
Notes on mathematical logic

James Aspnes

December 13, 2010

Mathematical logic is the discipline that mathematicians invented in the late
nineteenth and early twentieth centuries so they could stop talking nonsense.
It’s the most powerful tool we have for reasoning about things that we can’t
really comprehend, which makes it a perfect tool for Computer Science.

1 The basic picture

We want to model something we see in reality with something we can fit in our
heads. Ideally we drop most of the features of the real thing that we don’t care
about and keep the parts that we do care about. But there is a second problem:
if our model is very big (and the natural numbers are very very big), how do
we know what we can say about them?

1.1 Axioms, models, and inference rules

One approach is to true to come up with a list of axioms that are true state-
ments about the model and a list of inference rules that let us derive new true
statements from the axioms. The axioms and inference rules together generate a
theory that consists of all statements that can be constructed from the axioms
by applying the inference rules. The rules of the game are that we can’t claim
that some statement is true unless it’s a theorem: something we can derive as
part of the theory.

Simple example: All fish are green (axiom). George Washington is a fish
(axiom). From “all X are Y” and “Z is X”, we can derive “Z is Y” (inference
rule). Thus George Washington is green (theorem). Since we can’t do anything
else with our two axioms and one inference rule, these three statements together
form our entire theory about George Washington, fish, greenness, etc.

Theories are attempts to describe models. A model is typically a collection
of objects and relations between them. For a given theory, there may be many
models that are consistent with it: for example, a model that includes both green
fishy George Washington and MC 10,000-foot Abraham Lincoln is consistent
with the theory above, because it doesn’t say anything about Abraham Lincoln.

1

1.2 Consistency

A theory is consistent if it can’t prove both P and not-P for any P . Consis-
tency is incredibly important, since all the logics people actually use can prove
anything starting from P and not-P .

1.3 What can go wrong

If we throw in too many axioms, you can get an inconsistency: “All fish are
green; all sharks are not green; all sharks are fish; George Washington is a
shark” gets us into trouble pretty fast.

If we don’t throw in enough axioms, we underconstrain the model. For
example, the Peano axioms for the natural numbers (see example below) say
(among other things) that there is a number 0 and that any number x has a
successor S(x) (think of S(x) as x + 1). If we stop there, we might have a
model that contains only 0, with S(0) = 0. If we add in 0 6= S(x) for any
x, then we can get stuck at S(0) = 1 = S(1). If we add yet another axiom
that says S(x) = S(y) if and only if x = y, then we get all the ordinary
natural numbers 0, S(0) = 1, S(1) = 2, etc., but we could also get some extras:
say 0′, S(0′) = 1′, S(1′) = 0′. Characterizing the “correct” natural numbers
historically took a lot of work to get right, even though we all know what we
mean when we talk about them. The situation is of course worse when we are
dealing with objects that we don’t really understand; here the most we can hope
for is to try out some axioms and see if anything strange happens.

Better yet is to use some canned axioms somebody else has already debugged
for us. In this respect the core of mathematics acts like a system library—it’s
a collection of useful structures and objects that are known to work, and (if we
are lucky) may even do exactly what we expect.

1.4 The language of logic

The basis of mathematical logic is propositional logic, which was essentially
invented by Aristotle. Here the model is a collection of statements that are
either true or false. There is no ability to refer to actual things; though we
might include the statement “George Washington is a fish”, from the point
of view of propositional logic that is an indivisible atomic chunk of truth or
falsehood that says nothing in particular about George Washington or fish. If
we treat it as an axiom we can prove the truth of more complicated statements
like “George Washington is a fish or 2+2=5” (true since the first part is true),
but we can’t really deduce much else. Still, this is a starting point.

If we want to talk about things and their properties, we must upgrade to
predicate logic. Predicate logic adds both constants (stand-ins for objects in
the model like “George Washington”) and predicates (stand-ins for properties
like “is a fish”). It also lets use quantify over variables and make universal
statements like “For all x, if x is a fish then x is green.” As a bonus, we usually
get functions (“f(x) = the number of books George Washington owns about x”)

2

and equality (“George Washington = 12” implies “George Washington + 5 =
17”). This is enough machinery to define and do pretty much all of modern
mathematics.

We will discuss both of these logics in more detail below.

1.5 Standard axiom systems and models

Rather than define our own axiom systems and models from scratch, it helps to
use ones that have already proven to be (a) consistent and (b) useful. Almost
all mathematics fits in one of the following models:

• The natural numbers N. These are defined using the Peano axioms, and if
all you want to do is count, add, and multiply, you don’t need much else.
(If you want to subtract, things get messy.)

• The integers Z. Like the naturals, only now we can subtract. Division is
still a problem.

• The rational numbers Q. Now we can divide. But what about
√

2?

• The real numbers R. Now we have
√

2. But what about
√

(−1)?

• The complex numbers C. Now we are pretty much done. But what if we
want to talk about more than one complex number at a time?

• The universe of sets. These are defined using the axioms of set theory,
and produce a rich collection of sets that include, among other things,
structures equivalent to the natural numbers, the real numbers, collections
of same, sets so big that we can’t even begin to imagine what they look like,
and even bigger sets so big that we can’t use the axioms to prove whether
they exist or not. Fortunately, in Computer Science we can mostly stop
with finite sets, which makes life less confusing.

• Various alternatives to set theory, like lambda calculus, category theory
or second-order arithmetic. We won’t talk about these much, since they
generally don’t let you do anything you can’t do already with sets.

In practice, the usual way to do things is to start with sets and then define
everything else in terms of sets: e.g., 0 is the empty set, 1 is a particular set
with 1 element, 2 a set with 2 elements, etc., and from here we work our way
up to the fancier numbers. The idea is that if we trust our axioms for sets to be
consistent, then the things we construct on top of them should also be consistent
(although if we are not careful in our definitions they may not be exactly the
things we think they are).

3

http://en.wikipedia.org/lambda calculus
http://en.wikipedia.org/category theory
http://en.wikipedia.org/second-order arithmetic

2 Propositional logic

Propositional logic is the simplest form of logic. Here the only statements
that are considered are propositions, which contain no variables. Because propo-
sitions contain no variables, they are either always true or always false.

Examples of propositions:

• 2 + 2 = 4. (Always true).

• 2 + 2 = 5. (Always false).

Examples of non-propositions:

• x+ 2 = 4. (May be true, may not be true; it depends on the value of x.)

• x · 0 = 0. (Always true, but it’s still not a proposition because of the
variable.)

• x · 0 = 1. (Always false, but not a proposition because of the variable.)

As the last two examples show, it is not enough for a statement to be always
true or always false—whether a statement is a proposition or not is a structural
property. But if a statement doesn’t contain any variables (or other undefined
terms), it is a proposition, and as a side-effect of being a proposition it’s always
true or always false.

2.1 Operations on propositions

Propositions by themselves are pretty boring. So boring, in fact, that logicians
quickly stop talking about actual statements and instead haul out placeholder
names for propositions like p, q, or r. But we can build slightly more interesting
propositions by combining propositions together using various logical connec-
tives, like:

Negation The negation of p is written as ¬p, or sometimes −p or p. It has the
property that it is false when p is true, and true when p is false.

Or The or of two propositions p and q is written as p ∨ q, and is true as long
as at least one, or possibly both, of p and q is true.1 This is not always
the same as what “or” means in English; in English, “or” often is used
for exclusive or which is not true if both p and q are true. For example,
if someone says “You will give me all your money or I will stab you with
this table knife”, you would be justifiably upset if you turn over all your
money and still get stabbed. But a logician would not be at all surprised,
because the standard “or” in propositional logic is an inclusive or that
allows for both outcomes.

1The symbol is a stylized V, intended to represent the Latin word vel, meaning “or.”
(Thanks to Noel McDermott for pointing this out.)

4

Exclusive or If you want to exclude the possibility that both p and q are true,
you can use exclusive or instead. This is written as p ⊕ q, and is true
precisely when exactly one of p or q is true. Exclusive or is not used in
classical logic much, but is important for many computing applications,
since it corresponds to addition modulo 2 (see ModularArithmetic) and
has nice reversibility properties (e.g. p ⊕ (p ⊕ q) always has the same
truth-value as q).

And The and of p and q is written as p ∧ q, and is true only when both p
and q are true.2 This is pretty much the same as in English, where “I
like to eat ice cream and I own a private Caribbean island” is not a true
statement when made by most people even though most people like to
eat ice cream. The only complication in translating English expressions
into logical ands is that logicians can’t tell the difference between “and”
and “but”: the statement “2 + 2 = 4 but 3 + 3 = 6” becomes simply
“(2 + 2 = 4) ∧ (3 + 3 = 6).”

Implication This is the most important connective for proofs. An implication
represents an “if. . . then” claim. If p implies q, then we write p → q or
p ⇒ q, depending on our typographic convention and the availability of
arrow symbols in our favorite font. In English, p⇒ q is usually rendered
as “If p, then q,” as in “If you step on your own head, it will hurt.” The
meaning of p⇒ q is that q is true whenever p is true, and the proposition
p⇒ q is true provided (a) p is false (in which case all bets are off), or (b)
q is true. In fact, the only way for p ⇒ q to be false is for p to be true
but q to be false; because of this, p ⇒ q can be rewritten as ¬p ∨ q. So,
for example, the statements “If 2 + 2 = 5, then I’m the Pope”, “If I’m the
Pope, then 2 + 2 = 4”, and “If 2 + 2 = 4, then 3 + 3 = 6”, are all true,
provided the if/then is interpreted as implication. Normal English usage
does not always match this pattern; instead, if/then in normal speech is
often interpreted as the much stronger biconditional (see below).

Biconditional Suppose that p ⇒ q and q ⇒ p, so that either both p and q
are true or both p and q are false. In this case, we write p ⇔ q, p ⇔ q,
or p ⇔ q, and say that p holds if and only if q holds. The truth of
p ⇔ q is still just a function of the truth or falsehood of p and q; though
there doesn’t seem any connection between the two sides of the statement,
“2 + 2 = 5 if and only if I am the Pope” is still true (provided it is not
uttered by the Pope). The only way for p ⇔ q to be false is for one side
to be true and one side to be false.

The result of applying any of these operations is called a compound propo-
sition.

Here’s what all of this looks like when typeset nicely. Note that in some
cases there is more than one way to write a compound expression. Which you

2This symbol is a stylized A, short for the latin word atque, meaning “and.”

5

http://pine.cs.yale.edu/pinewiki/ModularArithmetic

choose is a matter of personal preference, but you should try to be consistent.
NOT p ¬p, p
p OR q p ∨ q
p XOR q p⊕ q
p AND q p ∧ q
p implies q p→ q, p⇒ q
p iff q p↔ q, p⇔ q

2.1.1 Precedence

When reading a logical expression, the order of precedence in the absence of
parentheses is negation, and, or, implication, biconditional. So (¬p ∨ q ∧ r ⇒
s⇔ t) is interpreted as ((((¬p)∨(q∧r))⇒ s)⇔ t). Or and and are associative,
so (p∨q∨r) is the same as ((p∨q)∨r) and as (p∨(q∨r)), and similarly (p∧q∧r)
is the same as ((p ∧ q) ∧ r) and as (p ∧ (q ∧ r)).

There does not seem to be a standard convention for the precedence of XOR,
since logicians don’t use it much. There are plausible arguments for putting
XOR in between AND and OR, but it’s probably safest just to use parentheses.

Implication is not associative, although the convention is that it binds “to
the right,” so that a⇒ b⇒ c is read as a⇒ (b⇒ c); few people ever remember
this, so it is usually safest to put in the parentheses. I personally have no idea
what p ⇔ q ⇔ r means, so any expression like this should be written with
parentheses as either (p⇔ q)⇔ r or p⇔ (q ⇔ r).

2.2 Truth tables

To define logical operations formally, we give a truth table. This gives, for any
combination of truth values (true or false, which as computer scientists we often
write as 1 or 0) of the inputs, the truth value of the output. So truth tables are
to logic what addition tables or multiplication tables are to arithmetic.

Here is a truth table for negation:

p ¬p
0 1
1 0

And here is a truth table for the rest of the logical operators:

p q p ∨ q p⊕ q p ∧ q p⇒ q p⇔ q
0 0 0 0 0 1 1
0 1 1 1 0 1 0
1 0 1 1 0 0 0
1 1 1 0 1 1 1

See also RosenBook §§1.1–1.2 or BiggsBook §§3.1–3.3.
We can think of each row of a truth table as a model for propositonal logic,

since the only things we can describe in propositional logic are whether par-
ticular propositions are true or not. Constructing a truth table corresponds to

6

generating all possible models. This can be useful if we want to figure out when
a particular proposition is true.

2.3 Tautologies and logical equivalence

A compound proposition that is true no matter what the truth-values of the
propositions it contains is called a tautology. For example, p⇒ p, p∨¬p, and
¬(p ∧ ¬p) are all tautologies, as can be verified by constructing truth tables. If
a compound proposition is always false, it’s a contradiction. The negation of
a tautology is a contradiction and vice versa.

The most useful class of tautologies are logical equivalences. This is a
tautology of the form X ⇔ Y , where X and Y are compound propositions. In
this case, X and Y are said to be logically equivalent and we can substitute
one for the other in more complex propositions. We write X ≡ Y if X and Y
are logically equivalent.

The nice thing about logical equivalence is that is does the same thing for
Boolean formulas that equality does for algebraic formulas: if we know (for
example), that p ∨ ¬p is equivalent to 1, and q ∨ 1 is equivalent to q, we can
grind q ∨ p ∨ ¬p ≡ q ∨ 1 ≡ 1 without having to do anything particularly clever.
(We will need cleverness later when we prove things where the consequent isn’t
logically equivalent to the premise.)

To prove a logical equivalence, one either constructs a truth table to show
that X ⇔ Y is a tautology, or transforms X to Y using previously-known logical
equivalences. Some examples:

• p ∧ ¬p ≡ 0: Construct a truth table

p ¬p p ∧ ¬p 0
0 1 0 0
1 0 0 0

and observe that the last two columns are always equal.

• p ∨ p ≡ p: Use the truth table

p p ∨ p
0 0
1 1

• p⇒ q ≡ ¬p ∨ q: Again construct a truth table

p q p⇒ q ¬p ∨ q
0 0 1 1
0 1 1 1
1 0 0 0
1 1 1 1

7

• ¬(p ∨ q) ≡ ¬p ∧ ¬q: (one of De Morgan’s laws; the other is ¬(p ∧ q) ≡
¬p ∨ ¬q).

p q p ∨ q ¬(p ∨ q) ¬p ¬q ¬p ∧ ¬q
0 0 0 1 1 1 1
0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 1 0 0 0 0

• p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) (one of the distributive laws; the other is
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)).

p q r q ∧ r p ∨ (q ∧ r) p ∨ q p ∨ r (p ∨ q) ∧ (p ∨ r)
0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0
0 1 1 1 1 1 1 1
1 0 0 0 1 1 1 1
1 0 1 0 1 1 1 1
1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1

• (p⇒ r)∨(q ⇒ r) ≡ (p∧q)⇒ r. Now things are getting messy, so building
a full truth table may take awhile. But we have take a shortcut by using
logical equivalences that we’ve already proved (plus associativity of ∨):

(p⇒ r) ∨ (q ⇒ r) ≡ (¬p ∨ r) ∨ (¬q ∨ r) [Using p⇒ q ≡ ¬p ∨ q twice]

≡ ¬p ∨ ¬q ∨ r ∨ r [Associativity and commutativity of ∨]

≡ ¬p ∨ ¬q ∨ r [p ≡ p ∨ p]
≡ ¬(p ∧ q) ∨ r [De Morgan’s law]

≡ (p ∧ q)⇒ r. [p⇒ q ≡ ¬p ∨ q]

This last equivalence is a little surprising. It shows, for example, that if
somebody says “It is either the case that if you study you will graduate from
Yale with distinction, or that if you join the right secret society you will graduate
from Yale with distinction”, then this statement (assuming we treat the or as
∨) is logically equivalent to “If you study and join the right secret society, then
you will graduate from Yale with distinction.” It is easy to get tangled up in
trying to parse the first of these two propositions; translating to logical notation
and simplifying using logical equivalence is a good way to simplify it.

Over the years, logicians have given names to many logical equivalences.
Only a few of these are actually useful to remember. These include de Mor-
gan’s laws: ¬(p∨q) ≡ (¬p∧¬q) and ¬(p∧q) ≡ (¬p∨¬q) (see WikiPedia’s page
on the subject for more versions of these), commutativity of AND and OR, the
equivalence of p⇒ q and ¬p ∨ q, and the contraposition rule p⇒ q ≡ ¬q ⇒ ¬p
(see below for more about contraposition). Anything else you need you can
probably derive from these or by writing out a truth table.

8

http://en.wikipedia.org/De Morgan's law
http://en.wikipedia.org/De Morgan's law

2.4 Inverses, converses, and contrapositives

The inverse of p ⇒ q is ¬p ⇒ ¬q. So the inverse of “If you take CPSC 202,
you will surely die” is “If you do not take CPSC 202, you will not surely die.”
There is often no connection between the truth of an implication and the truth
of its inverse: “If I am Barack Obama then I am a Democrat” does not have the
same truth-value as “If I am not Barack Obama then I am not a Democrat”, at
least according to current polling numbers.

The converse of p⇒ q is q ⇒ p. E.g. the converse of “If I am Barack Obama
then I am a Democrat” is “If I am a Democrat then I am Barack Obama.” The
converse of a statement is always logically equivalent to the inverse. Often
in proving a biconditional (e.g., “I am Barack Obama if and only if I am a
Democrat”), one proceeds by proving first the implication in one direction and
then either the inverse or the converse.

The contrapositive of p ⇒ q is ¬q ⇒ ¬p; it is logically equivalent to the
original implication (“If I am not a Democrat then I am not Barack Obama”). A
proof by contraposition proves p implies q by assuming ¬q and then proving
¬p; it is similar but not identical to an indirect proof, which assumes ¬p and
derives a contradiction.

2.5 Normal forms

A compound proposition is in conjuctive normal form (CNF for short) if it
is obtained by ANDing together ORs of one or more variables or their negations
(an OR of one variable is just the variable itself). So for example P , (P ∨Q)∧R,
(P ∨Q)∧ (Q∨R)∧ (¬P), and (P ∨Q)∧ (P ∨¬R)∧ (¬P ∨Q∨S ∨ T ∨¬U) are
in CNF, but (P ∨Q) ∧ (P ∨ ¬R) ∧ (¬P ∧Q), (P ∨Q) ∧ (P ⇒ R) ∧ (¬P ∨Q),
and (P ∨ (Q ∧ R)) ∧ (P ∨ ¬R) ∧ (¬P ∨ Q) are not. Using the equivalence
P ⇒ Q ≡ ¬P ∨Q, De Morgan’s laws, and the distributive law, it is possible to
rewrite any compound proposition in CNF.

CNF formulas are particularly useful because they support resolution (see
Inference rules below). Using the tautology (P ∨Q)∧(¬P ∨R)⇒ Q∨R, we can
construct proofs from CNF formulas by looking for occurrences of some simple
proposition and its negation and resolving them, which generates a new clause
we can add to the list. For example, we can compute

(P ∨Q) ∧ (P ∨ ¬R) ∧ (¬P ∨Q) ∧ (¬Q ∨R) ` (P ∨Q) ∧ (P ∨ ¬R) ∧ (¬P ∨Q) ∧ (¬Q ∨R) ∧Q

` (P ∨Q) ∧ (P ∨ ¬R) ∧ (¬P ∨Q) ∧ (¬Q ∨R) ∧Q ∧R

` (P ∨Q) ∧ (P ∨ ¬R) ∧ (¬P ∨Q) ∧ (¬Q ∨R) ∧Q ∧R ∧ P
` P.

This style of proof is called a resolution proof. Because of its simplicity it
is particularly well-suited for mechanical theorem provers. Such proofs can also
encode traditional proofs based on modus ponens: the inference P ∧ (P ⇒ Q) `
Q can be rewritten as resolution by expanding ⇒ to get P ∧ (¬P ∨Q) ` Q.

9

Similarly, a compound proposition is in disjunctive normal form (DNF)
if it consists of an OR of ANDs, e.g. (P ∧ Q) ∨ (P ∧ ¬R) ∨ (¬P ∧ Q). Just
as any compound proposition can be transformed into CNF, it can similarly be
transformed into DNF.

Note that conjunctive normal forms are not unique; for example, P ∨Q and
(P ∧ ¬Q) ∨ (P ∧ Q) ∨ (¬P ∧ Q) are both in conjunctive normal form and are
logically equivalent to each other. So while CNF can be handy as a way of re-
ducing the hairiness of a formula (by eliminating nested parentheses or negation
of non-variables, for example), it doesn’t necessarily let us see immediately if
two formulas are really the same.

3 Predicate logic

Using only propositional logic, we can express a simple version of a famous
argument:

• Socrates is a man.

• If Socrates is a man, then Socrates is mortal.

• Therefore, Socrates is mortal.

This is an application of the inference rule called modus ponens, which says
that from p and p ⇒ q you can deduce q. The first two statements are axioms
(meaning we are given them as true without proof), and the last is the conclusion
of the argument.

What if we encounter Socrates’s infinitely more logical cousin Spocrates?
We’d like to argue

• Spocrates is a man.

• If Spocrates is a man, then Spocrates is mortal.

• Therefore, Spocrates is mortal.

Unfortunately, the second step depends on knowing that humanity implies
mortality for everybody, not just Socrates. If we are unlucky in our choice of
axioms, we may not know this. What we would like is a general way to say that
humanity implies mortality for everybody, but with just propositional logic, we
can’t write this fact down.

3.1 Variables and predicates

The solution is to extend our language to allow formulas that involve variables.
So we might let x, y, z, etc. stand for any element of our universe of discourse
or domain—essentially whatever things we happen to be talking about at the
moment. We can now write statements like:

10

• “x is human.”

• “x is the parent of y.”

• “x+ 2 = x2.”

These are not propositions because they have variables in them. Instead,
they are predicates; statements whose truth-value depends on what concrete
object takes the place of the variable. Predicates are often abbreviated by single
capital letters followed by a list of arguments, the variables that appear in the
predicate, e.g.:

• H(x) = “x is human.”

• P (x, y) = “x is the parent of y.”

• Q(x) = “x + 2 = x2.”

We can also fill in specific values for the variables, e.g. H(Spocrates) =
“Spocrates is human.” If we fill in specific values for all the variables, we have
a proposition again, and can talk about that proposition being true (e.g. H(2)
and H(−1) are true) or false (H(0) is false).

3.2 Quantifiers

What we really want though is to be able to say when H or P or Q is true for
many different values of their arguments. This means we have to be able to
talk about the truth or falsehood of statements that include variables. To do
this, we bind the variables using quantifiers, which state whether the claim
we are making applies to all values of the variable (universal quantification),
or whether it may only apply to some (existential quantification).

3.2.1 Universal quantifier

The universal quantifier ∀ (pronounced “for all”) says that a statement must
be true for all values of a variable within some universe of allowed values (which
is often implicit). For example, “all humans are mortal” could be written ∀x :
Human(x) ⇒ Mortal(x) and “if x is positive then x + 1 is positive” could be
written ∀x : x > 0⇒ x+ 1 > 0.

If you want to make the universe explicit, use set membership notation,
e.g. ∀x ∈ Z : x > 0 ⇒ x + 1 > 0. This is logically equivalent to writing
∀x : x ∈ Z ⇒ (x > 0⇒ x+1 > 0) or to writing ∀x : (x ∈ Z∧x > 0)⇒ x+1 > 0,
but the short form makes it more clear that the intent of x ∈ Z is to restrict
the range of x.3

The statement ∀x : P (x) is equivalent to a very large AND; for example,
∀x ∈ N : P (x) could be rewritten (if you had an infinite amount of paper) as
P (0) ∧ P (1) ∧ P (2) ∧ P (3) ∧ Normal first-order logic doesn’t allow infinite

3Programmers will recognize this as a form of syntactic sugar.

11

expressions like this, but it may help in visualizing what ∀x : P (x) actually
means. Another way of thinking about it is to imagine that x is supplied by
some adversary and you are responsible for showing that P (x) is true; in this
sense, the universal quantifier chooses the worst case value of x.

3.2.2 Existential quantifier

The existential quantifier ∃ (pronounced “there exists”) says that a state-
ment must be true for at least one value of the variable. So “some human is
mortal” becomes ∃x : Human(x) ∧Mortal(x). Note that we use AND rather
than implication here; the statement ∃x : Human(x) ⇒ Mortal(x) makes the
much weaker claim that “there is some thing x, such that if x is human, then
x is mortal,” which is true in any universe that contains an immortal purple
penguin—since it isn’t human, Human(penguin)⇒ Mortal(penguin) is true.

As with ∀, ∃ can be limited to an explicit universe with set membership
notation, e.g., ∃x ∈ Z : x = x2. This is equivalent to writing ∃x : x ∈ Z∧x = x2.

The formula ∃x : P (x) is equivalent to a very large OR, so that ∃x ∈ N : P (x)
could be rewritten as P (0)∨P (1)∨P (2)∨P (3)∨ Again, you can’t generally
write an expression like this if there are infinitely many terms, but it gets the
idea across.

3.2.3 Negation and quantifiers

• ¬∀x : P (x) ≡ ∃x : ¬P (x).

• ¬∃x : P (x) ≡ ∀x : ¬P (x).

These are essentially the quantifier version of De Morgan’s laws: the first
says that if you want to show that not all humans are mortal, it’s equivalent to
finding some human that is not mortal. The second says that to show that no
human is mortal, you have to show that all humans are not mortal.

3.2.4 Restricting the scope of a quantifier

Sometimes we want to limit the universe over which we quantify to some re-
stricted set, e.g., all positive integers or all baseball teams. We can do this
explicitly using implication:

∀x : x > 0⇒ x− 1 ≥ 0

or we can abbreviate by including the restriction in the quantifier expression
itself:

∀x > 0 : x− 1 ≥ 0.

Similarly
∃x : x > 0 ∧ x2 = 81

can be written as
∃x > 0 : x2 = 81.

12

Note that constraints on ∃ get expressed using AND rather than implication.
The use of set membership notation to restrict a quantifier is a special case

of this. Suppose we want to say that 79 is not a perfect square, by which we
mean that there is no integer whose square is 79. If we are otherwise talking
about real numbers (two of which happen to be square roots of 79), we can
exclude the numbers we don’t want by writing

¬∃x ∈ Zx2 = 79

which is interpreted as
¬∃x(x ∈ Z ∧ x2 = 79)

or, equivalently
∀xx ∈ Z⇒ x2 6= 79.

Here Z = {. . . ,−2,−1, 0, 1, 2, . . . } is the standard set of integers. See also
SetTheory for more about ∈ .

3.2.5 Nested quantifiers

It is possible to nest quantifiers, meaning that the statement bound by a quan-
tifier itself contains quantifiers. For example, the statement “there is no largest
prime number” could be written as

¬∃x : (Prime(x) ∧ ∀y : y > x⇒ ¬Prime(y))

i.e., “there does not exist an x that is prime and any y greater than x is not
prime.” Or in a shorter (though not strictly equivalent) form:

∀x∃y : y > x ∧ Prime(y)

which we can read as “for any x there is a bigger y that is prime.”
To read a statement like this, treat it as a game between the ∀ player and

the ∃ player. Because the ∀ comes first in this statement, the for-all player
gets to pick any x it likes. The ∃ player then picks a y to make the rest of the
statement true. The statement as a whole is true if the ∃ player always wins the
game. So if you are trying to make a statement true, you should think of the
universal quantifier as the enemy (the adversary in algorithm analysis) who
says “nya-nya: try to make this work, bucko!”, while the existential quantifier
is the friend who supplies the one working response.

Naturally, such games can go on for more than two steps, or allow the same
player more than one move in a row. For example

∀x∀y∃zx2 + y2 = z2

is a kind of two-person challenge version of the Pythagorean theorem where the
universal player gets to pick x and y and the existential player has to respond
with a winning z. (Whether the statement itself is true or false depends on the
range of the quantifiers; it’s false, for example, if x, y, and z are all natural

13

http://pine.cs.yale.edu/pinewiki/SetTheory

numbers or rationals but true if they are all real or complex. Note that the
universal player only needs to find one bad (x, y) pair to make it false.)

One thing to note about nested quantifiers is that we can switch the order
of two universal quantifiers or two existential quantifiers, but we can’t swap a
universal quantifier for an existential quantifier or vice versa. So for example
∀x∀y(x = y ⇒ x + 1 = y + 1) is logically equivalent to ∀y∀x(x = y ⇒ y + 1 =
x+ 1), but ∀x∃yy < x is not logically equivalent to ∃y∀xy < x. This is obvious
if you think about it in terms of playing games: if I get to choose two things
in a row, it doesn’t really matter which order I choose them in, but if I choose
something and then you respond it might make a big difference if we make you
go first instead.

One measure of the complexity of a mathematical statement is how many
layers of quantifiers it has, where a layer is a sequence of all-universal or all-
existential quantifiers. Here’s a standard mathematical definition that involves
three layers of quantifiers, which is about the limit for most humans:

lim
x→∞

f(x) = y

≡ ∀ε > 0 : ∃N : ∀x > N : |f(x)− y| < ε.

Now that we know how to read nested quantifiers, it’s easy to see what the
right-hand side means:

1. The adversary picks ε, which must be greater than 0.

2. We pick N .

3. The adversary picks x, which must be greater than N .

4. We win if f(x) is within ε of y.

So, for example, a proof of

lim
x→∞

1/x = 0

would follow exactly this game plan:

1. Choose some ε > 0.

2. Let N > 1/ε. (Note that we can make our choice depend on previous
choices.)

3. Choose any x > N .

4. Then x > N > 1/ε > 0, so 1/x < 1/N < ε⇒ |1/x− 0| < ε. QED!

14

3.2.6 Examples

Here are some more examples of translating English into statements in predicate
logic:

English Logic Other variations
All crows are black. ∀xCrow(x)⇒ Black(x) Equivalent to ¬∃xCrow(x) ∧ ¬Black(x) or ∀x¬Black(x)⇒ ¬Crow(x). The latter is the core of a classic “paradox of induction” in philosophy: if seeing a black crow makes me think it’s more likely that all crows are black, shouldn’t seeing a logically equivalent non-black non-crow (e.g., a banana yellow AMC Gremlin) also make me think all non-black objects are non-crows, i.e., that all crows are black? (I think this mostly illustrates that logical equivalence only works for true/false and not for probabilities.)
Some cows are brown. ∃xCow(x) ∧Brown(x)
No cows are blue. ¬∃xCow(x) ∧Blue(x) ≡ ∀x¬(Cow(x) ∧Blue(x) ≡ ∀x(¬Cow(x) ∨ ¬Blue(x)) ≡ ∀xCow(x)⇒ ¬Blue(x) ≡ ∀xBlue(x)⇒ ¬Cow(x). (But see Paul Bunyan’s ox.)
All that glitters is not gold. ¬∀xGlitters(x)⇒ Gold(x) ≡ ∃xGlitters(x) ∧ ¬Gold(x). Note that the English syntax is a bit ambiguous: a literal translation might look like ∀xGlitters(x)⇒ ¬Gold(x), which is not logically equivalent. This is why predicate logic is often safer than natural language.
No shirt, no service. ∀x¬Shirt(x)⇒ ¬Served(x)
Every event has a cause. ∀x∃yCauses(y, x)
Every even number greater than 2 can be expressed as the sum of two primes. ∀x(Even(x) ∧ x > 2)⇒ (∃p∃qPrime(p) ∧ Prime(q) ∧ x = p+ q) Note: the truth value of this statement is currently unknown. See Goldbach’s conjecture.

3.3 Functions

A function symbol looks like a predicate but instead of computing a truth
value it returns a new object. So for example the successor function S in the
Peano axioms for the natural numbers returns x + 1 when applied as S(x).
Sometimes when there is only a single argument we omit the parentheses, e.g.,
Sx = S(x), SSSx = S(S(S(x))).

3.4 Equality

Often we include a special equality predicate =, written x = y. The interpre-
tation of x = y is that x and y are the same element of the domain. It satisfies
the reflexivity axiom ∀x : x = x and the substitution axiom schema:

∀x∀y(x = y ⇒ (Px⇔ Py))

where P is any predicate. This immediately gives a substitution rule that
says x = y, P (x) ` P (y). It’s likely that almost every proof you ever wrote down
in high school algebra consisted only of many applications of the substitution
rule.

Example: We’ll prove ∀x∀y(x = y ⇒ y = x) from the above axioms (this
property is known as symmetry). Apply substitution to the predicate Px ≡
y = x to get ∀x∀y(x = y ⇒ (y = x⇔ x = x)). Use reflexivity to rewrite this as
∀x∀y(x = y ⇒ (y = x⇔ T)) or ∀x∀y(x = y ⇒ y = x) as claimed.

Exercise: Prove ∀x∀y∀z(x = y ∧ y = z ⇒ x = z). (This property is known
as transitivity.)

3.4.1 Uniqueness

An occasionally useful abbreviation is ∃!xP (x), which stands for “there exists
a unique x such that P (x).” This is short for

(∃xP (x)) ∧ (∀x∀yP (x) ∧ P (y)⇒ x = y).

15

http://en.wikipedia.org/Paul Bunyan
http://en.wikipedia.org/Goldbach's conjecture

An example is ∃!xx+ 1 = 12. To prove this we’d have to show not only that
there is some x for which x + 1 = 12 (11 comes to mind), but that if we have
any two values x and y such that x + 1 = 12 and y + 1 = 12, then x = y (this
is not hard to do). So the exclamation point encodes quite a bit of extra work,
which is why we usually hope that ∃xx+ 1 = 12 is good enough.

3.5 Models

In propositional logic, we can build truth tables that describe all possible settings
of the truth-values of the literals. In predicate logic, the analogous concept to an
assignment of truth-values is a structure. A structure consists of a set of objects
or elements (see set theory), together with a description of which elements fill
in for the constant symbols, which predicates hold for which elements, and
what the value of each function symbol is when applied to each possible list of
arguments (note that this depends on knowing what constant, predicate, and
function symbols are available—this information is called the signature of the
structure). A structure is a model of a particular theory (set of statements),
if each statement in the theory is true in the model.

In general we can’t hope to find all possible models of a given theory. But
models are useful for two purposes: if we can find some model of a particu-
lar theory, then the existence of this model demonstrates that the theory is
consistent; and if we can find a model of the theory in which some additional
statement S doesn’t hold, then we can demonstrate that there is no way to
prove S from the theory (i.e. it is not the case that T ` S, where T is the list
of axioms that define the theory).

3.5.1 Examples

• Consider the axiom ¬∃x. This axiom has exactly one model (it’s empty).

• Now consider the axiom ∃!x. This axiom also has exactly one model (with
one element).

• We can enforce exactly k elements with one rather long axiom, e.g. for
k = 3 do ∃x1∃x2∃x3∀yy = x1 ∨ y = x2 ∨ y = x3. In the absence of any
special symbols, a structure of 3 undifferentiated elements is the unique
model of this axiom.

• Suppose we add a predicate P and consider the axiom ∃xPx. Now we
have many models: take any nonempty model you like, and let P be true
of at least one of its elements. If we take a model with two elements a
and b, with Pa and ¬Pb, we get that ∃xPx is not enough to prove ∀xPx,
since the later statement isn’t true in this model.

• Now let’s bring in a function symbol S and constant symbol 0. Consider a
stripped-down version of the Peano axioms that consists of just the axiom
∀x∀ySx = Sy ⇒ x = y. Both the natural numbers N and the integers

16

Z are a model for this axiom, as is the set Zm of integers mod m for
any m (see ModularArithmetic). In each case each element has a unique
predecessor, which is what the axiom demands. If we throw in the first
Peano axiom ∀xSx 6= 0, we eliminate Z and Zm because in each of these
models 0 is a successor of some element. But we don’t eliminate a model
that consists of two copies of N sitting next to each other (only one of
which contains the “real” 0), or even a model that consists of one copy of
N (to make 0 happy) plus any number of copies of Z and Zm.

• A practical example: The family tree of the kings of France is a model of
the theory containing the two axioms ∀x∀y∀zParent(x, y)∧Parent(y, z)⇒
GrandParent(x, z) and ∀x∀yParent(x, y)⇒ ¬Parent(y, x). But this set of
axioms could use some work, since it still allows for the possibility that
Parent(x, y) and GrandParent(y, x) are both true.

4 Proofs

A proof is a way to derive statements from other statements. It starts with
axioms (statements that are assumed in the current context always to be true),
theorems or lemmas (statements that were proved already), and premises P ,
and uses inference rules to derive Q. The axioms, theorems, and premises are
in a sense the starting position of a game whose rules are given by the inference
rules. The goal of the game is to apply the inference rules until Q pops out. We
refer to anything that isn’t proved in the proof itself (i.e., an axiom, theorem,
lemma, or premise) as a hypothesis; the result Q is the conclusion.

When a proof exists of Q from some premises P1, P2, . . . , we say that Q is
deducible or provable from P1, P2, . . . , which is written as

P1, P2, . . . ` Q.

Note that axioms are usually not included in list on the left-hand side. So
we can write just

` Q
if we can prove Q directly from our axioms without any additional premises.

The turnstile symbol ` has the specific meaning that we can derive the
conclusion Q by applying inference rules to the premises. This is not quite the
same thing as saying P ⇒ Q. If our inference rules are particularly weak, it may
be that P ⇒ Q is true but we can’t prove Q starting with P . Conversely, if our
inference rules are too strong (maybe they can prove anything, even things that
aren’t true) we might have P ` Q but P ⇒ Q is false. But most of the time we
will use inference rules that are just right, meaning that P ` Q implies P ⇒ Q
(soundness) and P ⇒ Q implies P ` Q (completeness). The distinction
between ` and ⇒ is then whether we want to talk about the existence of a
proof (the first case) or about the logical relation between two statements (the
second). As a consequence, you probably won’t see ` again after you stop
reading these notes.

17

http://pine.cs.yale.edu/pinewiki/ModularArithmetic

4.1 Inference Rules

The main source of inference rules is tautologies of the form P ⇒ Q; given such
a tautology, there is a corresponding inference rule that allows us to assert Q
once we have P (either because it’s an axiom/theorem/premise or because we
proved it already while doing the proof). The most important inference rule is
modus ponens, based on the tautology (p ∧ (p ⇒ q)) ⇒ q; this lets us, for
example, write the following famous argument:4

1. If it doesn’t fit, you must acquit. [Axiom]

2. It doesn’t fit. [Premise]

3. You must acquit. [Modus ponens applied to 1+2]

There are many named inference rules in classical propositional logic. We’ll
list some of them below. You don’t need to remember the names of anything
except modus ponens, and most of the rules are pretty much straightforward
applications of modus ponens plus some convenient tautology that can be proved
by truth tables or stock logical equivalences. (For example, the “addition”
rule below is just the result of applying modus ponens to p and the tautology
p⇒ (p ∨ q).)

Inference rules are often written by putting the premises above a horizontal
line and the conclusion below. In text, the horizontal line is often replaced by
the symbol ` , which means exactly the same thing. Premises are listed on the
left-hand side separated by commas, and the conclusion is placed on the right.
We can then write

Addition p ` p ∨ q.

Simplification p ∧ q ` p.

Conjunction p, q ` p ∧ q.

Modus ponens p, p⇒ q ` q.

Modus tollens ¬q, p⇒ q ` ¬p.

Hypothetical syllogism p⇒ q, q ⇒ r ` p⇒ r.

Disjunctive syllogism p ∨ q,¬p ` q.

Resolution p ∨ q,¬p ∨ r ` q ∨ r.

Of these rules, Addition, Simplification, and Conjunction are mostly used to
pack and unpack pieces of arguments. Modus ponens (and its reversed cousin
modus tollens) let us apply implications. You only need to remember modus
ponens if you can remember the contraposition rule (p ⇒ q) ≡ (¬q ⇒ ¬p).
Hypothetical syllogism just says that implication is transitive; it lets you paste

4OK, maybe not as famous as it once was.

18

together implications if the conclusion of one matches the premise of the other.
Disjunctive syllogism is again a disguised version of modus ponens (via the
logical equivalence (p ∨ q) ≡ (¬p ⇒ q)); you don’t need to remember it if you
can remember this equivalence. Resolution is almost never used by humans but
is very popular with computer theorem provers.

An argument is valid if the conclusion is true whenever the hypotheses are
true. Any proof constructed using the inference rules is valid. It does not
necessarily follow that the conclusion is true; it could be that one or more of
the hypotheses is false:

1. If you give a mouse a cookie, he’s going to ask for a glass of milk. [Axiom]

2. If he asks for a glass of milk, he will want a straw. [Axiom]

3. You gave a mouse a cookie. [Premise]

4. He asks for a glass of milk. [Modus ponens applied to 1 and 3.]

5. He will want a straw. [Modus ponens applied to 2 and 4.]

Will the mouse want a straw? No: Mice can’t ask for glasses of milk, so
axiom 1 is false.

4.2 More on proofs vs implication

Recall that P ` Q means there is a proof of Q by applying inference rules to
the axioms and P , while P ⇒ Q says that Q holds whenever P does. These
are not the same thing: provability (`) is outside the theory (it’s a statement
about whether a proof exists or not) while implication (⇒) is inside (it’s a
logical connective for making compound propositions). But most of the time
they mean almost the same thing.

For example, suppose that we can prove P ⇒ Q directly from whatever
axioms we are currently assuming, i.e., that

` P ⇒ Q.

Since we can always ignore extra premises, we get

P ` P ⇒ Q

and thus
P ` P, P ⇒ Q

and finally
P ` Q

by applying modus ponens to the right-hand side.
So we can go from ` P ⇒ Q to P ` Q.
This means that provability is in a sense weaker than implication: it holds

(assuming modus ponens) whenever implication does. But we usually don’t use
this fact much, since P ⇒ Q is a much more useful statement than P ` Q. Can
we go the other way?

19

4.2.1 The Deduction Theorem

Yes, using the Deduction Theorem.
Often we want to package the result of a proof as a Theorem (a proven

statement that is an end in itself) or Lemma (a proven statement that is intended
mostly to be used in other proofs). Typically a proof shows that if certain
premises P1, P2, . . . Pn hold, then some conclusion Q holds (with various axioms
or previously-established theorems assumed to be true from context). To use
this result later, it is useful to be able to package it as an implication P1 ∧P2 ∧
. . . Pn ⇒ Q. In other words, we want to go from

P1, P2, . . . , Pn ` Q

to
` (P1 ∧ P2 ∧ . . . ∧ Pn)⇒ Q.

The statement that we can do this, for a given set of axioms and inference
rules, is the

Theorem 1 (Deduction Theorem). If there is a proof of Q from premises
P1, P2, . . . , Pn, then there is a proof of P1 ∧ P2 ∧ . . . ∧ Pn ⇒ Q.

The actual proof of the theorem depends on the particular set of axioms and
inference rules we start with, but the basic idea is that there exists a mechanical
procedure for extracting a proof of the implication from the proof of Q assuming
P1 etc.

Caveat : In predicate logic, the deduction theorem only applies if none of the
premises contain any free variables (which are variables that aren’t bound by a
containing quantifier). Usually you won’t run into this, but see here for some
bad cases that arise without this restriction.

4.3 Inference rules for equality

The equality predicate is special, in that it allows for the substitution rule

x = y, P (x) ` P (y).

This can also be represented as an axiom schema: ∀x : ∀y : ((x = y∧P (x))⇒
P (y)).

4.4 Inference rules for quantified statements

Universal generalization If P ` Q(x) and x does not appear in P , then
P ` ∀x : Q(x). Typical use: We want to show that there is no biggest
natural number, i.e. that ∀x ∈ N : ∃y ∈ N : y > x. Let x be any element
of N. Let y = x + 1. Then y > x. (Note: there is also an instance of
existential generalization here.)

20

http://en.wikipedia.org/Deduction theorem

Universal instantiation ∀xQ(x) ` Q(c). Typical use: Given that all humans
are mortal, it follows that Spocrates is mortal.

Existential generalization Q(c) ` ∃xQ(x). Typical use: We are asked to
prove that there exists an even prime number. Look at 2: it’s an even
prime number. QED.

Existential instantiation ∃xQ(x) ` Q(c) for some particular c. (The real
rule is more complicated and says ((∀x : (Q(x) ⇒ P)) ∧ ∃y : Q(y)) ⇒ P ;
but the intent in both cases is that once you have proven that at least one
c satisfying Q exists, you can give it a name and treat it as an object you
actually have in your hands.) Typical use: Suppose we are told that there
exists a prime number greater than 7. Let p be some such prime number
greater than 7.

5 Proof techniques

A proof technique is a template for how to go about proving particular classes
of statements: this template guides you in the choice of inference rules (or other
proof techniques) to write the actual proof. This doesn’t substitute entirely for
creativity (there is no efficient mechanical procedure for generating even short
proofs unless), but it can give you some hints for how to get started.

In the table below, we are trying to prove A⇒ B for particular statements
A and B. The techniques are mostly classified by the structure of B. Before
applying each technique, it may help to expand any definitions that appear in
A or B.5

If you want to prove A ⇔ B, the usual approach is to prove A ⇒ B and
A ⇐ B separately; proving A ⇒ B and ¬A ⇒ ¬B also works (because of
contraposition).

Strategy When to use it What to assume What to conclude What to do/why it works
Direct proof Try it first A B Apply inference rules to work forward from A and backward from B; when you meet in the middle, pretend that you were working forward from A all along.
Contraposition B = ¬Q ¬B ¬A Apply any other technique to show ¬B ⇒ ¬A and then apply the contraposition rule. Sometimes called an indirect proof although the term indirect proof is often used instead for proofs by contradiction (see below).
Contradiction When B = ¬Q, or when you are stuck trying the other techniques. A ∧ ¬B False Apply previous methods to prove both P and ¬P for some P . Note: this can be a little dangerous, because you are assuming something that is (probably) not true, and it can be hard to detect as you prove further false statements whether the reason they are false is that they follow from your false assumption, or because you made a mistake. Direct or contraposition proofs are preferred because they don’t have this problem.
Construction B = ∃xP (x) A P (c) for some specific object c. Pick a likely-looking c and prove that P (c) holds.
Counterexample B = ¬∀xP (x) A ¬P (c) for some specific object c. Pick a likely-looking c and show that ¬P (c) holds. This is identical to a proof by construction, except that we are proving ∃x¬P (x), which is equivalent to ¬∀xP (x).
Choose B = ∀x(P (x)⇒ Q(x)) A and P (c) where c is chosen arbitrarily. Q(c) Choose some c and assume A and P (c). Prove Q(c). Note: c is a placeholder here. If P (c) is “c is even” you can write “Let c be even” but you can’t write “Let c = 12”, since in the latter case you are assuming extra facts about c.
Instantiation A = ∀xP (x) A B Pick some particular c and prove that P (c)⇒ B. Here you can get away with saying “Let c = 12.” (If c = 12 makes B true).
Proof by elimination B = C ∨D A ∧ ¬C D The reason this works is that A ∧ ¬C ⇒ D is equivalent to ¬(A ∧ ¬C)⇒ D ≡ ¬A ∨ C ∨D ≡ A⇒ (C ∨D). Of course, it works equally well if you start with A ∧ ¬D and prove C.
Case analysis A = C ∨D C,D B Here you write two separate proofs: one that assumes C and proves B, and one that assumes D and proves B. A special case is when D = ¬C. You can also consider more cases, as long as A implies at least one of the cases holds.
Induction B = ∀x ∈ NP (x) A P (0) and ∀x ∈ N : (P (x)⇒ P (x+ 1)). If P (0) holds, and P (x) implies P (x+ 1) for all x, then for any specific natural number n we can consider constructing a sequence of proofs P (0)⇒ P (1)⇒ P (2)⇒ . . . ⇒ P (n). (This is actually a defining property of the natural numbers; see the example below.)

5These strategies are largely drawn from SolowBook, particularly the summary table on
pages 156–159 (which is the source of the order and organization of the table and the names of
most of the techniques). RosenBook describes proof strategies of various sorts in §§1.5–1.7 and
BiggsBook describes various proof techniques in Chapters 1, 3, and 4; both descriptions are a
bit less systematic, but also include a variety of specific techniques that are worth looking at.

21

http://en.wikipedia.org/P vs NP|$P=NP$

Some others that are mentioned in SolowBook: Direct Uniqueness, Indirect
Uniqueness, various max/min arguments. We will also cover induction proofs
in more detail later.

6 Example: The natural numbers

Here we give an example of how we can encode simple mathematics using pred-
icate logic, and then prove theorems about the resulting structure. Our goal is
to represent the natural numbers: 0, 1, 2, etc.6

6.1 The Peano axioms

Peano represents natural numbers using a special 0 constant and a function
symbol S (for “successor”; think of it as +1). Repeatedly applying S to 0
generates increasingly large natural numbers: S0 = 1, SS0 = 2, SSS0 = 3, etc.
(Note that 1, 2, 3, etc., are not part of the language, although we might use
them sometimes as shorthand for long strings of S’s.) For convenience, we don’t
bother writing parentheses for the function applications unless we need to do so
to avoid ambiguity: read SSSS0 as S(S(S(S(0)))).

The usual interpretation of function symbols implies that 0 and its successors
exist, but it doesn’t guarantee that they aren’t all equal to each other. The first
Peano axiom prevents this:

∀xSx 6= 0.

In English, 0 is not the successor of any number.
This still allows for any number of nasty little models in which 0 is nobody’s

successor, but we still stop before getting all of the naturals. For example, let
SS0 = S0; then we only have two elements in our model (0 and S0, because
once we get to S0, any further applications of S keep us where we are.

To avoid this, we need to prevent S from looping back round to some number
we’ve already produced. It can’t get to 0 because of the first axiom, and to
prevent it from looping back to a later number, we take advantage of the fact
that they already have one successor:

∀x : ∀y : Sx = Sy ⇒ x = y.

If we take the contrapositive in the middle, we get x 6= y ⇒ Sx 6= Sy.
In other words, we can’t have a single number z that is the successor of two
different numbers x and y.

Now we get all of N, but we may get some extra elements as well. There
is nothing in the first two axioms that prevents us from having something like
this:

0→ S0→ SS0→ SSS0→ . . . B → SB → SSB → SSSB → . . .
6Some people define the natural numbers as starting at 1. Those people are generally either

(a) wrong, (b) number theorists, (c) extremely conservative, or (d) citizens of the United
Kingdom of Great Britain and Northern Ireland. As computer scientists, we will count from
0 as the gods intended.

22

where B stands for “bogus.”
The hard part of coming up with the Peano axioms was to prevent the model

from sneaking in extra bogus values (that still have successors and at most one
predecessor each). This is (almost) done using the third Peano axiom, which
in modern terms is actually an axiom schema: an axiom that holds when
substituting any predicate for its placeholder predicate P :

(P (0) ∧ (∀x : P (x)⇒ P (Sx)))⇒ ∀x : P (x).

This is known as the induction schema, and says that, for any predicate
P , if we can prove that P holds for 0, and we can prove that P (x) implies
P (x + 1), then P holds for all x in N. The intuition is that even though we
haven’t bothered to write out a proof of, say P (1337), we know that we can
generate one by starting with P (0) and modus-pwning our way out to P (1337)
using P (0) ⇒ P (1), then P (1) ⇒ P (2), then P (2) ⇒ P (3), etc. Since this
works for any number (eventually), there can’t be some number that we missed.

In particular, this lets us throw out the bogus numbers in the bad example
above. Let B(x) be true if x is bogus (i.e., it’s equal to B or one of the other
values in its chain of successors). Let P (x) ≡ ¬B(x). Then P (0) holds (0 is not
bogus), and if P (x) holds (x is not bogus) then so does P (Sx). It follows from
the induction axiom that ∀xP (x): there are no bogus numbers.7

6.2 A simple proof

Let’s use the Peano axioms to prove something that we know to be true about
the natural numbers we learned about in grade school but that might not be
obvious from the axioms themselves. (This will give us some confidence that
the axioms are not bogus.) We want to show that 0 is the only number that is
not a successor:

Claim 1. ∀x : (x 6= 0)⇒ (∃y : x = Sy).

To find a proof of this, we start by looking at the structure of what we are
trying to prove. It’s a universal statement about elements of N (implicitly, the
∀x is really ∀x ∈ N, since our axioms exclude anything that isn’t in N), so our
table of proof techniques suggests using an induction argument, which in this
case means finding some predicate we can plug into the induction schema.

7There is a complication here. Peano’s original axioms were formulated in terms of second-
order logic, which allows quantification over all possible predicates (you can write things like
∀PP (x) ⇒ P (Sx)). So the bogus predicate we defined is implicitly included in that for-all.
In first-order logic, which is what everybody uses now, you can’t quantify over predicates,
and in particular if there is no predicate that distinguishes bogus numbers from legitimate
ones, the induction axiom won’t kick them out. This means that the Peano axioms (in their
modern form) actually do allow bogus numbers to sneak in somewhere around infinity. But
they have to be very polite bogus numbers that never do anything different from ordinary
numbers. This is probably not a problem except for philosophers. Similar problems show up
for any model with infinitely many elements, due to something called the Löwenheim-Skolem
theorem.

23

http://en.wikipedia.org/second-order logic
http://en.wikipedia.org/second-order logic
http://en.wikipedia.org/first-order logic

If we strip off the ∀x, we are left with

(x 6= 0)⇒ (∃y : x = Sy).

Here a direct proof is suggested: assuming x 6= 0, and try to prove ∃y : x =
Sy. But our axioms don’t tell us much about numbers that aren’t 0, so it’s not
clear what to do with the assumption. This turns out to be a dead end.

Recalling that A⇒ B is the same thing as ¬A∨B, we can rewrite our goal
as

x = 0 ∨ ∃y : x = Sy.

This seems like a good candidate for P (our induction hypothesis), because
we do know a few things about 0. Let’s see what happens if we try plugging
this into the induction schema:

• P (0) ≡ 0 = 0 ∨ ∃y : 0 = Sy. The right-hand term looks false because
of our first axiom, but the left-hand term is just the reflexive axiom for
equality. P (0) is true.

• ∀xP (x) ⇒ P (Sx). We can drop the ∀x if we fix an arbitrary x. Expand
the right-hand side P (Sx) ≡ Sx = 0 ∨ ∃ySx = Sy. We can be pretty
confident that Sx 6= 0 (it’s an axiom), so if this is true, we had better
show ∃ySx = Sy. The first thing to try for ∃ statements is instantiation:
pick a good value for y. Picking y = x works.

Since we showed P (0) and ∀xP (x) ⇒ P (Sx), the induction schema tells us
∀xP (x). This finishes the proof.

Having figured the proof out, we might go back and clean up any false
starts to produce a compact version. A typical mathematician might write the
preceding argument as:

Proof. By induction on x. For x = 0, the premise fails. For Sx, let y = x.

A really lazy mathematician would write:

Proof. Induction on x.

Though laziness is generally a virtue, you probably shouldn’t be quite this
lazy when writing up homework assignments.

6.3 Defining addition

Because of our restricted language, we do not yet have the ability to state
valuable facts like 1 + 1 = 2 (which we would have to write as S0 +S0 = SS0).
Let’s fix this, by adding a two-argument function symbol + which we will define
using the axioms

• x+ 0 = x.

• x+ Sy = S(x+ y).

24

(We are omitting some ∀ quantifiers, since unbounded variables are implicitly
universally quantified.)

This definition is essentially a recursive program for computing x+ y using
only successor, and there are some programming languages (e.g. Haskell) that
will allow you to define addition using almost exactly this notation. If the def-
inition works for all inputs to +, we say that + is well-defined. Not working
would include giving different answers depending on which parts of the defini-
tions we applied first, or giving no answer for some particular inputs. These
bad outcomes correspond to writing a buggy program. Though we can in prin-
ciple prove that this particular definition is well-defined (using induction on y),
we won’t bother. Instead, we will try to prove things about our new concept
of addition that will, among other things, tell us that the definition gives the
correct answers.

We start with a lemma, which is Greek for a result that is not especially
useful by itself but is handy for proving other results.8

Lemma 1. 0 + x = x.

Proof. By induction on x. When x = 0, we have 0+0 = 0, which is true from the
first case of the definition. Now suppose 0 + x = x and consider what happens
with Sx. We want to show 0+Sx = Sx. Rewrite 0+Sx as S(0+x) [second case
of the definition], and use the induction hypothesis to show S(0+x) = S(x).

(We could do a lot of QED-ish jumping around in the end zone there, but
it is more refined—and lazier—to leave off the end of the proof once it’s clear
we’ve satisifed all of our obligations.)

Here’s another lemma, which looks equally useless:

Lemma 2. x+ Sy = Sx+ y.

Proof. By induction on y. If y = 0, then x + S0 = S(x + 0) = Sx = Sx + 0.
Now suppose the result holds for y and show x + SSy = Sx + Sy. We have
x+ SSy = S(x+ Sy) = S(Sx+ y)[ind. hyp.] = Sx+ Sy.

Now we can prove a theorem: this is a result that we think of as useful in
its own right. (In programming terms, it’s something we export from a module
instead of hiding inside it as an internal procedure.)

Theorem 2. x+ y = y + x. (Commutativity of addition.)

Proof. By induction on x. If x = 0, then 0 + y = y + 0 (see previous lemma).
Now suppose x + y = y + x, and we want to show Sx + y = y + Sx. But
y + Sx = S(y + x)[axiom] = S(x+ y)[induction hypothesis] = x+ Sy[axiom] =
Sx+ y[lemma].

This sort of definition-lemma-lemma-theorem structure is typical of written
mathematical proofs. Breaking things down into small pieces (just like breaking

8It really means fork.

25

http://www.haskell.org

big subroutines into small subroutines) makes debugging easier, since you can
check if some intermediate lemma is true or false without having to look through
the entire argument at once.

Question: How do you know which lemmas to prove? Answer: As when
writing code, you start by trying to prove the main theorem, and whenever you
come across something you need and can’t prove immediately, you fork it off as
a lemma. Conclusion: The preceding notes were not originally written in order.

6.3.1 Other useful properties of addition

So far we have shown that x + y = y + x, also known as commutativity of
addition. Another familiar property is associativity of addition: x + (y +
z) = (x+ y) + z. This is easily proven by induction (try it!)

We don’t have subtraction in N (what’s 3 − 5?)9 The closest we can get is
cancellation:

Lemma 3. x+ y = x+ z ⇒ y = z.

We can define ≤ for N directly from addition: Let x ≤ y ≡ ∃zx + z = y.
Then we can easily prove each of the following (possibly using our previous
results about addition having commutativity, associativity, and cancellation).

• 0 ≤ x.

• x ≤ Sx.

• x ≤ y ∧ y ≤ z ⇒ x ≤ z.

• a ≤ b ∧ c ≤ d⇒ a+ c ≤ b+ d.

• x ≤ y ∧ y ≤ x⇒ x = y.

(The actual proofs will be left as an exercise for the reader.)

6.4 A scary induction proof involving even numbers

Let’s define the predicate Even(x) ≡ ∃yx = y+y. (The use of ≡ here signals that
Even(x) is syntactic sugar, and we should think of any occurrence of Even(x)
as expanding to ∃yx = y + y.)

It’s pretty easy to see that 0 = 0+0 is even. Can we show that S0 is not
even?

Lemma 4. ¬Even(S0).

9This actually came up on a subtraction test I got in the first grade from the terrifying Mrs
Garrison at Mountain Park Elementary School in Berkeley Heights, New Jersey. She insisted
that −2 was not the correct answer, and that we should have recognized it as a trick question.
She also made us black out the arrow the left of the zero on the number-line stickers we had
all been given to put on the top of our desks. Mrs Garrison was, on the whole, a fine teacher,
but she did not believe in New Math.

26

http://en.wikipedia.org/New Math

Proof. Expand the claim as ¬∃yS0 = y + y ≡ ∀yS0 6= y + y. Since we are
working over N, it’s tempting to try to prove the ∀y bit using induction. But
it’s not clear why S0 6= y + y would tell us anything about S0 6= Sy + Sy. So
instead we do a case analysis, using our earlier observation that every number
is either 0 or Sz for some z.

Case 1 y = 0. Then S0 6= 0 + 0 since 0 + 0 = 0 (by the definition of +) and
0 6= S0 (by the first axiom).

Case 2 y = Sz. Then y+y = Sz+Sz = S(Sz+z) = S(z+Sz) = SS(z+z).10

Suppose S0 = SS(z + z) [Note: “Suppose” usually means we are starting
a proof by contradiction]. Then 0 = S(z + z) [second axiom], violating
∀x0 6= Sx [first axiom]. So S0 6= SS(z + z) = y + y.

Since we have S0 6= y + y in either case, it follows that S0 is not even.

Maybe we can generalize this lemma! If we recall the pattern of non-even
numbers we may have learned long ago, each of them (1, 3, 5, 7, . . .) happens to
be the successor of some even number (0, 2, 4, 6, . . .). So maybe it holds that:

Theorem 3. Even(x)⇒ ¬Even(Sx).

Proof. Expanding the definitions gives (∃yx = y+ y)⇒ (¬∃zSx = z+ z). This
is an implication at top-level, which calls for a direct proof. The assumption we
make is ∃yx = y+ y. Let’s pick some particular y that makes this true (in fact,
there is only one, but we don’t need this). Then we can rewrite the right-hand
side as ¬∃zS(y + y) = z + z. There doesn’t seem to be any obvious way to
show this (remember that we haven’t invented subtraction or division yet, and
we probably don’t want to).

We are rescued by showing the stronger statement ∀y¬∃zS(y + y) = z + z:
this is something we can prove by induction (on y, since that’s the variable
inside the non-disguised universal quantifier). Our previous lemma gives the
base case ¬∃zS(0 + 0) = z + z, so we just need to show that ¬∃zS(y + y) =
z + zimplies¬∃zS(Sy + Sy) = z + z. Suppose that S(Sy + Sy) = z + z for
some z [“suppose” = proof by contradiction again: we are going to drive this
assumption into a ditch]. Rewrite S(Sy + Sy) to get SSS(y + y) = z + z. Now
consider two cases:

Case 1 z = 0. Then SSS(y + y) = 0 + 0 = 0, contradicting our first axiom.

Case 2 z = Sw. Then SSS(y + y) = Sw + Sw = SS(w + w). Applying the
second axiom twice gives S(y + y) = w + w. But this contradicts the
induction hypothesis.

Since both cases fail, our assumption must have been false. It follows that
S(Sy + Sy) is not even, and the induction goes through.

10What justifies that middle step?

27

6.5 Defining more operations

Let’s define multiplication (·) by the axioms:

• 0 · y = 0.

• Sx · y = y + x · y.

Some properties of multiplication:

• x · 0 = 0.

• 1 · x = x.

• x · 1 = x.

• x · y = y · x.

• x · (y · z) = (x · y) · z.

• x 6= 0 ∧ x · y = x · z ⇒ y = z.

• x · (y + z) = x · y + x · z.

• x ≤ y ⇒ z · x ≤ z · y.

• z 6= 0 ∧ z · x ≤ z · y ⇒ x ≤ y.

(Note we are using 1 as an abbreviation for S0.)
The first few of these are all proved pretty much the same way as for addition.

Note that we can’t divide in N any more than we can subtract, which is why
we have to be content with multiplicative cancellation.

Exercise: Show that the Even(x) predicate, defined previously as ∃yy =
x + x, is equivalent to Even′(x) ≡ ∃yx = 2 · y, where 2 = SS0. Does this
definition make it easier or harder to prove ¬Even′(S0)?

28

	The basic picture
	Axioms, models, and inference rules
	Consistency
	What can go wrong
	The language of logic
	Standard axiom systems and models

	Propositional logic
	Operations on propositions
	Precedence

	Truth tables
	Tautologies and logical equivalence
	Inverses, converses, and contrapositives
	Normal forms

	Predicate logic
	Variables and predicates
	Quantifiers
	Universal quantifier
	Existential quantifier
	Negation and quantifiers
	Restricting the scope of a quantifier
	Nested quantifiers
	Examples

	Functions
	Equality
	Uniqueness

	Models
	Examples

	Proofs
	Inference Rules
	More on proofs vs implication
	The Deduction Theorem

	Inference rules for equality
	Inference rules for quantified statements

	Proof techniques
	Example: The natural numbers
	The Peano axioms
	A simple proof
	Defining addition
	Other useful properties of addition

	A scary induction proof involving even numbers
	Defining more operations

