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Abstract. We introduce Accountable Storage (AS), a framework enabling a client
to outsource n file blocks to a server while being able (any time after outsourcing)
to provably compute how many bits were discarded or corrupted by the server.
Existing techniques (e.g., proofs of data possession or storage) can address the
accountable storage problem, with linear server computation and bandwidth. In-
stead, our optimized protocols achieve O(δ logn) complexity (where δ is the
maximum number of corrupted blocks that can be tolerated) through the novel use
of invertible Bloom filters and a new primitive called proofs of partial storage.
With accountable storage, a client can request a compensation of a dollar amount
proportional to the number of corrupted bits (that he can now provably compute).
We integrate our protocol with Bitcoin, supporting automatic such compensa-
tions. Our implementation is open-source and shows our protocols perform well
in practice.

1 Introduction

Cloud computing is revolutionizing our digital world, posing new security and privacy
challenges. E.g., businesses and individuals are reluctant to outsource their databases for
fear of having their data lost or damaged. Thus, they would benefit from technologies
that would allow them to manage their risk of data loss, just like insurance allows them
to manage their risk of physical or financial losses, e.g., from fire or liability.

As a first step, a client needs a mechanism for verifying that a cloud provider is
storing her entire database intact, and fortunately, Provable Data Possession (PDP) [3,
11, 13]) and Proofs of Retrievability (POR) [10, 19, 26, 27, 28], have been conceived
as a solution to the integrity problem of remote databases. PDP and POR scheme can
verify whether the server possesses the database originally uploaded by the client by
having the server generate a proof in response to a challenge.

However, they leave unsettled several risk management issues. Arguably, an impor-
tant question is

What happens if a PDP or POR scheme shows that a client’s outsourced database
has been damaged?

The objective of this work is to design new efficient protocols for Accountable Storage
(AS) that enable the client to reliably and quickly assess the damage and at the same
time automatically get compensated using the Bitcoin protocol.



To be precise, suppose Alice outsources her file blocks b1, b2, . . . , bn to a potentially
malicious cloud storage provider, Bob. Since Alice does not trust Bob, she wishes, at
any point in time, to be able to compute the amount of damage, if any, that her file
blocks have undergone, by engaging in a simple challenge-response protocol with Bob.
For instance, she wishes to provably compute the value of a damage metric, such as

d =

n∑
i=1

wi · ||bi ⊕ b′i|| , (1)

where b′i is the file currently stored by Bob at the time of the challenge, ||.|| denotes
Hamming distance andwi is a weight corresponding to file bi. If d = 0, Alice is entitled
to no dollar credit. Bob can easily prove to Alice that this is the case through existing
protocols, as noted above. If d > 0, however, then Alice should receive a compensation
proportional to the damage d, which should be provided automatically.5

Naive Approaches for AS. A PDP protocol [3, 4, 11, 13, 29] enables a server to prove
to a client that all of the client’s data is stored intact. One could design an AS protocol
by using a PDP protocol only for the portion of storage that the server possesses. This
could determine the damage, d (e.g., when all weights wi are equal to 1). However
this approach requires using of PDP at the bit level, and in particular computing one
2048-bit tag for each bit of our file collection which is very storage-inefficient.

To overcome the above problem, one could use PDP at the block level, but at the
same time keep some redundancy locally. Specifically, before outsourcing the n blocks
at the server, the client could store δ extra check blocks locally (e.g., computed with
an error-correcting code). The client could then verify through PDP that a set of at
most δ blocks have gone missing and retrieve the lost blocks by executing the decoding
algorithm on the remote intact n− δ data blocks and the δ local check blocks (then the
recovered blocks can be used to compute d). This procedure has O(n) communication,
since the n−δ blocks at the server must be sent to the client. IRIS [28] is a system along
these lines, requiring the whole file system be streamed over to the client for recovery.

Finally we note here that while PDP techniques combined with redundant blocks
stored at the client can be used to solve the accountable storage problem (even inef-
ficiently, as shown above), POR techniques cannot. This is because POR techniques
(e.g., [26]) cannot provide proofs of retrievability for a certain portion of the file (as
is the case with PDP), but only for the whole file—this is partly due to the fact that
error-correcting codes are used on top of all the file blocks.

Our AS Protocol. Our protocol for assessing damage d from Relation 1 is based on
recovering the actual blocks b1, b2, . . . , bδ and XORing them with the corrupted blocks
b′1, b

′
2, . . . , b

′
δ returned by the server. For recovery, we use the invertible Bloom filter

(IBF) data structure [12, 15]. An IBF is an array of t cells and can store O(t) elements.
Unlike a Bloom filter [7], its elements can be enumerated with high probability.

Let B = {b1, b2, . . . , bn} be the set of outsourced blocks and let δ be the maximum
number of corrupted blocks that can be tolerated. In preprocessing, the client computes
an IBF TB with O(δ) cells, on the blocks b1, . . . , bn. TB is stored locally. Computing

5 We highlight that such fine-grained compensation models, which work at the bit level as opposed to at the file block level,
allow Alice to better manage her risk for damage even within the same file. For example, compensation for an unusable
movie stored by Bob could be larger than that for a usable movie whose resolution has deteriorated by just 5%.



TB is similar to computing a Bloom filter: every cell of TB is mapped to a XOR over a
set of at most n blocks, thus the local storage isO(δ). To outsource the blocks, the client
computes homomorphic tags, Ti (as in [3]), for each block bi. The client then stores
(bi,Ti) with the cloud and deletes b1, b2, . . . , bn from local storage. In the challenge
phase, the client asks the server to construct an IBF TK ofO(δ) cells on the set of blocks
K the server currently has—this is the “proof” the server sends to the client. Then the
client takes the “difference” TL = subtract(TB ,TK) and recovers the elements of the
difference B − K (since |B − K| ≤ δ and TL has O(δ) cells). Recovering blocks in
B −K enables the client to compute d using Relation 1. Clearly, the bandwidth of this
protocol is proportional to δ (due to the size of the IBFs), and not to the total number of
outsourced blocks n. Our optimized construction in Section 5 achieves sublinear server
and client complexities as well.

Fairness through Integration with Bitcoin. The above protocol assures that Bob (the
server) cannot succeed in persuading Alice that the damage of her file blocks is d′ < d.
After Alice is persuaded, compensation proportional to d must be sent to her. But Bob
could try to cheat again. Specifically, Bob could try to give Alice a smaller compensa-
tion or even worse, disappear. To deal with this problem, we develop a modified version
of the recently-introduced timed commitment in Bitcoin [2]. At the beginning of the
AS protocol, Bob deposits a large amount, A, of bitcoins, where A is contractually
agreed on and is typically higher than the maximum possible damage to Alice’s file
blocks. The Bitcoin-integrated AS protocol of Section 6 ensures that unless Bob fully
and timely compensates Alice for damage d, then A bitcoins are automatically and ir-
revocably transferred to Alice. At the same time, if Alice tries to cheat (e.g., by asking
for compensation higher than the contracted amount), our protocol ensures that she gets
no compensation at all while Bob gets back all A of his bitcoins.

Structure of the Paper. Section 2 presents background on IBFs and Bitcoin, Section 3
gives definitions, and Sections 4 and 5 present our constructions. We present our Bitcoin
protocol in Section 6, our evaluation in Section 7 and conclude in Section 8.

2 Preliminaries

Let τ denote the security parameter, δ denote an upper bound on the number of cor-
rupted blocks that can be tolerated, n denote the number of file blocks, and b1, b2, . . . , bn
denote the file blocks. Each block bi has λ bits. The first log n bits of each block bi
are used for storing the index i of the block, which can be retrieved through func-
tion index(). Namely i = index(bi). Let also h1, h2, . . . , hk be k hash functions cho-
sen at random from a universal family of functions H [9] such that hi : {0, 1}λ →
{1, 2, . . . , t} for some parameter t.

Invertible Bloom Filters. An Invertible Bloom Filter (IBF) [12, 15] can be used to
compactly store a set of blocks {b1, b2, . . . , bn}: It uses a table (array) T of t = (k+1)δ
cells. Each cell of the IBF’s table T contains the following two fields6: (1) dataSum:
XOR of blocks bi mapped to this cell; (2) hashSum: XOR of cryptographic tags (to

6 Note that we do not use the count field, as in [12, 15].



Algorithm T← update(bi,T)

for each j = 1, . . . , k do
Set T[hj(bi)].dataSum ⊕ = bi;
Set T[hj(bi)].hashSum ⊕ = Ti;

return T;

Algorithm TD ← subtract(TA,TB)

for each i = 1, . . . , t do
TD[i].dataSum = TA[i].dataSum⊕ TB [i].dataSum;
TD[i].hashSum = TA[i].hashSum⊕TB [i].hashSum;

return TD;

Fig. 1: Update and subtraction algorithms in IBFs.

be defined later) Ti for all blocks bi mapped to this cell. As in Bloom filters, we use
functions h1, . . . , hk to decide which blocks map to which cells.

An IBF supports simple algorithms for insertion and deletion via algorithm update
in Figure 1. ForB ⊆ A, one can also take the difference of IBFs TA and TB , to produce
an IBF TD ← subtract(TA,TB) representing the difference set D = A − B. Finally,
given TD, we can enumerate its contents by using algorithm listDiff from [12]:

Lemma 1 (Adjusted from Eppstein et al. [12]). Let B ⊆ A be two sets having ≤ δ
blocks in their difference A − B, let TA and TB be the respective IBFs constructed
using k hash functions and let TD ← subtract(TA,TB). All IBFs have t = (k + 1)δ
cells and their hashSum field is computed using a function mapping blocks to at least
k log δ bits. Then there is an algorithm listDiff(TD) that recoversA−B with probability
1−O(δ−k).

Bitcoin Time-Locked Transactions. Bitcoin [23] is a decentralized digital currency
system where transactions are recorded on a public ledger (the blockchain) and are
verified through the collective effort of miners. A bitcoin address is the hash of an
ECDSA public key. Let A and B be two bitcoin addresses. A standard transaction
contains a signature from A and mandates that a certain amount of bitcoins is to be
transferred fromA toB. IfA’s signature is valid, the transaction is inserted into a block
which is then stored in the blockchain.

Bitcoin allows for more complicated transactions, whose validation requires more
than just a signature. In particular, each transaction can specify a locktime which con-
tains a timestamp t at which the transaction is locked (before time t, even if a valid
signature is provided, the transaction is not finalized). Slightly changing the notation
from [2], a Bitcoin transaction Tx can be easily represented as the table below, where

Prev :
InputsToPrev :
Conditions :
Amount :
Locktime :

Prev is the transaction (say Ty) that Tx is redeeming, InputsToPrev
are inputs that Tx is sending to Ty so that Ty’s redeeming can
take place, Conditions is a program written in the Bitcoin script-
ing language (outputting a boolean) controlling whether Tx can be
redeemed or not (given inputs from another transaction), Amount
is the value in bitcoins, and Locktime is the locktime. For standard
transactions, InputsToPrev is just a signature with the sender’s se-
cret key, and Conditions implements a signature verification with the recipient’s public
key. Moreover, standard transactions have locktime set to 0, meaning they are locked
and final. Andrychowicz et al. [2] uses time-locked Bitcoin transactions to describe a
bitcoin contract mechanism for timed commitments [8] through the blockchain. With
timed commitments in place, they show that it is possible to run fairly any secure multi-
party protocols with the stipulation that parties pay a fine in bitcoins if they cheat, that



is, if all parties follow the protocol specification then a function on private inputs is
computed otherwise any party that deviates from (e.g., interrupts) the protocol will in-
escapably pay a sum of bitcoins to the others.

3 Accountable Storage Definitions

We now define an AS scheme. An AS scheme does not allow the client to compute
damage d directly. Instead, it allows the client to use the server’s proof to retrieve the
blocks L that are not stored by the server any more (or are stored corrupted). By having
the server send the current blocks he stores in the position of blocks in L (in addition to
the proof), computing the damage d is straightforward.

Definition 1 (δ-AS scheme) A δ-AS schemeP is the collection of four PPT algorithms:
1. {pk, sk, state,T1, . . . ,Tn} ← Setup(b1, . . . , bn, δ, 1

τ ) takes as inputs file blocks
b1, . . . , bn, a parameter δ and the security parameter τ and returns a public key
pk, a secret key sk, tags T1, . . . ,Tn and a client state state.

2. chal← GenChal(1τ ) generates a challenge for the server;
3. V ← GenProof(pk, βi1 , . . . , βim ,Ti1 , . . . ,Tim , chal) takes as inputs a public key

pk, a collection of m ≤ n blocks and their corresponding tags. It returns a proof of
accountability V;

4. {reject,L} ← CheckProof(pk, state,V, chal) takes as inputs a public key pk and
a proof of accountability V . It returns a list of blocks L or reject.

Relation to Proofs of Storage. A δ-AS scheme is a generalization of proof-of-storage
(PoS) schemes, such as [3, 19]. In particular, a 0-AS scheme (i.e., where we set δ = 0)
is equivalent to PoS protocols, where there is no tolerance for corrupted/lost blocks.

Definition 2 (δ-AS scheme correctness) LetP be a δ-AS scheme. Let {pk, sk, state,T1

, . . . ,Tn} ← Setup(b1, . . . , bn, δ, 1
τ ) for some set of blocksB = {b1, . . . , bn}. Let now

L ⊆ B such that |L| ≤ δ, chal← GenChal(1τ ) and V ← GenProof(pk, B−L,T(B−
L), chal), where T(B − L) denotes the tags corresponding to the blocks in B − L. A
δ-AS scheme is correct if the probability that L ← CheckProof(pk, state,V, chal) is at
least 1− neg(τ).7

To define the security of a δ-AS scheme, the adversary adaptively asks for tags on
a set of blocks B = {b1, b2, . . . , bn} that he chooses. After the adversary gets access to
the tags, his goal is to output a proof V , so that if L is output by algorithm CheckProof,
where |L| ≤ δ, then (a) either L is not a subset of the original set of blocks B; (b) or
the adversary does not store all remaining blocks in B − L intact.

Such a proof is invalid since it would allow the verifier to either recover the wrong
set of blocks (e.g., a set of blocks whose Hamming distance from the corrupted blocks
is a lot smaller) or to accept a corruption of more than δ file blocks.

Definition 3 (δ-AS security) Let P be a δ-AS scheme as in Definition 1 and A be a
PPT adversary. We define security using the following steps.

7 Function λ : N→ R is neg(τ) iff ∀ nonzero polynomials p(τ) there existsN so that ∀τ > N it is λ(τ) < 1/p(τ).
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Algorithm L ← recover(TL)

L = Ø;
while there is a cell i ≤ t such that

TL[i].hashSume/h(ind) = gTL[i].dataSum

(where ind = index(TL[i].dataSum)

do
add TL[i].dataSum to L;
call update(TL[i].dataSum,TL);

return L;

Fig. 2: (Left) On input b1, b2, . . . , b9, the client outputs an IBF TB of three cells us-
ing two hash functions. The server loses blocks b1 and b9. TK is computed on blocks
b2, b3, . . . , b8 and TL contains the lost blocks b1 and b9. (Right) The algorithm for
recovering the lost blocks.

1. Setup. A chooses δ ∈ [0, n), blocks B = {b1, b2, . . . , bn} and is given T1, . . . ,Tn
and pk output by {pk, sk, state,T1, . . . ,Tn} ← Setup(b1, . . . , bn, δ, 1

τ ).8

2. Forge. A is given chal← GenChal(1τ ) and outputs a proof of accountability V .
Suppose L ← CheckProof(pk, state,V, chal). We say that the δ-AS scheme P is secure
if, with probability at least 1−neg(τ): (i) L ⊆ B; and (ii) there exists a PPT knowledge
extractor E that can extract all the remaining file blocks in B − L.

Note here that if the set L is empty, then the above definition is equivalent to the orig-
inal PDP security definition [3]. Also note that the notion of a knowledge extractor is
similar to the standard one, introduced in the context of proofs of knowledge [5]. If the
adversary can output an accepting proof, then he can execute GenProof repeatedly until
it extracts the selected blocks.

4 Our Basic Construction

We now give an overview of our basic construction: On input blocks B = {b1, . . . , bn}
in local storage, the client decides on a parameter δ (meaning that he can tolerate up to
δ corrupted files) and computes the local state, tags, public and secret key by running
{pk, sk, state,T1, . . . ,Tn} ← Setup(b1, . . . , bn, δ, 1

τ ). In our construction the tag Ti
is set to (h(i)gbi)d mod N , as in [3], where h(.) is a collision-resistant hash function,
N is an RSA modulus and (e, d) denote an RSA public/private key pair. The client then
sends blocks b1, . . . , bn and tags T1, . . . ,Tn to the server and locally stores the state
state, which is an IBF of the blocks b1, b2, . . . , bn.

At challenge phase, the client runs chal ← GenChal(1τ ) that picks a random chal-
lenge s and sends it to the server. To generate a proof of accountability (see Figure 2-
left) with GenProof, the server computes an IBF TK on the set of blocks that he (be-
lieves he) stores, along with a proof of data possession [3] on the same set of blocks.

8 A could also choose blocks adaptively, after seeing tags for already requested blocks. Our proof of security handles that.



Alg. {pk, sk, state,T1, . . . ,Tn} ← Setup(b1, . . . , bn, δ, 1
τ ). Let

– N = pq be an RSA modulus of 2τ bits.
– Let e be a random prime and d be a number such that ed = 1 mod φ(N).
– H be a set of k random hash functionsH = {h1, h2, . . . , hk} such that hi : {0, 1}∗ → [t],

where t = (k + 1)δ and k = τ/ log δ.
– g be a generator of QRN .
– θs : {0, 1}τ × {0, 1}∗ → {0, 1}τ be a pseudorandom function.
– h : {0, 1}∗ → QRN be a collision-resistant hash function (modeled as random oracle).

Set pk = (N, e,H, g, θs, h) and sk = d. For block bi compute tag

Ti =
(
h(i)gbi

)d
mod N .

Set state to be the IBF TB on blocks b1, . . . , bn.

Alg. chal← GenChal(1k). Pick a random s ∈ {0, 1}τ and output chal = s.

Alg. V ← GenProof(pk, bi1 , . . . , bim ,Ti1 , . . . ,Tim , chal). Let {bi1 , . . . , bim} ⊆ {b1, . . . , bn}
be the blocks that the server stores. Set Kept = {i1, i2, . . . , im}.

1. (PDP proof) Compute a combined tag T along with a combined sum S as

T =
∏
i∈Kept

Taii and S =
∑
i∈Kept

aibi, where ai = θchal(i). (2)

2. (IBF proof) Compute IBF TK on the set of blocks {bi : i ∈ Kept}.
The proof V is the tuple {T, S,TK}.
Alg. {reject,L} ← CheckProof(pk, state,V, chal). Parse V as {T, S,TK}, state as TB .

1. Set TL ← subtract(TB ,TK)
2. Set L ← recover(TL) and Kept = [n].
3. For each b ∈ L, set Kept = Kept− {index(b)}.
4. Output reject if Te/

∏
i∈Kept h(i)ai 6= gS , where ai = θchal(i). Otherwise output L.

Fig. 3: Our δ-AS scheme construction.

The indices of these blocks are stored in a set Kept. For the computation of the PDP
proof, the server uses randomness derived from the challenge s.

To verify the proof, the client takes the difference TL = subtract(TB ,TK) and
executes algorithm recover from Figure 2-right, which is a modified version of listDiff
from [12]. Algorithm recover adds blocks whose tags verify to the set of lost blocks L.
Then it checks the PDP proof for those block indices corresponding to blocks that were
not output by recover. If this PDP proof does not reject, then the client is persuaded
that the server stores everything except for blocks in L. To make sure recover does not
fail with a noticeable probability, our construction sets the parameters according to the
following corollary. The detailed algorithms of our construction are in Figure 3.

Corollary 1 Let τ be the security parameter andB andK be two sets such thatK ⊆ B
and |B−K| ≤ δ. Let TB and TK be IBFs constructed by algorithm update of Figure 1
using τ/ log δ hash functions. The IBFs TB and TK have t = (τ/ log δ+ 1)δ cells and



employ tags in the hashSum field that map blocks to τ bits. Then with probability at
least 1− 2−τ , algorithm recover(subtract(TB ,TK)) will output L = B −K.

Our detailed proof of security is given in the Appendix. The local state that the
client must keep is an IBF of t = (k + 1)δ cells, therefore the asymptotic size of the
state is O(δ). For the size of the proof V , the tag T has size O(1), the sum S has size
O(log n+λ) and the IBF TK has size O(δ). Overall, the size of V is O(δ+ log n). For
the proof computation, note that algorithm GenProof must first access at least n − δ
blocks in order to compute the PDP proof and then compute an IBF of δ cells over
the same blocks, therefore the time is O(n + δ). Likewise, the verification algorithm
needs to verify a PDP proof for a linear number of blocks and to process a proof of size
O(δ + log n), thus its computation time is again O(n+ δ).

Theorem 1 (δ-AS scheme). Let n be the number of blocks. For all δ ≤ n, there exists
a δ-AS scheme such that: (1) It is correct according to Definition 2; (2) It is secure in
the random oracle model based on the RSA assumption and according to Definition 3;
(3) The proof has size O(δ + log n) and its computation at the server takes O(n + δ)
time; (4) Verification at the client takes O(n + δ) time and requires local state of size
O(δ); (5) The space at the server is O(n).

We now make two observations related to our construction. First, note that the server
could potentially launch a DoS attack, by pretending it does not store some of the blocks
so that the client is forced to spend cycles retrieving these blocks. This is not an issue,
since as we will see later, the server will be penalized for that, so it is not in its best
interest. Second, note that the tags that the client initially uploads are publicly verifiable
so anyone can check their validity—therefore the client cannot upload bogus tags and
blame the server later for that.
Streaming and Appending Blocks. Our construction assumes the client has all blocks
available in the beginning. This is not necessary. Blocks bi could come one at a time, and
the client could easily update its local state with algorithm update(bi,T, 1), compute
the new tag Ti and send the pair (bi,Ti) to the server for storage. This also means that
our construction is partially-dynamic, supporting append-only updates. Modifying a
block is not so straightforward due to replay attacks. However techniques from various
fully-dynamic PDP schemes could be potentially used for this problem (e.g., [13]).

5 Sublinear Construction Using Proofs of Partial Storage

In the previous construction, the server and client run in O(n+ δ) time. In this section
we present optimizations that reduce the server and client performance to O(δ log n).
Recall that the proof generation in Figure 3 has two distinct, linear-time parts: First,
proving that a subset of blocks is kept intact (in particular the blocks with indices in
Kept), and second, computing an IBF on this set of blocks. We show here how to ex-
ecute both these tasks in sublinear time using (i) partial proofs of storage; (ii) a data
structure based on segment trees that the client must prepare during preprocessing.
Proofs of Partial Storage. In our original construction, we prove that a subset of blocks
is kept intact (in particular the blocks with indices in Kept) using a PDP-style proof, as



originally introduced by Ateniese et al. [3]. In our new construction we will replace that
part with a new primitive called proofs of partial storage. To motivate proofs of partial
storage, let us recall how proofs of storage [26] work.

Proofs of storage provide the same guarantees with PDP-style proofs [3] but are
much more practical in terms of proof construction time. In particular, one can construct
a PoS proof in constant time as follows. Along with the original blocks b1, b2, . . . , bn
the client outsources an additional n redundant blocks β1, β2, . . . , βn computed with
an error-correcting code such as Reed-Solomon, such that any n out of the 2n blocks
b1, b2, . . . , bn, β1, β2, . . . , βn can be used to retrieve the original blocks b1, b2, . . . , bn.
Also, the client outsources tags Ti (as computed in Algorithm Setup in Figure 3) for
all 2n blocks. Now, during the challenge phase, the client picks a constant-sized subset
of random blocks to challenge (out of the 2n blocks), say τ = 128 blocks. Because
the subset is chosen at random every time, the server, with probability at least 1− 2−τ ,
will pass the challenge (i.e., provide verifying tags for the challenged blocks) only if he
stores at least half of the blocks b1, b2, . . . , bn, β1, β2, . . . , βn—which means that the
original blocks b1, b2, . . . , bn are recoverable.

Unfortunately, we cannot use proofs of storage as described above directly, since
we want to prove that a subset of the blocks is stored intact, and the above construction
applies to the whole set of blocks. In the following we describe how to fix this problem
using a segment-tree-like data structure.

Our New Construction: Using a Segment Tree. A segment tree T is a binary search
tree that stores the set B of n key-value pairs (i, bi) at the leaves of the tree (ordered by
the key). Let v be an internal node of the tree T . Denote with cover(v) the set of blocks
that are included in the leaves of the subtree rooted on node v. Let also |v| = |cover(v)|.
Every internal node v of T has a label label(v) that stores:
1. All blocks b1, b2, . . . , b|v| contained in cover(v) along with respective tags Ti. The

tags are computed as in Algorithm Setup in Figure 3;
2. Another |v| redundant blocks β1, β2, . . . , β|v| computed using Reed-Solomon codes

such that any |v| out of the 2|v| blocks b1, b2, . . . , b|v|, β1, β2, . . . , β|v| are enough
to retrieve the original blocks b1, b2, . . . , b|v|. Along with every redundant block βi,
we also store its tag Ti.

3. An IBF Tv on the blocks contained in cover(v);
By using the segment tree, one can compute functions on any subset of n−δ blocks

in O(δ log n) time (instead of taking O(n − δ) time): For example, if i1, i2, . . . , iδ are
the indices of the omitted δ blocks, the desired IBF TK can be computed by combining
(i.e., XORing the dataSum and hashSum fields and adding the count fields):

– The IBF T1 corresponding to indices from 1 to i1 − 1;
– The IBF T2 corresponding to indices from i1 + 1 to i2 − 1;
– . . .
– The IBF Tδ+1 corresponding to indices from iδ + 1 to in.

Each one of the above IBFs can be computed in O(log n) time by combining a log-
arithmic number of IBFs stored at internal nodes of the segment tree and therefore the
total complexity of computing the final IBF TK is O(δ log n). Similarly, a partial proof
of storage for the lost blocks with indices i1, i2, . . . , iδ can be computed by returning

– A proof of storage corresponding to indices from 1 to i1 − 1;



– A proof of storage corresponding to indices from i1 + 1 to i2 − 1;
– . . .
– A proof of storage corresponding to indices from iδ + 1 to in.

Again, each one of the above proofs of storage can be computed by returning O(log n)
partial proofs of storage so in total, one needs to return O(δ log n) proofs of storage.
Note however that our segment tree increases our space to O(n log n) and also setting
it up requires O(n log n) time. Therefore we have the following:

Theorem 2 (Sublinear δ-AS scheme). Let n be the number of blocks. For all δ ≤ n,
there exists a δ-AS scheme such that: (1) It is correct according to Definition 2; (2) It
is secure in the random oracle model based on the RSA assumption and according to
Definition 3; (3) The proof has size O(δ log n) and its computation at the server takes
O(δ log n) time; (4) Verification at the client takes O(δ log n) time and requires local
state of size O(δ); (5) The space at the server is O(n log n).

6 Bitcoin Integration

After the client computes the damage d using the AS protocol described in the previous
section, we would like to enable automatic compensation by the server to the client in
the amount of d bitcoins. The server initially makes a “security deposit” of A bitcoins
by means of a special bitcoin transaction that automatically transfers A bitcoins to the
client unless the server transfers d bitcoins to the client before a given deadline. Here,
the amount A is a parameter that is contractually established by the client and server
and is meant to be larger than the maximum damage that can be incurred by the server.9

We have designed a variation of the AS protocol integrated with bitcoin that, upon
termination, achieves one of the following outcomes within an established deadline:

– If both the server and the client follow the protocol, the client gets exactly d bitcoins
from the server and the server gets back his A bitcoins.

– If the server does not follow the protocol (e.g., he tries to give fewer than d bitcoins
to the client, fails to respond in a timely manner, or tries to forge an AS proof), the
client gets A bitcoins from the server automatically.

– If the client requests more than d bitcoins from the server by providing invalid
evidence, the server receives all A deposited bitcoins back and the client receives
nothing.
To guarantee the above outcomes, we implement the security deposit of A bit-

coins by the server via a special Bitcoin transaction safeGuard(x, t), and the related
transactions retBtcs and fuse, and depicted with a diamond in Figure 4. Transaction
safeGuard(x, t) is based on the timed commitment over Bitcoin by Andrychowicz et
al. [2], where x is the committed value and t is the bitcoin locktime. The functionality
associated with safeGuard(x, t) guarantees the following: (1) if x is known by the server
then safeGuard(x, t) can be opened and the server (and only the server) can get his A
bitcoins back; (2) after time t all A bitcoins will go to the client. Namely, until either x
is revealed or t has passed, the bitcoins of the cloud in the transaction safeGuard(x, t)

9 Of course, this is just a simple setting, a proof of concept. Clearly other technical and financial instruments can be used
to improve this approach if committing such a large amount ofA bitcoins is too demanding.
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Fig. 4: Integration of the AS protocol with Bitcoin to enable an automatic compensation
of the client in the case of data loss.

are effectively frozen. We note that the safeGuard transaction we are implementing has
an important difference from the one introduced in [2]: the committed value x is chosen
by the verifier (client) and not by the committer (server).

We now describe our protocol in detail, as depicted in Figure 4. Let S denote the
server andC the client. Our protocol involves a trusted “Bitcoin Arbitrator” (BA). How-
ever, we note that the BA is only contacted by the server S and in case of disputes. For
each step i = 1, . . . , 10, there is a deadline, ti, to complete the step, where timelock
t >> t10. We also assume neither the client nor the server can forge the timestamped
transcript of the protocol, which can be verified by BA. This can be accomplished via
standard techniques, e.g., through authenticated sessions that are posted on the pub-
lic Bitcoin blockchain. (Note that, in this case, BA is effectively operating as a smart
contract that receives and accesses messages stored on the blockchain.) In general, we
assume a trusted and tamper-resilient channel between the client and the server that BA
can efficiently validate.

– Step 1: C picks a random secret x and sends the following items to S: (i) an en-
cryption EncP(x) of x under BA’s public key, P; (ii) a cryptographic hash of x,
H(x); and (iii) a zero-knowledge proof, ZKP1, that H(x) and EncP(x) encode the
same secret x. If ZKP1 does not verify, S aborts the protocol.

– Step 2: S posts bitcoin transaction safeGuard(x, t) for A bitcoins with timelock
t, as done in [2]. If this transaction is not posted within time t2 (the server is not
following the protocol), C aborts the protocol.

– Step 3: S and C run the AS protocol from the previous section, which results in C
computing the damage, d. If the AS protocol rejects or S delays it past time t3, C
jumps to Step 9.

– Step 4: C notifies S that the damage is d and sends a zero-knowledge proof, ZKP2,
to S for that. If C fails to do so by time t4 or ZKP2 does not verify, S jumps to
Step 6.

– Step 5: S sends d bitcoins to C. If S has not done so by time t5, C jumps to Step 9.
– Step 6: C sends secret x to S. If S has not received x by t6, S contacts BA and

sends the timestamped transcript of the protocol up to that moment. BA checks the



transcript and if it is valid10, BA sends x to S. Note that the transcript must be
tamper-proof and should contain the encryption of x and all messages exchanged
up to that moment.

– Step 7: If S has secret x, S posts transaction retBtcs (i.e., S opens the timed com-
mitment using x).

– Step 8: If transaction retBtcs is valid, S receives A bitcoins before timelock t.
– Step 9: C waits until time t and posts transaction fuse.
– Step 10: If transaction fuse is valid, C receives A bitcoins.

It is easy to see that when the above protocol terminates, one of the three out-
comes described at the beginning of this section is achieved. Also, we note here that
for the zero-knowledge proofs ZKP1 and ZKP2, we can use a SNARK with zero-
knowledge [25], that was recently implemented and shown to be practical.

The safeGuard Transaction. We now describe transaction safeGuard(x, t). The scheme
is set up so that safeGuard(x, t) is created by S but where x is known only to C—S
only knows h = H(x). This is feasible to achieve through the first step of the protocol
described in Figure 4. Since S knows h, he issues the following Bitcoin transaction:

Prev : aTransaction
InputsToPrev : sigS([safeGuard])

Conditions :

body, σ1, σ2, x :
H(x) = h ∧ verS(body, σ1)
∨
verS(body, σ1) ∧ verC(body, σ2)

Amount : A B
Locktime : 0

.

The above transaction redeems a transaction called aTransaction that has at least A
B as value and can be redeemed by transactions whose InputsToPrev are of the type
body, σ1, σ2, x (i.e., two signatures on the same transaction and an integer x) and satisfy
the conditions specified. Once the client reveals x to the server, the server posts the
following transaction retBtcs to recover his A bitcoins.

Prev : safeGuard
InputsToPrev : [retBtcs], sigS([retBtcs]),⊥, x

Conditions :
body, σ :
verS(body, σ)

Amount : A B
Locktime : 0

.

If the server does not cooperate (e.g., see Step 5 in the protocol), the client publishes
the transaction fuse after time t and receives a compensation of A bitcoins from the
server.

10 Note that the transcript contains the Bitcoin transaction that sends d bitcoins to the client, which the BA can locate on the
public blockchain.



Prev : safeGuard
InputsToPrev : [fuse], sigS([fuse]), sigC([fuse]),⊥

Conditions :
body, σ :
verC(body, σ)

Amount : A B
Locktime : t

.

It is very important to notice here that the locktime of the above transaction is t, meaning
that if the transaction is posted earlier than t, it is not going to be accepted. This is what
enables A B to be transferred to C if the server does not know x (which C controls!).
Finally we note that the transaction Fuse is possible only because client C has already
the server’s signature sigS([fuse] on the body [fuse], which includes the locktime t. We
can assume that this signature is obtained in the beginning of the protocol.
Global safeGuard. The protocol above protects the client at each AS challenge. But the
cloud provider could stop interacting, simply disappear, and never be reachable by the
client. Our accountable framework thus establishes that there must be a global safeguard
transaction at the time the client and the server initiate their business relationship (i.e.,
when the client uploads the original file blocks and they both sign the SLA).

This global transaction is meant to protect the client if: (1) the server cannot be
reached at all or (2) refuses to post the safeGuard transaction during any AS challenge,
or (3) posts the safeGuard transaction but asks BA to recover the bitcoins in it without
participating in the AS challenge or sending the d bitcoins to C. The global safeGuard
transaction has the same format as the per-challenge safeGuard transaction and can
be handled by the same BA. The only significant difference is that now the BA must
mediate and interact with both the client and the server before returning any bitcoins to
the server and, in case, reinitiate a new global safeGuard transaction between the client
and the server.

A global safeGuard transaction prevents a malicious server from cheating but cre-
ates a scalability problem given that the server has to escrow a large amount of bitcoins
for every client/customer. We do not address this problem technically but we expect it
can be mitigated through financial mechanisms (securities, commodities, credit, etc.)
typically deployed for traditional escrow accounts.
Removing the Bitcoin Arbitrator. Even though BA is only involved in case of dis-
putes, it is preferable to remove it completely. Unfortunately, this seems impossible to
achieve efficiently given the limitations of the Bitcoin scripting language. We sketch in
this section two possible approaches to remove the BA. These will be further explored
in future work.

The first approach relies on a secure two-party computation protocol. In a secure
two-party computation protocol (2PC), party A inputs x and party B inputs y and they
want to compute fA(x, y) and fB(x, y) respectively, without learning each other’s input
other than what can be inferred from the output of the two functions. Yao’s seminal
result [31] showed that oblivious transfer implies 2PC secure against honest-but-curious
adversaries. This result can be extended to generically deal with malicious adversaries
through zero-knowledge proofs or more efficiently via the cut-and-choose method [20]
or LEGO and MiniLEGO [14, 24] (other efficient solutions were proposed in [18, 30]).



To remove the BA, it is enough to create a symmetric version of our original scheme
where both parties create a safeGuard transaction and then exchange the secrets of both
commitments through a fair exchange protocol embedded into a 2PC. The secrets must
be verifiable in the sense that the fair exchange must ensure the secrets open the initial
commitments or fail (as in “committed 2PC” by Jarecki and Shmatikov [18]). Unfortu-
nately, generic techniques for 2PC results in quite impractical schemes and this is the
reason why we prefer a practical solution with an arbiter. An efficient 2PC protocol with
Bitcoin is proposed in [22] but it does not provide fairness since the 2PC protocol can
be interrupted at any time by one of the parties. In the end, since this generic approach
is too expensive in practice, we will not elaborate on it any further in this paper.

Another promising approach to remove the BA is to adopt smart contracts. Smart
contracts are digital contracts that run on a blockchain. Ethereum [1] is a new cryp-
tocurrency system that provides a Turing-complete language to write such contracts,
which is expected to enable several decentralized applications without trusted entities.
Smart contracts will enable our protocol to be fully automated without any arbitrators
or trusted parties in between. To use a smart contract to run our protocol, the contract
is expected to receive a deposit from the server, inputs from both parties, and then it
will decide the money flow accordingly based on the CheckProof result. The contract
in that case will maintain some properties to ensure fair execution, for example both
parties should be incentivized to follow the protocol, and if any party does not follow
the protocol (by aborting for example), there should be a mechanism to end the proto-
col properly for the honest party. To make our protocol fit in the smart contract model,
we will need to address the fact that the CheckProof computation would be too expen-
sive to be performed by the contract, due to its overhead. In Ethereum for example, the
participants must pay for the cost of running the contract, which is run by the miners.

In order to address the points above, we can employ zero knowledge SNARKs [6]
to help reduce miners’ overhead, and thus reduce the computational cost of the verifica-
tion algorithm running on the network, while preserving the secrecy of the secret inputs.
Therefore, instead of running CheckProof by the contract, the client Alice (who has the
secret input) will run the CheckProof on the server input and her state, and then show
the result along with a succinct proof to the contract. The verification of such proof takes
few milliseconds to be executed, which would reduce the computation of the contract
substantially in that case. This will require just one-time trusted setup to generate the
cryptographic keys needed for the protocol, otherwise Alice could generate fake proofs.
A contract realizing our functionality can be implemented on Ethereum except for the
zk-SNARK verification. Although zk-SNARKs can conceptually be implemented there
(as the language is Turing-complete), it would not be efficient without native support,
due to the cryptography involved. Due to many applications zk-SNARKs have in cryp-
tocurrencies, we expect to see its support in the near future.

7 Evaluation

We prototyped the proposed Accountable Storage (AS) scheme in Python 2.7.5. Our
implementation is open-source11 and consists of 4K lines of source code. We use the
11 https://github.com/evripidispar/delta-AccountableStorage

https://github.com/evripidispar/delta-AccountableStorage
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pycrypto library 2.6.1 [21] and an RSA modulus N of size 1024 bits. We serialize
the protocol messages using Google Protocol Buffers [16] and perform all the modulo
exponentation operations using GMPY2 [17], which is a C-coded Python extension
module that supports fast multiple precision arithmetic (the use of GMPY2 gave us 60%
speedup in exponentiations in comparison with the regular python arithmetic library).

We divide the prototype in two major components. The first is responsible for data
pre-processing, issuing proof challenges and verifying proofs. The second produces
proof every time it receives a challenge. Both modules utilize the IBF data structure
to produce and verify proofs. Our prototype uses parallel computing via the Python



multiprocessing module to carry out many of the heavy, but independent, cryptographic
operations simultaneously. We used a single-producer, many-consumers approach to di-
vide the available tasks in a pool of [8-12] processes-workers. The workers use message
passing to coordinate and update the results of their computations. This approach signif-
icantly enhanced the performance of preprocessing as well as the proof generation and
checking phase of the protocol. Our parallel implementation provides an approximate
5x speedup over a sequential implementation.

Finally note that since it can be easily estimated, we have not evaluated the Bitcoin
part of our protocol which is dominated by the time it takes for transactions to be part
of the blockchain. Nowadays this latency is approximately 10 minutes.

Experimental Setup: Our experimental setup involves two nodes, one implementing
the server and another implementing the client functionality. The two nodes commu-
nicate through a Local Area Network (LAN). The two machines are equipped with an
Intel 2.3 Ghz Core i7 processor and have 16 GB of RAM.

Our data are randomly generated filesystems. Every file-system includes different
number of equally-sized blocks. The number of blocks ranges from 100 to 500000
and the different sizes of blocks used are 1KB, 2KB, 4KB and 8KB. The total filesys-
tem size varies from 100 KByte to 4.1 GByte. Our experiments consist of 10 trials of
challenge/proof exchanges between the client and the server for different filesystems.
Throughout the evaluation we report the average values over these 10 trials.

In our experiments, we select the tolerance parameter δ, which indicates the maxi-
mum amount of data blocks that can be lost, to be equal to log2(n). One other possible
choice of δ is to set it equal to

√
n. We select the logarithm of the number of blocks as

δ, because this provides a harder condition on how many blocks can be lost or corrupted
from the cloud server.

For the IBF construction, we have used message authentication code scheme instead
of XORing the tags of the data blocks for efficiency purposes. The message authentica-
tion code (MAC) used is an HMAC. In addition, the selected number of hash functions
used for the IBF construction is k = 6. This choice of hash functions leads to a very
low probability of failure of the recovery algorithm, which depends on the values of k
and δ.

Preprocessing Overheads: We first examine the memory overhead of the preprocess-
ing phase, which is shown in Table 1. The first column describes the available number
of blocks in a filesystem and the second represents the total size of the tags needed. The
preprocessing memory overhead is proportional to the number of blocks in a filesystem.

Figure 5 shows the CPU-time-related overheads of the preprocessing of the proto-
col. These overheads are divided to tag generation and the creation of the client state
represented by the IBF TB . The tag generation time (Figure 5a) increases linearly with
both the available number of blocks and the size of each block. While this cost is signif-
icant for large file systems, it is an operation that client performs only once at the setup
phase. On the other hand, the cost of construction of the IBF (Figure 5b) is negligible;
the IBF construction of our biggest filesystem only takes around 16 seconds.

Challenge-Proof Overheads: We now examine memory and CPU-related overheads
for the challenge-proof exchange and the recovery phase. The last four columns of



Table 1: Memory Footprint of the AS Scheme (KB)

n Tag Size (KB) Proof Size (KB)
1KB 2KB 4KB 8KB

102 32 341 680 1356 2710
103 236 510 1017 2029 4055
104 2644 735 1466 2927 5848
105 24895 904 1898 3526 7051

5 ∗ 105 118326 1017 2028 4049 8034

Table 1 show the proof sizes (in KB) for δ = log2(n), which increase proportionally to
the block size.

Every subgraph of Figure 6 shows how different block sizes affect the performance
of the challenge-proof exchange for a given number of blocks. The left bar in the figure
shows the proof generation time and the right bar the proof check along with the time
to recover the lost blocks. Larger block sizes increase the time-overhead of challenge-
proof exchange.

8 Conclusions

In this paper we put forth the notion of accountability in cloud storage. Unlike existing
work such as proof-of-storage schemes and verifiable computation, we design proto-
cols that respond to a verification failure, enabling the client to assess the damage that
has occurred in a storage repository. We also present a protocol that enables automatic
compensation of the client, based on the amount of damage, and is implemented over
Bitcoin. Our implementation shows that our system can be used in practice.
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Appendix

RSA assumption

Definition 4 Let N = pq be an RSA modulus, where p and q are τ -bit primes. Given
N , e and g, where g is randomly chosen from Z∗N and e is a prime of Θ(τ) bits, there
is no PPT algorithm that can output y1/e mod N , except with probability neg(τ).

Proof of security of construction in Figure 3.

Setup. A chooses parameter δ ∈ [0, n), blocks B = {b1, b2, . . . , bn} and is given
pk and T1, . . . ,Tn as output by {pk, sk, state,T1, . . . ,Tn} ← Setup(b1, . . . , bn, δ, 1

τ ).
The random oracle is programmed so that it returns rei g

−bi on input i for some random
ri, i.e., h(i) = rei g

−bi mod N .
Forge.A is given chal← GenChal(1τ ), computes proof of accountability V and returns
V . Suppose L ← CheckProof(pk, sk, state,V, chal). We must show that with probabil-
ity ≥ 1− neg(τ) it is (i) L ⊆ B; and (ii) there exists a PPT knowledge extractor E that
can extract all the remaining file blocks in B − L.
1. Showing L ⊆ B. Note that all blocks in L are output by Algorithm recover of

Figure 2. In this algorithm a block b′i can enter L only if its tag verifies. Sup-
pose now b′i /∈ B (namely b′i 6= bi) and tage/h(i) = gb

′
i for some arbitrary

tag computed by the adversary. But since h(i) = rei g
−bi , this can be written as

www.dlitz.net/software/pycrypto/
www.dlitz.net/software/pycrypto/
www.bitcoin.org/bitcoin.pdf
www.bitcoin.org/bitcoin.pdf


tage/rei g
−bi = gb

′
i which gives gb

′
i−bi = (tag/ri)e. Since e is a prime and

bi − b′i 6= 0, there exist α and β such that (b′i − bi) × α + e × β = 1, giving
g1/e = g−β(tag/ri)

e×α, breaking the RSA assumption—see Definition 4.
2. Showing there exists a PPT knowledge extractor E that can extract all the

remaining file blocks in B −L. We now show how to build an extractor that, after
` = |B − L| interactions with the adversary, he can extract the blocks {bi : i ∈
B −L}. The extractor will challenge the adversary exactly ` times, each time with
different randomness. Let S1, S2, . . . , S`,T(1),T(2), . . . ,T(`) be the sums and tags
he receives by A during each challenge, as in Equation 2. We have two cases:
(a) Sj =

∑
i∈B−L aijbi, for j ∈ B − L (aij denotes the randomness of the j-th

challenge corresponding to the i-th block). In this case, the extractor can solve
a system of ` linear equations and retrieve the original blocks {bi : i ∈ B−L}.

(b) Suppose there exists j ∈ B − L such that Sj 6=
∑
i∈B−L aijbi = S. For

simplicity of notation, let’s set T(j) = T and Sj = S̄. Then by the CheckProof
algorithm we have

Te∏
i∈B−L h(i)ai

= gS̄ .

But since h(i) = rei g
−bi we have that

gS̄−S =

(
T∏

i∈B−L r
ai
i

)e
= Ze .

Therefore we have Ze = gS̄−S . Again, since e is prime and S 6= S̄ we can use
the same trick as before, and break the RSA assumption. ut
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