
Notes on linear algebra

James Aspnes

October 11, 2012

1 Matrices

We’ve seen that a sequence a1, a2, . . . , an is really just a function from some
index set ({1 . . . n} in this case) to some codomain, where ai = a(i) for each i.
What if we have two index sets? Then we have a two-dimensional structure:

A =

 A11 A12

A21 A22

A31 A32

where Aij = a(i, j) and the domain of the function is just the cross-product of
the two index sets. Such a structure is called a matrix. The values Aij are
called the elements or entries of the matrix. A sequence of elements with the
same first index is called a row of the matrix; similarly, a sequence of elements
with the same second index is called a column. The dimension of the matrix
specifies the number of rows and the number of columns: the matrix above has
dimension (3, 2), or, less formally, it is a 3 × 2 matrix.1 A matrix is square if
it has the same number of rows and columns.

Note: The convention in matrix indices is to count from 1 rather than 0. In
Computer Science terms, matrices are written in FORTRAN.

By convention, variables representing matrices are usually written with cap-
ital letters. (This is to distinguish them from lower-case scalars, which are
single numbers.)

1.1 Interpretation

We can use a matrix any time we want to depict a function of two arguments
(over small finite sets if we want it to fit on one page). A typical example
(that predates the formal notion of a matrix by centuries) is a table of distances
between cities or towns, such as this example from 1807:2

1The convention for both indices and dimension is that rows come before columns.
2The original image is taken from http://www.hertfordshire-genealogy.co.uk/data/

books/books-3/book-0370-cooke-1807.htm. As an exact reproduction of a public domain
document, this image is not subject to copyright in the United States.

1

http://www.hertfordshire-genealogy.co.uk/data/books/books-3/book-0370-cooke-1807.htm
http://www.hertfordshire-genealogy.co.uk/data/books/books-3/book-0370-cooke-1807.htm

Because distance matrices are symmetric (see below), usually only half of
the matrix is actually printed.

Another example would be a matrix of counts. Suppose we have a set of
destinations D and a set of origins O. For each pair (i, j) ∈ D × O, let Cij be
the number of different ways to travel from j to i. For example, let origin 1 be
Bass Library, origin 2 be AKW, and let destinations 1, 2, and 3 be Bass, AKW,
and SML. Then there is 1 way to travel between Bass and AKW (walk), 1 way
to travel from AKW to SML (walk), and 2 ways to travel from Bass to SML
(walk above-ground or below-ground). If we assume that we are not allowed to
stay put, there are 0 ways to go from Bass to Bass or AKW to AKW, giving
the matrix

C =

 0 1
1 0
2 1

Wherever we have counts, we can also have probabilities. Suppose we have a

particle that moves between positions 1 . . . n by flipping a coin, and moving up
with probability 1

2 and down with probability 1
2 (staying put if it would otherwise

move past the endpoints). We can describe this process by a transition matrix
P whose entry Pij gives the probability of moving to i starting from j. For
example, for n = 4, the transition matrix is

P =

1/2 1/2 0 0
1/2 0 1/2 0
0 1/2 0 1/2
0 0 1/2 1/2

 .
Finally, the most common use of matrices in linear algebra is to represent

the coefficients of a linear transformation, which we will describe later.

2

1.2 Operations on matrices

1.2.1 Transpose of a matrix

The transpose of a matrix A, written A′ or A>, is obtained by reversing the
indices of the original matrix; (A′)ij = Aji for each i and j. This has the effect
of turning rows into columns and vice versa:

A′ =

 A11 A12

A21 A22

A31 A32

′ =
[
A11 A21 A31

A12 A22 A32

]

If a matrix is equal to its own transpose (i.e., if Aij = Aji for all i and j),
it is said to be symmetric. The transpose of an n × m matrix is an m × n
matrix, so only square matrices can be symmetric.

1.2.2 Sum of two matrices

If we have two matrices A and B with the same dimension, we can compute
their sum A+B by the rule (A+B)ij = Aij +Bij . Another way to say this is
that matrix sums are done term-by-term: there is no interaction between entries
with different indices.

For example, suppose we have the matrix of counts C above of ways of getting
between two destinations on the Yale campus. Suppose that upperclassmen are
allowed to also take the secret Science Hill Monorail from the sub-basement of
Bass Library to the sub-basement of AKW. We can get the total number of
ways an upperclassman can get from each origin to each destination by adding
to C a second matrix M giving the paths involving monorail travel:

C +M =

 0 1
1 0
2 1

+

 0 0
1 0
0 0

 =

 0 1
2 0
2 1

 .
1.2.3 Product of two matrices

Suppose we are not content to travel once, but have a plan once we reach our
destination in D to travel again to a final destination in some set F . Just as
we constructed the matrix C (or C + M , for monorail-using upperclassmen)
counting the number of ways to go from each point in O to each point in D, we
can construct a matrix Q counting the number of ways to go from each point
in D to each point in F . Can we combine these two matrices to compute the
number of ways to travel O → D → F?

The resulting matrix is known as the product QC. We can compute each
entry in QC by taking a sum of products of entries in Q and C. Observe that
the number of ways to get from k to i via some single intermediate point j is just
QijCjk. To get all possible routes, we have to sum over all possible intermediate
points, giving (QC)ik =

∑
j QijCjk.

3

This gives the rule for multiplying matrices in general: to get (AB)ik, sum
AijBjk over all intermediate values j. This works only when the number of
columns in A is the same as the number of rows in B (since j has to vary over
the same range in both matrices), i.e., when A is an n × m matrix and B is
an m× s matrix for some n, m, and s. If the dimensions of the matrices don’t
match up like this, the matrix product is undefined. If the dimensions do match,
they are said to be compatible.

For example, let B = (C + M) from the sum example and let A be the
number of ways of getting from each of destinations 1 = Bass, 2 = AKW, and
3 = SML to final destinations 1 = Heaven and 2 = Hell. After consulting with
appropriate representatives of the Divinity School, we determine that one can
get to either Heaven or Hell from any intermediate destination in one way by
dying (in a state of grace or sin, respectively), but that Bass Library provides
the additional option of getting to Hell by digging. This gives a matrix

A =
[

1 1 1
2 1 1

]
.

We can now compute the product

A(C+M) =
[

1 1 1
2 1 1

] 0 1
2 0
2 1

 =
[

1 · 0 + 1 · 2 + 1 · 2 1 · 1 + 1 · 0 + 1 · 1
2 · 0 + 1 · 2 + 1 · 2 2 · 1 + 1 · 0 + 1 · 1

]
=
[

4 2
4 3

]
.

One special matrix I (for each dimension n×n) has the property that IA = A
and BI = B for all matrices AandB with compatible dimension. This matrix is
known as the identity matrix, and is defined by the rule Iii = 1 and Iij = 0 for
i 6= j. It is not hard to see that in this case (IA)ij =

∑
k IikAkj = IiiAij = Aij ,

giving IA = A; a similar computation shows that BI = B. With a little more
effort (omitted here) we can show that I is the unique matrix with this identity
property.

1.2.4 The inverse of a matrix

A matrix A is invertible if there exists a matrix A−1 such that AA−1 =
A−1A = 1. This is only possible if A is square (because otherwise the dimen-
sions don’t work) and may not be possible even then. Note that it is enough to
find a matrix such that A−1A = I to show that A is invertible.

To try to invert a matrix, we start with the pair of matrices A, I (where
I is the identity matrix defined above) and multiply both sides of the pair
from the left by a sequence of transformation matrices B1, B2, . . . Bk until
BkBk−1 · · ·B1A = I. At this point the right-hand matrix will beBkBk−1 · · ·B1 =
A−1. (We could just keep track of all the Bi, but it’s easier to keep track of
their product.)

How do we pick the Bi? These will be matrices that (a) multiply some row
by a scalar, (b) add a multiple of one row to another row, or (c) swap two
rows. We’ll use the first kind to make all the diagonal entries equal one, and

4

the second kind to get zeroes in all the off-diagonal entries. The third kind will
be saved for emergencies, like getting a zero on the diagonal.

That the operations (a), (b), and (c) correspond to multiplying by a matrix
is provable but tedious.3 Given these operations, we can turn any invertible
matrix A into I by working from the top down, rescaling each row i using a
type (a) operation to make Aii = 1, then using a type (b) operation to subtract
Aji times row i from each row j > i to zero out Aji, then finally repeating
the same process starting at the bottom to zero out all the entries above the
diagonal. The only way this can fail is if we hit some Aii = 0, which we can
swap with a nonzero Aji if one exists (using a type (c) operation). If all the
rows from i on down have a zero in the i column, then the original matrix A is
not invertible. This entire process is known as Gauss-Jordan elimination.

This procedure can be used to solve matrix equations: if AX = B, and we
know A and B, we can compute X by first computing A−1 and then multiplying
X = A−1AX = A−1B. If we are not interested in A−1 for its own sake, we
can simplify things by substituting B for I during the Gauss-Jordan elimination
procedure; at the end, it will be transformed to X.

Example Original A is on the left, I on the right.
Initial matrices: 2 0 1

1 0 1
3 1 2

 1 0 0
0 1 0
0 0 1

Divide top row by 2: 1 0 1/2

1 0 1
3 1 2

 1/2 0 0
0 1 0
0 0 1

Subtract top row from middle row and 3*top row from bottom row: 1 0 1/2

0 0 1/2
0 1 1/2

 1/2 0 0
−1/2 1 0
−3/2 0 1

Swap middle and bottom rows: 1 0 1/2

0 1 1/2
0 0 1/2

 1/2 0 0
−3/2 0 1
−1/2 1 0

Multiply bottom row by 2:

3The tedious details: To multiple row r by a, use a matrix B with Bii = 1 when i 6= r,
Brr = a, and Bij = 0 for i 6= j; to add a times row r to row s, use a matrix B with Bii = 1
when i 6= r, Brs = a, and Bij = 0 for all other pairs ij; to swap rows r and s, use a matrix
B with Bii = 1 for i 6∈ {r, s}, Brs = Bsr = 1, and Bij = 0 for all other pairs ij.

5

 1 0 1/2
0 1 1/2
0 0 1

 1/2 0 0
−3/2 0 1
−1 2 0

Subtract (1/2)*bottom row from top and middle rows: 1 0 0

0 1 0
0 0 1

 1 −1 0
−1 −1 1
−1 2 0

and we’re done. (It’s probably worth multiplying the original A by the alleged
A−1 to make sure that we didn’t make a mistake.)

1.2.5 Scalar multiplication

Suppose we have a matrix A and some constant c. The scalar product cA
is given by the rule (cA)ij = cAij ; in other words, we multiply (or scale) each
entry in A by c. The quantity c in this context is called a scalar; the term
scalar is also used to refer to any other single number that might happen to be
floating around.

Note that if we only have scalars, we can pretend that they are 1×1 matrices;
a+ b = a11 + b1 and ab = a11b11. But this doesn’t work if we multiply a scalar
by a matrix, since cA (where c is considered to be a matrix) is only defined if
A has only one row. Hence the distinction between matrices and scalars.

1.3 Matrix identities

For the most part, matrix operations behave like scalar operations, with a few
important exceptions:

1. Matrix multiplication is only defined for matrices with compatible dimen-
sions.

2. Matrix multiplication is not commutative: in general, we do not expect
that AB = BA. This is obvious when one or both of A and B is not
square (one of the products is undefined because the dimensions aren’t
compatible), but may also be true even if A and B are both square.

For a simple example of a non-commutative pair of matrices, consider[
1 1
0 1

] [
1 −1
1 1

]
=
[

2 0
1 1

]
6=
[

1 −1
1 1

] [
1 1
0 1

]
=
[

1 0
1 2

]
.

On the other hand, matrix multiplication is associative: A(BC) = (AB)C.
The proof is by expansion of the definition. First compute (A(BC))ij =

∑
k Aik(BC)kj =∑

k

∑
mAikBkmCmj . Then compute ((AB)C)ij =

∑
m(AB)imCmj =

∑
m

∑
k AikBkmCmj =∑

k

∑
mAikBkmCmj = (A(BC))ij .

So despite the limitations due to non-compatibility and non-commutativity,
we still have:

6

Associative laws A+ (B + C) = (A+ B) + C (easy), (AB)C = A(BC) (see
above). Also works for scalars: c(AB) = (cA)B = A(cB)and(cd)A =
c(dA) = d(cA).

Distributive laws A(B+C) = AB+BC, A(B+C) = AB+AC. Also works
for scalars: c(A+B) = cA+ cB, (c+ d)A = cA+ dA.

Additive identity A + 0 = 0 + A = A, where 0 is the all-zero matrix of the
same dimension as A.

Multiplicative identity AI = A, IA = A, 1A = A,A1 = A, where I is the
identity matrix of appropriate dimension in each case and 1 is the scalar
value 1.

Inverse of a product (AB)−1 = B−1A−1. Proof: (B−1A−1)(AB) = B−1(A−1A)B =
B−1(IB) = B−1B = I, and similarly for (AB)(B−1A−1).

Transposes (A + B)′ = A′ + B′ (easy), (AB)′ = B′A′ (a little trickier).
(A−1)′ = (A′)−1, provided A−1 exists (proof: A′(A−1)′ = (A−1A)′ =
I ′ = I).

Using these identities, we can do arithmetic on matrices without knowing
what their actual entries are, so long as we are careful about non-commutativity.
So for example we can compute

(A+B)2 = (A+B)(A+B) = A2 +AB +BA+B2.

Similarly, if for square A we have

S =
∑
n∈N

An,

(where A0 = I) we can solve the equation

S = I +AS

by first subtracting AS from both sides to get

IS −AS = I

then applying the distributive law:

(I −A)S = I

and finally multiplying both sides from the left by (I −A)−1 to get

S = (I −A)−1,

assuming I −A is invertible.

7

2 Vectors

A 1×n or n×1 matrix is called a vector. A 1×n matrix is called a row vector
for obvious reasons; similarly, an n× 1 matrix is called a column vector.

Vectors behave exactly like matrices in every respect; however, they are
often written with lowercase letters to distinguish them from their taller and
wider cousins. If this will cause confusion with scalars, we can disambiguate by
writing vectors with a little arrow on top: ~x or in boldface: x. Often we will
just hope it will be obvious from context which variables represent vectors and
which represent scalars, since writing all the little arrows can take a lot of time.

When extracting individual coordinates from a vector, we omit the boring
index and just write x1, x2, etc. This is done for both row and column vectors,
so rather than write x′i we can just write xi.

2.1 Geometric interpretation

We can use a vector to represent the coordinates of a point in space. In general,
given some point in the n-dimensional Euclidean space Rn, we consider
it as an n × 1 column vector (row vectors work too, but the convention is to
use column vectors because it makes the matrix-vector product Ax look like
function application). The set of all such vectors for a given fixed dimension
form a vector space.

For example, we could represent the latitude and longitude of the major
world landmarks Greenwich Observatory, Mecca, and Arthur K. Watson Hall

by the column vectors
[

0.0
0.0

]
,
[

21.45
39.82

]
, and

[
41.31337
−72.92508

]
.

Pedantic note: The surface of the Earth is not really a Euclidean space,
despite the claims of the Flat Earth Society.

In running text, we can represent these column vectors as transposed row
vectors, e.g. [21.4539.82]′ for the coordinates of Mecca. Quite often we will
forget whether we are dealing with a column vector or a row vector specifically
and just write the sequence of entries, e.g. (21.5439.82) or (21.54, 39.82).

We can use vectors to represent any quantities that can be expressed as a
sequence of coordinates in R (or more generally, over any field : see Algebraic-
Structures and AbstractLinearAlgebra). A common use is to represent offsets—
the difference between the coordinates of two locations—and velocities—the rate
at which the coordinates of a moving object change over time. So, for example,
we might write the velocity of a car that is moving due northeast at 100 km/h
as the vector (100/√2100/√2)′, where each entry corresponds to the speed if
we look only at the change in the north-south or west-east position. We can
also think of coordinates of points as themselves offsets from some origin at
position 0—Greenwich Observatory in the case of latitude and longitude.

8

2.2 Sums of vectors

We can add vectors term-by-term just as we can add any other matrices. For
vectors representing offsets (or velocities) the geometric interpretation of x+ y
is that we attach y to the end of x (or vice versa, since addition is commutative)
and take the combined offset, as in this picture:

*
/^

/ |
/ |

x+y/ |y
/ |
/ |
/ |

0>*
x

This can be used to reduce the complexity of pirate-treasure instructions:

1. Yargh! Start at the olde hollow tree on Dead Man’s Isle, if ye dare.

2. Walk 10 paces north.

3. Walk 5 paces east.

4. Walk 20 paces south.

5. Walk 6√2 paces northwest.

6. Dig 8 paces down.

7. Climb back up 6 paces. There be the treasure, argh!

In vector notation, this becomes:

1. (000)′

2. + (1000)′

3. + (050)′

4. + (−2000)′

5. + (6− 60)′

6. + (00− 8)′

7. + (006)′

which sums to (−4− 1− 2)′. So we can make our life easier by walking 4 paces
south, 1 pace west, and digging only 2 paces down.

9

2.3 Length

The length of a vector x, usually written as ‖x‖ or sometimes just |x|, is defined
as √(

∑
i xi); the definition follows from the Pythagorean theorem: ‖x‖2 =∑

x2
i . Because the coordinates are squared, all vectors have non-negative length,

and only the zero vector has length 0.
Length interacts with scalar multiplication exactly as you would expect:

‖cx‖ = c‖x‖. The length of the sum of two vectors depends on how the are
aligned with each other, but the triangle inequality ‖x + y‖ ≤ ‖x‖ + ‖y‖
always holds.

A special class of vectors are the unit vectors, those vectors x for which
‖x‖ = 1. In geometric terms, these correspond to all the points on the surface
of a radius-1 sphere centered at the origin. Any vector x can be turned into
a unit vector x/‖x‖ by dividing by its length. In two dimensions, the unit
vectors are all of the form (xy)′ = (cos Θ, sin Θ)′, where by convention Θ is the
angle from due east measured counterclockwise; this is why traveling 9 units
northwest corresponds to the vector 9(cos 135◦, sin 135◦)′ = (−9/√2, 9/√2)′. In
one dimension, the unit vectors are (±1). (There are no unit vectors in zero
dimensions: the unique zero-dimensional vector has length 0.)

2.4 Dot products and orthogonality

Suppose we have some column vector x, and we want to know how far x sends
us in a particular direction, where the direction is represented by a unit column
vector e. We can compute this distance (a scalar) by taking the dot product

e · x = e′x =
∑

eixi.

For example, if x = (34)′ and e = (10)′, then the dot product is

e · x =
[

1 0
] [3

4

]
= 1 · 3 + 0 · 4 = 3.

In this case we see that the (10)′ vector conveniently extracts the first coor-
dinate, which is about what we’d expect. But we can also find out how far x
takes us in the (1/√21/√2)′ direction: this is (1/√21/√2)x = 7/√2.

By convention, we are allowed to take the dot product of two row vectors or
of a row vector times a column vector or vice versa, provided of course that the
non-boring dimensions match. In each case we transpose as appropriate to end
up with a scalar when we take the matrix product.

Nothing in the definition of the dot product restricts either vector to be
a unit vector. If we compute x · y where x = ce and ‖e‖ = 1, then we are
effectively multiplying e · y by c. It follows that the dot product is proportional
to the length of both of its arguments. This often is expressed in terms of
the geometric formulation, memorized by vector calculus students since time
immemorial:

10

The dot product of x and y is equal to the product of their lengths times the
cosine of the angle between them.

This formulation is a little misleading, since modern geometers will often
define the angle between two vectors x and y as cos−1(x · y/(‖x‖ · ‖y‖)), but it
gives a good picture of what is going on. One can also define the dot-product
as the area of the parallelogram with sides x and y, with the complication that
if the parallelogram is flipped upside-down we treat the area as negative. The
simple version in terms of coordinates is harder to get confused about, so we’ll
generally stick with that.

Two vectors are orthogonal if their dot product is zero. In geometric terms,
this occurs when either one or both vectors is the zero vector or when the angle
between them is ±90◦ (since cos(±90◦) = 0). In other words, two non-zero
vectors are orthogonal if and only if they are perpendicular to each other.

Orthogonal vectors satisfy the Pythagorean theorem: If x · y = 0, then
‖x+y‖2 = (x+y) · (x+y) = x ·x+x ·y+y ·x+y ·y = x ·x+y ·y = ‖x‖2 +‖y‖2.
It is not hard to see that the converse is also true: any pair of vectors for which
‖x+ y‖2 = ‖x‖2 + ‖y‖2 must be orthogonal (at least in Rn).

Orthogonality is also an important property of vectors used to define coor-
dinate systems, as we will see below.

3 Linear combinations and subspaces

A linear combination of a set of vectors x1 . . . xn is any vector that can be
expressed as

∑
cixi for some coefficients ci. The span of the vectors, written

〈x1 . . . xn〉, is the set of all linear combinations of the xi.4

The span of a set of vectors forms a subspace of the vector space, where a
subspace is a set of vectors that is closed under linear combinations. This is a
succinct way of saying that if x and y are in the subspace, so is ax+ by for any
scalars a and b. We can prove this fact easily: if x =

∑
cixi and y =

∑
dixi,

then ax+ by =
∑

(aci + bdi)xi.
A set of vectors x1, x2, . . . , xn is linearly independent if there is no way to

write one of the vectors as a linear combination of the others, i.e., if there is no
choice of coefficients that makes some xi =

∑
j 6=i cjxj . An equivalent definition

is that there is no choice of coefficients ci such that
∑
cixi = 0 and at least

one ci is nonzero (to see the equivalence, subtract xi from both sides of the
xi =

∑
cjxj equation).

3.1 Bases

If a set of vectors is both (a) linearly independent, and (b) spans the entire vector
space, then we call that set of vectors a basis of the vector space. An example of
a basis is the standard basis consisting of the vectors (10 . . . 00)′, (01 . . . 00)′, . . . , (00 . . . 10)′, (00 . . . 01)′.

4Technical note: If the set of vectors {xi} is infinite, then we will only permit linear
combinations with a finite number of nonzero coefficients. We will generally not consider
vector spaces big enough for this to be an issue.

11

This has the additional nice property of being made of of vectors that are all
orthogonal to each other (making it an orthogonal basis) and of unit length
(making it a normal basis).

A basis that is both orthogonal and normal is called orthonormal. We
like orthonormal bases because we can recover the coefficients of some arbitrary
vector v by taking dot-products. If v =

∑
aixi, then v ·xj =

∑
ai(xi ·xj) = ai,

since orthogonality means that xi · xj = 0 when i 6= j, and normality means
xi · xi = ‖xi‖2 = 1.

However, even for non-orthonormal bases it is still the case that any vector
can be written as a unique linear combination of basis elements. This fact is so
useful we will state it as a theorem:

Theorem 1. If {xi} is a basis for some vector space V , then every vector y
has a unique representation y = a1x1 + a2x2 + . . . + anxn.

Proof. Suppose there is some y with more than one representation, i.e., there
are sequences of coefficients ai and bi such that y = a1x1 + a2x2 + . . . + anxn =
b1x1 + b2x2 + . . . + bnxn. Then 0 = y− y = a1x1 + a2x2 + . . . + anxn − b1x1 +
b2x2 + . . . + bnxn = (a1 − b1)x1 + (a2 − b2)x2 + . . . + (an − bn)xn. But since
the xi are independent, the only way a linear combination of the xi can equal 0
is if all coefficients are 0, i.e., if ai = bi for all i.

Even better, we can do all of our usual vector space arithmetic in terms of
the coefficients ai. For example, if a =

∑
aixi and b =

∑
bixi, then it can easily

be verified that a+ b =
∑

(ai + bi)xi and ca =
∑

(cai)xi.
However, it may be the case that the same vector will have different rep-

resentations in different bases. For example, in R2, we could have a basis
B1 = {(1, 0), (0, 1)} and a basis B2 = {(1, 0), (1,−2)}. The vector (2, 3) would
be represented as (2, 3) using basis B1 but would be represented as (5/2,−3/2)
in basis B2. In the standard basis {(1, 0), (0, 1)}, the representation of (2, 3) is
just (2, 3).

Both bases above have the same size. This is not an accident; if a vector
space has a finite basis, then all bases have the same size. We’ll state this as a
theorem, too:

Theorem 2. Let x1 . . . xn and y1 . . . ym be two finite bases of the same vector
space V . Then n = m.

Proof. Assume without loss of generality that n ≤ m. We will show how to
replace elements of the xi basis with elements of the yi basis to produce a new
basis consisting only of y1 . . . yn. Start by considering the sequence y1, x1 . . . xn.
This sequence is not independent since y1 can be expressed as a linear combi-
nation of the xi (they’re a basis). So from Theorem 1 there is some xi that can
be expressed as a linear combination of y1, x1 . . . xi−1. Swap this xi out to get
a new sequence y1, x1 . . . xi−1, xi+1, . . . xn. This new sequence is also a basis,
because (a) any z can be expressed as a linear combination of these vectors by
substituting the expansion of xi into the expansion of z in the original basis,
and (b) it’s independent, because if there is some nonzero linear combination

12

that produces 0 we can substitute the expansion of xi to get a nonzero linear
combination of the original basis that produces 0 as well. Now continue by
constructing the sequence y2, y1, x1 . . . xi−1, xi+1, . . . xn, and arguing that some
xi′ in this sequence must be expressible as a combination of earlier terms by
Theorem 1 (it can’t be y1 because then y2, y1 is not independent), and drop this
xi′ . By repeating this process we can eventually eliminate all the xi, leaving
the basis yn, . . . , y1. But then any yk for k > n would be a linear combination
of this basis, so we must have m = n.

The size of any basis of a vector space is called the dimension of the space.

4 Linear transformations

When we multiply a column vector by a matrix, we transform the vector into a
new vector. This transformation is linear in the sense that A(x+y) = Ax+Ay
and A(cx) = cAx; thus we call it a linear transformation. Conversely, any
linear function f from column vectors to column vectors can be written as a
matrix M such that f(x) = Mx. We can prove this by decomposing each x
using the standard basis.

Theorem 3. Let f : Rn → Rm be a linear transformation. Then there is a
unique n×m matrix M such that f(x) = Mx for all column vectors x.

Proof. We’ll use the following trick for extracting entries of a matrix by multi-
plication. Let M be an n×m matrix, and let ei be a column vector with ei

j = 1 if
i = j and 0 otherwise.5 Now observe that (ei)′Mej =

∑
k e

i
k(Mej)k = (Mej)i =∑

k Mike
j
k = Mij . So given a particular linear f , we will now define M by the

rule Mij = (ei)′f(ej). It is not hard to see that this gives f(ej) = Mej for each
basis vector j, since multiplying by (ei)′ grabs the i-th coordinate in each case.
To show that Mx = f(x) for all x, decompose each x as

∑
k cke

k. Now compute
f(x) = f(

∑
k cke

k) =
∑

k ckf(ek) =
∑

k ckM(ek) = M(
∑

k cke
k) = Mx.

4.1 Composition

What happens if we compose two linear transformations? We multiply the
corresponding matrices:

(g ◦ f)(x) = g(f(x)) = g(Mfx) = Mg(Mfx) = (MgMf)x.

This gives us another reason why the dimensions have to be compatible
to take a matrix product: If multiplying by an n × m matrix A gives a map
g : Rm → Rn, and multiplying by a k × l matrix B gives a map f : Rl → Rk,
then the composition g ◦ f corresponding to AB only works if m = k.

5We are abusing notation by not being specific about how long ei is; we will use the same
expression to refer to any column vector with a 1 in the i-th row and zeros everywhere else.
We are also moving what would normally be a subscript up into the superscript position to
leave room for the row index—this is a pretty common trick with vectors and should not be
confused with exponentiation.

13

4.2 Role of rows and columns of M in the product Mx

When we multiply a matrix and a column vector, we can think of the matrix as
a sequence of row or column vectors and look at how the column vector operates
on these sequences.

Let Mi· be the i-th row of the matrix (the “·” is a stand-in for the missing
column index). Then we have

(Mx)i =
∑

k

Mikxk = Mi· · x.

So we can think of Mx as a vector of dot-products between the rows of M
and x: [

1 2 3
4 5 6

] 1
1
2

 =
[

(1, 2, 3) · (1, 1, 2)
(4, 5, 6) · (1, 1, 2)

]
=
[

9
21

]
.

Alternatively, we can work with the columns M·j of M . Now we have

(Mx)i =
∑

k

Mikxk =
∑

k

(M·k)ixk.

From this we can conclude that Mx is a linear combination of columns of
M : Mx =

∑
k xkM·k. Example:

[
1 2 3
4 5 6

] 1
1
2

 = 1
[

1
4

]
+1
[

2
5

]
+2
[

3
6

]
=
[

1
4

]
+
[

2
5

]
+
[

7
12

]
=
[

9
21

]
.

The set {Mx} for all x is thus equal to the span of the columns of M ; it is
called the column space of M .

For yM , where y is a row vector, similar properties hold: we can think of yM
either as a row vector of dot-products of y with columns of M or as a weighted
sum of rows of M ; the proof follows immediately from the above facts about a
product of a matrix and a column vector and the fact that yM = (M ′y′)′. The
span of the rows of M is called the row space of M , and equals the set {yM}
of all results of multiplying a row vector by M .

4.3 Geometric interpretation

Geometrically, linear transformations can be thought of as changing the basis
vectors for a space: they keep the origin in the same place, move the basis
vectors, and rearrange all the other vectors so that they have the same coor-
dinates in terms of the new basis vectors. These new basis vectors are easily
read off of the matrix representing the linear transformation, since they are
just the columns of the matrix. So in this sense all linear transformations are
transformations from some vector space to the column space of some matrix.6

6The situation is slightly more complicated for infinite-dimensional vector spaces, but we
will try to avoid them.

14

This property makes linear transformations popular in graphics, where they
can be used to represent a wide variety of transformations of images. Below is
a picture of an untransformed image (top left) together with two standard basis
vectors labeled x and y. In each of the other images, we have shifted the basis
vectors using a linear transformation, and carried the image along with it.7

x

y

x

y

x

y

x

y

x

y

x

y

Note that in all of these transformations, the origin stays in the same place.
If you want to move an image, you need to add a vector to everything. This gives
an affine transformation, which is any transformation that can be written as
f(x) = Ax+ b for some matrix A and column vector b.

Many two-dimensional linear transformations have standard names. The
simplest transformation is scaling, where each axis is scaled by a constant,
but the overall orientation of the image is preserved. In the picture above,
the top right image is scaled by the same constant in both directions and the
second-from-the-bottom image is scaled differently in each direction.

Recall that the product Mx corresponds to taking a weighted sum of the
7The thing in the picture is a Pokémon known as a Wooper, which evolves into a Quagsire

at level 20. This evolution is not a linear transformation.

15

columns of M , with the weights supplied by the coordinates of x. So in terms
of our basis vectors x and y, we can think of a linear transformation as specified
by a matrix whose columns tell us what vectors for replace x and y with. In
particular, a scaling transformation is represented by a matrix of the form[

sx 0
0 sy

]
,

where sx is the scale factor for the x (first) coordinate and sy is the scale factor
for the y (second) coordinate. Flips (as in the second image from the top on the
right) are a special case of scaling where one or both of the scale factors is -1.

A more complicated transformation, as shown in the bottom image, is a
shear. Here the image is shifted by some constant amount in one coordinate
as the other coordinate increases. Its matrix looks like this:[

1 c
0 1

]
.

Here the x vector is preserved: (1, 0) maps to the first column (1, 0), but the
y vector is given a new component in the x direction of c, corresponding to the
shear. If we also flipped or scaled the image at the same time that we sheared
it, we could represent this by putting values other than 1 on the diagonal.

For a rotation, we will need some trigonometric functions to compute the
new coordinates of the axes as a function of the angle we rotate the image by.
The convention is that we rotate counterclockwise: so in the figure above, the
rotated image is rotated counterclockwise approximately 315◦ or −45◦. If Θ is
the angle of rotation, the rotation matrix is given by[

cos θ − sin θ
sin θ cos θ

]
.

For example, when Θ = 0◦, then we have cos Θ = 1 and sin Θ = 0, giving the
identity matrix. When Θ = 90◦, then cos Θ = 0 and sin Θ = 1, so we rotate the
x axis to the vector (cos Θ, sin Θ) = (0, 1) and the y axis to (− sin Θ, cos Θ) =
(−1, 0). This puts the x axis pointing north where the y axis used to be, and
puts the y axis pointing due west.

4.4 Rank and inverses

The dimension of the column space of a matrix—or, equivalently, the dimension
of the range of the corresponding linear transformation—is called the rank.
The rank of a linear transformation determines, among other things, whether it
has an inverse.

Theorem 4. If f : Rn → Rm is a linear transformation with an inverse f−1,
then we can show all of the following:

1. f−1 is also a linear transformation.

16

2. n = m, and f has full rank, i.e., rank(f) = rank(f−1) = m.

Proof. 1. Let x and y be elements of codomain(f) and let a be a scalar. Then
f(af−1(x)) = a(f(f−1(x))) = ax, implying that f−1(ax) = af−1(x).
Similarly, f(f−1(x) + f−1(y)) = f(f−1(x)) + f(f−1(y)) = x + y, giving
f−1(x+ y) = f−1(x) + f−1(y). So f−1 is linear.

2. Suppose n < m. Pick any basis ei for Rn, and observe that {f(ei)}
spans range(f) (since we can always decompose x as

∑
aie

i to get f(x) =∑
aif(ei)). So the dimension of range(f) is at most n. If n < m, then

range(f) is a proper subset of Rm (otherwise it would be m-dimensional).
This implies f is not surjective and thus has no inverse. Alternatively, if
m < n, use the same argument to show that any claimed f−1 isn’t. By
the same argument, if either f or f−1 does not have full rank, it’s not
surjective.

The converse is also true: If f : Rn → Rn has full rank, it has an inverse.
The proof of this is to observe that if dim(range(f)) = n, then range(f) = Rn

(since Rn has no full-dimensional subspaces). So in particular we can take any
basis {ei} for Rn and find corresponding {xi} such that f(xi) = ei. Now the
linear transformation that maps

∑
aie

i to
∑
aix

i is an inverse for f , since
f(
∑
aix

i) =
∑
aif(xi) =

∑
aie

i.

4.5 Projections

Suppose we are given a low-dimensional subspace of some high-dimensional
space (e.g. a line (dimension 1) passing through a plane (dimension 2)), and
we want to find the closest point in the subspace to a given point in the full
space. The process of doing this is called projection, and essentially consists
of finding some point z such that (x − z) is orthogonal to any vector in the
subspace.

Let’s look at the case of projecting onto a line first, then consider the more
general case.

A line consists of all points that are scalar multiples of some fixed vector b.
Given any other vector x, we want to extract all of the parts of x that lie in the
direction of b and throw everything else away. In particular, we want to find
a vector y = cb for some scalar c, such that (x − y) · b = 0. This is is enough
information to solve for c.

We have (x − cb) · b = 0, so x · b = c(b · b) or c = (x · b)/(b · b). So the
projection of x onto the subspace {cb|c ∈ R} is given by y = b(x · b)/(b · b) or

17

y = b(x · b)/‖b‖2. If b is normal (i.e. if ‖b‖ = 1), then we can leave out the
denominator; this is one reason we like orthonormal bases so much.

Why is this the right choice to minimize distance? Suppose we pick some
other vector db instead. Then the points x, cb, and db form a right triangle with
the right angle at cb, and the distance from x to db is ‖x− db‖ = √(‖x− cb‖2 +
‖cb− db‖2) ≥ ‖x− cb‖.

But now what happens if we want to project onto a larger subspace? For
example, suppose we have a point x in three dimensions and we want to project
it onto some plane of the form {c1b1 + c2b2}, where b1 and b2 span the plane.
Here the natural thing to try is to send x to y = b1(x·b1)/‖b1‖2+b2(x·b2)/‖b2‖2.
We then want to argue that the vector (x−y) is orthogonal to any vector of the
form c1b1 + c2b2. As before, (x−y) is orthogonal to any vector in the plane, it’s
orthogonal to the difference between the y we picked and some other z we didn’t
pick, so the right-triangle argument again shows it gives the shortest distance.

Does this work? Let’s calculate: (x−y)·(c1b1+c2b2) = x·(c1b1+c2b2)−(b1(x·
b1)/‖b1‖2 + b2(x · b2)/‖b2‖2) · (c1b1 + c2b2) = c1(x · b1− (b1 · b1)(x · b1)/(b1 · b1)) +
c2(x·b2−(b2·b2)(x·b2)/(b2·b2))−c1(b1·b2)(x·b1)/(b1·b1)−c2(b1·b2)(x·b2)/(b2·b2).

The first two terms cancel out very nicely, just as in the one-dimensional
case, but then we are left with a nasty (b1 · b2)(much horrible junk) term at the
end. It didn’t work!

So what do we do? We could repeat our method for the one-dimensional case
and solve for c1 and c2 directly. This is probably a pain in the neck. Or we can
observe that the horrible extra term includes a (b1 · b2) factor, and if b1 and b2
are orthogonal, it disappears. The moral: We can project onto a 2-dimensional
subspace by projecting independently onto the 1-dimensional subspace spanned
by each basis vector, provided the basis vectors are orthogonal. And now we
have another reason to like orthonormal bases.

This generalizes to subspaces of arbitrary high dimension: as long as the
bi are all orthogonal to each other, the projection of x onto the subspace 〈bi〉
is given by

∑
bi(x · bi)/‖bi‖2. Note that we can always express this as matrix

multiplication by making each row of a matrix B equal to one of the vectors
bi/‖bi‖2; the product Bx then gives the coefficients for the basis elements in
the projection of x, since we have already seen that multiplying a matrix by a
column vector corresponds to taking a dot product with each row. If we want to
recover the projected vector

∑
cibi we can do so by taking advantage of the fact

that multiplying a matrix by a column vector also corresponds to taking a linear
combination of columns: this gives a combined operation of B′Bx which we can
express as a single projection matrix P = B′B. So projection corresponds to
yet another special case of a linear transformation.

One last detail: suppose we aren’t given orthonormal bi but are instead given
some arbitrary non-orthogonal non-normal basis for the subspace. Then what
do we do?

The trick here is to use a technique called Gram-Schmidt orthogonalization.
This constructs an orthogonal basis from an arbitrary basis by induction. At
each step, we have a collection of orthogonalized vectors b1 . . . bk and some that

18

we haven’t processed yet ak+1 . . . am; the induction hypothesis says that the
b1 . . . bk vectors are (a) orthogonal and (b) span the same subspace as a1 . . . ak.
The base case is the empty set of basis vectors, which is trivially orthogonal and
also trivially spans the subspace consisting only of the 0 vector. We add one
new vector to the orthogonalized set by projecting ak+1 to some point c on the
subspace spanned by b1 . . . , bk; we then let bk+1 = ak+1 − c. This new vector
is orthogonal to all of b1 . . . bk by the definition of orthogonal projection, giving
a new, larger orthogonal set b1 . . . bk+1. These vectors span the same subspace
as a1 . . . ak+1 because we can take any vector x expressed as

∑k+1
i=1 ciai, and

rewrite it as
∑k

i=1 cibi +ck+1(c+bk+1), and in the second term ck+1c reduces to
a linear combination of b1 . . . bk; the converse essentially repeats this argument in
reverse. It follows that when the process completes we have an orthogonal set of
vectors b1 . . . bm that span precisely the same subspace as a1 . . . am, and we have
our orthogonal basis. (But not orthonormal: if we want it to be orthonormal,
we divide each bi by ‖bi‖ as well.)

5 Further reading

Linear algebra is vitally important in Computer Science: it is a key tool in
graphics, scientific computing, robotics, neural networks, and many other ar-
eas. If you do further work in these areas, you will quickly find that we have not
covered anywhere near enough linear algebra in this course. Your best strategy
for remedying this deficiency may be to take an actual linear algebra course;
failing that, a very approachable introductory text is Linear Algebra and Its
Applications, by Gilbert Strang. You can also watch an entire course of lin-
ear algebra lectures through YouTube: http://www.youtube.com/view_play_
list?p=E7DDD91010BC51F8.

Some other useful books on linear algebra:

• Golub and van Loan, Matrix Computations. Picks up where Strang leaves
off with practical issues in doing computation.

• Halmos, Finite-Dimensional Vector Spaces. Good introduction to abstract
linear algebra, i.e. properties of vector spaces without jumping directly to
matrices.

Matlab (which is available on the Zoo machines: type ‘matlab‘ at a shell
prompt) is useful for playing around with operations on matrices. There are
also various non-commercial knockoffs like Scilab or Octave that are not as
comprehensive as Matlab but are adequate for most purposes. Note that with
any of these tools, if you find yourselves doing lots of numerical computation, it
is a good idea to talk to a numerical analyst about round-off error: the floating-
point numbers inside computers are not the same as real numbers, and if you
aren’t careful about how you use them you can get very strange answers.

19

http://www.youtube.com/view_play_list?p=E7DDD91010BC51F8
http://www.youtube.com/view_play_list?p=E7DDD91010BC51F8
http://www.mathworks.com
http://www.scilab.org
http://www.octave.org

	Matrices
	Interpretation
	Operations on matrices
	Transpose of a matrix
	Sum of two matrices
	Product of two matrices
	The inverse of a matrix
	Scalar multiplication

	Matrix identities

	Vectors
	Geometric interpretation
	Sums of vectors
	Length
	Dot products and orthogonality

	Linear combinations and subspaces
	Bases

	Linear transformations
	Composition
	Role of rows and columns of M in the product Mx
	Geometric interpretation
	Rank and inverses
	Projections

	Further reading

