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ABSTRACT
In the setting of streaming verifiable computation, a verifier and a
prover observe a stream of n elements x1, x2, . . . , xn and later, the
verifier can delegate a computation (e.g., a range search query) to
the untrusted prover over the stream. The prover returns the result
of the computation and a cryptographic proof for its correctness. To
verify the prover’s result efficiently, the verifier keeps small local
(logarithmic) state, which he updates while observing the stream.
The challenge is to enable the verifier to update his local state with
no interaction with the prover, while ensuring the prover can com-
pute proofs efficiently.

Papamanthou et al. (EUROCRYPT 2013) introduced streaming
authenticated data structures (SADS) to address the above prob-
lem. Yet their scheme is complex to describe and impractical to
implement, mainly due to the use of Ajtai’s lattice-based hash func-
tion. In this work we present an abstract SADS construction that
can use any hash function satisfying properties that we formally
define. This leads to a simpler exposition of the fundamental ideas
of Papamanthou et al.’s work and to a practical implementation of
a streaming authenticated data structure that employs the efficient
SWIFFT hash function, which we show to comply with our abstrac-
tion. We implement both the EUROCRYPT 2013 construction and
our new scheme and report major savings in prover time and public
key size.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
Security and Protection
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1. INTRODUCTION
We consider verifiable computation in a streaming setting, where

a client (verifier) and a server (prover) observe a rapidly evolving
data stream x1, x2, . . . , xn, which can be stored in its entirety only
by the server. The client has limited local space (e.g., logarithmic)
and can keep only a small and easily updatable summary of the
data stream. In such a setting, we wish to construct protocols that
enable verification of computation on the data stream (e.g., range
search queries) via efficiently computable proofs provided by the
server.

Many prior verifiable computation schemes are unsuitable in the
streaming setting: For example, some schemes [7, 15] require the
client have access to all the data in the stream ahead of time in or-
der to perform some preprocessing, leading to linear client space;
Or they allow the client update his summary through an interac-
tive protocol between the client and the server (e.g., [14]). Due
to the nature of the streaming setting, however, interactions can be
very expensive. For example, consider a network traffic account-
ing application [6], where an ISP charges a customer based on the
type and duration of its network flows. To enforce that the ISP is
performing the accounting correctly, the ISP logs a customer’s net-
work flows such that the customer can later make queries to the logs
to perform auditing (typically the customer does not have sufficient
local storage to log all the flows). In such high link-speed settings,
performing an interactive protocol with every packet or flow sent is
very expensive.

Related Work. Existing streaming verifiable protocols [3, 4, 5]
are efficient in terms of verifier complexity. However, their prover
complexity is linear even for sublinear computations such as mem-
bership and range search queries on a stream of elements drawn
from an ordered universe.

Schröder and Schröder [16] were among the first to provide a
verifiable data streaming protocol with logarithmic prover com-
plexity. Their construction assumes a sequential stream and there-
fore cannot efficiently support non-membership and range search
queries. However, as opposed to this work, their scheme achieves
the unique property of maintaining the same public key while the
stream elements are observed.

Papamanthou, Shi, Tamassia and Yi [13] (referred to as PSTY
paper in the following) proposed an efficient streaming verifiable
scheme with logarithmic proof size that supports verifiable mem-
bership, successor, frequency and range query. In this scheme, the
verifier and the prover make updates independently of each other
and updates are non-interactive. For any range query (i.e., return
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the elements in the range [x, y]), the prover computes a proof in
O(logM logn) time, where n is an upper bound on the size of the
stream and M is the size of the universe.

Despite its prover efficiency and query expressiveness, the PSTY
scheme [13] has two problems. First, the protocol is rather com-
plicated, and does not provide a good intuition of the high level
scheme design. Second, the scheme is not practical since it uses
Ajtai’s collision resistant hash function based on the small integer
problem [11], which has a very large public key size.
Our contributions. Our contributions are as follows:

1. We propose an abstract construction of a streaming authen-
ticated data structure that can be instantiated with a class of
hash functions, whose properties we formally define. Our
abstract construction has the same computational efficiency,
as well as query expressiveness of the PSTY work, which we
show to comply with our proposed abstraction.

2. We introduce a class of hash functions based on the general-
ized compact knapsack problem (GCK) that fits our abstract
scheme. The GCK hash function is proven to be collision
resistant based on the worst case complexity assumption on
cyclic lattices by Lyubasevsky and Micciancio [8]. We study
the efficiency and cryptanalysis of our new hash function in
detail. We also show that our new hash function achieves the
desired level of security against state-of-the-art attacks.

3. We implement our streaming verifiable scheme using both
hash functions (one from PSTY and the new one) and we
compare the two implementations. The implementation us-
ing the new hash function achieves 7-8 times faster verifica-
tion and 2-3 times faster updating with significantly smaller
key size. On a stream of length 232 in a universe of 232

unique elements, it takes 0.27 seconds for verifying member-
ship and 0.98 seconds for each update on a desktop machine
with 16GB RAM.

The paper below is organized as follows. In Section 2, we review
the notations and basic definitions of the streaming authenticated
data structures (SADS) scheme, as well as the primitive, the gen-
eralized hash trees, that PSTY [13] introduces. In Section 3, we
present an abstract SADS construction which is efficient in terms
of update, query and verification. The PSTY scheme [13] is shown
to be a special instantiation of our abstract SADS. In section 4,
we carefully parameterize a class of collision-resistant GCK hash
functions that fits our abstract SADS. Section 5 studies the crypt-
analysis of our GCK hash function against the generalized birthday
attacks [17] and the lattice attacks [12]. Section 6 proposes a mod-
ified construction that reduces the space complexity by a factor of√
n. Section 7 provides the experimental results based on the im-

plementations of both the hash function in PSTY [13] and our new
GCK hash function. Section 8 concludes this paper.

2. PRELIMINARIES
In this section, we give the definition of a streaming authenti-

cated data structure (SADS), as introduced in the PSTY paper [13].
We denote with λ the security parameter and with n = poly(λ) an
upper bound on the size of the stream. PPT stands for probabilistic
polynomial-time and neg(λ) is a negligible function, i.e., a func-
tion less than 1/poly(λ), for all polynomials poly(λ). We define
[n] = {0, 1, . . . , n}.

DEFINITION 1 (SADS SCHEME). Let D be any data struc-
ture that supports queries q and updates upd. An SADS scheme A
is a collection of the following six PPT algorithms:

1. pk ← genkey(1λ, n): On input the security parameter λ
and an upper bound n on the size of the stream, it outputs a
public key pk;

2. {auth(D0), d0} ← initialize(D0, pk): On input an empty
data structure D0 and the public key pk, it computes the au-
thenticated data structure auth(D0) and the respective state
d0 of it;

3. dh+1 ← updateVerifier(upd, dh, pk): On input an update
upd to data structureDh, the current state dh and the public
key pk, it outputs the updated state dh+1;

4. {Dh+1, auth(Dh+1)} ← updateProver(upd, Dh,
auth(Dh), pk): On input an update upd to data structure
Dh, the authenticated data structure auth(Dh) and the pub-
lic key pk, it outputs the updated data structure Dh+1 along
with the updated authenticated data structure auth(Dh+1);

5. {α(q),Π(q)} ← query(q,Dh, auth(Dh), pk): On input a
query q on data structure Dh, the authenticated data struc-
ture auth(Dh) and the public key pk, it returns the answer
α(q) to the query, along with a proof Π(q);

6. {1, 0} ← verify(q, α(q),Π(q), dh, pk): On input a query q,
an answer α(q), a proof Π(q) for query q, a digest dh and
the public key pk, it outputs either 1 (accepts) or 0 (rejects);

There is no secret key in our definition, supporting in this way pub-
lic verifiability. There are two properties that an SADS scheme
should satisfy, namely correctness and security (as in signature
schemes definitions).

DEFINITION 2 (CORRECTNESS). Let A be an SADS scheme
consisting of the set of algorithms. We say that the SADS scheme A
is correct if, for all λ ∈ N, for all pk output by algorithm genkey,
for all Dh, auth(Dh), dh output by one invocation of initialize fol-
lowed by polynomially-many invocations of updateVerifier and
updateProver, where h ≥ 0, for all queries q and for all Π(q), α(q)
output by query(q,Dh, auth(Dh), pk), with all but negligible prob-
ability neg(λ), it holds that 1← verify(q,Π(q), α(q), dh, pk).

Apart from the 6 algorithms in Definition 1, we also define the
algorithm {0, 1} ← check(q, α,Dh) such that it outputs 1 if and
only if α is the correct answer to query q on data structure Dh
(otherwise it outputs 0).

DEFINITION 3 (SECURITY). Let A be an SADS scheme, λ be
the security parameter, D0 be the empty data structure and pk ←
genkey(1λ). Let also Adv be a PPT adversary and let d0 be the
state output by initialize(D0, pk).

• (Update) For i = 0, . . . , h−1 = poly(k), Adv picks the up-
date updi to data structure Di. Let di+1 ← updateVerifier
(updi, di, pk) be the new state corresponding to the updated
data structure Di+1.

• (Forge) Adv outputs a query q, an answer α and a proof Π.

• (Check) Adv outputs a query q, an answer α and a proof Π.

We say that the SADS scheme A is secure if for all λ ∈ N, for all
pk output by algorithm genkey, and for any PPT adversary Adv
the following probability is negligible neg(λ).

Pr

[
{q,Π, α} ← Adv(1λ, pk); 1← verify(q, α,Π, dh, pk);

0← check(q, α,Dh).

]
.
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2.1 Generalized Hash Trees
Recall that a Merkle hash tree [10] is a labeled binary tree T

where the label λ(w) of every node w is the collision resistant hash
(e.g., a SHA-2 hash) of the labels λ(u) and λ(v) and of its children
u and v, i.e., λ(w) = h(λ(u), λ(v)). When function h is applied
recursively on all the nodes of the tree, the label λ(r) of the root
r has the following property: A PPT adversary cannot find two
different data sets at the leaves that produce the same label at the
root of a Merkle tree.

However, certain hash functions have different domain and range.
E.g., in SWIFFT [9], the input is a binary vector while the out-
put value is in a finite filed. Obviously, we cannot employ such
hash functions in a traditional Merkle hash tree. Generalized hash
trees, introduced in the PSTY paper, provide a way to overcome
this domain-range discrepancy problem.

Let h : D × D → R be a collision resistant hash function ac-
cepting two inputs that take values from domain D and outputting
a value in a different range R. Let u and v be the two children of
w with labels λ(u), λ(v) and λ(w) ∈ D. Instead of applying hash
functions on node labels directly, generalized hash trees use a de-
terministic and easily computable projection function φ : D → R,
such that φ(λ(w)) = h(λ(u), λ(v)).

Clearly, the labeling of a generalized hash tree need not to be
unique: In the above example, λ(w) can be any φ-preimage of
h(λ(u), λ(v)). However, the collision resistant property of Merkle
trees is still true: Any two valid hash trees representing different
data sets at the leaves but with the same root label yield a collision
to the underlying hash function. We now formally define general-
ized hash trees.

DEFINITION 4 (FULL BINARY TREE). A full binary tree T is
a non-empty tree where every internal node has two children. It is
represented with set of binary strings, where ε is the empty string
representing the root of T and w0 and w1 are the string repre-
sentations of the left and right children of a node having string
representation w.

For example, a full binary tree with five nodes is T = {ε, 0, 1, 00,
01}. Note that full binary trees need not be complete, i.e., not all
leaves must lie at the same level.

DEFINITION 5 (LABELED BINARY TREE). A labeled binary
tree (T, λ) is a full binary tree T along with labels λ(w) for all
w ∈ T .

DEFINITION 6 (GENERALIZED HASH TREE). Let h : D ×
D → R be the hash function, and φ : D → R be the projection
function. A generalized hash tree (T, λ, φ, h) is a labeled binary
tree (T, λ) such that (a) for all w ∈ T , λ(w) ∈ D; (b) for all
internal nodes w ∈ T , φ(λ(w)) = h(λ(w0), λ(w1)), where w0
and w1 are the left and right children of w respectively.

DEFINITION 7 (TREE COLLISION). A tree collision is a pair
of two distinct generalized hash trees (T, λ, φ, h) and (T, l, φ, h)
such that λ(ε) = l(ε).

The next main security theorem establishes the collision resis-
tance for generalized hash trees. Please refer to the PSTY work [13]
for a detailed proof.

THEOREM 1 (COLLISION RESISTANCE). Let λ be the secu-
rity parameter, T be a full binary tree of poly(λ) depth. If h is
collision resistant, there is no PPT algorithm that can output a
tree collision (T, λ, φ, h) and (T, l, φ, h), except with probability
neg(λ).

2.2 The generalized hash trees for SADS
For the SADS, we need an extension of the full binary tree from

Definition 4 that can store values at its leaves.

DEFINITION 8 (STRUCTURED BINARY TREE). Let M be a
power of two. A structured binary tree TC is a full binary tree T
of logM levels where all the leaves lie at the last level of the tree,
storing values C = [c0, c1, . . . , cM−1], where ci ∈ [n].

In a structured binary tree, each leaf corresponds to an element in
the universe of the stream. The sequence of elements (from left-
most to rightmost) form an ordered universe. E.g., let the uni-
verse of a structured binary tree with 8 leaves be {0, 1, . . . , 7}.
The leaves from left-to-right correspond to elements 0, 1, . . . , 7.
Without loss of generality, we will assume the universe of size M
is {0, 1, . . . ,M − 1}. The value stored at each leaf indicates the
frequency of the corresponding leaf element. E.g., in a structured
binary tree of 8 leaves, c6 indicates the frequency of element 6.

2.3 Groups and homomorphisms
We now give a brief review on groups and homomorphism that

are going to be needed for defining our abstract construction. Please
refer to [1] for a comprehensive study.

A commutative group is a set G with an operation �, such that
(1) the operation � is associative and commutative; (2) G has an
identity; (3) Every element in G has an inverse. We use 0G to denote
the identity and use

∑
∈ G to denote the summation over group G.

A subset H of G is a subgroup of G if H forms a group under the
same operation�. A subgroupN of group G is a normal subgroup
if it is invariant under conjugation; that is, ∀n ∈ N , ∀g ∈ G,
g � n� g−1 ∈ N .

In this paper, we focus on the two commutative groups with re-
spect to the domain and the range. Namely, let D be the domain
with an operation ⊕, andR be the range with an operation ⊗.

A homomorphism φ : D → R is a map from D to R such
that for all x, y in D, φ(x ⊕ y) = φ(x) ⊗ φ(y). The kernel of the
homomorphism φ is the set of elements inD that are mapped to the
identity in R: ker(φ) = {x ∈ D |φ(x) = 0R}. Notice ker(φ) is
a normal subgroup ofD and always contains 0D , i.e., φ(0D) = 0R.
The image of the homomorphism φ is im(φ) = {φ(x) |x ∈ D}.
The homomorphism φ is surjective if and only if im(φ) = R.

An isomorphism is a bijective group homomorphism. Two groups
D and R are isomorphic if there exists an isomorphism from one
to the other.

LetH be a subgroup ofD and a ∈ D. The subset coset(a,H) =
{a ⊕ h |h ∈ H} is called a coset of H . For a normal subgroup
N ∈ D, the quotient group D/N is defined as the set of cosets of
N in D: D/N = {coset(a,N)|a ∈ D}.

Let φ : D → R be a surjective group homomorphism. The first
isomorphism theorem states that the quotient group D/ker(φ) is
isomorphic toR [1].

For example, let φ : C→ R be the mapping from every complex
number to its absolute value. It is easy to check φ forms a homo-
morphism under multiplication. The kernel of φ is the unit circle
U , as it maps to the multiplication identity 1 in R. The quotient
group C/ker(φ) consists of all multiples of U . In other words, it
is the collection of all circles centered at the origin in C, each of
which is a coset of U . Clearly, there is a bijection between each
circle in C and its radius in R.

3. ABSTRACT CONSTRUCTION
In this section, we define the hash function, the projection func-

tion and the labeling function for our abstract SADS construction.
See Definitions 9, 10 and 15 respectively.
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The class of hash functions. We characterize the class of hash
functions that fit our abstract SADS. Let D and R be the domain
and the range of interest, both of which are commutative groups.

DEFINITION 9 (HASH FUNCTION). The class of hash func-
tions of SADS, h : D ×D → R is characterized as follows:

1. h(x,y) = HL(x)⊗HR(y).

2. There is no PPT algorithm can find xδ,yδ 6= 0D such that
HL(xδ) +HR(yδ) = 0R with non-negligible probability.

3. For x,y ∈ D, HA(x⊕ y) = HA(x) ⊗ HA(y), where A
is either L or R.

COROLLARY 1. The hash function h in Definition 9 is collision
resistant.

PROOF. Assume there is a PPT algorithm A that outputs two
distinct pairs of (x1,y1), (x2,y2) ∈ D, such that

HL(x1)⊗HR(y1) = HL(x2)⊗HR(y2)

with non-negligible probability. Then, the PPT algorithm can find
xδ,yδ 6= 0D s.t. HL(xδ) ⊗ HR(yδ) = 0R with non-negligible
probability. Contradiction.

We construct our collision resistant hash h as the sum of two
hash functions over the groupR, where both component hash func-
tions form homomorphisms fromD toR. Boneh and Boyen proved
that there is no generic construction that combines two arbitrary
collision resistant hash functions H1, H2 into one collision resis-
tant hash H, such that the output of H is any shorter than the the
concatenation of the outputs of H1 and H2 [2]. Hence, our con-
struction of h cannot guarantee collision resistance, and condition 2
in Definition 9 is necessary. In the later sections, we will show h is
inherently collision resistant, given that HL and HR are collision
resistant and have certain matrix structures.
The projection function. As we saw before, one important com-
ponent of the generalized hash tree is the projection function. Specif-
ically, we will need the projection function be homomorphic.

DEFINITION 10 (PROJECTION FUNCTION FOR SADS). The
projection function for SADS is a surjective homomorphism φ :
D → R. That is, for all x, y ∈ D, φ(x⊕ y) = φ(x)⊗ φ(y).

By the first isomorphism theorem, D/ker(φ) and R form an
isomorphism [1]. Denote this canonical isomorphism as:

π : D/ker(φ)→ R.

We define an inverse projection functions as follows.

DEFINITION 11 (INVERSE PROJECTION). The inverse projec-
tion function ψ is a function fromR to D such that

1. for each y ∈ R, ψ(y) = x, where x ∈ π−1(y);

2. ψ(0R) = 0D .

COROLLARY 2. Let φ, ψ be the projection function and the in-
verse projection function by Definition 10 and Definition 11. For
any y ∈ R, we have φ(ψ(y)) = y.

In practice, the projection function and the inverse projection func-
tion should be efficiently computable.
The labeling function. Let h, φ be the hash function and the pro-
jection function respectively. We now continue with defining the
labels of the generalized hash tree (see Definition 15). Before that,
we give some necessary definitions:

DEFINITION 12 (RANGE OF A NODE). Let w be a node of a
structured binary tree TC . The set range(w) contains the leaves of
the subtree of TC rooted on w.

DEFINITION 13. Define the functions g0 : D → D and g1 :
D → D such that g0(x) = ψ(HL(x)) and g1(x) = ψ(HR(x)).
Also, for a bitstring w = b1b2 . . . be, define the function gw : D →
D as the composition gw(x) = gb1 ◦ gb2 ◦ . . . ◦ gbe(x).

To construct the labeling function, we start with defining a class
of γ functions that maps frequency values stored at leaf nodes to
labels. Namely, γ : [n]→ D satisfies the following equation

Given cv + cδ ∈ [n], γ(cv + cδ) = γ(cv)⊕ γ(cδ). (1)

DEFINITION 14 (PARTIAL LABELS). Let TC be a structured
binary tree. The partial label of a node is defined recursively by the
follows.

1. The partial label of a leaf node v with respect to itself is de-
fined by Lv(v) = γ(cv), where cv is the frequency value
stored at leaf v and γ is a function by Equation 1.

2. For every other nodew of TC , and for every leaf v ∈ range(w),
the partial label Lw(v) of w with respect to v is defined as
Lw(v) = gv−w(γ(cv)), where v − w is the result of remov-
ing prefix w from bitstring v.

E.g., for a structured binary tree of 8 leaves, the partial label of
the root wrt leaves 2 and 3 are Lε(2) = ψ(HL ◦ ψ(HR ◦ ψ(HL ◦
γ(c2)))) and Lε(3) = ψ(HL ◦ ψ(HR ◦ ψ(HR ◦ γ(c3)))) respec-
tively.

COROLLARY 3. Let TC be a structured binary tree, with w ∈
TC be any internal node. Given a leaf v ∈ TC with its value cv = 0,
the partial label of w with respect to v, Lw(v) = 0D .

PROOF. By Definition 14, Lw(v) = gv−w(γ(0)). By Equa-
tion 1, it is easy to see γ(0) = 0D . By the homomorphism ofHA,
we have HA(0D) = 0R, where A is either L or R. Since ψ is an
isomorphism from R to D, we have ψ(0R) = 0D . Consequently,
the composed function ψ(HA(0D)) = 0D . Since gv−w is a chain
of such composed function, gv−w(γ(0)) = gv−w(0D) = 0D .

Figure 1: Update of labels. At the leaf nodesw0 andw1, frequency
values ci and ci+1 are stored respectively. The labels ofw0 andw1
are therefore γ(ci) and γ(ci+1). By Definition 15, the label of their
parent node w is ψ(HL(γ(ci)))⊕ψ(HR(γ(ci+1))). Now, assume
frequency value stored at leaf w0 is updated to ci + 1. The label of
w0 can simply be updated by an ⊕ operation with γ(1). Similarly,
the label of w is updated by an ⊕ operation with ψ(HL(γ(1))).
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DEFINITION 15 (LABELING FUNCTION). Let TC be a struc-
tured binary tree, where C = [c0, c1, . . . , cM−1]. For every node
w ∈ TC , we define its labeling as λ(w) =

∑
v∈range(w)Lw(v) ∈

D.

E.g., Figure 1 illustrates a simple example of the labeling func-
tion. At the leaf level of a generalized hash tree, frequency values
ci and ci+1 are stored at leaf node w0 and w1. Hence, the labels of
w0 and w1 are λ(w0) = γ(ci) and λ(w1) = γ(ci+1). By Defini-
tion 15, the label of their parent node w should be the summation
overD of the partial labels ofw with respect tow0 andw1. Hence,
λ(w) = ψ(HL(γ(ci)))⊕ ψ(HR(γ(ci+1))).

LEMMA 1. Let TC be a structured binary tree. Let h, φ, λ be
the hash function, projection function and labeling function de-
scribed above. Then, φ(λ(w)) = h(λ(w0), λ(w1)), where w is
any internal node of TC and w0, w1 are two children of w.

PROOF.

φ(λ(w)) = φ

 ∑
v∈range(w)

Lw(v) ∈ D

 (Def. 15)

=
∑

v∈range(w0)

φ (Lw(v))⊗
∑

v∈range(w1)

φ (Lw(v)) (Def. 9)

=
∑

v∈range(w0)

φ (gw−v(γ(cv)))⊗
∑

v∈range(w1)

φ (gw−v(γ(cv))) (Def. 14)

=
∑

v∈range(w0)

φ (g0(Lw0(v)))⊗
∑

v∈range(w1)

φ (g1(Lw1(v))) (Def. 14)

=
∑

v∈range(w0)

φ (ψ(HL · Lw0(v)))

⊗
∑

v∈range(w1)

φ (ψ(HR · Lw1(v))) (Def. 13)

=
∑

v∈range(w0)

HL · Lw0(v)⊗
∑

v∈range(w1)

HR · Lw1(v) (Cor. 2)

= HL(λ(w0))⊗HR(λ(w1)) = h(λ(w0), λ(w1)). (Def. 15)

THEOREM 2. Let TC be a structured binary tree. Then, (TC , λ,
f, h) is a generalized hash tree, where h, φ, λ are the hash function,
projection function and labeling function described above. .

PROOF. It follows from Lemma 1 and by Definition 6.

3.1 Efficient updates of the labels
The output λ(v) of the labeling function applied to node v can

be updated very efficiently whenever the leaf changes. We first
introduce the following definition.

DEFINITION 16 (UNIT UPDATE). For any internal node w ∈
TC and any leaf node v ∈ TC , let the unit update of w in terms of v
be δw(v) = gε−vi(γ(1)).

Each occurrence of an element i contributes δw(i) = gw−vi(γ(1))
on the internal nodew. Adding (or removing) an element i is equiv-
alent to adding (or subtracting) δw(i) to (from) λ(w). It is impor-
tant to note that computing a unit update, as well as a partial label,
only requires O(logM) recursive calls of hash function h.

Figure 1 shows how to update the corresponding labels when the
value stored at leaf node w0 increments by 1. For a more concrete
example, let λ(ε) be the label of the root of a generalized hash
tree (TC, λ, φ, h) with eight leaves {v0, v1, . . . , v7} where c3 = 2,
c4 = c6 = c7 = 1 and c0 = c1 = c2 = c5 = 0. By Corollary 3,
the root label λ(ε) =

∑
v∈range(ε) Lw(v) ∈ D can be expressed

as Lε(v2) + Lε(v4) + Lε(v6) + Lε(v7). Adding (or removing)
an element i is equivalent to adding (or subtracting) δε(i) to (from)
λ(ε), which only takes O(logM) calls of h.

3.2 SADS construction
Let TC be a structured binary tree with M leaves corresponding

to the universe. Let (TC , λ, φ, h) denote the generalized hash tree
of interest as described above. To store the generalized hash tree,
we store only the labels that are defined on the paths from non-zero
leaves to the root (all other labels are zero). This requires space
proportional to O(ν logM), where ν is the number of distinct el-
ement appearing in the stream. Figure 2 presents the 6 algorithms
of our abstract SADS scheme.

Range search queries. The abstract SADS inherits the query
expressiveness from the PSTY work [13]. It supports the range
search queries by the same algorithm.

The proof for a range search query [x, y] simply contains the two
proofs Π(x) and Π(y) as output by algorithms query(x,Dh, auth
(Dh), pk) and query(y,Dh, auth(Dh), pk) respectively from Fig-
ure 2. It also contains the frequencies Cxy = {ca1 , ca2 , . . . , cas} of
the reported range as an answer. Let nowRxy = {a1, a2, . . . , as}
denote the respective reported range that corresponds to Cxy .

For verification, the proofs Π(x) and Π(y) are verified first by
using algorithm verify from Figure 2. If this verification is suc-
cessful, perform the following test (else reject): If for all labels
λ(v) ∈ Π(x) ∪ Π(y) such that range(v) ∩ Rxy is not empty, the
following relation (as in Definition 15)

λ(v) =
∑

i∈range(v)∩Rxy

Lv(i) (3)

is true, output 1 (i.e., accept), else output 0 (i.e., reject). The above
relation ensures that all the range (with the correct frequencies)
has been reported, or otherwise, the adversary could find a colli-
sion. The above technique can be also used for verifying successor
queries, where the reported range is empty.

3.3 PSTY instantiation of our abstract SADS
We show the PSTY scheme [13] is an instantiation of our ab-

stract SADS. Recall our SADS is built upon a generalized hash tree
(T, λ, φ, hold), where hold is a collision resistant hash function, φ
is a projection function and λ is a labeling function. In particular,
the labeling function λ is determined by the hash function hold, the
γ function and the inverse projection function ψ. We next study all
four components of the PSTY scheme [13].

Hash function. The hash function hold uses D = Ztn and
R = Zνq as its domain and range. The operation ⊕ of D is mod n
addition, and the operation⊗ ofR is mod q addition. Specificially,
hold is defined as:

1. hold(x,y) = HL(x) +HR(y) mod q;

2. HA(x) = A · x mod q, where A = L,R is a randomly
picked matrix from Zν×tq .

HA is collision resistant based on the hardness assumption of the
small integer solution problem SISq,t,β [11]. Here, q is a large
prime, t = νdlog qe, β is set to n

√
2t.

First, we show hold is collision resistant. Assume there exist
xδ,yδ 6= 0D such that HL(xδ) + HR(yδ) = 0R with non-
negligible probability. This would give a solution to SISq,2t,β with
the matrix be [L, R] randomly chosen from Zν×2t

q .
Second, given x,y ∈ D such that x + y ∈ D, it is obvious that

HA(x⊕ y) = HA(x + y) = A · x + A · y mod q.

The labeling function below ensures that for any two labels x,y ∈
D in the generalized hash tree, x + y ∈ D holds.

From the above two arguments, hold meets the characterization
of Definition 9.
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Algorithm pk← genkey(1λ, n).
On input the security parameter λ and a bound n on the size of the stream, set pk = {L,R,U}, where U is a universe such that |U| = M
and L,R specify the hash function.

Algorithm {auth(D0), d0} ← initialize(D0, pk).
Let D0 be a structured binary tree TC where ci = 0 (i = 0, . . . ,M − 1). The algorithm outputs the generalized hash tree (TC , λ, φ, h) as
auth(D0), where λ(v) = 0D for all nodes v in TC . Also it outputs d0 = 0D .

Algorithm dh+1 ← updateVerifier(x, dh, pk).
Let x ∈ U be the current element of the stream. The algorithm updates the local state by setting dh+1 = dh ⊕ δε(x), where ε is the root of
TC and δε(x) is defined in Definition 16.

Algorithm {Dh+1, auth(Dh+1)} ← updateProver(x,Dh, auth(Dh), pk).
Let x ∈ U be the current element of the stream. The algorithm sets cx = cx + 1, outputting the updated tree TC . Let v`, . . . , v1 be the path
in TC from node v` (v` stores cx) to the child v1 of the root ε of TC . Set

λ(vi) = λ(vi)⊕ δvi(x) for i = `, `− 1, . . . , 1 , (2)

where δvi(x) is defined in Definition 16. The new authenticated data structure auth(Dh+1) is the new generalized hash tree with the
updated labels as computed in Equation 2.

Algorithm {α(q),Π(q)} ← query(q,Dh, auth(Dh), pk).
Let q be a frequency query for element x ∈ U . Set α(q) = cx (note that if cx = 0, x is not contained in the collection). Let v`, . . . , v1 be
the path in the structured binary tree TC from node v` (v` stores the value cx) to the child v1 of the root ε of TC . Let also w`, . . . , w1 be the
sibling nodes of v`, . . . , v1. Proof Π(q) contains the ordered sequence of the pairs of labels belonging to the tree path from leaf v` to the
root ε of the tree, i.e., the pairs {(λ(v`), λ(w`)), (λ(v`−1), λ(w`−1)), . . . , (λ(v1), λ(w1))}.

Algorithm {1, 0} ← verify(q, α(q),Π(q), dh, pk).
Let q be a frequency query for element x ∈ U . Parse Π(q) as

{(λ(v`), λ(w`)), . . . , (λ(v1), λ(w1))}

and α(q) as cx.
If λ(v`) 6= γ(cx) or λ(v`), λ(w`) /∈ D, output 0. Compute values y`−1, y`−2, . . . , y0 as yi = h(λ(vi+1), λ(wi+1)) (if vi+1 is vi’s left
child) or yi = h(λ(vi+1), λ(wi+1)) (if vi+1 is vi’s right child). For i = `− 1, . . . , 1, if φ(λ(vi)) 6= yi or λ(vi), λ(wi) /∈ D output 0. If
φ(dh) 6= y0, output 0. Output 1.

Figure 2: Algorithms of the abstract SADS for verifying frequency queries.

Projection function. The projection function φ : Ztn → Zνq
parses the input vector x as a radix-2 representation (i.e., a base-2
representation but not necessarily of binary coefficients) and con-
verts it to the respective vector in Zνq .

On input a vector x ∈ Ztn, where τ = dlog qe and t = ν · τ ,
output a vector y = φ(x) of ν entries such that each yi (i =
0, . . . , ν− 1) is the number in Zq represented by the radix-2 repre-
sentation [xiτ , xiτ+1, . . . , x(i+1)τ−1]T, namely

yi =

τ−1∑
j=0

xiτ+j2j mod q , for i = 0, . . . , ν − 1 .

It is easy to check that φ here forms a surjective homomorphism
from Ztn to Zνq .

Inverse projection function. The inverse projection function
ψ : Zνq → Ztn is simply the binary representation of vectors. For
example, if ν = 2, q = 8 and a = [6, 3]T ∈ Z2

8, then ψ(a) =
[1, 1, 0, 0, 1, 1]T, since ψ(6) = [1, 1, 0]T and ψ(3) = [0, 1, 1]T.
Obviously, ψ here satisfies Definition 11.

γ function. The gamma function γ : [n]→ Ztn is defined as:

γ(cv) = cv · 1, (4)

where 1 = [1, 1, . . . , 1]T ∈ Ztn. Clearly, γ(cv1 + cv2) = γ(cv1) +
γ(cv2) mod n, given cv1 + cv2 ∈ [n].

Let TC = (T, λ, φ, hold) be the generalized hash tree as de-
scribed above. For any node w ∈ TC , by Definition 15 we have
its label λ(w) =

∑
v∈range(w)Lw(v) ∈ D . Since the entries of

each partial label Lw(v) = cv · {0, 1}t and
∑M−1
i=0 ci ≤ n, we

know λ(w) ∈ Ztn. It follows that for any two labels x,y ∈ TC ,
x + y ∈ Ztn is also true. Therefore, TC , as it is described in
PSTY [13], is an instance of the abstract SADS.

In the following sections, we show how to build an improved in-
stantiation of the abstract SADS by employing a better hash func-
tion. The choices of the projection function, the inverse projection
function and γ function remain the same.

134



4. NEW HASH FUNCTION BASED ON GEN-
ERALIZED KNAPSACK PROBLEM

In the implementation of our SADS, we found the hash function
hold in PSTY [13] computationally costly both in terms of running
time and key size. We study both the algebraic and the security
properties of the Generalized Compact Knapsack problem (GCK),
and take a subclass of GCK hash functions to instantiate our SADS.

Preliminaries. We give a brief preliminary review on rings and
ideals. Please refer to [1] for a comprehensive study. Let Z[x] and
R[x] be the set of polynomials with integers and real coefficients.
A polynomial is monic if the coefficient of the highest power is 1.
A polynomial is irreducible if it cannot be represented as a prod-
uct of lower degree polynomials. Each polynomial corresponds
to a vector of its coefficients. E.g., we can represent polynomial
a0 + . . .+ ak−1x

k−1 simply as (a0, . . . , ak−1). We define the lp
norm |g(x)|p of a polynomial g(x) as the norm of the correspond-
ing vector.

Let R be a ring. An ideal I of R is an additive subgroup of
R closed under multiplication by arbitrary g ∈ R. For any ring
f ∈ R, 〈f〉 denotes the set of all multiples of f . The quotient R/I
is the set of all equivalence classes (g + I) of R modulo I .

Let R = Z[x]/〈f〉 where f is monic and irreducible. When
f is monic and of degree k, every equivalence calss (g + 〈f〉) ∈
Z[x]/〈f〉 has a unique representative g

′
∈ (g+ 〈f〉) of degree less

than k. We define the norm |(g + 〈f〉)|f over ring Z[x]/〈f〉 as |g
mod f |∞. As short hand, we write |g|f instead of |(g + 〈f〉)|f .

In this paper, we focus on the ringR = Zp[α]/(αk + 1), where
k − 1 is the highest degree of an arbitrary g ∈ R and p is a prime.

4.1 Generalized Compact Knapsack Problem
We begin with a brief review of the Generalized Compact Knap-

sack problem. Lyubasevsky et al propose an efficient SWIFFT hash
that is provably collision-resistant [9]. Finding a collision on the
average with any noticeable probability is at least as hard as solv-
ing worst case problems for cyclic lattices. The SWIFFT function
has a simple algebraic expression over the ringR = Zp[α]/(αk +
1). A particular function in the family is specified by m fixed
a1, . . . ,am ∈ R. The function corresponds to the following ex-
pression over the ringR:

Σmi=1(ai · xi) ∈ R,

where x1, . . . ,xm ∈ R are polynomials with binary coefficients,
and corresponding to the input of length k ·m.

The above formula is a special instance of generalized compact
knapsack problem proposed in [8].

DEFINITION 17. (GCK problem). Given m random elements
a1, . . . ,am ∈ R for some ring, and a target t ∈ R, find elements
x1, . . . ,xm ∈ I such that Σmi=1ai · xi = t, where I is some given
subset ofR.

Lyubashevsky and Micciancio prove that for appropriate choices
of R and I, finding collisions in such hash functions is at least as
hard as solving worst case hard problems on ideal lattices [8]. We
present the constraints onR and I to makeH collision-resistant [8].

1. RingR = Z[α]p/〈f〉, where f ∈ Z[α] is irreducible, monic
polynomial of degree nwith expansion factorEF (f, 3) ≤ ε.
The definition of expansion factor is as the following.

EF (f, q) = max
g∈Z[α],deg(g)≤q(deg(f)−1)

|g|f/|g|∞

2. I = {g ∈ R : |g|f ≤ d}, where d is some positive integer.

3. It is required thatm > log p/ log 2d and p > 2εdmk1.5 log k.

4.2 New Hash Function
We focus on the following GCK hash function family {HA} :
D → R, where D = Im = Zk·mn andR = Z[α]p/〈αk + 1〉.

Given input X = [x1,x2, . . . ,xm] ∈ D,

HA(X) = Σmi=1(ai · xi) ∈ R, (5)

where A = [a1, . . . ,am] and each ai ∈ R.
We construct a subclass of collision-resistant GCK hash func-

tions from the above function family by careful parameter selec-
tion. First, since EF (f, 3) ≤ 3 is proved for f = αk + 1 in [8],
ε in the constraints above can be set to 3. By picking a large
enough prime p such that p/ log p > 6nk1.5 log k and setting
m = dlog pe, it is easy to check that conditions 1 2 3 for HA

to be collision resistant are all met. Second, we make HA achieve
the desired level of security against the best known attack algo-
rithms by additional constraints. Figure 3 shows the algorithm of
parameter configuration for our GCK hash function. In particular,
constraints 1 and 4 makeHA theoretically collision resistant; con-
straints 2 and 3 ensure HA reaches the level of security λ against
the best known algorithms of the generalized birthday attack [17]
and the lattice attack [12] respectively. We study the cryptanalysis
ofHA in section 5.

Algorithm {k, p,m} ← (n, λ).
Let k be a power of 2 and p be a prime. Find the smallest k and
then the smallest p such that

1. p/ log(p) > 6nk1.5 log k;

2. 2blogmcpk/(1+blogmc) ≥ 2λ;

3. n
√
km < 22

√
k log p log δ;

4. m = dlog(p)e.

Figure 3: Parameter configuration of our GCK hash functionHA.

We construct a new hash function for our SADS based on HA,
hn : Zk·mn × Zk·mn → Z[α]p/〈αn + 1〉, as follows.

hn(x,y) = HL(x) +HR(y) mod p, (6)

whereL,R are randomly chosen from Z[α]mp /〈αk+1〉. By similar
arguments in section 3.3, hn belongs to the class of hash functions
of the abstract SADS by Definition 9.

The bottleneck in terms of efficiency of the GCK hash function
HA is computing the product of two polynomials in Equation 5.
Similar as SWIFFT [9], we use FFT for computing polynomial
products. Notice αk + 1 = 0, for α = ejπi/k when j is odd.
Hence, we only need to do k evaluations at ωj , where ω = eπi/k

and j = 1, 3, . . . , 2k − 1, to interpolate the product polynomial in
R = Z[α]p/〈αk + 1〉.

Notice every polynomial has a unique vector representation. In
our implementation, we use a vector in [p]k to represent a ring in
R = Z[α]p/〈αk + 1〉. The algorithm of our GCK hash function is
given in Figure 4. For each xi, we run twice FFT, which requires
O(k log k) operations with small constant. Hence, the total running
time for our algorithm is O(km log k) with a small constant.
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Algorithm z← (X,A).

1. Let input X = [x1, . . . ,xm] ∈ [n]k×m. Let ringe R =
Z[α]p/〈αk + 1〉. A = [a1, . . . ,am], where each ai ∈ R.

2. Precompute and store FFT(ai, ω) for each ai, where ω =

eπi/k. Let âi = FFT(ai, ω).

3. For i = 1, . . . ,m, do step (4) (5).

4. For each xi, compute x̂i = FFT(xi, ω). Compute yi =
x̂i · âi, where · refers to the inner product of two vectors.
Compute ŷi = 1

k
FFT(yi, w

−1).

5. update z = z + ŷi mod p.

Figure 4: Algorithms of the our GCK hash functionHA.

5. SECURITY ANALYSIS
We have shown that the GCK hash function chosen in this pa-

per is collision-resistant. In this section, we study its cryptanaly-
sis, and determine the concrete levels of security against the best
known attacks. Specifically, we consider the generalized birthday
attacks [17] and the lattice attacks [12].

As it is shown in [9], the product of two polynomials a,x ∈ R
is equivalent to the matrix product of the skew-circulant matrix of
a with x in the field Zp[α]. Thus, equation 5 can be represented as
the matrix product of A ∈ Zp[α]k×k·m with x ∈ [n]k·m, where A
consists of m skew-circulant matrices corresponding to each ai ∈
R, as shown below by Equation 7. This formulation is the sum of a
subset of the k ·m columns ofA over the field Zp[α]. Relaxing the
dependencies within each skew-circulant matrix, the best known
algorithm for finding collision is the same one for solving the subset
sum problem [17].

Σmi=1(ai · xi) ∈ R =
[
A1 A2 ... Am

]
×


x1
x2
...
xk·m

 (7)

5.1 Generalized Birthday Attacks
Finding a collision in our GCK hash function is equivalent to

finding a nonzero x ∈ {−n, . . . , n}k·m such that A · x = 0 mod
p, where A is the k × k ·m matrix shown above. We provide the
best known attack algorithm based on Wagner’s work [17].

1. Divide the columns of A into m groups, each of which con-
sists of k columns.

2. Create a list of (2n + 1)k vectors where each vector is a
different {−n, . . . , n} combination of k columns within the
group.

3. Finding one vector from each list such that their sum is 0 in
Zp[α] is the k-list problem studied by Wagner [17]1. Wag-
ner’s algorithm hasO(2blogmcpk/(1+blogmc)) time and space
complexity. By constraint 2 in Algorithm 3, we achieve the
required level of security against the best known generalized
birthday attack algorthms.

1k-list problem consider the condition when vectors are random
and independent. Relaxing the dependencies is a conservative as-
sumption. Hence, the lower bound analysis still holds

We briefly illustrate how Wagner’s algorithm works here. The first
observation is solving m-sum problem is computational equivalent
to solving a m′ < m-sum problem. Pick one vector per list from
listsm′+1, ...,m, and denote their sum as c. Applying them′-sum
algorithm to find the solution for sum= −c mod p over the firstm′

lists will solve the corresponding m-sum problem. In our case,
the m-sum problem is reduced to a k′-sum problem, where k

′
=

2blogmc is the largest power of two less than m. The algorithm
follows a recursive fashion on a complete binary tree of blogmc
depth. It first extends each list to size O(pk/(1+blogmc)). Then,
it constructs new lists with h · k/(1 + blogmc) more zero entries
at internal layer of height h. Finally, at the root we will find the
vectors that gives us 0−sum solution. Notice that this algorithm
easily applies to sum=c problem, where c is an arbitrary vector.

5.2 Lattice Attacks
According to the analysis in [12], collisions in our GCK hash

functions are vectors in the k ·m-dimensional lattice with coordi-
nates in {−n, . . . , n}. The Euclidean length of such vectors can at
most be n

√
k ·m. However, the state of art lattice reduction algo-

rithm cannot find non-trivial lattice vectors of which the Euclidean
length is less than 22

√
k log p log δ , where δ = 1.01. By constraint 3

in Algorithm 3, the best known lattice attack algorithm cannot find
collision in our GCK hash functions efficiently.

6. OPTIMIZATION
In this section, we introduce a modified labeling function for the

PSTY scheme [13] that reduces the space complexity by a factor
of
√
n, except with negligible probability. Since this labeling func-

tion does not rely on any properties of the hash function, the mod-
ification also applies to any instantiations with the same projection
function, inverse projection function and the γ function introduced
in section 3.3.

DEFINITION 18 (MODIFIED LABELING). Let TC be a struc-
tured binary tree, where C = [c0, c1, . . . , cM−1]. For every node
w ∈ TC we define its label λ(w) =

∑
v∈range(w) cv ·δw(v)• rand(),

where δw(v) is the unit update defined by Definition 16, rand() out-
puts a random bit from {−1, 1} and • is the scalar product.

The random function rand() can be generated and retrieved by
a pseudorandom generator with a public key. Given the γ func-
tion as Equation 4, it is obvious that Lw(v) = cv · δw(v). Next,
we prove the size of the labels will be reduced to O(

√
n) by this

modification.

LEMMA 2. Assume elements in C = [c0, c1, . . . , cM−1] are in-
dependent and identically distributed (i.i.d.), with mean µ and vari-
ance σ2. Let Pw(v) = cv · δw(v) • rand() = {p1, p2, . . . , pk·t}.
Let δw(v) = {δ1, δ2, . . . , δk·t}. For 1 ≤ j ≤ k · t, we have

{ pj = 0 if δj = 0;
pj ∼ N(0, µ2 + σ2) if δj = 1.

PROOF. For 1 ≤ j ≤ k · t, δj is a deterministic binary value by
Definition 16. In the first case, pj = 0 is trivially true when δj = 0.
We consider the second case when δj = 1. Since rand() returns
1(−1) with 1/2 probability independently and all elements in C
are independent and identically distributed, we have the probability
mass function of pj as the follows:

fpj (x) =

{
1
2
fC(x) x > 0

1
2
fC(−x) x < 0

,
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Figure 5: Running time of the hash functions. In the x axis, we
present the size n of the stream in log scale. The new hash function
hnew is 1.6× faster when n = 24, and 9.8× faster when n = 232,
than hold.
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Figure 6: Key size of the hash functions. In the x axis, we present
the size n of the stream and in the y axis we show the key size in KB.
The figure is in log− log scale. The key size of hnew is only 0.73%
when n = 24, and 0.077% when n = 232, of hold.

where fC is the identical probability mass function of elements in
C. Since the distribution ofC has mean µ and variance δ2, we have
µpj = 0 and σ2

pj = µ2 + σ2.

LEMMA 3. Let the label of the root λ(r) = {λ1, λ2, . . . , λk·t}.
For 1 ≤ j ≤ k · t, let nj be the total number of leaves with nonzero
pj defined in Lemma 2. Then, λj√

nj
follows Gaussian distribution

N(0, µ2 + σ2) as nj →∞.

PROOF. Following directly from the Definition 18 and Lemma 2,
λj is the summation of nj i.i.d random variables. By the Central
Limit Theorem, λj√

nj
∼ N(0, µ2 + σ2) as nj →∞.

LEMMA 4. Let X be a Gaussian distribution with mean 0 and
variance σ2, then Pr{X > t} < 1√

2πσt
e
− t2

2σ2 .

PROOF. By definition, Pr{X > t} =
∫∞
t

1√
2πσ

e
− x2

2σ2 dx. We
easily have the follows:∫ ∞
t

1√
2πσ

e
− x2

2σ2 dx <
1√

2πσt

∫ ∞
t

xe
− x2

2σ2 dx =
1√

2πσt
e
− t2

2σ2

.

THEOREM 3. Letw be any node in a generalized hash tree. Ev-
ery element λj of its modified labeling λ(w) by Definition 18 is in
[−t
√
n, t
√
n] for some constant t, except with negligible probabil-

ity neg(t).

PROOF. By Lemma 3, λj√
nj
∼ N(0, µ2 + σ2). Therefore,

Pr{|λj | > t
√
n} < Pr{|λj | > t

√
nj} (Lemma 3)

= Pr{| λj√
nj
| > t}

= 2Pr{ λj√
nj

> t}

< 2× 1√
2π(µ2 + σ2)t

e
− t2

2(µ2+σ2) (Lemma 4),

which is negligible neg(t).

7. EXPERIMENTS AND COMPARISONS
We implement the instantiations of our abstract SADS with both

the hash function hold in PSTY [13] and our new GCK based hash
function hnew introduced in Section 4.2. We conduct a series of
comparing experiments of these two instantiations. We show major
performance improvements due to the GCK hash function.

First, we highlight the asymptotic improvement of hnew com-
pared to hold in terms of the running time and key size. Next, we
discuss the experimental results on various algorithms of Figure 2
for both instantiations. In particular, we present the empirical per-
formance of verification, update and range search query by the two
instantiations.

Experiment setup. The two instantiations are implemented in
Mathlab 2014Ra and executed on a Windows 8.1 Desktop with
16GB of RAM. The same data samples randomly generated are
used in all experiments. We collected 10 runs for each data point
and report the average.

There are two critical parameters involved in the experiments:

1. The size of the stream n. This determines the parameter con-
figuration of our GCK hash function hnew by Algorithm 3.
In particular, the running time and the key size of both hnew
and hold increase with respect to n.

2. The size of the universe M . |M | determines the size of the
generalized hash tree (the generalized hash tree has logM
layers), and consequently affects the running time of the query,
update and verification of the SADS.

Table 1: Asymptotic comparison between hold and hnew. Notice
t = ν log q.

running time key size
PSTY O(ν2 log q) O(ν2 log q)

New Hash Function O(k log k log p) O(k log p)

Asymptotic comparison. Table 1 shows the asymptotic complex-
ity comparison of running time of hash functions and key size be-
tween hold and hnew2. As it is shown in both Section 3.3 and
PSTY [13], the hash function hold is a matrix–vector multiplica-
tion, of which the running time is O(ν2 log q) and the key size is
2PSTY [13] has a set of different notations for parameters.
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Figure 7: Verification time. The x axis is the size of universe |M | in
log scale. The size of stream is fixed to n = 232. The new scheme
with hnew achieves 7.5× speed up.
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Figure 8: Update time (client side). The x axis is the size of universe
|M | in log scale. The size of stream is fixed to n = 232. The new
scheme with hnew achieves 2.8× speed up.

the size of the matrix, O(ν2 log q). The hash function hnew con-
structed in Section 4 is primarily based on polynomial multiplica-
tion, of which the running time using FFT is O(k log k log p) and
the key size is O(k log p).

We generate parameters (e.g. k, p and q) according to the size of
the stream n to ensure approximately the same security parameter
(100+ in both cases). In practice, k is much smaller than ν and
log p is roughly equal to log q. Consequently, the improvement is
rather significant.

Running time of the hash functions. Figure 5 shows the running
time of hashing one message by both hold and hnew with increas-
ing n. Our new hash function hnew turns to outperform hold by
orders of magnitude. Specifically, hnew runs 1.6× faster when
n = 24, and 9.8× faster when n = 232, than hold. This matches
the asymptotic complexity comparison mentioned above. More im-
portantly, the time cost of hnew doesn’t grow much as n increases
while it grows quasi-linearly with n for hold. As a result, the new
hash function hnew supports much larger streaming volume than
hold.

Key size of hash functions. Figure 6 shows the key sizes of both
hold and hnew with increasing n, which is plotted in log-log scale.
The key size of our new hash hnew is only 0.73% of the one of hold
when n = 24, and 0.077% of the ones of hold when n = 232. This
significant improvement is due to the advantages of circular lattices
over regular lattices. Moreover, the key size of hnew grows roughly
linearly with n while it grows quadratically with n for hold. Notice
the public key of the abstract SADS is the key of the two hash
functions HL, HR. Hence, the improvement of hash function key
size in Figure 6 applies directly to the public key size of the entire
scheme.

Preprocessing. In algorithms initialize() of Figure 2, the digest
and every node labels of the generalized hash tree are initialized to
be 0s. Hence, the preprocessing time is independent of the hash
function choice. Notice that in our implementations, the gener-
alized hash tree is dynamically allocated, and the storage cost is
proportional to the nonzero values stored in the leaves. In this
way, we can run the experiments on a large universe of size up
to |M | = 232.

Proof Computation. The server needs to compute the result along
with a proof, responding to a query from the verifier. We discuss
two ways to compute the proof on the server side. (1) The server
constructs and stores the whole generalized hash tree, and returns
the corresponding labels of nodes required by the proof. (2) The

server only stores the values in the leaves of the generalized hash
tree, and computes labels of nodes for a proof each time. There is a
time-space trade-off between these two approaches. We choose the
former in our implementations, in which case the proof computa-
tion is just an index searching and returning procedure. Hence, the
proof computation time is the same for both instantiations.

Verification. Figure 7 shows the comparison for verification time
by the instantiation with hnew and the instantiation with hold. The
x axis is the size of the universeM . The upper bound of the stream-
ing n is fixed to 232. As we can see, the instantiation with our
new hash function hnew outperforms the instantiation with hold
dramatically. Specifically, the verification time of the new instanti-
ation with hnew is 7.5 times faster than the one with hold. More-
over, Figure 7 shows that the verification time grows on the order
of O(logM), matching what the algorithm verify() indicates. Fi-
nally, the verification time is only 10 ∼ 100 milliseconds with
hnew, which makes the new scheme practical.

Update. Figure 8 shows that the instantiation with hnew runs 2.8
times faster than the one with hold for the client side update. Notice
that the client side update and the server side update go through the
same computations, except that the server also updates the labels
of nodes along the verification path. Therefore, the time cost of the
client side update and the server side update is roughly the same.
We omit the comparison for the server update time here. More-
over, the update time grows logarithmically with M as desired in
Figure 8.

In practice, the size of the universe |M | is usually fixed for a
certain streaming application. To illustrate such scenario, we show
the update time as n increases, with |M | fixed to 232. Figure 9
shows that the instantiation with hnew is 1.7 ∼ 3.0 times faster
than the one with hold. The larger streaming volume n results in
the more significant improvement in terms of update time.

Range search. The range search functionality is implemented and
the results are shown in Figure 10. The range search time cost of
both instantiations is slightly larger than two times of their verifica-
tion time cost, and hence grows logarithmically with M as desired.
Moreover, the range search of the instantiation with hnew is 7.4
times faster than the one with hold.

Finally, Table 2 shows the statistics for both instantiations when
n = 232 and |M | = 232. We can see that hashing a message by
hnew only takes 2.74 milliseconds while update, verification and
range search of the new instantiation with hnew all takes less than
one second. Meanwhile, the key size of the new scheme is only
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Figure 9: Update time (client side). The x axis is the size of stream
n in log scale. The size of the universe is fixed to |M | = 232. The
new scheme with hnew is 1.7× faster when n = 24, and 3.0× faster
when n = 232, than the scheme with hold.
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Figure 10: Range search time. The x axis is the size of universe |M |
in log scale. The size of stream is fixed to n = 232. The new scheme
with hnew achieves 7.4× speed up.

Table 2: Detail statistics for n = 232 and |M | = 232.

running key size verification update range
time (ms) (MB) (s) (s) search (s)

Instantiation 2.74 0.21 0.27 0.98 0.73with
hnew
Instantiation 26.84 265.02 2.01 2.75 5.42with hold

0.21MB, which is practical to store and manage, to the key of hold
which is 265MB.

8. CONCLUSION
This paper proposes an abstract construction of a streaming au-

thenticated data structure, and presents two instantiations of the
proposed abstraction. The first intantiation is the PSTY work [13].
The second instantiation is a scheme with a different collision-
resistant hash function, which is based on the generalized com-
pact knapsack (GCK) problem [8]. The new hash function is care-
fully parameterized, such that it is secure against state-of-the-art
attacks [17, 12].

We implement both schemes. Our experiments highlight major
savings in prover complexity and public key size of our second
(new) instantiation over the PSTY work.
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