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1. Introduction. According to Aumann [2], two-person zero-sum games1 are “one of the few areas in game
theory, and indeed in the social sciences, where a fairly sharp, unique prediction is made.” Indeed, in a two-person
zero-sum game, max-min strategies offer a rather compelling solution: They constitute a Nash equilibrium, and
this Nash equilibrium is unique modulo degeneracy. Furthermore, these mixed strategies can be easily computed
with linear programming. In contrast, we now know that Nash equilibria are hard to compute in general, even
for two-person non-zero-sum games (Daskalakis et al. [8], Chen et al. [7])—and consequently for three-person
zero-sum games. Von Neumann’s minmax theorem (von Neumann [12]) seems to have very narrow applicability.

In this note we prove a multiplayer generalization of the minmax theorem. We show that for any multiplayer
polymatrix game that is zero-sum the Nash equilibrium can be easily found by linear programming (and in
fact by a quite direct generalization of the linear programming formulation of two-person zero-sum games).
Informally, a polymatrix game (or separable network game) is defined by a graph. The nodes of the graph are
the players, and the edges of the graph are two-person games. Every node has a fixed set of strategies, and
chooses a strategy from this set to play in all games corresponding to adjacent edges. Given a strategy profile
of all the players, the node’s payoff is the sum of its payoffs in all games on edges adjacent to it. The game is
zero-sum if, for all strategy profiles, the payoffs of all players add up to zero. This is the class of games we are
considering; we present a simple method, based on linear programming, for finding a Nash equilibrium in such
games (Theorem 1).

Zero-sum polymatrix games can model common situations in which nodes in a network interact pairwise and
make decisions (for example, adopt one of many technologies, or choose one or more of their neighbors for
preferential interaction), and which is a closed system of payoffs, in that it is impossible for payoffs to flow in or
out of the system. It is an intriguing class of games: since the definition involves a universal quantification over
all strategy profiles, an exponential set, it is not a priori clear that there is an efficient algorithm for recognizing
such games (but there is, see §4).

One immediate way to obtain such a game is to create a polymatrix game in which all edge-games are
zero-sum; see Bregman and Fokin [3, 4] and Daskalakis and Papadimitriou [9]. But there are other ways:

Example 1. Consider the security game between several evaders and several inspectors (these are the play-
ers) with many exit points (these are the strategies); each exit point is within the jurisdiction of one inspector.
The network is a complete bipartite graph between evaders and inspectors. Each evader can choose any exit

1 Actually, Aumann makes the statement for (two-person) strictly competitive games; but these were recently shown to essentially coincide
with two-person zero-sum games (Adler et al. [1, p. 462]).
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point, and each inspector can choose one exit point in her jurisdiction. For every evader whose exit point is
inspected, the corresponding inspector wins one unit of payoff. If the evader’s exit point is not inspected, the
evader wins one unit. All other payoffs are zero. This simple polymatrix game is not zero-sum, but it is constant-
sum: It is easy to see that, for any strategy profile, the total payoff equals the number of evaders. Thus it can be
turned into zero-sum by, say, subtracting this amount from the payoffs of any player. But the resulting zero-sum
polymatrix game has constituent games that are not zero- or constant-sum. In other words, the zero-sum nature
of this game is a global, rather than a local, property. See §4 for further discussion of this point.

2. The main result. We first define zero-sum polymatrix games formally.

Definition 1. A polymatrix game, or separable network game G consists of the following:
• a finite set V = 811 : : : 1 n9 of players, sometimes called nodes, and a finite set E of edges, which are taken

to be unordered pairs 6i1 j7 of players, i 6= j;
• for each player i ∈ V , a finite set of strategies Si;
• for each edge 6i1 j7 ∈ E, a two-person game 4pij1 pji5 where the players are i, j , the strategy sets Si, Sj ,

respectively, and the payoffs pij 2 Si × Sj 7→�, and similarly for pji;
• for each player i ∈ V and strategy profile s̄ = 4s11 : : : 1 sn5 ∈

∏

j∈V Sj , the payoff of player i under s̄ is
pi4s̄5=

∑

6i1 j7∈E p
ij4si1 sj50

Furthermore, G is zero-sum if for all strategy profiles s̄ = 4s11 : : : 1 sn5 ∈
∏

j∈V Sj ,
∑

i∈V pi4s̄5= 0.

Fix a zero-sum polymatrix game G. We shall next formulate a linear program that captures G. The variables
are the mixed strategies of the players, so we have a probability xs

i for all i ∈ V and s ∈ Si. We denote the vector
of all these variables by x so that x encodes a mixed strategy profile. We require that xs

i ≥ 0, for all i and s, and
∑

s∈Si
xs
i = 1, for all i, writing x ∈ã, if x satisfies these constraints.

For x ∈ ã, we write xi for the mixed strategy of player i and x−i ∈ ã−i for the vector of mixed strategies
of all players but player i, where ã−i denotes the set of all possible x−i’s. We sometimes write 4xi1 x−i5 for x,
and 4s1 x−i5 for the mixed strategy profile x such that xs

i = 1, i.e., xi corresponds to the pure strategy s ∈ Si.
Moreover, we extend pi4 · 5 to mixed strategies by taking expectations. Namely,

pi4x5 2=
∑

6i1 j7∈E

∑

si∈Si1 sj∈Sj

pij4si1 sj5x
si
i x

sj
j

represents the expected payoff of player i under mixed strategy profile x. Similarly, for s ∈ Si, pj4s1 x−i5 repre-
sents the expected payoff of player j when player i uses pure strategy s and the other players use their mixed
strategies in x−i.

For each player i, player i’s payoff pi4s1 x−i5 from a pure strategy s in Si is obviously a linear function of x−i.
Consider the following linear program in the variables y ∈ã and w 2= 4w11 : : : 1wn5:

LP 12 min
y1w

∑

i∈V

wi

subject to wi ≥ pi4s1 y−i51 for all i ∈ V 1 s ∈ Si,

y ∈ã0

We next state our main result:

Theorem 1. If 4y1w5 is an optimal solution to LP 1, then y is a Nash equilibrium of G. Conversely, if y is
a Nash equilibrium of G, then there is a w such that 4y1w5 is an optimal solution to LP 1.

We give two proofs of this theorem; the first relies on Nash’s theorem, whereas, the second only employs
linear programming duality.

Proof using Nash’s theorem. The constraints of LP 1 imply that at any feasible solution 4y1w5 we have
wi ≥ maxs∈Si

pi4s1 y−i5. Moreover, since pi4xi1 y−i5 is linear in xi, it follows that
∑

i∈V

max
s∈Si

pi4s1 y−i5= max
x∈ã

∑

i∈V

pi4xi1 y−i50 (1)

Note that zero-sum property implies that
∑

i∈V pi4y5= 0 for any y ∈ã. Using this observation together with (1)
and the constraint wi ≥ maxs∈Si

pi4s1 y−i5 implies that at feasible solution 4y1w5 we have
∑

i∈V

wi ≥
∑

i∈V

max
s∈Si

pi4s1 y−i5= max
x∈ã

∑

i

pi4xi1 y−i5≥
∑

i∈V

pi4yi1 y−i5= 00 (2)
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Hence the optimal objective of the linear program is lower bounded by zero. Nash’s theorem implies that there
exists a Nash equilibrium y∗ such that

max
s∈Si

pi4s1 y
∗

−i5−pi4y
∗

i 1 y
∗

−i5= 00 (3)

Setting wi = maxs∈Si
pi4s1 y

∗
−i5 it can be seen that 4y∗1w5 is a feasible solution to LP 1, and (3) implies that all

inequalities in (2) hold with equality for this solution, and the objective value zero is achieved in LP 1 so that
4y∗1w5 is an optimal solution. For the forward direction, consider any optimal solution 4w1 y5 of LP 1. Since
the objective value is

∑

i∈V wi = 0 in this solution, it follows from (2) that (3) holds for this optimal solution,
and hence y is a Nash equilibrium. Q.E.D.

Proof using linear programming duality. In the above proof we use Nash’s theorem to conclude that the
optimal objective value of LP 1 is equal to zero. It would be surprising if the power of Nash’s theorem were
necessary to establish a property of a linear program. We show that it is not.

Let us rewrite the constraints of LP 1 with the help of a square matrix R with
∑

i �Si� rows and columns. The
rows and columns of R are indexed by pairs 4i2s5 and 4j2r5 for i, j ∈ V and s ∈ Si, r ∈ Sj , and R4i2s51 4j2r5 = pij4s1 r5
if 6i1 j7 ∈ E, R4i2s51 4j2r5 = 0 otherwise. Then pi4s1 y−i5 in LP 1 corresponds to the row 4Ry54i2s5 of Ry indexed
by 4i2s5 for i ∈ V , s ∈ Si, and

∑

i∈V pi4xi1 y−i5 = xTRy = yTRT x for x, y ∈ ã. This observation suggests that
LP 1 can be reformulated by replacing the constraint wi ≥ pi4s1 y−i5 with wi ≥ 4Ry54i2s5. Thus, the dual of LP 1
(referred to as DLP 1) can be stated using the decision variables z ∈ã and v 2= 4v11 : : : 1 vn5 as follows:

DLP 12 max
z1 v

∑

j∈V

vj

subject to vj ≤ 4RT z54j2r51 for all j ∈ V 1 r ∈ Sj ,

z ∈ã0

Similar to LP 1, it can be seen that a feasible solution 4z1 v5 of DLP 1 satisfies
∑

j∈V

vj ≤
∑

j∈V

min
r∈Sj

4RT z54j1 r5 = min
x∈ã

xTRT z≤ zTRT z= 01 (4)

where the first equality follows from the linearity of xTRT z in x, and the last one follows from the zero-sum
property. So the optimal objective value of DLP 1 is bounded above by zero. Through strong duality, this implies
that the optimal objective value of LP 1 is bounded above by zero. Since the optimal value of LP 1 is also
lower bounded by zero, it follows that LP 1 has value zero, which is what we needed to avoid the use of Nash’s
theorem in our previous proof of Theorem 1. Q.E.D.

Remark. Interestingly, if 4z1 v5 is an optimal solution to DLP 1, then z is also a Nash equilibrium. This can
be seen by noting that by strong duality the optimal objective value of the dual is equal to zero, and hence (4)
implies that

∑

j∈V minr∈Sj
4RT z54j1 r5 = zTRT z = zTRz = 0 at this solution. Hence, zj assigns positive probability

only to entries of 4Rz54j2r5 that are minimal. The definition of R implies that for any r this entry is given by
∑

i∈V 1 s∈Si1 6i1 j7∈E
zsip

ij4s1 r5, i.e., the sum of payoffs of neighbors of player j that play against her. Since the game
is zero-sum, minimizing this quantity maximizes the payoff of player j , and hence zj is her best response to z−j .

3. Properties of zero-sum polymatrix games. Thus, in zero-sum polymatrix games, a Nash equilibrium
can be found by linear programming, just as in zero-sum two-person games. One immediate question that comes
to mind is, which of the many other strong properties of zero-sum two-person games also generalize to zero-sum
polymatrix games? We consider the following properties of zero-sum two-person games:

(i) Each player has a unique payoff value in all Nash equilibria, known as her value in the game.
(ii) Equilibrium strategies are max-min strategies, i.e., each player uses a strategy that maximizes her worst-

case payoff (with respect to her opponent’s strategies).
(iii) Equilibrium strategies are exchangeable, i.e., if 4x11 x25 and 4y11 y25 are equilibria, then so are 4x11 y25

and 4y11 x25. In particular, the set of equilibrium strategies of each player is convex, and the set of equilibria is
the corresponding product set.

(iv) There are no correlated equilibria (or even coarse correlated equilibria; see Definition 2) whose marginals
with respect to the players do not constitute a Nash equilibrium.

As we shall see next, only one of these four properties (namely, (iv)) generalizes to zero-sum polymatrix
games. Moreover, Property (iii) is partially true; namely, the set of equilibrium strategies of each player is
convex, but it is not necessarily true anymore that the set of equilibria is the corresponding product set.
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H T

H 11−1 −111
T −111 11−1

Figure 1. Payoffs in a matching-pennies game.

3.1. Value of a player. Does every player in a zero-sum polymatrix game have a value, attained at all
equilibria? Consider three players a, b, c. Player a has a single strategy H , whereas players b, c have two
strategies H , T (for “heads” and “tails”). The polymatrix game involves two edges: an edge between players a
and b, and another edge between b and c. The payoffs are as follows:
6a1 b7: If player b chooses H (the strategy of player a), player a receives 1 and player b receives −1,

otherwise player a receives −1 and player b receives 1.
6b1 c7: If player b chooses the same strategy as player c, player b receives 1 and player c receives −1,

otherwise player b receives −1 and player c receives 1.
It is straightforward to check that this game is a zero-sum polymatrix game, and the following two strategy

profiles are Nash equilibria with different player payoffs:
(i) Consider strategy profile 4H1T 1H5, i.e., player b chooses T , and players a, c choose H . The payoffs

of the players are 4−110115. To see that this is an equilibrium, note first that in our game player a only has
a single strategy (H ). Hence, for trivial reasons, she cannot deviate to improve her payoff. Player c maximizes
her payoff by choosing a strategy different from the one chosen by b, so she has no incentive to deviate from
her strategy in this profile. Finally, given that a and c use strategy H , the payoff of b is equal to zero from both
strategies, so she is best responding by playing T . Hence, 4H1T 1H5 is an equilibrium.

(ii) Consider strategy profile 4H1 1
2H + 1

2T 1H5, i.e., player b uniformly mixes between her strategies, while
players a, c choose H . The payoffs of the players are now 4010105. Seeing that this profile is an equilibrium is
as straightforward as in (i).

Hence, different equilibria can assign different payoffs to players in zero-sum polymatrix games.

Max-min strategies. For games with more than two players, a max-min strategy of a player is a strategy that
maximizes her worst-case payoff, for any strategies of her opponents. In the game of the previous paragraph, the
max-min strategy of player c is given by 1

2H +
1
2T . However, we saw that there are Nash equilibria in which c

uses a different mixed strategy. Moreover, there are no Nash equilibria in which c uses her max-min strategy.
To see this, note that when c uses the aforementioned strategy (and because a only has a single strategy, H )
player b maximizes her payoff by using strategy T . On the other hand, if player b uses this strategy, player c
can improve her payoff by deviating from her max-min strategy to H .

Exchangeability. Exchangeability can be naturally generalized to multiplayer games (with a set of play-
ers V = 811 : : : 1 n9) as follows: If 8xi9i∈V and 8yi9i∈V are Nash equilibria, then so is the strategy profile
4x11 : : : 1 xi−11 yi1 xi+11 : : : xn5. To disprove this property for zero-sum polymatrix games, let us consider a game
with three players, a, b, and c; two strategies, H and T , available to each player; and three edges, 6a1 b7, 6b1 c7,
and 6a1 c7. The payoffs associated with each edge are the same as the payoffs of the matching-pennies game
(see Figure 1). We assume that the row players associated with edges 6a1 b7, 6b1 c7, and 6a1 c7 are, respectively,
a, b, and c. It can be seen that this is a zero-sum polymatrix game, and two Nash equilibria of this game are
(i) 4H1H1H5, and (ii) 4T 1 T 1 T 5. On the other hand, 4T 1H1H5 is not an equilibrium strategy, since the third
player receives a payoff of −2 in this strategy profile, but she can improve her payoff to 2 by deviating to T .
Note that this example also shows that the set of mixed strategy profiles that are equilibria cannot be expressed
as a product of the sets of strategies that players use at equilibrium.2

Correlated equilibria. Recall the definition of correlated equilibrium, and the more general concept of
coarse correlated equilibrium (see, e.g., Moulin and Vial [11], Cesa-Bianchi and Lugosi [6]):

Definition 2. Let S=
∏

i∈V Si and z ∈ã4S5 be a distribution over pure strategy profiles, where z4s̄5 denotes
the probability of pure strategy profile s̄ ∈ S. Then z is a correlated equilibrium iff for every player i and
strategies r , t ∈ Si,

∑

s̄−i∈S−i

pi4r1 s̄−i5 · z4r1s̄−i5 ≥
∑

s̄−i∈S−i

pi4t1 s̄−i5 · z4r1s̄−i53 (5)

2 Since the set of optimal solutions of linear programs is convex, Theorem 1 implies that the set of mixed strategy profiles that are equilibria
is convex. However, lack of exchangability implies that this convex set is not a product set of strategies of different players.
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and z is a coarse correlated equilibrium iff for every player i and strategy t ∈ Si,
∑

s̄∈S

pi4s̄5 · z4s̄5 ≥
∑

s̄−i∈S−i

pi4t1 s̄−i5 · z
4s̄−i5
−i 1 (6)

where z
4s̄−i5
−i =

∑

r∈Si
z4r1 s̄−i5 is the marginal probability that the pure strategy profile sampled by z for players

V \8i9 is s̄−i.
3

Theorem 2. If z is a coarse correlated equilibrium, then x̂ is a Nash equilibrium, where, for every player i,
x̂i is the marginal probability distribution: x̂r

i =
∑

s̄−i∈S−i
z4r1 s̄−i5, for all r ∈ Si.

Proof. Since the game is polymatrix, pi4r1 x̂−i5 =
∑

s̄−i∈S−i
pi4r1 s̄−i5 · z

4s̄−i5
−i for all i and r ∈ Si. Indeed, the

LHS is player i’s expected payoff from strategy r when the other players use mixed strategies x̂−i, and the
RHS is i’s expected payoff from strategy r when the other players’ strategies are jointly sampled from z

4·5
−i.

The equality follows from the fact that x̂−i and z
4 · 5
−i have the same marginal distributions with respect to the

strategy of each player in V \8i9, and i’s payoff only depends on these marginals. Now, let w∗
i =

∑

s̄∈S pi4s̄5 ·z
4s̄5.

Because z is a coarse correlated equilibrium, w∗
i ≥ pi4r1 x̂−i5 for any r ∈ Si. On the other hand,

∑

iw
∗
i = 0 since

the game is zero-sum. These imply that 4x̂1w∗5 is an optimal solution to LP 1, so that x̂ is a Nash equilibrium
by Theorem 1.

This result has an interesting algorithmic consequence, which complements Theorem 1. The Nash equilibrium
of a zero-sum polymatrix game G can be found not only with linear programming, but can also be arrived at
in a distributed manner, as long as the players run an arbitrary no-regret learning algorithm (Cesa-Bianchi and
Lugosi [6], Freund and Schapire [10]) to update their strategies in a repeated game with stage game G. The
players’ average strategies can be shown to converge to a Nash equilibrium of G (Cai and Daskalakis [5]).

4. A transformation. A special case of zero-sum polymatrix games are the pairwise constant-sum poly-
matrix games in which every edge is a two-person constant-sum game, and all these constants add up to zero.
Superficially, zero-sum polymatrix games appear to be more general. In this section we prove that they are not,
by presenting a payoff-preserving transformation from any zero-sum polymatrix game to a pairwise constant-sum
polymatrix game.

Payoff-preserving transformation. We transform a zero-sum polymatrix game G to a pairwise constant-
sum polymatrix game Ĝ by modifying the payoff functions on the edges. For every edge 6i1 j7, we construct a
new two-player game 4p̂ij1 p̂ji5 based on 4pij1 pji5. For simplicity, we use 1 to denote the first strategy in every
player’s strategy set. The new payoffs are defined as follows:

p̂ij4r1 s5 2= pij411 s5+pji4s115−pji4s1 r50 (7)

Notice that p̂ij41115= pij41115.
Before we argue that 4p̂ij1 p̂ji5 is a constant-sum game, we need to prove some useful local properties of

4pij1 pji5.

Lemma 1. For any edge 6i1 j7 and any r ∈ Si, s ∈ Sj , we have

pij41115+pji41115+pij4r1 s5+pji4s1 r5= pij411 s5+pji4s115+pij4r115+pji411 r50 (8)

Proof. Let all players except i and j fix their strategies, and −� represent the sum of all players’ payoffs
from edges that do not involve i or j as one of their endpoints. Let P4k2t5 (k in 8i1 j9) be the sum of payoffs
of k and her neighbors from all edges incident to k except 6i1 j7, when k plays strategy t. Since the game is
zero-sum, the following are true:

• i plays strategy 1, j plays strategy s: P4i215 +P4j2s5 +pij411 s5+pji4s115= � 4a5;
• i plays strategy r , j plays strategy 1: P4i2r5 +P4j215 +pij4r115+pji411 r5= � 4b5;
• i plays strategy 1, j plays strategy 1: P4i215 +P4j215 +pij41115+pji41115= � 4c5;
• i plays strategy r , j plays strategy s: P4i2r5 +P4j2s5 +pij4r1 s5+pji4s1 r5= � 4d5.
Clearly, we have 4a5+ 4b5= 4c5+ 4d5. By canceling out the common terms, we obtain the desired equality.

Next, we show that when G is zero-sum, Ĝ is a pairwise constant-sum game.

3 Observe that (6) follows by summing (5) over r ∈ Si. Hence, if z is a correlated equilibrium, then z is also a coarse correlated equilibrium.
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Lemma 2. For every edge 6i1 j7, for all r ∈ Si, s ∈ Sj , p̂
ij4r1 s5 + p̂ji4s1 r5 = Cij , where Cij 2= pij41115 +

pji41115 is an absolute constant that does not depend on r , s.

Proof. From the definition of p̂ij4r1 s5 (see (7)) we have

p̂ij4r1 s5+ p̂ji4s1 r5= 4pij411 s5+pji4s115−pji4s1 r55+ 4pji411 r5+pij4r115−pij4r1 s550

Using Lemma 1, this equality can be alternatively expressed as

p̂ij4r1 s5+ p̂ji4s1 r5 = pij41115+pji41115+pij4r1 s5+pji4s1 r5−pji4s1 r5−pij4r1 s5

= pij41115+pji411150

The result follows from the definition of Cij .

Finally, we prove that the transformation preserves the payoff of every player.

Theorem 3. For every pure strategy profile, every player has the same payoff in games G and Ĝ.

Proof. To prove this claim, we first use Lemma 2 to establish that Ĝ is zero-sum. Consider any strategy
profile s̄ in Ĝ. Observe that

∑

i∈V

p̂i4s̄5 =
∑

i∈V

∑

6i1 j7∈E

p̂ij4si1 sj5

=
∑

6i1 j7∈E

(

p̂ij4si1 sj5+ p̂ji4sj1 si5
)

=
∑

6i1 j7∈E

(

pij41115+pji41115
)

= 01

where the third equality follows from Lemma 2, and the last one follows from the fact that the quantity
∑

6i1 j7∈E4p
ij41115+ pji411155 equals the sum of all players’ payoffs in zero-sum game G when all players use

their first strategy.
We next complete the proof by using the following consequence of Lemma 1 and (7):

p̂ij4r1 s5 = pij411 s5+pji4s115−pji4s1 r5

= pij41115+pji41115+pij4r1 s5−pji411 r5−pij4r1150 (9)

Note that this alternative representation of p̂ij4r1 s5 immediately implies that for any pair of strategies s, t ∈ Sj :

p̂ij4r1 s5− p̂ij4r1 t5= pij4r1 s5−pij4r1 t50 (10)

Now consider an arbitrary pure strategy profile, and suppose that some player j changes her strategy from s

to t. If some other player i is not a neighbor of j , then i’s payoff does not change as a result of j’s change of
strategy. If player i is a neighbor of j , and plays r , then because of j’s change of strategy, the change in i’s
payoff in G equals pij4r1 s5−pij4r1 t5, and in Ĝ it equals p̂ij4r1 s5− p̂ij4r1 t5. Thus, (10) implies that the payoff
change experienced by neighbors of j is identical in both games. Hence, if every player has the same payoff in G
and Ĝ before j changes her strategy, every player other than j still has the same payoff in the two games after j
changes her strategy. Finally, since both games are zero-sum, j’s payoff is also the same in the two games after
the change.

Consider the strategy profile where all players play 1. Since p̂ij41115 = pij41115 (from (7)), it follows that
every player has the same payoff in G and Ĝ in this profile. Given a target strategy profile, start from the all 1’s
strategy profile and successively change the strategy of every player to match the target profile (one player at a
time). By the previous argument, after every change, every player has the same payoff in G and Ĝ. Thus, the
claim follows.
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A B

A 010 −310
B 112 010

A B
A 010 −313
B −212 −313

Figure 2. Consider a two-player game, where players have two strategies A1B (left), and the corresponding transformed game (right).

An algorithm for recognizing zero-sum polymatrix games. Our main result in this paper states that Nash
equilibria in zero-sum polymatrix games can be computed through linear programming, just like in two-person
zero-sum games. However, it is not a priori clear that, if such a game is presented to us, we can recognize
it, since the definition of a zero-sum polymatrix game involves a universal quantification over all pure strategy
profiles (which scale exponentially with the number of players).

Note that Lemma 1 provides a necessary condition that zero-sum polymatrix games satisfy. Similarly,
Lemma 2 indicates that the transformation of zero-sum polymatrix games provided by (7) will have a pairwise
constant-sum structure that is easy to check. However, these conditions are not sufficient, i.e., not all games that
satisfy the condition of Lemma 1, or whose transformations have the pairwise constant-sum structure, are zero-
sum polymatrix games. For instance, consider the game given on the left in Figure 2. This game can be viewed
as a polymatrix game with two players connected by an edge. Observe that the payoffs satisfy the condition
provided in Lemma 1, but the game is not zero-sum. Similarly, the transformation of this game (given on the
right in Figure 2) is constant-sum (in fact zero-sum), even though the original game is not zero-sum.

We next show that, even though the aforementioned simple conditions are not applicable, there exists an
efficient algorithm that can be used to recognize zero-sum polymatrix games.

Theorem 4. Let G be a polymatrix game. For any player i, s ∈ Si, and x−i ∈ ã−i, denote by W4s1x−i5 2=
∑

j∈V pj4s1 x−i5 the sum of all players’ payoffs when i plays s and all other players play x−i. Then G is a
constant-sum game if and only if the optimal objective value of

max
x−i∈ã−i

{

W4r1x−i5−W4s1x−i5
}

(11)

equals zero for all i ∈ V and r , s ∈ Si. Moreover, this condition can be checked in polynomial time (in the
number of strategies and players).

Proof. A polymatrix game is constant-sum if and only if changing a single player’s strategy in a strategy
profile does not affect the sum of all players’ payoffs. Equivalently, a game is constant-sum if and only if for
all i ∈ V , r , s ∈ Si, and x−i ∈ ã−i, W4r1x−i5 = W4s1x−i5. Observe that if the latter condition holds, then the
optimal objective value of (11) equals zero, for all i ∈ V and r , s ∈ Si. Moreover, if the optimal objective value
of (11) equals zero for all i ∈ V and r1 s ∈ Si, then W4r1x−i5=W4s1x−i5 for all i ∈ V and r , s ∈ Si. Thus, G is
a zero-sum polymatrix game if and only if (11) has objective value zero, for all i ∈ V and r , s ∈ Si.

Notice that the objective function of (11) is a linear function of x−i since G is a polymatrix game, and all
payoffs on edges not adjacent to player i cancel out when we take the difference. Moreover, the constraint
x−i ∈ã−i is linear, since ã−i is a product space of simplices. Thus, (11) is a linear optimization problem, and by
solving (11) for all i ∈ V and r , s ∈ Si, it is possible to check in polynomial time whether G is a constant-sum
polymatrix game.

Our theorem implies that by solving the optimization problem in (11) for all i ∈ V and r1 s ∈ Si, it is possible
to check if a polymatrix game is constant-sum. Moreover, if the game is constant-sum, by evaluating W at an
arbitrary strategy profile it is possible to check if the game is zero-sum.

5. Discussion. Our main result is a generalization of von Neumann’s minmax theorem from two-person
zero-sum games to zero-sum polymatrix games. We also showed that several other properties of two-person zero-
sum games fail to generalize to polymatrix games, with one exception: coarse correlated equilibria collapse to
Nash equilibria, and no-regret play converges to Nash equilibrium.

How extensive is the class of zero-sum polymatrix games? We noted in the introduction that it trivially includes
all polymatrix games with zero-sum edges, but also other games, such as the security game, for which the zero-
sum property seems to be of a “global” nature. However, the results of the last section imply that any zero-sum
polymatrix game can be transformed, through a nontrivial transformation, into a payoff-equivalent polymatrix
game with constant-sum edges. Whether there are further generalizations of the min-max theorem to more
general classes of games is an important open problem. Another interesting direction involves understanding
the classes of games that are strategically equivalent (e.g., in the sense formalized in Moulin and Vial [11]) to
zero-sum polymatrix games.
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