z2F (z).

Now solve for F (z) to get F (x) = {
z}{1− z − 2z2} = {

z}{(1 + z)(1− 2z)} =

z
(
{
A}{1 + z}+ {

B }{1− 2z}
)

, where we need to solve for A and B.
We can do this directly, or we can use the cover-up method. The cover-up

method is easier. Setting z = −1 and covering up 1+z gives A = 1/(1−2(−1)) =
1/3. Setting z = 1/2 and covering up 1−2z gives B = 1/(1+z) = 1/(1+1/2) =
2/3. So we have

F (z) =
(1/3)z
1 + z

+
(2/3)z
1− 2z

=
∞∑

n=0

(−1)n

3
zn+1 +

∞∑
n=0

2 · 2n

3
zn+1

=
∞∑

n=1

(−1)n−1

3
zn +

∞∑
n=1

2n

3
zn

=
∞∑

n=1

(
2n − (−1)n

3

)
zn.

This gives f(0) = 0 and, for n ≥ 1, f(n) = {
2

n−(−1)
n}{3}. It’s not hard to

check that this gives the same answer as the recurrence.

6.1.2 Example: Coughing cows

Let’s count the number of strings of each length of the form (M)*(O|U)*(G|H|K)*
where (x|y) means we can use x or y and * means we can repeat the previous
parenthesized expression 0 or more times (see WikiPedia’s article on regular
expressions).

We start with a sequence of 0 or more M ’s. The generating function for this
part is our old friend 1/(1 − z). For the second part, we have two choices for
each letter, giving 1/(1−2z). For the third part, we have 1/(1−3z). Since each

13

http://en.wikipedia.org/Regular_expression
http://en.wikipedia.org/Regular_expression

part can be chosen independently of the other two, the generating function for
all three parts together is just the product:

1
(1− z)(1− 2z)(1− 3z)

.

Let’s use the cover-up method to convert this to a sum of partial fractions.
We have

1
(1− z)(1− 2z)(1− 3z)

=

(
1

(1−2)(1−3)

)
1− z

+

(
1

(1− 1
2)(1− 3

2)

)
1− 2z

+

(
1

(1− 1
3)(1− 2

3)

)
1− 3z

=
1
2

1− z
+
−4

1− 2z
+

9
2

1− 3z
.

So the exact number of length-n sequences is (1/2)− 4 · 2n + (9/2) · 3n. We
can check this for small n:

n Formula Strings
0 1/2− 4 + 9/2 = 1 ()
1 1/2− 8 + 27/2 = 6 M,O, U, G, H, K
2 1/2− 16 + 81/2 = 25 MM,MO, MU,MG, MH,MK, OO,OU,OG, OH, OK,UO, UU,UG, UH, UK, GG,GH, GK, HG, HH,HK,KG,KH,KK
3 1/2− 32 + 243/2 = 90 (exercise) ¨̂

6.1.3 Example: A messy recurrence

Let’s try to solve the recurrence T (n) = 4T (n−1)+12T (n−2)+1 with T (0) = 0
and T (1) = 1.

Let F =
∑

T (n)zn.
Summing over all n gives

F =
∞∑

n=0

T (n)zn = T (0)z0 + T (1)z1 + 4
∞∑

n=2

T (n− 1)zn + 12
∞∑

n=2

T (n− 2)zn +
∞∑

n=2

1 · zn

= z + 4z

∞∑
n=1

T (n)zn + 12z2
∞∑

n=0

T (n)zn + z2
∞∑

n=0

zn

= z + 4z(F − T (0)) + 12z2F +
z2

1− z

= z + 4zF + 12z2F +
z2

1− z
.

Solving for F then gives

F =

(
z + z2

1−z

)
1− 4z − 12z2

.

14

We want to solve this using partial fractions, so we need to factor (1− 4z −
12z2) = (1 + 2z)(1− 6z). This gives

F =

(
z + z2

1−z

)
(1 + 2z)(1− 6z)

=
z

(1 + 2z)(1− 6z)
+

z2

(1− z)(1 + 2z)(1− 6z)
.

= z

(
1

(1 + 2z)(1− 6(− 1
2))

+
1

(1 + 2(1
6))(1− 6z)

)
+z2

(
1

(1− z)(1 + 2)(1− 6)
+

1
(1− (− 1

2))(1 + 2z)(1− 6(− 1
2))

+
1

(1− 1
6)(1 + 2(1

6))(1− 6z)

)
=

1
4z

1 + 2z
+

3
4z

1− 6z
+
− 1

15z2

1− z
+

1
6z2

1 + 2z
+

9
10z2

1− 6z
.

From this we can immediately read off the value of T (n) for n ≥ 2:

T (n) =
1
4

(−2)n−1 +
3
4

6n−1 − 1
15

+
1
6

(−2)n−2 +
9
10

6n−2

= −1
8

(−2)n +
1
8

6n − 1
15

+
1
24

(−2)n +
1
40

6n

=
3
20

6n − 1
12

(−2)n − 1
15

.

Let’s check this against the solutions we get from the recurrence itself:

n T (n)
0 0
1 1
2 1 + 4 · 1 + 12 · 0 = 5
3 1 + 4 · 5 + 12 · 1 = 33
4 1 + 4 · 33 + 12 · 5 = 193

We’ll try n = 3, and get T (3) = (3/20) · 216 + 8/12 − 1/15 = (3 · 3 · 216 +
40− 4)/60 = (1944 + 40− 4)/60 = 1980/60 = 33.

To be extra safe, let’s try T (2) = (3/20) · 36− 4/12− 1/15 = (3 · 3 · 36− 20−
4)/60 = (324− 20− 4)/60 = 300/60 = 5. This looks good too.

The moral of this exercise? Generating functions can solve ugly-looking
recurrences exactly, but you have to be very very careful in doing the math.

6.2 Partial fraction expansion with repeated roots

Let an = 2an−1 + n, with some constant a0. We’d like to find a closed-form
formula for an.

15

As a test, let’s figure out the first few terms of the sequence:

a0 = a0

a1 = 2a0 + 1
a2 = 4a0+2+2= 4a0 + 4
a3 = 8a0+8+3= 8a0 + 11
a4 = 16a0 + 22+4= 16a0 + 26

The a0 terms look nice (they’re 2na0), but the 0, 1, 4, 11, 26 sequence doesn’t
look like anything familiar. So we’ll find the formula the hard way.

First we convert the recurrence into an equation over generating functions
and solve for the generating function F :∑

anzn = 2
∑

an−1z
n +

∑
nzn + a0

F = 2zF +
z

(1− z)2
+ a0

(1− 2z)F =
z

(1− z)2
+ a0

F =
z

(1− z)2(1− 2z)
+

a0

1− 2z
.

Observe that the right-hand term gives us exactly the 2na0 terms we ex-
pected, since 1/(1−2z) generates the sequence 2n. But what about the left-hand
term? Here we need to apply a partial-fraction expansion, which is simplified
because we already know how to factor the denominator but is complicated
because there is a repeated root.

We can now proceed in one of two ways: we can solve directly for the partial
fraction expansion, or we can use an extended version of Heaviside’s cover-up
method that handles repeated roots using differentiation. We’ll start with the
direct method.

6.2.1 Solving for the PFE directly

Write
1

(1− z)2(1− 2z)
=

A

(1− z)2
+

B

1− 2z
.

We expect B to be a constant and A to be of the form A1z + A0.
To find B, use the technique of multiplying by 1− 2z and setting z = 1/2:

1
(1− 1

2)2
=

A · 0
(1− z)2

+ B.

So B = 1/(1− 1/2)2 = 1/(1/4) = 4.

16

We can’t do this for A, but we can solve for it after substituting in B = 4:

1
(1− z)2(1− 2z)

=
A

(1− z)2
+

4
1− 2z

1 = A(1− 2z) + 4(1− z)2

A =
1− 4(1− z)2

1− 2z

=
1− 4 + 8z − 4z2

1− 2z

=
−3 + 8z − 4z2

1− 2z

=
−(1− 2z)(3− 2z)

1− 2z
= 2z − 3.

So we have the expansion

1
(1− z)2(1− 2z)

=
2z − 3

(1− z)2
+

4
1− 2z

,

from which we get

F =
z

(1− z)2(1− 2z)
+

a0

1− 2z

=
2z2 − 3z

(1− z)2
+

4z

1− 2z
+

a0

1− 2z
.

If we remember that 1/(1 − z)2 generates the sequence xn = n + 1 and
1/(1 − 2z) generates xn = 2n, then we can quickly read off the solution (for
large n):

an = 2(n− 1)− 3n + 4 · 2n−1 + a0 · 2n = 2na0 + 2n+1 − 2− n

which we can check by plugging in particular values of n and comparing it to
the values we got by iterating the recurrence before.

The reason for the “large n” caveat is that z2/(1 − z)2 doesn’t generate
precisely the sequence xn = n− 1, since it takes on the values 0, 0, 1, 2, 3, 4, . . .
instead of −1, 0, 1, 2, 3, 4, Similarly, the power series for z/(1− 2z) does not
have the coefficient 2n−1 = 1/2 when n = 0. Miraculously, in this particular
example the formula works for n = 0, even though it shouldn’t: 2(n− 1) is −2
instead of 0, but 4 · 2n−1 is 2 instead of 0, and the two errors cancel each other
out.

6.2.2 Solving for the PFE using the extended cover-up method

It is also possible to extend the cover-up method to handle repeated roots. Here
we choose a slightly different form of the partial fraction expansion:

1
(1− z)2(1− 2z)

=
A

(1− z)2
+

B

1− z
+

C

1− 2z
.

17

Here A, B, and C are all constants. We can get A and C by the cover-up
method, where for A we multiply both sides by (1 − z)2 before setting z = 1;
this gives A = 1/(1 − 2) = −1 and C = 1/(1 − 1

2)2 = 4. For B, if we multiply
both sides by (1 − z) we are left with A/(1 − z) on the right-hand side and a
(1 − z) in the denominator on the left-hand side. Clearly setting z = 1 in this
case will not help us.

The solution is to first multiply by (1− z)2 as before but then take a deriva-
tive:

1
(1− z)2(1− 2z)

=
A

(1− z)2
+

B

1− z
+

C

1− 2z

1
1− 2z

= A + B(1− z) +
C(1− z)2

1− 2z

d

dz

1
1− 2z

=
d

dz

(
A + B(1− z) +

C(1− z)2

1− 2z

)
2

(1− 2z)2
= −B +

−2C(1− z)
1− 2z

+
2C(1− z)2

(1− 2z)2

Now if we set z = 1, every term on the right-hand side except −B becomes
0, and we get −B = 2/(1− 2)2 or B = −2.

Plugging A, B, and C into our original formula then gives

1
(1− z)2(1− 2z)

=
−1

(1− z)2
+
−2

1− z
+

4
1− 2z

,

and thus

F =
z

(1− z)2(1− 2z)
+

a0

1− 2z
= z

(
−1

(1− z)2
+
−2

1− z
+

4
1− 2z

)
+

a0

1− 2z
.

From this we can read off (for large n):

an = 4 · 2n−1 − n− 2 + a0 · 2n = 2n+1 + 2na0 − n− 2.

We believe this because it looks like the solution we already got.

7 Asymptotic estimates

We can simplify our life considerably if we only want an asymptotic estimate
of an (see AsymptoticNotation). The basic idea is that if an is non-negative
for sufficiently large n and

∑
anzn converges for some fixed value z, then an

must be o(z−n) in the limit. (Proof: otherwise, anzn is at least a constant
for infinitely many n, giving a divergent sum.) So we can use the radius of
convergence of a generating function F (z), defined as the largest value r such
that F (z) is defined for all (complex) z with |z| < r, to get a quick estimate of
the growth rate of F ’s coefficients: whatever they do, we have an = O(r−n).

18

http://pine.cs.yale.edu/pinewiki/AsymptoticNotation

For generating functions that are rational functions (ratios of polynomi-
als), we can use the partial fraction expansion to do even better. First ob-
serve that for F (z) =

∑
fiz

n = 1/(1 − az)k, we have fn =
(
k+n−1

n

)
an =

(n+k−1)(n+k−2)...(k−1)
(k−1)! an = Θ(annk−1). Second, observe that the numerator is

irrelevant: if 1/(1 − az)k = Θ(annk−1) then bzm/(1 − az)k−1 = bΘ(an−m(n −
m)k−1) = ba−m(1 − m/n)k−1Θ(annk−1) = Θ(annk−1), because everything
outside the Θ disappears into the constant for sufficiently large n. Finally,
observe that in a partial fraction expansion, the term 1/(1 − az)k with the
largest coefficient a (if there is one) wins in the resulting asymptotic sum:
Θ(an) + Θ(bn) = Θ(an) if |a| > |b|. So we have:

Theorem 1. Let F (z) =
∑

fnzn = P (z)/Q(z) where P and Q are polynomials
in z. If Q has a root r with multiplicity k, and all other roots s of Q satisfy
|r| < |s|, then fn = Θ((1/r)nnk−1).

The requirement that r is a unique minimal root of Q is necessary; for
example, F (z) = 2/(1 − z2) = 1/(1 − z) + 1/(1 + z) generates the sequence
0, 2, 0, 2, . . . , which is not Θ(1) because of all the zeros; here the problem is that
1− z2 has two roots with the same absolute value, so for some values of n it is
possible for them to cancel each other out.

A root in the denominator of a rational function F is called a pole. So
another way to state the theorem is that the asymptotic value of the coefficients
of a rational generating function is determined by the smallest pole.

More examples:

F (z) Smallest pole Asymptotic value
1/(1− z) 1 Θ(1)
1/(1− z)2 1, multiplicity2 Θ(n)
1/(1− z − z2) (√5− 1)/2 = 2/(1 +√5) Θ(((1 +√5)/2)n)
1/((1− z)(1− 2z)(1− 3z)) 1/3 Θ(3n)
(z + z2(1− z))/(1− 4z − 12z2) 1/6 Θ(6n)
1/((1− z)2(1− 2z)) 1/2 Θ(2n)

In each case it may be instructive to compare the asymptotic values to the
exact values obtained earlier on this page.

8 Recovering the sum of all coefficients

Given a generating function for a convergent series
∑

i aiz
i, we can compute the

sum of all the ai by setting z to 1. Unfortunately, for many common generating
functions setting z = 1 yields 0/0 (if it yields something else divided by zero then
the series diverges). In this case we can recover the correct sum by taking the
limit as z goes to 1 using L’Hôpital’s rule, which says that limx→c f(x)/g(x) =
limx→c f ′(x)/g′(x) when the latter limit exists and either f(c) = g(c) = 0 or
f(c) = g(c) =∞.2

2The justification for doing this is that we know that a finite sequence really has a finite

sum, so the “singularity” appearing at z = 1 in e.g. 1−zn+1

1−z
is an artifact of the generating-

19

8.1 Example

Let’s derive the formula for 1 + 2 + . . . + n. We’ll start with the generating
function for the series

∑n
i=0 zi, which is (1− zn + 1)/(1− z). Applying the z d

dz
method gives us

n∑
i=0

izi = z
d

dz

1− zn+1

1− z

= z

(
1

(1− z)2
− (n + 1)zn

1− z
− zn+1

(1− z)2

)
=

z − (n + 1)zn+1 + nzn+2

(1− z)2
.

Plugging z = 1 into this expression gives (1−(n+1)+n)/(1−1) = 0/0, which
does not make us happy. So we go to the hospital—twice, since one application
of L’Hôpital’s rule doesn’t get rid of our 0/0 problem:

lim
z→1

z − (n + 1)zn+1 + nzn+2

(1− z)2
= lim

z→1

1− (n + 1)2zn + n(n + 2)zn+1

−2(1− z)

= lim
z→1

−n(n + 1)2zn−1 + n(n + 1)(n + 2)zn

2

=
−n(n + 1)2 + n(n + 1)(n + 2)

2

=
−n3 − 2n2 − n + n3 + 3n2 + 2n

2

=
n2 + n

2
=

n(n + 1)
2

,

which is our usual formula. Gauss’s childhood proof is a lot quicker, but the
generating-function proof is something that we could in principle automate most
of the work using a computer algebra system, and it doesn’t require much cre-
ativity or intelligence. So it might be the weapon of choice for nastier problems
where no clever proof comes to mind.

More examples of this technique can be found on the BinomialCoefficients
page, where the binomial theorem applied to (1 + x)n (which is really just a
generating function for

∑(
n
i

)
zi) is used to add up various sums of binomial

coefficients.

9 A recursive generating function

Let’s suppose we want to count binary trees with n internal nodes. We can
obtain such a tree either by (a) choosing an empty tree (g.f.: z0 = 1); or (b)
choosing a root with weight 1 (g.f. 1 · z1 = z), since we can choose it in exactly

function representation rather than the original series—it’s a “removable singularity” that can
be replaced by the limit of f(x)/g(x) as x→ c.

20

http://pine.cs.yale.edu/pinewiki/BinomialCoefficients

one way), and two subtrees (g.f. = F 2 where F is the g.f. for trees). This gives
us a recursive definition

F = 1 + zF 2.

Solving for F using the quadratic formula gives

F =
1±
√

1− 4z

2z
.

That 2z in the denominator may cause us trouble later, but let’s worry about
that when the time comes. First we need to figure out how to extract coefficients
from the square root term.

The binomial theorem says

√
1− 4z = (1− 4z)1/2 =

∞∑
n=0

(
1/2
n

)
(−4z)n.

For n ≥ 1, we can expand out the
(
1/2
n

)
terms as(

1/2
n

)
=

(1/2)(n)

n!

=
1
n!
·

n−1∏
k=0

(1/2− k)

=
1
n!
·

n−1∏
k=0

1− 2k

2

=
(−1)n

2nn!
·

n−1∏
k=0

(2k − 1)

=
(−1)n

2nn!
·
∏2n−2

k=1 k∏n−1
k=1 2k

=
(−1)n

2nn!
· (2n− 2)!

2n−1(n− 1)!

=
(−1)n

22n−1
· (2n− 2)!
n!(n− 1)!

=
(−1)n

22n−1(2n− 1)
· (2n− 1)!
n!(n− 1)!

=
(−1)n

22n−1(2n− 1)
·
(

2n− 1
n

)
.

For n = 0, the switch from the big product of odd terms to (2n−2)! divided
by the even terms doesn’t work, because (2n− 2)! is undefined. So here we just
use the special case

(
1/2
0

)
= 1.

21

Now plug this nasty expression back into F to get

F =
1±
√

1− 4z

2z

=
1
2z
± 1

2z

∞∑
n=0

(
1/2
n

)
(−4z)n

=
1
2z
±

(
1
2z

+
1
2z

∞∑
n=1

(−1)n−1

22n−1(2n− 1)

(
2n− 1

n

)
(−4z)n

)

=
1
2z
±

(
1
2z

+
1
2z

∞∑
n=1

(−1)2n−122n

22n−1(2n− 1)

(
2n− 1

n

)
zn

)

=
1
2z
±

(
1
2z

+
1
2z

∞∑
n=1

−2
(2n− 1)

(
2n− 1

n

)
zn

)

=
1
2z
±

(
1
2z
−
∞∑

n=1

1
(2n− 1)

(
2n− 1

n

)
zn−1

)

=
1
2z
±

(
1
2z
−
∞∑

n=0

1
(2n + 1)

(
2n + 1
n + 1

)
zn

)

=
∞∑

n=0

1
(2n + 1)

(
2n + 1
n + 1

)
zn

=
∞∑

n=0

1
n + 1

(
2n

n

)
zn.

Here we choose minus for the plus-or-minus to get the right answer and then
do a little bit of tidying up of the binomial coefficient.

We can check the first few values of f(n):

n f(n)
0

(
0
0

)
= 1

1 (1/2)
(
2
1

)
= 1

2 (1/3)
(
4
2

)
= 6/3 = 2

3 (1/4)
(
6
3

)
= 20/4 = 5

and these are consistent with what we get if we draw all the small binary trees
by hand.

The numbers 1
n+1

(
2n
n

)
show up in a lot of places in combinatorics, and are

known as the Catalan numbers.

22

http://en.wikipedia.org/Catalan numbers

10 Summary of operations on generating func-
tions

The following table describes all the nasty things we can do to a generating
function. Throughout, we assume F =

∑
fkzk, G =

∑
gkzk, etc.

Operation Effect on generating functions Effect on coefficients Combinatorial interpretation
Coefficient extraction fk = (1/k!)dk/dzkF (z)|z=0 Find the number of weight k objects. Easy case: f0 = F (0).
Sum of all coefficients F (1) Computes

∑
fk Count the total number of objects, ignoring weights.

Shift right G = zF gk = fk−1 Add 1 to the weight of all objects.
Shift left G = z−1(F − F (0)) gk = fk+1 Subtract 1 from the weight of all objects.
Pointing G = z d

dz F gk = kfk A G-thing is an F -thing plus a label pointing to one of its units.
Sum H = F + G hk = fk + gk Every H-thing is either an F -thing or a G-thing (think disjoint union)
Product H = FG hk =

∑
i figk−i Every H-thing consists of an F -thing a G-thing (think Cartesian product), with the weight of the H-thing equal to the sum of the weights of the F and G things.

Composition H = F ◦G H =
∑

fkGk To make an H-thing, first choose an F -thing of weight m, then bolt onto it m G-things. The weight of the H-thing is the sum of the weights of the G-things.
Repetition G = 1/(1− F) G =

∑
F k A G-thing is a sequence of zero or more F -things. Note: this is just a special case of composition.

11 Variants

The exponential generating function or egf for a sequence a0, . . . is given
by F (z) =

∑
anzn/n!. For example, the egf for the sequence 1, 1, 1, . . . is

ez =
∑

zn/n!. Exponential generating functions admit a slightly different set
of operations from ordinary generating functions: differentiation gives left shift
(since the factorials compensate for the exponents coming down), multiplying
by z gives bn = nan+1, etc. The main application is that the product F (z)G(z)
of two egf’s gives the sequence whose n-th term is

∑
(nchoosek)akbn−k; so for

problems where we want that binomial coefficient in the convolution (e.g. when
we are building weight n objects not only by choosing a weight-k object plus
a weight-(n − k) object but also by arbitrarily rearranging their unit-weight
pieces) we want to use an egf rather than an ogf. We won’t use these in CS202,
but it’s worth knowing they exist.

A probability generating function or pgf is essentially an ordinary gen-
erating function where each coefficient an is the probability that some random
variable equals n. See RandomVariables for more details.

12 Further reading

RosenBook discusses some basic facts about generating functions in §7.4. Con-
creteMathematics gives a more thorough introduction. Herbert Wilf’s book
generatingfunctionology, which can be downloaded from the web, will tell you
more about the subject than you probably want to know.

See this page for very detailed notes on partial fraction expansion.

23

http://pine.cs.yale.edu/pinewiki/CS202
http://pine.cs.yale.edu/pinewiki/RandomVariables
http://www.math.upenn.edu/~wilf/DownldGF.html
http://www.swarthmore.edu/NatSci/echeeve1/Ref/LPSA/PartialFraction/PartialFraction.html

