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Abstract

For many fundamental sampling problems, the best, and dfeeonly known, approach to solving
them is to take a long enough random walk on a certain Markaincand then return the current state
of the chain. Techniques to prove how long “long enough” is,, ithe number of steps in the chain
one needs to take in order to be sufficiently close to theostaty distribution of the chain, are of great
importance in obtaining estimates of running times of swrh@ing algorithms.

In this report, we survey existing techniques to bound thamgitime of Markov chains. The mixing
time of a Markov chain is exactly captured by the “spectrgd’ga# its underlying transition matrix. The
spectral gap is closely related to a geometric parametkrdcatonductance” which is a measure of the
“edge-expansion” of the Markov chain. Conductance alsdurap the mixing time up to square factors.
Lower bounds on conductance, which give upper bounds on tkiagrtime, are typically obtained by
a technique called “canonical paths” where the idea is todisdt of paths, one between every unequal
source-destination pair, such that no edge is very heasihgested.

Unlike conductance, the canonical paths approach canmatyalshow rapid mixing of a rapidly
mixing chain. It is known that this “drawback” disappearsvé allow the flow between a pair of states
to be spread along multiple paths. We prove that for a largescbf Markov chains, including all the
ones that we use in the sampling applications we will be @stied in, canonical paths does capture rapid
mixing, i.e., we show that small mixing time implies the ¢&isce of some collection of paths with low
edge congestion. Allowing multiple paths to route the floiN dbes help a great deal in the design of
such flows, and this is best illustrated by a recent result ofrid and Sinclair [34] on the rapid mixing
of a natural Markov chain for samplingr1 knapsack solutions; this result seems to rely critically on
fractional flows.

An entirely different approach to prove rapid mixing, whichfact historically preceded the con-
ductance/canonical paths based approach, is “Couplinglipling is a very elegant technique and has
been used to prove rapid mixing of several chains where diegjggood canonical paths seems to be
a hideous task. “Path Coupling” is a related technique de by Bubley and Dyer [5] that often
tremendously reduces the complexity of designing good Gogs We present several applications of
Path Coupling in proofs of rapid mixing, and these invaalelad to much better bounds on mixing
time than known using conductance, and moreover Couplisgdaroofs usually turn out to be much
simpler. These applications motivate the question of wére@oupling indeed can be made to work
whenever the chain is rapidly mixing. This question was aed in the negative in very recent work
by Kumar and Ramesh [27], who showed that no Coupling styatag prove the rapid mixing of the
famous Jerrum-Sinclair chain for sampling perfect and 1pegifect matchings (the chain is known to be
rapidly mixing via a canonical paths argument).



1 Introduction

Suppos€? is a large finite set of combinatorial structures (for exaenihle set of feasible solutions to a
combinatorial optimization problem), and letbe a probability distribution of2. The general “sampling”
problem is then to pick an element@fat random according to the distributian The Markov chain Monte
Carlo method, which is the subject of our study here, praviae elegant technique to efficiently solve this
general computational task in a wide variety of contexts.

Sampling problems are inherently interesting, and in &olditurn out to have many computational
applications, the most notable ones being:

e Approximate countingHere we want to estimate the size ©fto a very good accuracy. It is well
known [23] that, provided a certain technical condition wmaasself-reducibilityis met, almost uni-
form sampling (that is sampling from a distribution thatsisttistically closeto the uniform distri-
bution) is possible in polynomial time if and only if appraxate counting is. This has been one of
the main motivations, at least from the computer sciencetpafi view, behind the rapid progress
that has been made in this area. In particular, for a host wftbag problems including several very
hard # P-complete problems, the Markov chain Monte Carlo methotiésanly known approach to
approximate the number of feasible solutions.

e Statistical physicsHere the spac@ represents possible configurations of statistical meclaasys-
tem, andr is a “natural” probability distribution o2, in which the probability of a configuration
is related to its energy. The task is to sample configuratemeording tor, in order to examine
properties of a “typical” physical configuration.

In this report, we focus only on the sampling problem and dh@tconnections to counting since these
involve by now standard reductions. The Markov chain Morgel@€method has been a great success story
in solving sampling problems. It solves the sampling probley the following approach. An underlying
“Markov chain” 9t on the state spac® is specified through a stochastm@ansition probability matrixof
dimension|Q| x || whose(z, 3)!" entry specifies the probabilitf(z, y) that the chain moves from state
z to statey in a single step (we assume statedfare labeled by elements 6f). Starting at any state
xg, there is a naturalandom walkX, = z,, X1, X», ... defined ord)t such thaPr|[X; | Xo,..., X;] =
Pr[X;1|X;] where the latter conditional probability is specified by thatrix P, i.e.,Pr[ X, = y|X; =
z] = P(z,y). In other words we start at staf§, and at each time stefh we make a move to a next
state X, 1 by moving to a random state from the current st&jeaccording to the transition probabilities
of the chain. Note the crucial “forgetting property” of Mark chains: the state at time+ 1 depends
probabilistically on the state at timebut not on the state at any other time.

To sample according to a distribution the Markov chait is defined in such a way that it @godic
i.e., has a (unique) stationary distributigron Q such thatPr[X; = y| X, = z] — n(y) ast — oo, for
all pairs of states,y € (2, and moreover the transition probabilities are set up sbritha 7. Now we
may sample fronf) according tor as follows: starting from an arbitrary statefin take a random walk on
the Markov chain (which we will loosely refer to as “simuladi the Markov chain” in the sequel) for some
number,T', of steps, and then output the final state. The ergodicityioimplies that, by takingl’ large
enough, we can ensure that the output state is arbitranlyedo the desired distribution

One of the most appealing things about this method is itsl&gityp— in fact in most applications it is
not hard to construct a Markov chain having the above pr@=eriThe crux of the method, which is also its
sticking point, is to obtain good upper bounds onhiging timeof the chain, i.e., the number of simulation
stepsI’ necessary before the Markov chain is close to its statiodistyibution. This is critical as this forms
the crucial factor in the running time of any sampling algam that uses the chain. Since our aim is to
sample from a se&i which is very large, we would lik& to be much smaller than the size(@f say at most



a polynomial in the logarithm df2|. We shall refer to such chains epidly mixing Over the years several
deep and novel analytic tools have been developed and rafiriemlind mixing times of Markov chains. It
is the goal of this report to survey the known techniques fowimg rapid mixing, to present representative
examples of their use, and to compare and contrast theiestogir relative strengths and limitations, and
their applicability to various contexts.

Organization. We begin in the next section by reviewing the relevant défing and properties of Markov
chains, and by giving a precise characterization of when akdlachain mixes rapidly in terms of its
spectralproperties. In Section 3 we discuss the notion of conduetamd its relation to the spectral gap of
the chain. Section 4 discusses the canonical paths appaodctome of its generalizations that yield bounds
on the conductance and the spectral gap, and also provdsitladarge class of chains a small mixing time
implies the existence of some collection of good canoniatth@ We then present an illustrative application
of this technique to the problem of samplifgl knapsack solutions in Section 5. Section 6 discusses
Coupling which is an entirely different approach to boumgihe mixing time, gives an illustrative example
of Coupling in action, and also discusses Path Couplingchvis a useful design tool in constructing
Couplings. Several elegant applications of Path Couplimgpaesented in Section 7. In Section 8 we
discuss the recent result of [27] which proves that Couphrig fact weaker than conductance, in that there
are chains with large conductance which cannot be shown tagidly mixing byany Coupling strategy.
Finally, we conclude with a few remarks and open questior&eiction 9.

Acknowledgments. This survey was written as part of the author’'s Area Exanmmaat MIT, the goal of
which was to survey the papers by Bubley and Dyer [5], Anil Kmrand Ramesh [27], and Morris and
Sinclair [34]. This survey (specifically Sections 5, 6.4] and 8) uses liberal portions of the contents of
these papers. This work was also influenced greatly by thdirrgaof the survey by Jerrum [19], and the
paper by Sinclair [37], among several other papers. | waldel o thank Kumar and Ramesh for sending
me a copy of the most recent version of their paper [27].

2 Preliminaries on Markov Chains

A Markov chain on state spade is completely specified by theansition matrix P whose entryP(z, y)
represents the probability that the chain moves from stdtestatey is a single transition; i.e P (z,y) =
Pr[X;;1 = y|X; = z] forall £ > 0. Thus in order to study and analyze the properties of the Mackain,
it suffices to investigate the properties of this mairix

2.1 Basic definitions

Starting from an initial distribution:(?), the distribution of the chain afterstepsy(*) is clearly given by
p® = 4O P (here we view the distributions as row vectorsiifi). Thus, when using a Markov chain to
randomly sample from its state space, we must study the wolaf () ast increases, and we would like
1Y to (quickly) approach a limitingtationarydistribution, sayr; it is not surprising thair must be fixed
under steps of the chain.

Definition 2.1 A row vectorr € R? is a stationary distributiorfor a Markov chain9t with transition
matrix P if (@) n(z) > O forall z € Q, (b) >, . 7(z) = 1, and (c)r = 7 P.

Definition 2.2 A Markov chairt is said to beergodicif it has a stationary distribution.

Clearly, we would like (and need) all Markov chains we usesiampling to be ergodic, so next we turn to
conditions on the chain which will ensure ergodicity.
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Definition 2.3 A Markov chainft (with transition matrixP) is said to berreducibleif for all =,y € €,
there is anm such thatP™(z,y) > 0, i.e y is eventually reachable from with non-zero probability.

Irreducibility guarantees that the underlying chain ismwetted, so that starting at any state it is possible
to reach all the other states. It is clearly desirable (armbs®ary) to impose this requirement when using a
Markov chain to sample from a s@t We next impose another condition on the chains we will stadynely
aperiodicity; this is merely a technical condition imposed to simplifyabysis, and does not cause any loss
of generality as we can turn any (periodic) chain into an iaplé one by simply adding loop probabilities
of 1/2 at each state, and this clearly does not affect the stagiahistribution.

Definition 2.4 A chaint over state space is aperiodiciff for all = € Q,
ged{m : P™(z,z) > 0} = 1.
A central theorem in the classical theory of stochastic gssds the following:
Theorem 2.1 Any finite, irreducible, aperiodic Markov chain is ergodic.

Definition 2.5 SupposeNt (defined over state spade) has a stationary distributionr. 9t is said to be
reversible(with respect tar) iff

w(x)P(x,y) = w(y)P(y,x) forall z,y € . @

The conditions of (1) are known @etailed balance equation3 he condition of reversibility does cause
some loss of generality, but the ease of analysis gained Binméhis requirement more than compensates
the sacrifice made. Moreover, reversible chains will be grenough for our applications, and for the rest
of the section we focus attention solely on finite, irredigilaperiodic and reversible Markov chains.

The detailed balance conditions also permit an easy pratfaltertain distribution is indeed the sta-
tionary distribution of an ergodic Markov chain, as is fotired below.

Lemma 2.2 For a Markov chairt defined on state spade, if there exists a probability distribution on
Q) that satisfies the conditions (1), theris a stationary distribution ofJt and9) is reversible with respect
tom.

Proof: We easily verify thatr P = «. Indeed,

(xP)(@) = Y () Ply,x) = 3 n(2)P(a,y) = n(0) Y Pla,y) = w(a) . O

Y Y Y

Note that in the definition of ergodicity we did not require thtationary distribution to be unique, but
the conditions of Lemma 2.2 together with irreducibilityeasufficient to guarantee thatis in fact the
unique stationary distribution.

2.2 Spectral theory of reversible Markov chains

Since a stationary distribution of a Markov chain is simpliett eigenvector of its transition matri®, it

is natural that in order to study the rate of convergence efctiain to its stationary distribution, we should
try to investigate the spectral properties Bf The reversibility constraint implies that one can vidv
as a self-adjoint operator on a suitable inner product spadethis permits us to use the well-understood



spectral theory of self-adjoint operators. This approaels Virst undertaken in [8] (also see [39] for a nice
exposition).

The relevant inner product spaceli$(7 ') which is the space of real-valued functions@nwith the
following inner product

P(z)(x)

(6,4) 26;2 ) 0
It is easy to check that the detailed-balance conditionsr{f)y that(¢P, ¢) = (¢, P), so thatP is a self-
adjoint operator or.?(7!). Now, by standard linear algebra, it is well known that sudh hasN = ||
real eigenvalue$ = A\g > \; > Ay > --- > Ay_1 > —1; the chain defined by is ergodic iff Ay 1 > —1.
Also, the spacd.?(7~!) has an orthonormal basis comprising of eigenvectors vy, vy, vs, ..., vn_1 Of

P corresponding to the eigenvalugg, A\, ..., Ay _1.
Now, our initial distribution onf2 can be written asp(m = ¢om + cqv1 + -+ + ey_1uny_1 Where

¢i = (19, v;) (so in particularcy = Yow % = 1). The distribution aftet steps is then given by

ﬂ(t) = ;L(O)Pt =7+ Clkti?)l + -+ CNfl)\fN,ﬂ)Nfl. 3)

From the above, it is clear that the chain is ergodic whenawer, > —1, as then all eigenvalues;,
1 <4 < N — 1, have absolute value less thhnand as — oo, terms corresponding to them will become
insignificant, andu(Y) — 7. For an ergodic chain, Equation (3) also clearly demoresirétat the rate of
convergence ta is governed by the second-largest eigenvalue in absolite Va,,x = max{\;, |An_1]}.
We now make this statement precise. Eoe (2, denote byP!(z,-) the distribution of the state of the
Markov chain at tim&, when the chain starts at time= 0 in statex.

Definition 2.6 Thevariation distanceat time ¢ with initial state z is defined as the statistical difference
between distribution®!(z, -) and(-), i.e

Balt) = 5 3 P ) = ().

yeN

We will measure the rate of convergence using the functjgnvhich quantifies thenixing time and which
is defined fore > 0 by
7.(e) = min{t : A (') < eforallt' >t} . 4)

(Itis easy to see that i\, (t) < e thenA,(t') < e for all ¢ > ¢ as well.) With this notation, we will say a
Markov chain israpidly mixingif 7, (g) is O(poly(log(N/¢))) (in applications the number of statdswill

be exponential in the problem sizg so this amounts to saying that we need to simulate the cmyrfar
poly(n) steps in order to get a “good” sample frd). The following makes precise our intuition that a
large value of thespectral gap(1 — Amax) €Xxactlycapturesthe rapid convergence to stationarity. A proof
can be found in [8, 2].

Propostion 2.3 The quantityr, (¢) satisfies
() 72(e) < (1= Amax) ! (lnw(m)’] + 1ns*1).

(i) maxzeq 74(g) > %/\max(l — Amax) ' In(2e) 71,

LIt is easy to see that the stationary distribution satisfigg > 0 for all 2z € 2 whenever the chain is irreducible, so the inner
product is well-defined.



In light of the above Proposition, if we want rapid convergeimo the stationary distribution irrespective
of the starting state (which is desirable for our applicagiin sampling where we would like to start at some
arbitrary state), a large gdp — \.ax) is both a necessary and sufficient condition. Moreover, actice the
smallest eigenvalug _; is unimportant: a crude approach is to add a holding proibalif 1/2 to every
state, i.e., replac® by %(I + P), wherel is the N x N identity matrix. This ensures that all eigenvalues
are positive while decreasing the spectral gap- A1) only by a factor of2. The upshot is that in order to
study mixing times of Markov chains, one needs to focus &tteron the second-largest eigenvale and
bound it away fromi.

2.3 Characterizations of second-largest eigenvalue

We now present the known characterizations of the secogedsaeigenvalue\; of self-adjoint matrices,
which will be useful in obtaining good bounds on the spedeg (1 — A;).

Lemma 2.4 (Rayleigh-Ritz) Let P be a self-adjoint operator on a finite-dimensional innergwot space
with inner product(-, -). Suppose the eigenvaluesifre \o > A; > --- > \,;, andu is an eigenvector of
eigenvalue)y. Then

z, P
A1 = sup (z,2P) . (5)
zlvg (TaT>
Proof: Letwg,v1,..., v, be anorthonormal basis of eigenvectors correspondingeteitienvalues, ..., A,

respectively. Since L vy, we can writer asx = civ1 + - -+ + ¢, Um, SO that

(x,zP) = Z)\ic? <)\ Zc? = \i(z,z).
i=1 i=1

Whenz = vy, equality is achieved, and hence the result follows. O

We next present another characterization which at firstaglaaeems a bit unwieldy, but it turns out to be
quite useful in that very natural geometrical argumentaiabdvarkov chain can yield upper bounds on
via this characterization [8].

Lemma 2.5 (Variational characterization) Let P be a self-adjoint operator on a finite-dimensional inner
product spacd.?(n 1), and forz,y € Q, letQ(z,y) = n(z)P(z,y) = Q(y,z). Then, the second-largest
eigenvalue ofP satisfies:

L = i raen¥(a) ~ ) Qe

3 Two broad approaches to proving Rapid Mixing

We saw in the last section that establishing rapid mixingfitarkov chain amounts to bounding the second
largest eigenvalug,; of the transition matrix”® away from1 by apoly(log N)~' amount. The spectrum
of the chain is very hard to analyze directly, so we eitherdn®eels to analyze the spectral gap (using the
characterizations presented in the previous sectionyraetiow analyze the chain directly without resorting
to spectrum.



3.1 Coupling

One simple and elegant approach to bound mixing times witegplicitly bounding the spectral gap is
Coupling A “coupling” argument is in fact the classical approach ¢abd mixing times of Markov chains.
Coupling was first used by Aldous [1] to show rapid mixing, dras since found several applications
in proving rapid mixing of a variety of chains. We will defineo@pling formally and discuss some of its
applications in detail in later Sections, but at a very higirel the idea behind Coupling is the following. One
sets up two stochastic processes= (X;) and) = (Y;) on the state space both of which individually
are faithful copies of the Markov cha#it (whose mixing time we wish to bound). However, their joint
evolution is set up in a way that encourade$;) and (Y;) to coalescerapidly, so thatX; = Y; for all
sufficiently larget. The relevance to rapid mixing is obvious from the Couplirggrima [1, 19] which states
that the probability that the coupling time exceeds somaevafor a certain distributiont’ for X is an
upper bound on the variation distance between the statiahstribution of 9t and the distribution of the
chain at timet starting from distributiont’. Note that we did not explicitly deal with the spectrum of the
chain, and this is one advantage of this approach. We willecback to a detailed discussion of Coupling
in Sections 6 through 8.

3.2 Conductance

Let us now look at approaches aimed at establishing rapichgisia directly bounding the spectral gap.
These use geometric properties of the chain and the cherattens of\; given by Equations (5) and (6)
to prove a lower bound on the spectral gap- A\;). The relevant geometric parameter is twductance
of the chain which is defined below.

Definition 3.1 Theconductancef 91 is defined by

def . Q(Sv S)
O =¢(M)= min ; (7)
0<wfsc)21/2 W(S)

whereQ(z,y) = n(z)P(z,y) = n(y)P(y,z), n(S) is the probability density of under the stationary
distribution 7 of M, andQ (S, S) is the sum of)(z, y) over all (z,y) € S x (2 — S).

The conductance may be viewed as a weighted versiaugé expansionf the graph underlying the
chain9. For a fixedS, the quotient in Equation (7) is just the conditional prabigbthat the chain in
equilibrium escapes from the subsgwf the state space in one step, given that it is initiallySin Thus
® measures the ability abt to escape from any small region of the state space, and hemake rapid
progress to the stationary distribution. It is not therefeery surprising that the conductan®ewould
govern the rapid mixing properties of the chain, which imtig related to the second-largest eigenvalye
(by Proposition 2.3). This is made precise in the followiegult from [36, 38]; related results appear in
[3, 31, 33]. Note that the result proves that the conductaagtures mixing rate up to square factors, and
thus obtaining a good lower bound énis equivalentto proving rapid mixing.

Theorem 3.1 The second eigenvalue of a reversible chain satisfies
@2
1=20 <y <1-—-. (8)

Proof: We only prove the inequalityl — \;) < 2® which shows, together with Proposition 2.3, implies
that a large conductance (of the orderlgboly(n) wheren is the problem size) is necessary for rapid



mixing. Our proof follows the elegant approach of Alon [3] evhroved a similar result for expansion of
unweighted graphs. A proof of the other directidt:— A;) > %2, can be found in [38, 31].

In order to prove\; > (1 — 2®), we use the characterization of Equation (5). The largegrealue of
P equalsl and hasr as its eigenvector. Define a vectpre R (specified as a real-valued function @i

as follows: () (g) if S
m(x)m Tz e
f(z) = { —n(z)n(S) fz¢S

Note that(f, =) = 3 {@&r@)

x

= > . f(z) =0, hence by Equation (5), we have

(. £P)
T = ®)

Defineg(z)™ £2) . Now

(.5) = Zf =Y

= Z )+ (- = 7(S)7(3) (10)
€S z€S
T P(y,x
t.gp) = YT 5 e
= > @)D Qzy) + > g=)(9y) — 9(2)Q(z,y)
x Yy z,Y
= ZQQ(T)WT)—I-(Z—W(S') 7(S)) ZQ’I"U)
T TES yeS
+(Z—7T(S) (S) + ZQ’I"U)
€S y€es
= (f,.f) = Q(S,8) = n(S)n(S) — Q(S, S). (11)
From (9), (10) and (11), we get that for any $kt
Q(S, S)
w(S)n(s) ©
Sincer(S) > 1/2, this implies® > 15X, as desired. O

Corollary 3.2 Lett be a finite, reversible, ergodic Markov chain with loop prbbities P(z,z) > 1/2
for all statesz, and let® be the conductance @bt. Then the mixing time dt satisfies7,(e) <
20 %(Inw(z) ' +1ne ).

A direct analysis of the conductance is sometimes possibéxploiting an underlying geometric inter-
pretation oft, in which states o)t are identified with certain polytopes, and transitions wiligir common
facets. A lower bound on conductance then follows from arr@mate “isoperimetric inequality” of the
graph under consideration. This has been fruitful in a fepliagtions, for example the estimation of the
volume of a convex body by Dyer, Frieze and Kannan [11], andagkbV chain over linear extensions of
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a partial order by Karzanov and Khachiyan [26]. A more reee@mple where the conductance is tackled
“directly” is the work of Dyer, Frieze and Jerrum [10] who pean upper bound o to show that certain
classes of Markov chains for sampling independent setsarsemraphs do not mix rapidly. The conduc-
tance is still not very amenable to computation in genenadl we need further tools that can be used to
deduce good lower bounds on the conductance. It is this taskich we turn next.

4 Rapid mixing via canonical paths

We saw in the last section that in order to prove rapid mixifig darkov chain, all we need is a good
lower bound on the conductance (and hence the spectral §&p¢ chain. In this section, we explore a
useful piece of technology developed in [20, 36, 37] to praweh a lower bound. The basic idea behind the
method is to try and associatanonical pathdetween every pair of states, in such a way that no transition
of the chain is used by too many paths. Intuitively, if sucletaof paths exists, this means that the chain has
no severe bottlenecks which could impede mixing. We now toiflormalizing this intuition.

4.1 Bounding Conductance using Canonical paths

We first formalize some terminology and notation. B#tbe an ergodic Markov chain on a finite get
We define the weighted directed gra@ti?t) with vertex set2 and with an edge between an ordered pair
(z,y) of weightQ(e) = Q(z,y) = w(x)P(x,y) wheneverP(x,y) > 0. We call this the underlying graph
of <M.

A set of canonical pathdor 9t is a sefl’ of simple paths{~y,,} in the graphG(9t), one between each
ordered pair(z, y) of distinct vertices. In order to bound the conductance, weld like to have a set of
canonical paths that do not overload any transition of thekislachain. To measure this “overloading”, we
define thepath congestioparameter [20, 36] for a set of canonical pathas:

1
p(T) = max = mzaeﬂ(x)ﬁ(y% (12)

where the maximum is over all oriented edgeas G(90), andQ(e) = Q(z,y) if e = (z,y). Think of the
Markov chain as a flow network in which(z)x(y) units of flow travel fromz to y along~,,, andQ(e),
which equals the probability that the Markov chain in theistery distribution will use the transitionin a
single step, serves as the capacity.ofhe quantityp(I') measures the maximum overloading of any edge
relative to its capacity. The path congestjor- p(901) of the chairt)t is defined as the minimum congestion
achievable by any set of canonical paths, i.e.,

p = infp(I). (13)

The following simple result confirms our intuition that a sépaths with low congestion implies a large
value of conductance.

Lemma 4.1 For any reversible Markov chain and any set of canonical pathwe have

o>
2p(")

Proof: PickS C Qwith 0 < 7(S) < 1/2 such thatb = Q;ﬁgf). For any choice of pathE, the total flow

from S to S is 7 ()= (S), and all this must flow across the dit : S], which has capacity)(S, S). Hence

8



there must exist an edgan the cut[S : S] such that

1 Z r(@)r(y) > 7(S)m(S) S 7(S) 1

Qle) 705,85 ~2Q(5,5) 20° -

Yy Se

Corollary 4.2 For any reversible Markov chain, and any choice of canonjmathsI’, the second-largest
eigenvalue\; satisfies

A<l — (14)

82(I)
4.2 Relating Spectrum to congestion directly

Since the relation betwegnand(1 — \;) above proceeded by appealing to the conductance, the bdund o
Corollary 4.2 is potentially rather weak because of the apgrece of the square. So we now pursue a direct
approach to bound; based on the existence of “good” canonical paths. This wstsithieved by Diaconis
and Strook [8], but we follow a treatment by Sinclair [37] agjives the best bounds for the examples
considered later.

In order to state the new bound on, we modify the measurg(T") to take into account the lengths of
the paths as well. For a sEt= {~,, } of canonical paths, the key quantity is now

0 = max ! mw(x)mw
p(I') = me 0 ;; (@) (y) [ Vayl (15)

where|v,,| stands for the length of the path,. The parametep is defined analogously to Equation (13)
by minimizing over the choice df.
Note that it is reasonable to allow general length functitfa$ on the edges, compute|ry,, | in terms
of this length function, and thus obtain a quantity simiaptI’) above. In fact, Diaconis and Strook use
the length functiori(e) = 1/Q(e), and Kahale [24] considers good length functions that e#id to the
best bounds for specific chains. We will be content with thie length function for our purposes.
Intuitively, the existence of short paths which do not owad any edge should imply that the chain
mixes very rapidly. Indeed, it turns out that the variatioctzaracterization (6) can now be used to bound
directly in terms ofp(I"). This is stated in the theorem below; we will not prove thisatem, but will later
prove a more general version of this result (hamely Theordinwhich also appears in [37].

Theorem 4.3 ([37]) For any reversible Markov chain, and any choice of canonjathsI’, the second-
largest eigenvalue\; satisfies
M<1l— ——.
p(T')
A useful way to use the above result is the following versidriolt bounds the spectral gap in terms of

the path congestiop and the length of a longest path used'inThis version of the result is the most used
in bounding mixing times using this approach.

(16)

Corollary 4.4 For any reversible Markov chain, and any choice of canonjeathsI’, the second-largest

eigenvalue\; satisfies

1
A1§1fW. (17)

wherel/ = ¢(T") is the length of a longest path In

The above often leads to much sharper bounds on mixing tilees (tL4) because the maximum path
length/ will usually be significantly lesser than the estimate atxtdiforp.
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4.3 Known applications of canonical paths

The “canonical paths” approach has been applied succhstfanalyze a variety of Markov chains includ-
ing those for sampling perfect matchings and approximatiegpermanent [20, 8], estimating the partition
function of the Ising model [21], sampling bases of balanoetroids [17], sampling regular bipartite
graphs [25], sampling-1 knapsack solutions [12], etc. All these papers with the ptiae of [17] use more

or less the same technique to bound the path congestionstidaiei to [20] — they use the state space to
somehow “encode” the paths that use any given transitiothatothe number of paths through any edge
will be comparable to the number of states of the chain. FaddmMihail [17] give a random collection of
canonical paths and use a variant of “Hall's condition” @aistence of perfect matchings in bipartite graph)
to show a small expected congestion and maximum path lengthi§ collection of paths. They also prove
a version of Corollary 4.4 which applies with expected pattigths and congestion instead of worst case
values.

4.4 Path congestion is weaker than Conductance

The canonical paths technique is very useful, but it is dtorask whether, like conductance, it toaptures
rapid mixing up to some polynomial factor (recall that cocidmce captures mixing time up to square
factors). In other words, does a large conductance or a kpgetral gagl — A1) always imply a small
value ofp(I") for some choice of canonical path® Unfortunately we give a simple example below to show
that the answer is no — the same example also appears in [37].

Example. Consider the complete bipartite graph ,,_, on vertex se{1,2,...,n} and edge$(1,14), (2,1) :

3 < i < n} wheren is even, and define transition probabilities correspondmghe random walk on
this graph, namely at each step stay where you are with pildipab/2, else move to a neighbor chosen
uniformly at random. The stationary distributianof this Markov chain is given byr (1) = n(2) = 1/4
andn (i) = 1/2(n—2) fori = 3,4,...,n,and hencé)(e) = 1/4(n—2) for all edges:. Sincen is evenitis
easy to verify that the conductance of this chaif is- 1/2, and hence using Equation (8) we get< 7/8.
However, sincer(1)n(2) = 1/16 andQ(e) = 1/4(n — 2) for all edgese, the path connecting statésand

2 alone implies that the best value fofT") or p(I") obtainable using canonical path<i¢n). Hencep and

p could in fact be much larger than the quantity— ;) ' which governs the mixing time.

4.5 Resistance: a generalization of path congestion

In order to alleviate the shortcoming of the canonical patithnique which was just discussed, we now
present a natural generalization of this approach thatesitl up capturing mixing times exactly (and will
thus be “as good as” conductance). The idea, again due ttali[87], is to spread the flowon path-y,,,
between a paifz, y) of states amongeveral pathsAs before, we view (91) as a flow network where one
unit of flow has to be routed from to y for every ordered paifz, y) of distinct vertices, and each (oriented)
edgee has “capacity’Q(e). The difference from the canonical paths approach is thaew allow the flow
between: andy to besplit among multiple paths, i.e., we are looking fofractional multicommodity flow
that minimizes the congestion. Considering the similasiith the earlier approach, it is natural to suppose
that this new measure will yield similar bounds on the mixiage. As we shall see, this will be the case, and
in fact this seemingly innocuous generalization to muttipaths allows us to capture rapid mixing exactly!
Formally, aflowin G(90) is a functionf : P — R* which satisfies

Zf(p):1 forallz,y € X,z # vy,
PEPry
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whereP,, is the set of all simple directed paths framo y in G(9) andP = U, -, P,,. The quality of a
flow is measured by theongestion parametéﬁ(f), defined analogously to Equation (12) by

R(f) defmax Z S w(@)n(y)fp), (18)

T,y pEPzy:p3e

and one can definelongated congestioft(f), similar to Equation 15, by accounting for the lengths of the
paths:

R(f) d‘“fmax Z S @) f ). (19)

T,y pEPry:p3e
We have the following results parallel to those of Lemma €drollary 4.2, Theorem 4.3 and Corollary 4.4.

Lemma 4.5 For any reversible Markov chain and any flgiywe have

1
o > dh M <l— —
= oam() AN =TT R(p)e

Theorem 4.6 For any reversible Markov chain, and any flgiwthe second-largest eigenvalue satisfies

1
M <1———0. (20)
1 R(f)
Corollary 4.7 For any reversible Markov chain, and any flglythe second-largest eigenvalue satisfies
1
M<1l— ——. 21
VU R @D

where/(f) is the length of a longest paghwith f(p) > 0

We now provide a proof of Theorem 4.6 as we had promised béfierstatement of Theorem 4.3 (note
that the statement of Theorem 4.6 clearly generalizes fiEt@orem 4.3).

Proof of Theorem 4.6:We need to provél — \;) > 1/%R(f) for any flow f. We use Equation (6) to bound
(1 — Xq), namely

L Sageol$le) —60)*Q(.y)
LTS, e (b(w) — b)) (@) (y)

Now for any+), and any flowf, the denominator in the above expression can be written as:

Y @) — )’ r@)n(y) = Y wl@)wy) (=) — ) Y @)

(22)

z,y€eN ] PEPzy
= Yrwr) Y o) (W) v )’
T,y pEsz ecp
< > w(@)wly) Yo F@I) W(et) )
T,y pEsz ecp
= > (W) =pe)?d. > wl@)ny)fp)lpl
e Z,Y pEPzy:p3e

< Yo ((eh) = () QR(S)
= R(f) Y Qz.y) (=) —9(y)*.
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(Heree™ ande™ denote the start and end vertices of the oriented edged we have used Cauchy-Schwartz
inequality in the third step above.) The result now followa (22). O

Definition 4.1 (Resistance)The resistancer = R(M) of chain is defined as the minimum value of
R(f) over all flowsf, and like the conductance is an invariant of the chain. Fdiyna

R = inf R(f) (23)

4.6 Resistance captures rapid mixing

By Lemma 4.5, note that; < 1 — SW, so a small resistance leads to rapid mixing. We will now sa¢ t
in fact the converse is true, in other words a small mixingetimplies a small resistance, i.e., the existence
of a flow f with small congestiomi(f). Thus resistancevercomeghe shortcoming of path congestion
(since low path congestion was not a necessary conditiorafid mixing, as was shown by the example in
Section 4.4).

Theorem 4.8 ([37]) Consider an irreducible, reversible, ergodic Markov ch&m over Q and letr =
maxzecq 7z(1/4). Then the resistanc® = 9 (91) of M satisfiesR < 167.

Proof: We will demonstrate a flowf with R(f) < 167. Lett = 27. The flow between: andy will
be routed as follows: Consider the §é§,’y) of all (not necessarily simple) paths of lengtfrom = to y in

G(9), and for each € 739(2 route f (p) o prob(p) units of flow onp, whereprob(p) is the probability that
the Markov chain makes the sequence of transitions definedrbthe firsti steps when starting in state

Sincet = 27, it is easy to see that for any pairy, Pé'i) # (), and in fact
P'(z,y)
m(y)

> (24)

OO|>—~

Thus forp € Pg(ﬁ,) we havef (p) = prob(p)/(zqep(t) prob(q)) = prob(p)/P'(z,y). Now let us estimate
Ty
theR(f).

R(f) = max 5 Z ¥ 7 () (y)prob(p)

Pi(z,y
Y pepDipse (@)
< max Z Z z)prob(p) (using (24))
Y pep!)
p3e
< S 0(e) = 8t = 16
max A e = [, — T
— e Qe)

where we used the fact that the final double summation is yirtin@d probability that the Markov chain
traverses the edgewithin ¢ steps when started in the stationary distributioaver (2, and this probability,

by the union bound, is at mostimes the probability that this happens in one step, andis @t mostQ(e).
O

Remark A. It is also possible to prove (see [37]), using techniqueshefapproximate max-flow min-cut
theorem for uniform multicommodity flow [28], that; > 1 — O(WTN). This gives the weaker bound
= Q(M/log N), but is interesting in its own right.
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Remark B. Note that since we used paths of lengh in the above proof, the flowf also satisfies
R(f) = O(r?). This, together with (20), implies tha = inf; R(f) captures rapid mixing as well.
The work of Kahale [24] actually shows that the boundXfy ), call it ., obtained by minimizing over all
length functions on the transitions and all flows, can be agegbto arbitrary precision by reduction to a

semidefinite program, and satisfies > 1 — O(@).

4.7 Path congestion almost always captures rapid mixing!

In the next section, we will see a resistance based prooft@{®4]) of rapid mixing of a natural Markov
chain for sampling)-1 Knapsack solutions. This problem was open for a long time, tzad defied all
attempts to prove rapid mixing based on canonical pathsgim of the example in Section 4.4, it is natural
to ask if this chain (which we now know mixes rapidly) also manhhave low path congestion, and whether
the generalization to resistance was really necessary.

In this section, we will show that, for a broad class of Marktnains, including all the ones we consider
in applications here, the path congestjp(defined in Equations (12) and (13faracterizes rapid mixing
up to polynomial (in the problem size) factors. We show thgbu can achieve low congestion with multiple
paths, i.e., if the chain has low resistance, then you canaabkieve low congestion by routing all the flow
on just a single path. The proof is actually very simple, andased on randomized rounding to relate the
optimum congestion of “fractional” and “unsplittable” fleypbut we were surprised that it does not seem to
have been observed or made explicit in the literature.

Theorem 4.9 Consider an ergodic, reversible Markov chdlit with stationary distributionr on a state
space(2 of size N, and let the resistance @bt be . Let A = max,», m(z)m(y), and let Qi =
min.(.)>o @(e). Then there exists a set of canonical pathsuch that

Qiin ) '

Proof: By the definition of the resistanci, we know that there exists a floyvwhich routesr(z)n(y)
units of flow between every ordered péit, y) of distinct statess # y, such that every (oriented) edge
has at most)(¢)? units of flow passing through it. Hence there is a feasibletioaal flow f which routes
fzy = m(z)m(y)/A < 1 units of flow between: andy, and with “capacity” on edge at mostC(e) =

max{Q(;ﬁ, 1}. We can now use a result of Raghavan and Thompson [35], whibraedomized rounding

to show the following: There are absolute constagtandb; such that if all edge capacities equabnd all
demands are at mo$f and there is a fractional flow satisfying all the demand$iwiingestion on edge

at mostu/ (e) > 1, then there is annsplittableflow which satisfies all the demands by routing the demand
for each source-destination pair alongiagle path, and which has congestion at magi/ (¢) + b; log N

on edgee.

Applying this to our situation with:/(¢) = C(e), we conclude that there exists a $ebf canonical
paths which can routg,, units of flow fromz to y such that at mosi,C(e) + b1 log N units flow through
any edgee, or equivalently, it can route (z)n(y) = A f,, units of flow between every pajt:, y) such that
at mosthyAC(e) + by A log N units flow through any edge This implies that

p(l) = 0(9‘1 + log N

A A
p(I') < bgmax{R, —} +b——1Ilog N .

min min

and the stated result follows. O

Theorem 4.9 actually implies that = O(fR) for a wide variety of Markov chains, and thus for these
chainsp also characterizes rapid mixing. Indeed, this will be theecwhenevetog Nﬁ = 0(1),
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which will normally always be the case unless the statiombstribution varies widely in the mass it gives
to points of the state space, or there are very small non{zansition probabilities in the chain. As an
example consider Markov chains with uniform stationantrisition. Thenlog NQ% = O(1) whenever

P(z,y) = Q(l"%vN) for all z,y such thatP(x,y) > 0. For most chains in applications to sampling, we will

have N = 2°(") wheren is the problem size and each non-zétaz, y) will be at leastl /poly(n), hence
this condition will indeed be met.

5 Sampling0-1 Knapsack solutions

We describe an example of random walk on the truncated hyperahich was only very recently shown
to be rapidly mixing using a fractional multicommaodity flowttvlow congestion [34], but had resisted all
efforts of proving such a result using canonical paths (gt one path between every source-destination
pair). Our result from the previous section (Theorem 4.9ligs to this chain; this shows that even though
spreading flow across multiple paths might in principle bemore powerful than sending all the flow along
a single canonical path, it could be still be easier to deth wai actually designing the flow. (The example
from this section is also covered by the framework of whatdfeahd Mihail [17] did, where they prove
a version of the small path congestion implies small mixiingetresult using expected path lengths and
congestion instead of worst case values.)

The Problem. We are interested in sampling from the $etof feasible solutions to th8-1 knapsack
problem defined by the vectar of item sizes and the knapsack capadity.e., for a positive real vector
a = (a;)!", and a real number,

Q:Qa,b:{xe{o,l}”:a-x:ZairI;igb}.

=1

There is a one-one correspondence between vestogs €2 and subsetsy of items whose aggregated
weight does not exceeld given by X = {i : z; = 1}. We will write a(X) for the weight of X, i.e.,
a(X) = Y iex i

A particularly simple Markov chaiflt ;. on€2 has been proposed for the purposes of sampling uniformly
at random from2. If the current state iX C {1,2,...,n} then

1. With probability1/2 stay atX (this holding probability is to make the chain aperiodidgee

2. Pick an itemi € {1,2,...,n} uniformly at random. Ifi € X move toX — {:}; if i ¢ X and
a(X U{i}) < b, movetoX U {i}, else stay ai.

The chain is aperiodic sincB(X, X) > 1/2 for all statesX, and it is irreducible since every pair of
states can be connected via the empty set. Moreover, ités that each non-zero transition probability
P(X,Y), X # Y, equalsP(X,Y) = P(Y,X) = 5. By Theorem 2.1 and Lemma 2.2 therefof#lx
is ergodic with uniform stationary distribution. Despitikthe recent activity in proving rapid mixing, this
simple example was not known to be rapidly mixing until therkvof [34]. The best prior known bound on
the mixing time, obtained via the canonical paths technigasexp(O(,/n(log n)®/?)) [12], which beats
the trivial bound ofexp(O(n)) but is still exponential.

We will now sketch the proof of [34] that this chain has a miitime of O(n®), and is thus indeed
rapidly mixing. The proof will follow theresistanceapproach, i.e., we will find a flovi that routes one unit
of flow between every pair of unequal states, using multiglthe for each pair to “spread” the flow, and
then use Corollary 4.7 to bound the mixing time. Indeed,(if) is the length of the longest flow carrying
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path, and”(f) is the maximum flow across any (oriented) edge of the chaém dombining Corollary 4.7
and Proposition 2.3 shows that
7x () < 277%];)L(f)(77 + lnsfl) . (25)

Hence our goal now is to construct a flofwwith L(f) = poly(n) andC(f) = ||poly(n). Note
that a shortest path between stal¢sandY can be viewed as a permutation of the symmetric difference
X @Y, the set of items that must be added to or removed from thedathpin passing fronkX toY. A
natural approach to defining a good flow seems to be to spreadnih flow from X to Y evenly among
all permutations ofX @ Y. The problem with this approach, however, is that many o$ehgermutations
will tend to violate the knapsack constraint, as too marmgavill have been added at some intermediate
point; i.e., the permutation is unbalanced. The way to ameent this problem is to define a family of
permutations, which are all “balanced” and also “suffidigmandom”, and spread the flow evenly among
them. Proving the existence of such permutations, cdliednced almost uniform permutatioirs [34],
forms the main technical component of this proof.

We will now define the notion of balanced almost uniform petations formally, and state the Theorems
from [34] guaranteeing their existence. (We will not protiese theorems as they are quite technical and
doing so will take us too far away from our main theme of fongson Markov chain techniques.) We
will, however, show how to construct a good flgisfor our purposes given the existence of the necessary
balanced almost uniform permutations.

Definition 5.1 Let {w;};", be a set of real weights, and 181 = max;<, |w;| andW = >, w;. Let/ be
a non-negative integer. A permutatienc S,, is ¢-balanced, if for allk, 1 < k < m,

k
min{W,0} — (M <> " wy;) < max{W,0} + (M . (26)
i=1

Definition 5.2 Let o be a random variable taking values #),,, and leta € R. We callo a a-uniform
permutation if

-1
Prio{1,2,... .k} =U] < a x <m>
a
for everyk, 1 <k < m,and evenyyU C {1,2,...,m} of sizek.
The main theorem from [34] on the existence of balanced alontform permutations is the following:

Theorem 5.1 ([34]) There is a universal constaxt such that for anyn and any set of weightgw;}" ,,
there exists &-balancedCm?-uniform permutation o{w;}. Moreover, if| > w;| > 15 max; [w;/|, then
there exists ®&-balancedC'm?-uniform permutation ofw; }.

Constructing a good flow

Lemma 5.2 For arbitrary weights{a, } andb, there exists a multicommodity flgiin G (9t k) which routes
one unit of flow between every pair of unequal vertices, @itli) = O(|Q2|n®) and L(f) = O(n).

Combining with Equation (25) we therefore conclude

Theorem 5.3 ([34]) The mixing time of the Markov chaiitx satisfiesrx (¢) = O(n®Ine~!) for every
starting stateX. The chain is thus rapidly mixing.
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Proof of Lemma 5.2: Let X, Y be arbitrary states d, X # Y. We wish to send one unit of flow from
X toY. As discussed earlier, our idea is to spread this flow evemigray a family of balanced almost
uniform permutations oK @ Y, except that we isolate a constant number of “heavy” itéfrfsom X ¢ Y,
and route the flow along balanced almost uniform permutatafi{X @ Y') \ H and add or remove some
elements offf repeatedly along the path to maintain fine balance (we always the knapsack to be filled
to capacity between (roughlyhin{a(X),a(Y)} andmax{a(X),a(Y)}: an upper bound on the weight
packed in the knapsack is clearly necessary to define a fegskh, while the lower bound is used in the
analysis to bound the total flow through any edge by “encddiagh flow path which uses that edge using
an element of the state space).

We now proceed with the formal analysis. We wish to obtaingmen bound on the maximum flow that
passes through any stafe(this will clearly also provide an upper bound on the flow tigh any transition
(Z, Zy) of the chain). LetX,Y be states such that the flow between them passes thtéugkt H be the
29 elements ofX @ Y with the largest weight (sef = X @ Y if | X @ Y| < 29); breaking tiesaccording
to index order DefineHy = HN X, Hy = HNY,S = (X®Y)\ Handm = |S|. Let{w;}]", be
an arbitrary enumeration of the weights of itemsSinwhere elements il receive positive signs and those
in X receive in negative signs (since we want to add elemengsriny” and remove those if N X). The
paths we use for our flow will correspond to permutations dides inS that satisfy the specific “balance”
requirement described below.

Claim. There is an absolute constafitsuch that there exists @m?2-uniform family of permutations each
one (call ito) of which satisfies the following “balance” condition:

k
min{a(Y) — a(X),0} — a(Hy) <Y wyiy < max{a(Y) — a(X),0} + a(Hy), (27)

i=1
foreveryk, 1 < k < m.

Proof. We will assumeX & Y| > 29, for otherwiseS = () andm = 0, and there is nothing to prove.
LetW =", w; =a(Y) — a(X) + a(Hx) — a(Hy), andM = max; |w;|. Let us assume, w.l.o.g, that
W > a(Hx) — a(Hy) (the other case is symmetric), so it is easy to see that theeatmndition (27) is

equivalent to
k

—a(Hy) Y wyi) < W+ a(Hy) (28)
i=1
Comparing with condition (26), and allowing for both cas&€s > 0 andW < 0, it is easy to see that
an/-balanced permutation satisfies (28) above whenéVer< min{a(Hy ), W + a(Hy)}. Thus, when
|W| > 15M, we can usd)-balanced permutations guaranteed by Theorem 5.1 for aypopas. When
|W| < 15M,we haven(Hx) —a(Hy) < W < 15M. Alsoa(Hx)+a(Hy) = a(H) > 29M. Combining
these two inequalities we getHy ) > 7M. Thus wheriV > 0, we haver M < min{a(Hy ), W+a(Hy)},
and thus we can use@m?-uniform family of 7-balanced permutations to satisfy (28). WHénh< 0, we
haveW > —15M and together withu(H x) — a(Hy) < W this implies
20M — W 14M — 2W

Hy) > > —TM - W
a(Hy) > 2 = 2

and thus once againV/ < min{a(Hy ), W + a(Hy)}, and we can use &balanced”m?-uniform family
of permutations. O (Claim)

We now specify the flow paths betweghandY (the flow will be evenly split among all these paths). The
paths will follow the permutations of the family guaranteed by above Claim, except that aloeguhy
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we will use elements off to keep the knapsack as full as possible, and we will remamehts ofH as
necessary to make room for elementsSof Y to be added. Hence each intermediate state will be of the
form HyU ((X \ Hx) & {o(1),...,0(k)}) for somek < m andH, C H. The path corresponding to a
particularo is defined by the following transitions:

o If K < m andw, 41y > 0, then addo(k + 1) if possible (i.e., current knapsack has room for the
item); else delete an (arbitrary) element frdiy.

o If k <m andw,41) < 0, then add an element foril — H) if possible (so that knapsack is near
full); otherwise remover (k + 1).

e If &k = m (i.e., all elements i have been handled), add an elemenfgf if possible; otherwise
delete an element frof x.

By the upper bound of Condition (27), we haveX) — a(Hy) + 3.5 w,(i) < max{a(X),a(Y)} < b
so that we can always remove enough elements t6 make room forw, ;1) during its turn to be added.
Moreover, the lower bound of Condition (27) implies that &y intermediate stat& on any flow path,
a(Z U H) > min{a(X),a(Y)}, and since we always keep the knapsack as full as possileles #xist
elementsh;, he € H such thata(Z U {hy,hs}) > min{a(X),a(Y)}. In what followsh,, hy are fixed
elements off that depend only o, X,Y.

To estimate the flow through, we will “encode” each paiX, Y of states whose flow paths ugeby a
stateZ’ € Q (plus some auxiliary information), so that we can argue €hgt) is not too large compared to
|©2]. The encodingZ’ is defined by

7' = (X ®Y)\ (Z U {h1,hs})) U(X N Y).

(Note that this is the complement &fU {h1, ho } in the multisetX UY". Thus it is reasonable to expect that
7' will supply a lot of the “missing” information abou, Y that cannot be obtained frof k1, hs.) Now

a(Z") a(X)+aY)—a(Z U{hy, ha})
< a(X)+aY) — min{a(X),a(Y)}

_ max{a(X),a(Y)} <b

~— ~—

so thatZ’ € (.

We now wish to upper bound the number of pgik§ Y') that could be mapped to a givefi. Note that
ZNnZ'=XNnYandZ' @ (ZU{hi,he}) = X @Y, and knowingX & Y, we also knowH (since these
form the 29 largest elements ok & Y, ties broken according to index order). ThidsZ’, hy, ho together
fix XNY,XaY,HandS = (X &Y)\ H. Inorder to completely specifX andY’, we add some more
information to the encoding, namely the subBetC S that have been “affected” (i.e., added/removed) by
the time the path fronX to Y reachesZ, and alsoH' = H N X.? Thus, the paif X, Y") one of whose flow
paths passes throughis encoded by thé-tuple:

f2(X,Y) = (Z',hy,hy, U H') .

We now verify thatZ and f7(X,Y) do pinpointX, Y. Indeed, we already argued Z', h;, ho alone fix
XNY,X®Y,HandS. Nowitis easy to verifythak = (UNZ')U((S\U)NZ)u(XNY)UH'and
similarly Y = (UNZ)U((S\U)NZ) U (XNY)U(H\ H').

We are now ready to bound(f) by estimating the cumulative floyi(Z) throughZ. For eachX,Y
such that there is a flow path frotkd to Y passing throughZ and whose encoding equafg (X,Y) =

2The encoding’ we use is slightly different from the one Morris and Sinc[8i4] use in their proof.
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(Z',hy,he, U, H"), there will be non-zero flow only for paths corresponding ose permutations of
{1,2,...,m} (herem = |S|) that satisfyo{1,2,...,|U|} = U. By the Cm?-uniformity of the family
of permutations we use to spread the flow, we can concludethieatotal flow over all such paths is at
mostCmQ(";}‘)*l. Thus summing over alll C S, we still have onlyCm? units of flow for each fixed
(Z', hy1, ho, H'). Now there are(| choices forZ’, andn? choices for the paith, , hy), and oncéZ’, hy, hy)
are fixed, so igf, and thus there are at ma3f possible choices off’ C H for each choice of’. In all,
we have

f(Z) <9 -n*-220.Cm* = O(|Qn°) .

ThusC(f) = O(|Q2|n®) as well, and since all paths we use to route flows clearly henvgthO (n), L(f) =
O(n), and the proof of Lemma 5.2 is complete. |

6 Coupling and Path Coupling

We have so far focused on conductance based techniquesofdangmrapid mixing, and saw a non-trivial
application to sampling-1 knapsack solutions. The classical approach to boundingntkimg time is in
fact via a different approach, vioupling The basic idea behind the coupling argument is very iniiti
suppose we wish to show that a Markov chaiihstarting from distributiont’ converges to its stationary
distribution = within a small number of steps. Consider running the chaima mint process X', )) where
both X', ) are individuallyfaithful copies of)t and whereY starts of at staté&(,, distributed according ta’
and) starts of in stat&| distributed according t@. Thus at any time stef the distribution ofY; equalsr.
Now if the joint evolution of( X, Y;) is designed to encourage themctmalescaapidly, i.e., the “distance”
betweenX; andY; decreases rapidly, then for large enougbkayt > #', we will have X; = Y}, with high
probability, say(1 — ). Since the distribution of; is =, it is easy to see that this implies that the mixing
time to get withine of the stationary distribution when the chain starts offistrdbution’, is at most’ (by
the “Coupling Lemma” which we will state and prove formallyastly).

6.1 The Coupling Lemma

Definition 6.1 (Coupling) Let91 be a finite, ergodic Markov chain defined on state sgaedth transition
probabilities P(-,-). A (causal)couplingis a joint procesgX,)) = (X, Y;) onQ x €, such that each of
the processeq’, ), considered marginally, is a faithful copy 9t. In other words, we require that, for all
z,z',y,y €9Q,

Pr X, =4'|X; =2 ANY; =y] = P(z,2') and,

PrlYiy1 =y |Xi =2 AYi=y|=Ply,y). O

Note that the above conditions are consistent With) and (Y;) being independent evolutions BR,
but does not imply it. In fact the whole point of Coupling isaitow for the possibility that

Pr[Xp = 2" ANYi = ¢|Xi = x AYy =y # P, 2")P(y,y)

in order to encourage’; andY; to coalescerapidly.

Remark. In applications to bounding mixing tim¢X;) will typically be Markovian, while we allow)y to
be Non-Markovian or history dependent, i.E,,could depend upoXg, ... X; andYy,...,Y; 1, aslong as
it remains faithful to the original chaiyt. One can also imagine allowing the procgsto make its moves
dependent on future moves &f, i.e., Y; can depend upoX;,,, X; 2, etc. Such a coupling is called a
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non-causalcoupling. We will only be concerned with causal couplingsehand the term “Coupling” will
always refer only to a causal coupling.

If it can be arranged that coalescence occurs rapidly, mdgently of the initial stateX, Yy, we may
then deduce thabt is rapidly mixing. The key result here is ti@oupling Lemmawhich seems to have first
explicitly appeared in [2].

Lemma 6.1 (Coupling Lemma) Let Mt be a finite, ergodic Markov chain, and IeX,, Y;) be a coupling
for M. Suppose thaPr[X; # Y;] < e, uniformly over the choice of initial sta{eXy, Y;). Then the mixing
timer(e) of M (starting from any state) is bounded abovetby

Proof: Let Xy = z be arbitrary and let; be distributed according to the stationary distributioof 1.
Let A C Q) be an arbitrary event. We have

Pr(X; € A] > PrlY;e ANX, =Y
> 1-PrlY; ¢ A] - Pr[X, # Y]
> PrlYieAl—¢
= 7w(A) —¢,
and this implies the variation distance betwd&iz, -) andr, A, (t), is at most, as desired. O

In light of the above Lemma, Coupling is a natural technigquprbve rapid mixing of Markov chains. And
as we will convince the reader in this section and the nextipling is a very crisp and elegant technique
and when it works, it invariably establishes better boundsnixing time than known through conductance,
and avoids the slackness which is typical of conductannefdeal paths based proofs. We illustrate this by
a simple example below.

6.2 Anillustrative example of Coupling in action

We consider the “Bernoulli-Laplace diffusion model”, wieastate space is the set of alk-element subsets
of [n] = {1,2,...,n}, and we wish to sample an element u.a.r framWe assumeé < n/2 without loss of
generality. A natural chain oft is the following (let the current state be the sub&e€ [n] with | X| = k)

e Pickrx € {0,1} u.a.r; Ifrx = 0, remain atX.
e If rxy =1, picki € X uarandj € [n]\ X ua.rand movetd = X U{j}\ {i}.

It is easy to that this chain is ergodic with uniform statigndistribution 7(X) = N~ ! for all X € Q,
whereN = (Z) We will show using Coupling that this chain mixesa@nk log(k/<)) time (we will later
mention the sort of weak bounds that more complicated cdadue/resistance based proofs give even for
this very simple example).

Theorem 6.2 The mixing time of the above Markov chain satisfigés) = O(k log(k/¢)) irrespective of
the starting statexX.

Proof: The proof is based on a Coupling that is actually quite sinipket up. The transitioaX,, Y;) —
(X141, Ysy1) is defined as follows:

1. If X; =Y, then pickX,; as9t would and set;,, = X;;1; else

2. If rx, = 0, SetXt_H = Xy, andYH_l =Y.
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3. Ifrx, = 1, then: LetS = X; \ Y; andT = Y; \ X, (note that|S| = |T'|); fix an arbitrary bijection
g:S — T.Picki € X;u.arandj € [n]\ X;uarandsek; ; = X;U{j}\ {i}. Definei’ € Y}
andj’ € [n] \ Y; as follows:

o If 1 € X; NY;, theni' =1, elsei’ = g(i)
o If j¢ Y, 5 =j,else (nowj € T)j' =g ' (j).
Now setY; .1 =Y, U {j'} \ {i'}.

It is easy to see thgtX;) and (Y;) are individually just copies of)t, so the above is a legal (in fact
Markovian) coupling. We assumie > 2 to avoid trivialities. Denote byD; the random variabl&; @ Y;.
We wish to bound the expectation

B|Dis | D] < (1= D)IDi] (29)

as this will imply E[|D¢||Do] < (1 — 7)!|Dq|. Since|D,| is a non-negative integer random variable, and
|Dy| < 2K, we obtain

Pr(|Dy| > 0|Dy] < B[ Dy Dy]
1

< 2%-(1— )

(-2
which is at most providedt > k In(2ke~'). Invoking the Coupling Lemma 6.1, we obtain that the mixing
time isO(k In(k/e)), as promised. It remains therefore to establish (29) whadidally quantifies the fact
that X; andY; tend to “coalesce”.

Letg = |X; ® Y|, and let¢’ = | X1 @ Yi+1|. We want the expectation qf for a giveng. Consider

now the choices in Step (3) of the Coupling. Four cases ncseari

(i) 7€n]\ (X UY;) andi € X; \ Y;: Theng' = ¢ — 2.

(i) jeY,\ X;andi € X; NY;: Theng' = q — 2.
(i) jeY;\ Xyandi € X;\Y;, j #g(i): Theng =q — 4.
(iv) In all other caseg’ = g.

Thus the expected value of the change- g is

f_gonk—a/2 @2 o 4/2 k—q/2 .  ¢2 g¢2-1
and this give®[q¢'|¢] < (1 — k(”nfk))q < (1-1)q(ask > 2). O (Theorem 6.2)

Comparison with performance of Canonical Paths.The best bound achievable for this problem via the
canonical paths/conductance based approach seems te pgAp¢o boundr by demonstrating a fractional

flow that routes one unit between every pair of unequal statesthis givesh < kz%z:’ff Fork = Q(n),
sayk = n/2, this gives a bound on mixing time equal@n?log((})e ")) = O(n® +n?loge "), which

is significantly worse than th@ (n(log n + log e~ ')) bound we proved using Coupling! In fact, in this case
(k = n/2), the second-largest eigenvalue is known exaclly:= 1 — 2/n, so that even getting the best
bound on the spectral gap, only yields a mixing timegfh,? + nloge ') (using Proposition 2.3)! These
crisp and significantly improved bounds seem to be typicalofipling whenever it works. We will later
(in Section 7.2) also see an application of sampling fromsst®of|n] of sizeat mostk (this is just the
“uniform” version of the knapsack problem, where all itenas/é the same size), where Coupling gives a
much better bound mixing time than seems possible usingigebs of Section 5.
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6.3 Known applications of Coupling

Owing to its intuitive appeal, Coupling has been a very papahd successful technique in rapid mixing
results. Some instructive examples of Coupling that hayeared in the literature are in sampling proper
k-colorings of a graph [18, 5, 40], linear extensions of aiphdrder [30, 6], points in a convex body [7],
independent sets in low-degree graphs [29, 5, 15], generdlingency tables of rows [13], etc. Even
Broder’s original paper [4] on sampling from the set of petfmatchings of a bipartite graph used a com-
plicated Coupling argument, which was later found to haveraor [32].

6.4 Path Coupling

Despite the conceptual simplicity and appeal of Couplihgan often get very difficult to design couplings
appropriate to specific situations that arise in samplirgbl@ms. The problem is one of “engineering”:
how do we encourageX;) and(Y;) to coalesce while at the same time meeting the apparenttyachecting
requirement of keeping the individual processes faittdt? This can lead to severe technical complexities
(see [30] to get an impression of this). This led Bubley an&j$] to invent an elegant solution to the
task of designing Couplings: they called it “Path Couplingihe idea behind Path Coupling is to define the
coupling only for “adjacent” states, i.e., only for pairsstates in a carefully chosen subsedf 2 x €2 (and
hopefully the task is easier for such pairs of states), aad #xtend the coupling to arbitrary pairs of states
by composition of adjacent couplings along a path. In féet,discovery of Path Coupling has led to a spurt
of Coupling based rapid mixing proofs, and indeed most ofapglications cited in Section 6.3 use Path
Coupling. We now state and prove the “Path Coupling” lemmae¢aion taken from [14]):

Lemma 6.3 (Path Coupling Lemma) Let 6 be an integer valued metric defined énhx Q which takes
values in{0,1,...,D}. LetS be a subset of? x Q such that for all(X;,Y;) € Q x Q, there ex-
ists a pathX, = Zy,7,,...,7%, = Y; betweenX,; andY; where(Z,, Z,,;) € Sfor0 < ¢ < r, and
;;3 0 Ze, Zpiq) = 0(Xy,Yy). (Equivalently, is defined by specifying a grapti with vertex sef) and
edge setS, and weights on edges i, and(X,Y) is simply the shortest path betwe&handY in this
graph.) Suppose a Couplifd(,Y) — (X', Y”) of the Markov chaif is defined on all pairgX,Y) € S
(note that(X’, Y') need not lie inS) such that there exists @ < 1 such thate[§(X',Y"')] < BE[0(X,Y)]

for all (X,Y) € S. Then the mixing time(z) of 9 satisfiesr () < 2.

Remark. One can also bound the mixing time in the cése 1 [5, 14]. For the applications we will use to
illustrate this technique, we will actually haye< 1, so to keep things simple we do not discussghe 1
case.

Proof: First, we observe that the Coupling ¢hcan be extended in an obvious way to a Coupling on
the entire spac& x Q. Indeed let(X;,Y;) € Q x Q. Pick a “path’ X, = Zy, 7Z1,...,7Z, = Y; such
thatd(X,Y) = Z’tﬁ;é d(Ze, Zp+1) (use a deterministic choice rule for resolving ties). Defime coupling
(X, Y:) — (Xi41,Yi41) as follows: First selecK,, = Z; € 2 according to the probability distribution
P(X,-). Now selectZ] according to the distribution induced by the pairwise congpbf the adjacent states
Zy and Z;, conditioned on the choice d&f; then selectZ), using the pairwise coupling 4%, Z,), and so
on, ending withZ! = Y;.. Itis easy to verify, by induction of the path lengththatY; . ; has been selected
according to the distributio® (Y7, -), so(X;,Y;) — (X;+1, Yi41) does define a “legal” coupling that obeys
conditions of Definition 6.1. Now

r—1

E[0(Xe1, Y1) < E[D>_0(Z;, Z1,0)]
£=0
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r—1
= E[0(Zy, Zp41)]
=0
r—1
< B) (%, Zy1)
=0
= Bé(Xfa}/})a

o~

where we have used the fact thiais a metric, and linearity of expectation. Now as in the probTheo-

rem 6.2, this giveg[6(X;, Y;)] < 6'D, and thusPr[X; # Y] < E[§(X;, Y;)] < € whenevert > 1“((35[;;).

Invoking the Coupling Lemma 6.1, the claimed bound on themgitime () follows. O

Remark. The notion of “adjacency” in the graptf defined for Path Coupling need not have anything to do
with the transitions in the Markov chain that is being stddiln fact, two states that are adjacent in the Path
Coupling graphH need not even be reachable from one another in the Markon.chai

7 Some applications of Path coupling

In this section, we present a few applications of path cogpto Markov chains for interesting sampling
problems.

7.1 Samplingk-colorings of a graph

Given a graphG = (V, E) with maximum degreé\, consider the task of sampling uniformly at random
from the set),(G) of (proper)k-colorings ofG. LetC' = {1,2, ..., k} be the set of colors.

A natural Markov chain for the above problem, known in therbiture as “Glauber dynamics”, is the
following. Suppose the current state is a colorikig

e Choosev € V u.a.r, and: € C u.ar. If X, (i.e., X with the color ofv changed ta) is a proper
coloring of F, then move taX,_.., else remain ak .

Jerrum [18] (see also [19]) first proved, using Couplingt tha above chain rapidly mixes fér> 2A.
We will now present a simple proof due to Bubley and Dyer [5fhi$ fact using Path Coupling. We remark
that Vigoda [40] recently established that this chain mpegsdly for & > %A, using Path Coupling on a
different chain, and then using that to deduce the mixing tofithe Glauber dynamics.

Following [5], we present the result in a more general sethgi captures “coloring-type” problems,
and then deduce the result for coloring from that.

The general set-up is the following. L&t and C be finite sets, and let = |V| andk = |C|, and
we consider a finite Markov chaifi with state spacé C CV, the set of functions fronV to C, and
unique stationary distributiorr. The transition structure dit is similar to the graph coloring case we
considered above: From a current statec (2, pick v € V according to a fixed distributiodl on V', and
andc € C according to a distribution x ,, that depends only oX andv, and make the transition t&,_,.
(where X, _,.(w) equalsc if w = v, and equalsX (w) otherwise). We assume thak ,(c) = 0 whenever
Xy ¢ Q. Path Coupling yields the following result for this classpobblems (for distributionsd and B,
||A — BJ| denotes their statistical difference or variation diseggnc

Theorem 7.1 ([5]) LetQ = CY, and let

B = o {1 —J(i) + ;/J(j)mx,j —ry,ll | Y = Xi_ for somec € C, andY # X} .
J
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Then, if3 < 1, the mixing time o satisfiesr(¢) < In(ne!)/(1 — ).

Proof: We set up a Path Coupling with “adjacency graph” being all-aquoal pairs(X,Y’) such that
Y = X, for somei, ¢, and the metri@ used is the Hamming metric (8¢X,Y") = 1 for adjacent pairs).
For such a paif X, Y') define the coupling toX',Y’) as follows: X' is distributed according t& (X, -),
namely: pickv € V according ta/ ande, € C according ta<y ., and setX’ = X,,_,.,. Next picke; € C
as follows: with probabilitymin{1, Ky, (co)/kx(co)} let e; = ¢y, otherwise picke; according to the

distributiony(¢) = 22{0rvul0)rx. ()}

HH/YU KX 'u”

It is easy to see that marginally we choeseaccording tasy,, SO the above defines a “legal” coupling
for the chaindn. Itis also easy to verify thdPr{c; # ¢y] = ||ky,y — Kx,||. NOW sinced (X, Y) changes by
at mostl in one step of the chain, we have

E[0(X", Y] = 1-Pr[6(X"Y')=0]+Pr[6(X"Y') =2]
= 1—J(@E)Pr[cg = c1|v = 1] +Z ) Pricy # ci|v = 7]
J7F
= 1-J@HQ — [[ry,; — llky,; — rx
J#i
< B(X,Y)
(sinced(X,Y) = 1). The result now follows from the Path Coupling Lemma 6.3. O

Application to Coloring. Consider the Markov chain with state space all (not necigganmoper) k-
colorings ofG and transitions at stat¥ defined as follows.

1. Choosey at random froml/ according to distributiory andc u.a.r fromC.

2. If v is properly colored inX,_,., then move toX’' = X,_,. else remain ak .

This is an extension of the Glauber dynamics we discussdieregexcept that we allow more general
distributions to seleci from), to all of C¥" (we do so in order to be able to apply Theorem 7.1). This does
not cause any problems since the non-proper colorings ansignt states, and the stationary distribution
is uniform over all propelk-colorings ofG, and zero elsewhere. Moreover, if we start from a praper
coloring, then we visit only states that correspond to prdpeolorings, so the mixing time of this chain
is an upper bound on the mixing time of the Glauber dynamicsteNhat this chain is not reversible, but
Theorem 7.1 applies for such chains as well.

Let us now apply Theorem 7.1. Létv) denote the degree of vertexand letrn be the number of edges
in G. We will use.J to be proportional to the degree of the vertex, so that) = d(v)/2m. If colorings X
andY differ only on vertex:, thenxy; = kx ; unlessj =i or j ~ i (herej ~ ¢ stands for adjacency in the
graphG). Whenj = i, kx (X (i)) = L9 andry (X (7)) = L, and similarly for the coloi (i), while
kx,i(c) = Kky,(c) for all colorse # X (i), Y(é). Hence||ky,; — (1)/k. Whenj ~ i, every color
that would be accepted il (resp.Y’), except possibly (i) (resp X ( )) would be accepted il (resp.X)
aswell, and hencgry ; — kx ;|| = % Thus the parametet (from Theorem 7.1) satisfies

d(@) . _ d@) d(j)
<l——=+(1-—+= :
ps 2m ( k )+ JEN:Z 2mk
Hences < 1 whenever
kE > max{d(v)
veV

This condition is certainly satisfied whén> 2A, so using Theorem 7.1 we conclude
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Theorem 7.2 ([5]) The Glauber dynamics for sampling propleicolorings of a graphG with maximum
degreeA is rapidly mixing (with mixing time& (kn log(ne~'))) wheneverk > 2A.

7.2 Sampling “Uniform Knapsack” solutions

We consider another elegant application of Path Coupling. a¥é interested in sampling from the space
Q of subsets ofn] = {1,2,...,n} of sizeat mostk. This resembles the problem of samplihgelement
subsets ofr] that we considered in Section 6.2, but turns out to be tricki®te also that this problem is a
special case of the-1 knapsack problem (which we considered in Section 5) wheiteaiis to be packed
have the same size.

The Markov chairlt we will study will be the same as the one in Section 5, namealynfa state
X C [n], |X| <k, pickrx € {0,1} u.a.r. Ifry = 0remain atX. If rx = 1, pick ani € [n] u.a.r and
move toX \ {i} if i € X and toX U {i} if i ¢ X and|X| < k. We will use Path Coupling to prove

Theorem 7.3 The mixing time of the Markov chait i satisfiesr(¢) = O(nlog(ke 1)).

Proof: We will use Path Coupling with the (somewhat unusual) méi{ii€,Y) = (X o Y|+ || X| — |Y]].
Note thato (X, Y) > 2 wheneverX # Y. The set of “adjacent” pair§ C 2 x  for which we will define
the Coupling is:S = {(X,Y) : X,Y € QA J(X,Y) = 2}. Itis easy to see that the metri@and the sef
satisfy the conditions required by the Path Coupling LemtB8a 6

Now consider( X, Y) € S with 6(X,Y’) = 2; we wish to define a CouplingX,Y) — (X',Y"). There
are two possibilities fof X, Y):

(i) One of X, Y is a subset of the other, s&y C X (the other case is symmetrid),| = | X| — 1.
(i) | X|=|Y|and|X @ Y| =2.

We consider each of these cases in turn.

Case (i): LetY = X \ {p} for somep € [n]. Now the Coupling X', Y’) is defined as follows:
(1) Pickrx € {0,1} andi € [n] u.a.r. Ifi = p then set’y = 1 — rx; otherwise sety = rx.

(2 Ifry =0setX' = X. Elseifi € X setX' = X\ {i}, else setX’ = X U {7} if | X| < k and
X' = X otherwise.

(3) Ifry =0setY' =Y. Elseifi € Y setY' =Y \ {i},elseset’ =Y U {i} if Y| <kandY'=Y
otherwise.

It is easy to see that(X',Y') = 2 except when = p, in which case, since we have cleverly designed
the Coupling by settingy = 1 — rx so that only one ofX,Y “fires”, §(X’,Y') = 0. Thus we have
E[D(X,Y")] = (1 - )i(X,Y).

Case (ii): | X|=|Y|and| X ® Y| =2. LetX = SU{p} andY = S U {q} for somep # ¢g. The Coupling
(X',Y") is defined as follows:

(1) Pickrx € {0,1} andi € [n]u.a.r. Sety =rx. Ifi ¢ {p,q}, setj =i. If i = p (resp.q) setj = ¢
(resp.p).

(2 Ifrxy = 0setX’ = X. Elseifi € X setX’' = X \ {i}, else setX’ = X U {i} if |X| < k and
X' = X otherwise.

(3) Ifry =0setY’ =Y. Elseifj € YsetY' =Y\ {j} elseset’ =Y U{j}if |Y|<kandY' =Y
otherwise.
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Once again, the Coupling has been constructed saithdt Y') = 2 whenever ¢ {p,q¢}; 6(X',Y') =0

if i =pandry =1, ands(X’,Y’) < 2in all cases. Thus we haw[s(X’,Y")] < (1 — 5+)d(X,Y).
Combining both the above cases we Bgf(X'.Y')] < (1 — 5-)§(X,Y) always. Also, the maximum

value D of §(Xy, Yy) over all pairs(Xj, Yy) € Q x Qs clearly2k. By Theorem 7.1 therefore, we have

shown thab)tx has mixing timer (e) = O(nlog(ke~!)), completing the proof. a

Comparison with Canonical paths.Even for this special case 6f1 knapsack, the best bound that we get
using the multicommodity flow based analysis of Section i@t any change) is onlg(n%), and it is
almost inconceivable that such an approach can hope togietaind better tha®(n?3). Coupling gave us

a much bette) (n log(ke ')) bound, and the proof was in fact much easier than using caalquaths!

Remark. The uniformity of weights seems critical to our argument\ahol he “asymmetry” created when
items have widely varying sizes seems to make it difficultefioy natural Coupling strategy to work.

7.3 Linear extensions of a partial order

We are given a partially ordered gg?, <) where|P| = n, and we want to sample u.a.r from the sp&ref
all linear orders that extend. (A linear order extendingr is a permutation, as, . . . , a, of the elements
of P such thatz; < a; impliesi < j5.)

A natural Markov chain with uniform stationary distributiaover$) was shown to be rapid mixing by
Karzanov and Khachiyan via conductance arguments thavigaghlthe geometry of the space [26]. Dyer
and Frieze [9] improved the conductance estimate, and hedeound on the mixing time, of this chain,
and this gave a mixing time @ (n° logn + n*loge1).

In this section, we will sketch a chaimié, which is a slight variant of the chain discussed above, and
show (using Path Coupling) that it has a mixing timex.® log(ne~')), which significantly improves the
best “conductance based” bound for this problem. The chadrita analysis are due to Bubley and Dyer [6]
(see also [19] for an exposition).

Actually this algorithm can be used to sample u.a.r from at§20f permutations of elements &f that
satisfies the following “closure” property: &f = (a1, as,...,a,) € Qandoo(i, j) = (a1,...,ai-1,a;5, 011,
1, G4, 0541, - ., 0y) € ) (i.€., the positions ofi; anda; can be swapped and the resulting permu-
tation still lies in(2), then all permutations which are obtained frenby placinga; anda; at arbitrary
positions in the intervali, 5], also lie inQ2. Clearly the linear extensions of a partial order have tlosure
property.

The transitions from one linear extension to another in thercare obtained by (pre)-composing with a
random transpositiofp, p + 1) (if this yields a valid linear order); however, instead oiestingp € [n — 1]
uniformly, p is chosen according to a distributiohon [ — 1] that gives greater weight to values near the
center of the range. Formally, the chaﬂrtq{E is defined as follows. Let the current stateXie Then the next
stateX,; is defined by the following random experiment:

(1) Pickp € [n — 1] according to the distributiod, andr € {0, 1} u.a.r
(2 fr=1andX;o (p,p+1) € Q,thenX;;; = X; 0 (p,p + 1); otherwiseX;; = X;.

To use Path Coupling we need to specify an “adjacency” strador the state spade. We say two
statesg andg’ are adjacent ifff = g o (4, ) for some transpositioi, j) with 1 < i < j < n, and the
“distance” §(g,¢') in this case is defined to bg— i. Since this distance is symmetric (i.é(g,¢') =
d(g', 9)), this adjacency structure yields a weighted, undirecteglyH on vertex sef). One can verify
that the shortest path between adjacent siatg'sin H is the direct one that uses the edgeg’). We may
thus extend to a metric orf2 by definingd(g, h) for arbitrary stateg, h € € to be the length of a shortest
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path fromg to h in H, and all conditions of the Path Coupling Lemma 6.3 are now thetmains to define
a coupling(g, h) — (¢', ') for adjacent stateg, h and then bound&[d(g', h')].

The Coupling is defined as follows. L&j, h) be a pair of adjacent states bh and leth = g o (i, j).
Then the transition t¢g¢’, #') is defined by the following experiment:

(i) Pick p € [n — 1] according to distribution/, andr, € {0,1} u.a.r. Ifj —i = 1 andp = i, set
rp = 1 —ry; otherwise set;, = r,.

(i) f rg=1andgo (p,p+1) € Qthensey’ =go(p,p+1)else sey’ =g.

(i) If r, =1andho (p,p+1) € Qthenset =ho (p,p+ 1) else seh’ = h.

Lemma 7.4 For adjacent stateg andh, for a suitable choice of the probability distributioh we have

B (3 0) | .0 < (1 " )ilg.h) .

In light of Lemma 6.3, this implies that the mixing time®t;, is O(n® log(ne 1)) (since the “diameter”
D of the graphH is easily seen to be at mo&})). It thus only remains to prove Lemma 7.4.

Proof of Lemma 7.4: We only provide the skeleton of the proof; details can be tbim[6]. When
h = go (i,j), itis easy to see that when¢ {i — 1,i,5 — 1,5}, we will haveh’ = ¢’ o (4, 5) and thus
d(g',h') =d(g,h) = j—i. Whenp =i — 1 orp = j, itis again easily checked thmt [6(¢’', k') | g, h,p =
i—1Vp=7j]<d(g,h)+1/2.

The “interesting case” is whem = i or p = j — 1. These are symmetric, so let us focus on the case
p = i. There are two sub-cases— i = 1 andj — ¢ > 2. First, consider the cage— ¢ = 1. In this case, we
have made sure, by setting = 1 — ry, that only one of; or & “fires” in the Coupling, and thug’ = »’ and
therefored(¢', h') = 0! In the casej — i > 2, by the “closure” property of2 discussed earlier (this is the
only place where we use this closure property), we know lotti, i + 1), h o (i,i 4+ 1) € Q, thus either
rx =ry = 0andthen(¢’,h') = d(g,h), orrx =ry =1l anddé(¢’,h') =j—i—1=§(g,h) — 1. Hence
d(g', h') is less thard (g, h) in expectation.

Summing up, it follows from the above discussion that

I D IO IG ) TG

(30)

Specializing the probability distributiodi(-) to beJ(p)d:efC(p +1)(n —p— 1) where¢ = 6/(n®> —n)isa
normalizing constant, and usinagg, k) = j — i, we get from (30) thak [6(¢',h")] < (1 = {)d(g,h). O
(Lemma 7.4)

8 Coupling is weaker than Conductance

We have seen several Coupling based proofs in the last 8agtich are not only extremely simple and
elegant, but also end up giving much better bounds on mixmeg than known via conductance based
arguments. So, is Coupling the panacea as far as boundiriggnirnes goes? In particular, is Coupling as
powerful as conductance, and doesdpturerapid mixing exactly?

This fundamental question was unanswered for a long timereoently when Kumar and Ramesh [27]
proved the following important result: For the famous Jer8inclair chain for sampling perfect and near-
perfect matchings, no Coupling argument can show rapidngixihe chain is known to be rapidly mixing
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using a canonical paths argument [20]). Hence Couplingtisailg “weaker” than conductance! We discuss
the salient features behind their proof in this section.

The Jerrum-Sinclair Chain. We are given a bipartite graght = (V1, V,, E) with |V | = |V,2| = n and the
goal is to sample u.a.r from the sBtof perfect and near-perfect matchings(vf{a near-perfect matching is
a matching that saturates all but two vertice$:9f Jerrum and Sinclair [20] proposed the following natural
Markov chaindt;s for sampling fromJ3: At each stateV/, the chain moves to a stald’ defined by the
following random experiment:

(i) Pickr € {0,1} u.a.rand an edgec€ F u.a.r.

(i) If r=0setM' = M; Else
(i) If M is a perfect matching: Then sgét’ = M \ {e} if e € M, orelseM’ = M.
(iv) SupposeM is a near-perfect matching. Let= (u,v). There are two cases:

(@) If u,v are both unmatched i/, setM’ = M U {e}. [Add Move]

(b) If exactly one ofu, v is unmatched, then sé@f’ = M \ {¢'} U {e} where¢' is the edge inV/
incident on whichever of., v is matched[Swap Move]

(v) If none of the above conditions are met, 8ét = M.

A special graphG. Anil Kumar and Ramesh [27] show that for a certain gr&ptevery Coupling strategy
on the above chain will require time exponentialrin This graph has some special properties which are
used in the proof; these are:

1. G hasQ(%}) perfect matchings for some constant 1.

c

2. Each vertex o7 has degree at least:, for somea < 1/2.
3. For every pair of vertices, the intersection of their idigrhoods has size at maest, /2.

Such a grapltz can be shown to exist using the probabilistic method (seexXample the final version of
[27]).

Modeling the Coupling Process.The coupling procesS = (X, ) is specified by transition probabilities
pe(v,w) wherev = (a,b) € P x P, andw = (¢, d) € P x P are pairs of states if3. Note that
pe(v, w) could even be a function of the history, i.e., the transifwababilities could vary with time (we
do not show the time dependence for notational convenidndet should be treated as implicit). Since we
are aiming for a negative result and wish to rule out the erist ofany Coupling based proof, the only
thing we will (and can) assume about these probabilitiesasthe processe¥ and) must individually be
faithful copies of);g, or in other words: Ifv = (z,y), then for each:’ € 8 and for each time instart

> wer (@) Pe(v,w) = P(z,z') whereT'(z') = {(z',2) | z € P} and (-, -) is the transition probabilities
of the chairdit;s, and a similar equation faP(y, y') for eachy’ € .

Idea behind the Proof. The basic structure of the proof is the following: Define astdnce” between the
two statesX, Y in a Coupling, relative to which the states will have a teroyeo drift awayfrom each other
in any Coupling, i.e., most transitions of any Coupling distance increasingThen analyze this drifting
behavior and show that staring with two staté, ;) at a distanc® (n) apart, any Coupling will require
exponential number of stegsbefore the stateX;, Y; become equal, with say a probability bf2. This
gives an exponential lower bound on the Coupling time for stngtegy, as desired.
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8.1 Details of the Analysis

We partition the states of the Coupling chéiinto layersL(i), i = 0, ..., 2n according to the “distance’
between its elements, whefgi) contains of all pairgM, N) € B x P such thatM & N| = i. We further
partition each seL (i) into two setsBot (i) and Top(i), where Bot(i) = {(M, N)| 3 vertexv which is
unmatched in exactly one @/, N}, and Top(i) = {(M, N)| either bothAM/ and N are perfect matchings
or both are near-perfect matchings with the same unmatobrtides .

A move inC from L(i) to L(j) is leftwardsor distance reducingf j < 4, andrightwardsor distance
increasingif j > 4. SinceG has§)(Z; ) perfect matchings, with overwhelming probability, therstaate of
the Coupling lies inL(i) for somei > n/4. For simplicity therefore, we assume that the Couplinoegins
at some state iiv(ig), i > n/4.

The idea now is to upper bound the probabilities of the leftiteansitions and lower bound the proba-
bilities of the rightward transitions, and then use thesanois to show that the Coupling has a tendency to
drift towards the right. Finally, this will imply that the xpected) number of steps to reach a staté ()
will be exponentially large, giving us our desired result.

The Key Lemmas.We now state the main Lemmas which bound transition proiialilbetween different
layers. We will later use the statements of these Lemmasugube desired “rightward drift”. We give a
representative proof of one of the Lemmas (the proofs of therd.emmas can be found in [27], and we do
not reproduce them here).

Lemma 8.1 No transition inC can change the distance by more than

Lemma 8.2 For any coupling strategy, the sum of transition probateistfrom(A, N) € Bot(i) to vertices
in L(j), j < i, is at mostz.tl,

Lemma 8.3 For any coupling strategy, the sum of the transition proliies from (M, N) € Bot(i) into

UL, Bot(j) is at least®/> 2

Lemma 8.4 For any coupling strategy, the sum of the transition proliies from (M, N) € Bot(i) into
Top(i) U Top(i + 1) is at mosts2.

Lemma 8.5 For any coupling strategy, all transitions frofiV/, N) € Top(i) are to vertices in either
Top(i) orin Bot(j) for somej > i — 2.

We only prove Lemma 8.3 as it is the key Lemma that establiaheadency of any Coupling to drift to the
right. This should give a flavor of the sort of arguments neagsto prove the other Lemmas as well.

Proof of Lemma 8.3: Since(M, N) € Bot(i), three cases arise: (&) is a near-perfect matching and

is a perfect matching; (b)/ is a perfect matching antf is a near-perfect matching; and (c) Bdthand N
are near-perfect matchings with at most one common unmétatrgex. Case (b) is symmetric to Case (a),
so we consider Cases (a) and (c) in turn.

Case (a): M is near-perfect anV is perfect. Leta € V; andb € V, be the unmatched vertices M.
We consider only one situation that will increaddd & N| and then lower bound the probability that this
situation occurs. The situation i87 moves toM' = M +e— (u, u') wheree = (a,u) and(u,u') € MNN.
Now M’ @& N| =|M & N| + 2. N can move taV’ where eithetN' = N or N' = N — f for some edge
f € N. In either caseM’' @ N'| > |M & N| + 1. Furthermorey’ andb are unmatched if/’, and since
(u’,b) ¢ N, at least one of them is matched Ni. We thus concludéM’, N') € Bot(j), for somej > i.
Now the probability that this situation occurs is clearlyieaistw which is at Ieale‘Q—m, for any
coupling strategy.
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Case (b): M andN are both near-perfect. Suppoke have vertices € V; andb € V, unmatched andv
has verticeg € V; andd € V5 unmatched. Let us assume that d (while ¢ could equak).

We once again focus on a particular class of moves whithmakes. Suppos&/ chooses an edge
e = (b,u), whereu is not adjacento d and(u, u') € M N N for someu’ € V, (by our assumption aboi
there exist at leastn/2— |M \ N| > an/2—i such edges. If e is picked (i.e.M' = M +e¢— (u,u)) then
IM'® N| = |M & N| + 2. Itis easy to verify now that the only moves fdf that can reduce the distance
back by2 are when it choose the unique edgec’) € M, if any, or the unique edggl, d’) € M, to swap
in. The probability of either of these happening is at r‘rénsn‘or any coupling strategy. Furthermore, in this
caseu’ € V, is unmatched inV/’ and must be matched iN’ becausdu, ') € N (itliesin M N N) and
(u,d) ¢ E by the choice of.. Hence(M', N') lies in Bot(). Summing up{M’', N') € Bot(j) forj > i

with probability at least22—"-2, O (Lemma 8.3)

8.2 Bounding the Coupling Time

With the above Lemmas in place, we are ready to finish off thadyars bounding the coupling time. The
rightward drifting behavior of any Coupling can be predicted (qualitatively) given the above Lemmas. We
now see how to quantify this intuition. We define a sequencaratom variablesy, Z, . . . which represent
the layer number of some intermediate states of the Couplivig will show thatPr[Z;, = 0] ~ te= O,
and this will imply an exponential lower bound on the Cougltime.

Define Z; to the layer number of the starting state of the CouplincAs discussed earlier, we assume
Zy > n/4. Also assume, by virtue of Lemma 8.5, that the starting s¢atea Bot() set rather than &op()
set.

For: > 0, the random variable; is defined as follows. 1¥Z;_; = 0 thenZ; = 0. Otherwise,Z; is the
layer number of the first staté reached in the Coupling that has the following properties:

1. A¢ L(Zy).

2. Aisin someBot() set orinL(0).

i1 <8

Proof: Follows easily from Lemmas 8.1 and 8.5. O

The Lemma below quantifies the “rightward drifting” behavis the sequencgy, 71, .. ..

an/2—Z;_1—2
2m

andg; = 22218 ThenPr(Z; > 7, 4| Z; 4] > L

Lemma 8.7 Definep; = pT Z oitar

Proof: By Lemma 8.3,7; > Z; ; happens with probability at leagi. By Lemma 8.5,7; < 7;
only if the first vertex visited after leavingot(Z; ;) for the last time is either ir.(j), 7 < 4, orisin
Top(Z;_1) U Top(Z;_; + 1). By Lemmas 8.2 and 8.4, this probability is at mgst The claimed result

now follows. O
Let 5 > 0 be a constant such that5/§”7;1 < 15- Thenitis easy to see using the above Lemma that

[Z Z? I‘Zz 1a0<Zz 1</377]Z (31)

qkl»—‘

4

Combining Lemma 8.6 with the above Equation, we will be ablbdund the Coupling time by appealing
to the following submartingale inequality [27] (see als6])1

Propostion 8.8 Let 7, 71, Z,, - - - be a sequence of random variables with the following progergfor
someR, A, M > 0):
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1. Z; > 0,forall s > 0. FurtherZ; = 0= Z; ;1 =0, forall : > 0.
2. |Zj— Zi 1| < Aforalli,i > 1.
B E[Zi—Zi1|Zi1;0< Z;1 <R > M,foralli,i > 1.

LetT be the random variable defined asn{i > 0/Z; = 0}. Then

_ M(R-A)

_mzy
PriT <t|Zy) <e a2 +te a?

Note that the above is very similar in spirit to Azuma’s inality applied to submartingales, except that the
assumption (3) above is made only when conditione@ en7; ; < R, and not for any value of; ; (as
is done in Azuma'’s inequality).

Let us now apply the above Proposition to our setting. t.die the earliest instant at which the prob-
ability that coupling time exceeds falls belowe. DefineT = min{i > 0|Z; = 0}. Then, applying
Proposition 8.8 withA = 8, M = 1/4, R = fnandZ, > n/4, we get

1—¢e <Pr[T < t.|Z] < t.e ©M .
It follows thatt. > (1 — ¢)exp(O(n)). We have thus proved the following:

Theorem 8.9 ([27]) Consider any Coupling process for the Markov ch@litys for sampling from perfect
and near-perfect matchings. The probability that this psschas “coupled” exceeds$ — <) only after time
Q((1 — €)e®™)). Thus, no proof of rapid mixing &1;5 exists based on the Coupling Lemma.

9 Concluding Remarks and Open Questions

We have seen that the mixing rate of a Markov chain is captoydtie spectral gap and also by a geometric
parameter called Conductance. We discussed ways to boarabitductance, and also ways to bound the
spectral gap directly, based on construction of canoniattigor flows between every pair of states that do
not overload any transition of the Markov chain. The “flow’sked approach led to the notion of resistance
which alsocapturesthe spectral gap (up to square factors). We showed that farge Iclass of chains,
the existence of “good” canonical paths with low edge-cstiga also captures mixing time, and thus is
no weaker than the resistance based approach. We nevssgtliglmonstrated that spreading the flow along
multiple paths might still be a very useful design tool bycdissing the recent result of [34] on the rapid
mixing of a natural chain for sampling@r1 knapsack solutions.

We then turned to an entirely different approach to proviagiad mixing: Coupling. We discussed
“Path Coupling” which is a useful tool in designing good Cliugs. We saw several simple and elegant
applications of Coupling which invariably gave much betteunds on mixing time than known through
conductance. One of these examples wadthénapsack problem with uniform item sizes for which we
proved a much better mixing time bound than seems possibig tlee (more difficult) approach of [34].

Despite the appeal of Coupling in several applicationsiritd out that Coupling is weaker than conduc-
tance in the sense that there are Markov chains with an ergiahgap between their actual mixing time and
that which can be deduced using any Coupling strategy. Véaistied the result of [27] which showed such
a result for the famous Jerrum-Sinclair chain for samplingarmly from the set of perfect and near-perfect
matchings of a bipartite graph.

There are several natural questions on the relative powtreofarious techniques that are worthy of
more detailed study. We list some of them below.
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The result of Kumar and Ramesh [27] is quite natural and s&tsdoupling cannot work when there
is a measure of distance relative to which the states havedeney to drift away from each other
in any Coupling strategy. It will be nice to find other chais Which Coupling cannot prove rapid
mixing. This might shed some light on how to tackle the questie raise next.

Is there a subclass of Markov chains for which Coupling ctiarézes rapid mixing (up to polynomial
factors)? What kinds of structure in the underlying problenables easy design of good couplings,
i.e., what makes a problem “Coupling friendly”?

It almost seems that whenever Path Coupling works there igtutal” notion of adjacency and a
distance metric fixing which gives a rather easy proof of damiixing. For several problems for
which the natural choice for these notions does not work, mmwa Coupling based proof seems to
be in sight as well. It will be interesting to shed some lighttis, and investigate how one may make
Coupling work when most natural choices for doing Path Ciogpdlo not work out.

Finally there are several questions still open about désigand analyzing rapidly mixing Markov
chains for specific sampling problems. Some of our favonitesoare:

— Bipartite graphs with a given degree sequence (for sampéigglar bipartite graphs, a rapidly
mixing Markov Chain was given in [25]). More generally, cmgfency tables with given row
and column sums (th& x n case was solved in [13] using Path Coupling).

— Independent sets in graphs with maximum dedreéThe caseA < 4 has been considered in
[29, 15], and a “negative” result fak > 6 appears in [10].)

— Properk-colorings of a graph wheh < %A.
— Perfect matchings in a general bipartite graph.
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