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Abstract—We present a new construction of an expressive
set accumulator. Unlike existing cryptographic accumulators,
ours provides succinct proofs for a large collection of opera-
tions over accumulated sets, including intersection, union, set
difference, SUM, COUNT, MIN, MAX, and RANGE, as well as
arbitrary nestings of the above. We also show how to extend
our accumulator to be zero-knowledge. The security of our
accumulator is based on extractability assumptions and other
assumptions that hold in the generic group model.

Our construction has asymptotically optimal verification
complexity and proof size, constant update complexity, and
public verifiability/updatability—namely, any client who knows
the public key and the last accumulator value can verify the
supported operations and update the accumulator. The expres-
siveness of our accumulator comes at the cost of quadratic
prover time. However, we show that the cryptographic opera-
tions involved are cheap compared to those incurred by generic
approaches (e.g., SNARKs) that are equally expressive: our
prover runs faster for sets of up to 5 million items.

Our accumulator serves as a powerful cryptographic tool
with many applications. For example, it can be applied to
efficiently support verification of a rich collection of SQL
queries when used as a drop-in replacement in existing verifi-
able database systems (e.g., IntegriDB, CCS 2015).

1. Introduction

With the development of cloud computing, it has become
common to delegate storage of data to external parties. En-
suring the correctness of operations (queries, computation,
. . . ) performed on such data is of significant interest.

More specifically, in the setting we consider here a data
owner outsources storage of data to a server. Multiple clients
can then issue queries on the data, but want to verify the
correctness of the answers provided by the server. The data
owner and the clients can also potentially issue incremental
updates to the data over time, and this should be cheaper
than uploading everything again from scratch. We study a
central problem in this setting, namely that of verifiable set
operations. That is, we consider the data to be a collection of
m sets S1, S2, . . . , Sm over some universe. Clients will store
some constant-size cryptographic representations of each of
the sets (i.e., they will store m digests d1, d2, . . . , dm) which
they receive from the data owner. Our scheme enables the

clients to verifiably learn the results of various operations
performed on these sets, e.g., to learn the set S1 ∩ S2, or
the minimum element of S1∪S2. Such operations are moti-
vated by their connections to several real-world applications
including keyword search and SQL database queries.

We provide verifiability guarantees for the above setting
by introducing a new cryptographic accumulator. Originally
introduced by Benaloh and de Mare [7], and subsequently
refined by Baric and Pfitzmann [2] and by Camenisch and
Lysyanskaya [18], a cryptographic accumulator is a prim-
itive that produces a succinct representation dS of a set of
elements S such that anyone having access to dS can verify
various operations on S by checking constant-size proofs.
While previous constructions focused on queries such as set
membership [7], [2], [18], [34], [17], non-membership [30],
[21], and basic set operations [38], [19], our new construc-
tion combines, for the first time, the following features:

1) Expressiveness. Our new accumulator supports mem-
bership, non-membership, intersection, union, set dif-
ference, SUM, COUNT, MIN, MAX, and RANGE, as
well as arbitrary nestings of these operations (e.g.,
COUNT((A ∪ B) ∩ (C \ D))).

2) Efficiency. Proof size and verification complexity only
depend on the query size |q| and the size of the result
|R|, but not on the sizes of the original sets or interme-
diate results (in nested queries). In particular, proof size
is O(|q|) and verification complexity is O(|q|+ |R|).

3) Public verifiability and updatability. Any client with
the public key and the accumulation values can verify
correctness of computations, and clients given permis-
sion of the data owner can also update the sets and
their respective digests. Our construction achieves O(1)
complexity for both insertion and deletion. This is a
substantial improvement over previous work [7], [34],
where updates can take quasilinear time without the
trapdoor (known only to the data owner).

4) Zero-knowledge. We extend the basic construction
to support zero-knowledge set operations, functions,
nested queries, and updates.

The enhanced expressiveness of our approach comes
at the cost of quadratic prover time. However, the crypto-
graphic operations involved are cheap compared to equally
expressive, quasilinear-time, generic constructions such as
SNARKs [16], [4], [6], [5]. As we show in Section 6, our



prover is indeed faster than prior work for sets containing
fewer than 5 million items.

1.1. Technical Overview

We describe the intuition behind our scheme in this sec-
tion. We first present a construction to support the most fun-
damental set operation: intersection. For sets A,B ⊂ F∗q , we
set the accumulator values to be As = g

∑
i∈A s

i

= gs+s
2+s3

and Br,s = g
∑

i∈B r
isq−i

= grs
q−1+r3sq−3+r5sq−5

, where s, r
are uniform (secret) points in F∗q . Note that the product of
the two exponents gives

(s+ s2 + s3) · (rsq−1 + r3sq−3 + r5sq−5)

= (rsq + r3sq−2 + r5sq−4) + (rsq+1 + r3sq−1

+ r5sq−3) + (rsq+2 + r3sq + r5sq−2)

= (r + r3)sq +Q(s, r),

for some bivariate polynomial Q. Only when some element
i is in the intersection I = A ∩ B = {1, 3} of both
sets is the term risq in the result, and thus the coefficient
of sq is

∑
i∈I r

i. To compute the intersection, the server
sends the result I along with the proof gQ(s,r), and by
accessing the two accumulator values, the client can check
the above relation in the exponent using bilinear pairings.
Membership, union, and set difference can be reduced to
intersection—see Section 3.3.

For other functions, if we let A(s) = s + s2 + s3

be the polynomial in the exponent of As, then the size
of A is simply A(1), and the sum of the elements of A
is A′(1) (where A′ denotes the formal derivative of the
polynomial A). Also, the minimum element in the set A is
given by the lowest-degree term in the polynomial A(s). We
utilize these ideas to support verification of COUNT, SUM,
MAX, and MIN queries. RANGE queries can be reduced to
MAX, MIN, and other set-operation queries.
Supporting nested queries. For nested queries, one chal-
lenge is to ensure that the proof size is proportional to the
size of the result and the size of the query, and not to
the sizes of intermediate results or the original sets. The
techniques above cannot give efficient proofs for nested
queries (e.g., (A ∩ B) ∪ C), because they would require
returning the intermediate result I = A ∩ B which will
(in general) be too large.

In our approach the server returns only an accumulator
of I and the client verifies its correctness. The client then
uses this accumulator to verify I∪C using the scheme above.
In Section 3.8 we show how to realize this by introducing
additional accumulator values for each set.

1.2. Related Work

A detailed comparison with related work can be found
in Table 1.
Accumulators and authenticated data structures. There
are authenticated data structures [41], [32] that support (non-
)membership and range queries, but with logarithmic proofs

and update time. They do not support efficient proofs for
more complicated queries, such as set intersection.

The RSA accumulator was proposed by Benaloh and de
Mare [7], and supports membership queries with constant-
size proofs. Camenisch and Lysyanskaya [18] extend it to
the dynamic setting and augment it with zero-knowledge
proofs. Efficient dynamic RSA accumulators for non-
membership queries were given by Li et al. [30]. RSA
accumulators do not support general set operations, and
cannot handle efficient deletion without a trapdoor.

A bilinear accumulator was proposed by Nguyen [34].
It supports set-membership queries. Damgard et al. [21]
extend it to support non-membership proofs. Papamanthou
et al. [38] propose a scheme based on bilinear accumulators
that supports set operations including intersection, union,
and set difference. This was extended by Canetti et al. [19]
to support nesting of the above three operations, based on
an extractability assumption [8]. Zhang et al. [45] further
extend the scheme to support SUM queries. However, this ac-
cumulator cannot support functions including COUNT, MIN,
MAX, and RANGE.1 Moreover, updates require quasilinear
time without the trapdoor. We refer to [22] for a more
complete list of prior work.

Ghosh et al. [25] propose zero-knowledge set operations
based on the bilinear accumulator. Their scheme is not as
expressive as ours, and in particular they do not consider
zero knowledge for nested operations. On the other hand,
their prover is more efficient than ours, and runs in linear
(as opposed to quadratic) time.

Camenisch et al. [17] propose an accumulator based on
bilinear groups that has some similarities to our scheme.
However, they only support membership queries and cannot
support nested operations.

NIZK argument for vector product. A non-interactive
zero-knowledge (NIZK) argument for vector product was
proposed by Groth [27]. That construction is similar to our
scheme and can be used for set operations (e.g., by viewing
the intersection of two sets as the inner product of their indi-
cator vectors) but not nested queries. Lipmaa [31] improves
the complexity of that scheme to quasilinear. Interestingly,
Lipmaa’s improved construction can support nested queries
but does not support functions such as SUM, COUNT, MAX,
MIN, and RANGE.

Generic approaches. General-purpose verifiable compu-
tation [23], [9], [10], [24], [11] and implementations
thereof [40], [39], [4], [16], [42], [6], [5], [20] can provide
expressive zero-knowledge set accumulators. To apply these
approaches, the sets and supported operations would need
to be compiled into a circuit or a RAM program. Although
it is not hard to compile each set operation individually,
it is somewhat complicated and expensive to generate cir-
cuits/RAM programs that can handle all possible nestings

1. Note that supporting such functions is only interesting when nested
queries are considered, as otherwise the client can simply precompute and
sign the results of such functions for each outsourced set. As such, in
Table 1 we refer to the ability to support such functions in nested queries
.



reference set functions nested setup prover proof verification update
ops queries time time size time time

RSA [7], [2], [18], [26] 7 7 7 O(n) O(n) O(1) O(|R|) O(n)

bilinear [34], [38], [19], [45], [25] 3 only SUM [45] 7 Õ(n) Õ(n) O(d) O(d + |R|) Õ(n)

NIZK product argument [27], [31] 3 7 3 O(n) Õ(n) O(d) O(d + |R|) O(1)

circuit-based [39],[6,libsnark],[20] 3 3 7 O(n) Õ(n) O(1) O(d + |R|) 7

RAM-based [16], [4], [6], [5] 3 3 3 O(n) Õ(n) O(1) O(d + |R|) Ω(logn)

our work 3 3 3 O(n) O(n2) O(d) O(d + |R|) O(1)

TABLE 1. COMPARISON WITH PRIOR WORK. THE TOTAL NUMBER OF ELEMENTS IN ALL SETS INVOLVED IS n. EACH NESTED QUERY CAN BE
EXPRESSED AS A QUERY TREE, AND WE LET d BE THE TOTAL NUMBER OF NODES IN THE TREE. |R| IS THE SIZE OF THE FINAL RESULT. FUNCTIONS
REFERS TO THE SET OF FUNCTIONS {SUM, COUNT, MIN, MAX, RANGE}. SETUP/UPDATE TIME IS WITHOUT USE OF ANY TRAPDOOR. WE USE Õ(n)
FOR O(n1+o(1)). NOTE THAT ALTHOUGH RAM-BASED SCHEMES ARE AS EXPRESSIVE AS OUR WORK AND SOMETIMES HAVE ASYMPTOTICALLY

BETTER PERFORMANCE, THEY ARE LESS EFFICIENT IN PRACTICE (SEE SECTION 6).

of those operations. Moreover, updates are not supported
efficiently by circuit-based approaches, and introduce high
overhead for RAM-based approaches. Detailed performance
comparisons can be found in Section 6.

2. Preliminaries

Define [z] = {1, 2, . . . , z}. We let k denote the security
parameter and let PPT stand for “probabilistic polynomial
time.” We use A for a set, and A(x), A(x, y) for char-
acteristic polynomials of a set A; these will be defined in
Section 3.1. We use (a;b) ← (A||B) to denote running
algorithms A and B together, where A outputs a and B
outputs b.

2.1. Bilinear Pairings

Let G, GT be two cyclic groups of order p with g ∈ G
a generator. An efficiently computable bilinear map e : G×
G→ GT satisfies e(P a, Qb) = e(P,Q)ab for all P,Q ∈ G
and a, b ∈ Zp. We denote by pub = (p,G,GT , e, g) ←
BilGen(1k) running a PPT algorithm BilGen on input 1k to
generate parameters for a bilinear pairing. For simplicity we
assume symmetric pairings in this paper, but our scheme can
be adapted to use asymmetric pairings as well,

We rely on the following cryptographic assumptions.

Assumption 1 (q-SBDH [13]) For all polynomials q and
all PPT algorithms A,

Pr
[
pub← BilGen(1k); s← Zp;σ = (pub, gs, · · · , gs

q

);

(c, h)← A(σ) : h = e(g, g)1/(c+s)
]
≈ 0.

Assumption 2 For any W ⊂ [q] × [q] and every PPT
adversary Adv there is a PPT extractor ε such that

Pr
[
pub← BilGen(1k);α, s, r ← Z∗p;σ = (pub, {gs

irj}(i,j)∈W ,

{gαs
irj}(i,j)∈W); (c, ĉ; {aij}(i,j)∈W)← (Adv||ε)(σ, z) :

ĉ = cα ∧ c 6=
∏

(i,j)∈W

gaijs
irj

 ≈ 0

for any auxiliary information that is generated indepen-
dently of α.2

Above, (y; y′)← (Adv||ε)(x) denotes Adv, given input
x and a uniform random tape, outputs y, and ε, given the
same random tape, outputs y′.

Assumption 2 is a generalization of the q-PKE assump-
tion [8] to bivariate polynomials. We show in Appendix A
that it can be reduced to a variant of the q-PKE assumption
with univariate polynomials. The standard q-PKE assump-
tion is a special case of Assumption 2 obtained by setting
r = 1 and W = {1} × [q].

Assumption 3 For every PPT time adversary A

Pr
[
pub← BilGen(1λ); s, r, α, β, γ, δ ← Zp;σ = pk;

(G(·), h)← A(σ) : h = gG(s)rq
]
≈ 0,

where pk is defined in Section 3.1, G(·) is not a constant
polynomial, and the degree of G(·) is less than 2q.

Assumption 3 is a variant of the BDHE assumption [14].
We reduce this assumption to an assumption that holds in
the generic group model in Section B in the Appendix. Later
in our proofs, we sometimes use lemmas derived from these
assumptions by changing the public parameters. The lemmas
can be found in Section C of the Appendix and the proofs
are trivial and omitted.

2.2. Expressive Set Accumulators

Our expressive set accumulator (ESA) scheme is param-
eterized by a set of supported queries Q and a set of updates
UPD. For example, for our construction, Q includes (1)
intersection ∩, union ∪, difference \, symmetric difference
4. These functions take two sets as input and output a set.
(2) COMPLEMENT, RANGE(a, b). These functions take one
set as input and output a set. (3) MIN, MAX, SUM, COUNT,
∈x, /∈x. These functions take one set as input and output
a value with type integer or boolean. (The output can also
be viewed as a set with one element.) (4) Nested queries
consist of functions above. In a nested query, the input of

2. See [12], [15], [20] for background on this requirement.



an function can either be existing sets in the set collections
or an intermediate set generated by prior functions in the
nested query. The updates considered in our construction are
insertion and deletion: UPD = {(ADD, x), (REMOVE, x)}

An ESA scheme consists of the following PPT algo-
rithms:

1) (sk, pk) ← genkey(1k,U): The algorithm is run by the
owner. On input the security parameter k and a universe
U , it outputs a secret key sk and a public key pk;

2) dA ← setup(A, sk, pk): The algorithm is run by the
owner. On input a set A ⊆ U and the secret key sk,
it computes the digest dA of A. In our construction, the
digest can also be computed using pk only;

3) dA′ ← update(dA, upd, pk): The algorithm is run by the
client. On input a digest dA, an update upd ∈ UPD and
the public key pk, it outputs the new digest dA′ of the
updated set A′.

4) {πQ,R} ← Query(A1, . . . ,Al, Q, pk): The algorithm
is run by the server. On input a query Q ∈ Q, sets
A1, . . . ,Al and the public key pk, it returns the result
R = Q(A1, . . . ,Al) along with a proof πQ;

5) {accept, reject} ← Verify(dA1 , . . . , dAl
, Q, πQ,R,

pk): The algorithm is run by the client. On input digests
dA1 , . . . , dAl

of sets A1, . . . ,Al, a proof πQ for a query
Q, an answer R and public key pk, it outputs either
accept or reject.

Correctness and soundness. We consider only correctness
and soundness here; zero knowledge is defined in Section 4.
Correctness of an ESA scheme is defined in the natural way
and is omitted. For the soundness, consider the following
experiment based on an ESA scheme specified by the al-
gorithms above and an attacker Adv, and parameterized by
security parameter k:

• Step 1: For universe U picked by Adv, experi-
ment runs (sk, pk) ← genkey(1k,U) and sends pk
to Adv. Adv outputs l sets A1, . . . ,Al. The exper-
iment stores sets A1, . . . ,Al and computes dA1

←
setup(A1, sk), . . . , dAl

← setup(Al, sk).
• Step 2: Adv can run either of the following two pro-

cedures polynomially many times:
– Update:
∗ Adv outputs ui ∈ UPD, an update for set
Ai, for i ∈ {1, . . . , l}. The experiments up-
dates sets Ai and the experiment sets dA′i ,←
update(dAi , ui, pk).

– Query:
∗ Adv outputs (i1, . . . , il′ , Q,R, π) where Q ∈ Q

is a query and i1, . . . , il′ ∈ {1, . . . , l}. Let b ←
Verify(dAi1

, . . . , dAi
l′
, Q, π,R, pk).

∗ Event attack occurs if b = accept but R 6=
Q(Ai1 , . . . ,Ail′ ).

Definition 1 An ESA scheme is sound if for all PPT adver-
saries Adv, the probability that event attack occurs in the
above experiment is negligible.

3. Construction

We describe an ESA scheme that supports queries Q
and updates UPD, as described in the previous section. We
only consider correctness and soundness in this section, and
will extend the construction to zero-knowledge in the next
section.

Theorem 1 The ESA scheme below is correct and sound
under Assumption 1, 2 and 3.

3.1. Setup

Given a set A, we define the polynomial A(x) =∑
i∈A x

i. The accumulator of A is

gA(s) = g
∑

i∈A s
i

,

where s is randomly chosen in Zp. With this accumulator,
note that the total number of elements in A is A(1) (i.e.
polynomial A(x) evaluated at 1); the sum of all elements is
A′(1) (i.e. the derivative of polynomial A(x) evaluated at
1); the minimum is the lowest degree of A(x). Techniques
to evaluate a polynomial on the exponent and its derivative
will be presented in Section 3.5, and we propose a scheme to
retrieve the minimum degree of A(x) in Section 3.6. MAX
can be handled similarly to MIN. To support set intersec-
tion, define the polynomial A(x, y) =

∑
i∈A x

iyq−i, and
introduce another accumulator value

gA(r,s) = g
∑

i∈A r
isq−i

,

where r is also randomly chosen from the field. We present
the algorithms to support intersection in Section 3.3 and
show how intersection implies all other set operations. In
Section 3.7, we show that RANGE can be reduced to inter-
section, MIN, and MAX. We now present the algorithms of
the scheme in detail.
(sk, pk)← genkey(1k,U):. Let U = [q], where q = poly(k).
Choose sk = (s, r, α, β, γ, δ) at random from Z∗p. Run
pub = (p,G,GT , e, g)← BilGen(1k), and set pk as:
• pub.
• gα, gβ , gγ , gδ .
• gs

q

, gr
q

.
• gs

i

, gαs
i

, gr
i

, gβr
i

, gγr
isq−i

for i ∈ [q − 1].
• gr

isj , gδr
isj for (i, j) ∈ ([2q−1]\{q})×([2q−1]\{q}).

Elements with α, β, γ, δ in the public key will be used in the
construction for an extractability assumption [8]. Note that
while the public key of our construction above is different
than the public key of Assumptions 1, 2 and 3, we show in
Section C in the Appendix that the extra information in the
public key does not make the adversary’s task any easier.
dA ← setup(A, pk): It sets the digest dA as a vector of four
group elements [As As,r Ar Ar,s] where

As = gA(s),As,r = gA(s,r),Ar = gA(r),Ar,s = gA(r,s) .

As explained in the overview above, As and Ar,s are
used for set operations and functions. We also include Ar



and As,r to support nested queries, which will be discussed
in Section 3.8. Under this setting, s and r are symmetric,
e.g, Ar and As,r can also be used for intersection.
Complexity. The size of the public key is O(q2), where q
is the size of the universe. The setup complexity is O(n)
for a set with n elements.

3.2. Updates

Updates are very simple. To insert/delete an element,
one simply multiplies/divides each accumulator value by
the corresponding value in pk for the new element. The
algorithm for update is presented below.
dA′ ← update(dA, upd, pk): If upd is an insertion of ele-
ment w ∈ U into set A, update the group elements contained
in dA as A′s = As × gs

w

,A′s,r = As,r × gs
wrq−w

,A′r =

Ar × gr
w

and A′r,s = Ar,s × gr
wsq−w

. Deletions are
performed similarly by dividing.
Complexity. The complexity for both insertion and deletion
is O(1). In contrast, RSA accumulators [7] and bilinear ac-
cumulators [34] only support efficient private update by the
data owner with the trapdoor. The public update complexity
is linear for RSA accumulators (for deletion) and quasilinear
for bilinear accumulators.

3.3. Set Intersection

As mentioned in Section 1.1, to compute the intersec-
tion I = A ∩ B, we rely on the following relationship:
A(s) × B(r, s) = I(r) × sq + q(s, r) where q(s, r) is a
polynomial of s, r without the sq term. The server sends the
answer I and the proof Ir = gI(r), Ir,β = gβI(r),Qs,r =
gq(s,r),Qs,r,δ = gδq(s,r), Lr = gI(r)/r. The client checks the
relationship using bilinear pairings. The formal algorithms
are as follows:
{π,R} ← Query(A,B,∩, pk): Let I = A ∩ B be the in-
tersection. Compute polynomials q(x, y) such that A(y) ×
B(x, y) =

(∑
i∈I x

i
)
× yq + q(x, y) = I(x)× yq + q(x, y)

and l(y) such that I(y) = l(y) × y. Compute Ir =
gI(r), Ir,β = gβI(r),Qs,r = gq(s,r),Qs,r,δ = gδq(s,r), Lr =
gl(r) and Output R = I and π = Ir, Ir,β ,Qs,r,Qs,r,δ, Lr.
{accept, reject} ← Verify(dA, dB,∩, π, I, pk): Output
accept if and only if e(As,Br,s) = e(Ir, gs

q

)× e(Qs,r, g),
e(Ir, gβ) = e(Ir,β , g), e(Qs,r, g

δ) = e(Qs,r,δ, g),
e(Ir, g) = e(Lr, g

r) and g
∑

i∈I r
i

= Ir.
Proof (Soundness proof for intersection). Suppose an
adversary Adv returns I∗ and I∗r 6= gI(r) and passes the ver-
ification, then by Assumption 2, Adv with all but negligible
probability, can use extractor ε1 and ε2 to derive ai for i =
0, . . . , q−1 and bij for i, j = 0, . . . , q−1, q+ 1, . . . , 2q−1

such that I∗r = g
∑
air

i

and Qs,r = g
∑
bijs

irj . By the
check e(Ir, g) = e(Lr, g

r), if a0 6= 0, then e(g, g)1/r =

(e(Lr, g)/e(g−
∑q−1

i=1 air
i

, g))a
−1
0 , which breaks Lemma 1.

Therefore, a0 = 0 with all but negligible probability.

By the first check,

e(gAs , gBr,s) = e(g
∑
air

i

, gs
q

)× e(g
∑
bijs

irj , g)

⇔ gI(r)sq+q(s,r) = g(
∑
air

i)sq+
∑
bijs

irj

⇔ g(I(r)−
∑
air

i)sq = g
∑
bijs

irj−q(s,r) .

As a0 = 0, I(r) −
∑
air

i is a non-constant polynomial
of r and the right side can be evaluated by Adv, breaking
Assumption 3. Therefore, I∗r = gI(r) with all but negligible
probability. Finally, if I∗r = gI(r) but I∗ 6= I, let min be the
smallest element in I ∪ I∗, then gI(r) = gI

∗(r) ⇔ g1/r =

g(
∑

i∈I∪I∗\{min} r
i)/rmin+1

, breaking Lemma 1.
Complexity. Proof size is O(1) and verification complexity
is O(|I|), both optimal. Note that the verifier does not
need all of the public key. Prover complexity is O(|A||B|),
dominated by the polynomial multiplication, as the two
polynomials are sparse. Reducing prover complexity re-
mains an open problem.

3.4. Other Set Operations

Once one verifies one of the accumulator values of the
intersection Ir, it is trivial to compute the accumulator value
of the result of all other set operations.

1) Union F = A ∪ B: It is Fr = ArBr/Ir.
2) Difference D = A \ B: It is Dr = Ar/Ir (or Dr =
Br/Ir for B \A).

3) Symmetric difference S = A4B: It is Sr = ArBr/I2
r .

4) Ā = COMPLEMENT(A): It is Ār = Ur/Ar, where
Ur = g

∑q−1
i=1 r

i

.
5) Subset A ⊆ B: It is A = A ∩ B (i.e. Ar = Ir).
6) x ∈ A: It is {x} = {x} ∩ A (i.e. Ir = gr

x

).
7) x /∈ A: It is ∅ = {x} ∩ A (i.e. Ir = 1).

With the accumulator of the result of the above operations,
the result itself can be verified by computing the accumu-
lator value from scratch and checking the equality.

3.5. Sum and Count

With the accumulator value As = gA(s), the total num-
ber of elements in A is count = A(1) and the summation of
all elements in A is sum = A′(1). We use a similar scheme
to evaluate the polynomial in the exponent and its derivative
to that in [37]. Note that A(x) − A(1) = (x − 1)a(x) and
A(x)−A(1)−A′(1)(x−1) = (x−1)2b(x), where a(x) and
b(x) can be computed in linear time3. Therefore, the server
sends ga(s) as the proof for COUNT and gb(s),A(1) as the
proof for SUM. The client checks the relationships above
through bilinear pairing. Detailed algorithms are below.
{π, v} ← Query(A,COUNT, pk): Compute a(x) = (A(x)−
A(1))/(x− 1) and output π = ga(s) and v = A(1).

3. In general, polynomial division takes quasi-linear time. However, the
special form of A(x) allows computing a(x) and b(x) in linear time.
E.g., a(x) = (A(x) − A(1))/(x − 1) =

∑
i∈A(xi − 1)/(x − 1) =∑

i∈A
∑i

j=1 x
j .



{accept, reject} ← Verify(dA,COUNT, π, v, pk): Output
accept if and only if e(As/gv, g) = e(gs−1, π).
Proof (Soundness proof for COUNT). Suppose an adversary
Adv returns v 6= A(1) and passes the verification. Then

e(As/gv, g) = e(gs−1, π)

⇔ e(gA(s)−v, g) = e(gs−1, π)

⇔ e(g, g)a(s)(s−1)+A(1)−v = e(g, π)s−1

⇔ e(g, g)1/(s−1) = (e(g, π)/e(ga(s), g))(A(1)−v)−1

.

Adv can evaluate the right side, which breaks Lemma 1.
{π, v} ← Query(A,SUM, pk): Compute b(x) = (A(x) −
A(1)−A′(1)(x− 1))/(x− 1)2, set π1 = gb(s), π2 = A(1)
and output π = π1, π2 and v = A′(1).
{accept, reject} ← Verify(dA,SUM, π, v, pk): Output
accept if and only if e(As, g) = e(g(s−1)2 , π1) ×
e(gv(s−1)+π2 , g).
Proof (Soundness proof for SUM). Suppose an adversary
Adv returns π2 6= A(1) and passes the verification. Then

e(As, g) = e(g(s−1)2 , π1)× e(gv(s−1)+π2 , g)

⇔ e(gA(s), g) = e(g(s−1)2 , π1)× e(gv(s−1)+π2 , g)

⇔ e(gb(s)(s−1)2+(A′(1)−v)(s−1)+A(1)−π2 , g) = e(g(s−1)2 , π1)

⇔ e(g, g)1/(s−1) = (
e(gs−1, π1)

e(gb(s)(s−1)+(A′(1)−v), g)
)(A(1)−π2)−1

Adv can evaluate the right side, which breaks Lemma 1; if
π2 = A(1) and v 6= A′(1), continuing the above formula,

e(g, g)1/(s−1) = (e(g, π1)e(gb(s), g))(A′(1)−v)−1

Again, Adv can evaluate the right side, which breaks
Lemma 1;
Complexity. The proof size and the verification time are
both O(1), while the prover time is O(n), where n is the
size of the set.

3.6. Minimum and Maximum

The minimum value in set A is simply the lowest degree
of A(s). In this section, we propose a scheme to extract it.
Let min be the minimum, then A(s) − smin has a factor
smin+1. We let the server return g(A(s)−smin)/smin+1

as the
proof, and let the client reconstruct the accumulator As.
Detailed algorithms are as follows:
{π, v} ← Query(A,MIN, pk): Output v = min and π =

g(A(s)−smin)/smin+1

.
{accept, reject} ← Verify(dA,MIN, π, v, pk): Output
accept if and only if

e(As, g) = e(gs
v

, g)× e(π, gs
v+1

) .

Proof (Soundness proof for MIN). Suppose an adversary
Adv returns v < min and passes the verification, then

e(As, g) = e(gs
v

, g)× e(π, gs
v+1

)

⇔ e(gs
v

, g) = e(gA(s), g)/e(π, gs
v+1

)

⇔ e(g, g)1/s = e(g, g)A(s)/sv+1

/e(π, g).

which breaks Lemma 1
Suppose Adv returns v > min. Define the sets B = {i ∈

A : i < v} and C = {i ∈ A : i ≥ v}. By the condition in
algorithm Verify(), we have

e(As, g) = e(gs
v

, g)× e(π, gsv+1

)

⇔ e(g, g)
∑

i∈B s
i+

∑
i∈C s

i

= e(g, g)s
v

e(π, g)s
v+1

⇔ e(g, g)
∑

i∈B si

sv = e(g, g)e(π, gs)e(g, g)−
∑

i∈C s
i−v

.(1)

Let now smin, where min < v, be the greatest common
divisor of

∑
i∈B s

i and sv (note that min is the correct
minimum). Then there exists polynomials a(s) and b(s) such
that

a(s)
∑
i∈B

si + b(s)sv = smin ⇔ a(s)
∑
i∈B

si = smin − b(s)sv .

Therefore continuing from Relation 1 we have

e(g, g)

a(s)
∑

i∈B
si

sv = e(ga(s), g)e(π, gsa(s))e(g, g)
−a(s)

∑
i∈C

si−v

⇔ e(g, g)1/sv−min

= e(ga(s), g)e(π, gsa(s))×

e(g, g)
−a(s)

∑
i∈C

si−v

e(g, gb(s))

⇔ e(g, g)1/s = e(ga(s), gs
v−min−1

)e(π, gs
v−mina(s))×

e(gs
v−min−1

, g
−a(s)

∑
i∈C

si−v

)e(gs
v−min−1

, gb(s)) .

which breaks Lemma 1.
Note that the maximum corresponds to the lowest degree

in terms of s in Ar,s. Therefore, a similar scheme can be
used to extract the maximum.

{π, v} ← Query(A,MAX, pk): Output v = max and π =

g
A(r,s)−rmaxsq−max

sq−max+1 .

{accept, reject} ← Verify(dA,MAX, π, v, pk):
Output accept if and only if e(Ar,s, g) =

e(gr
vsq−v

, g)× e(π, gsq−v+1

).
The proof is similar to MIN and is omitted.

Complexity. The proof size and the verification time are
both O(1), while the prover time is O(n), where n is the
size of the set.



3.7. Range Queries

We describe the algorithm for the case of range query
in this section. It relies on the algorithms for intersection,
minimum and maximum. In general, for range [l, r], the
idea is to decompose A to B, C and D such that: (1) B,
C and D are pairwise disjoint; (2) B ∪ C ∪ D = A; (3)
max(B) < l, min(C) ≥ l, max(C) ≤ r and min(D) > r.
C is the answer to the range query. However, the challenge is
that B and D should not be returned, otherwise the proof is
not efficient. Therefore, we let the server return the digests
of B and D. Note that these two digests are not honestly
computed, but we will show that the strategy still works for
our construction.
{π, C} ← Query(A,RANGE(l, r), pk): RANGE(l, r) is a
range query on A with range [l, r]. Decompose A to
B = {i : i ∈ A, i < l}, C = {i : i ∈ A, l ≤ i ≤ r}
and D = {i : i ∈ A, i > r}. Compute the following:

1) Bs, Br,s, Ds.
2) B(x)− B(y, x) = Z(x, y)× (y − 1).
3) {πBC ,Ø} ← Query(B, C,∩, pk).
4) {πBD,Ø} ← Query(B,D,∩, pk).
5) {πCD,Ø} ← Query(C,D,∩, pk).
6) {π1,maxB} ← Query(B,MAX, pk).
7) {π2,minD} ← Query(D,MIN, pk).

Output C and π = Bs, Bs,α = gαB(s), Br,s,
Br,s,γ = gγB(r,s), Ds, Ds,α = gαD(s), Zs,r = gZ(s,r),
πBC , πBD, πCD, π1,maxB, π2,minD.
{accept, reject} ← Verify(dA,RANGE(l, r), π, C, pk):
Output accept if and only if

1) e(Bs, gα) = e(Bs,α, g), e(Br,s, gγ) = e(Br,s,γ , g),
e(Ds, gα) = e(Ds,α, g).

2) e(Bs/Br,s, g) = e(gr−1,Zs,r).
3) accept← Verify(dB, dC ,∩, πBC ,Ø, pk).
4) accept← Verify(dB, dD,∩, πBD,Ø, pk).
5) accept← Verify(dC , dD,∩, πCD,Ø, pk).
6) Bs × g

∑
i∈C s

i

×Ds = As.
7) accept← Verify(dB,MAX, π1,maxB, pk).
8) accept← Verify(dD,MIN, π2,minD, pk).
9) maxB < l,minC ≥ l,maxC ≤ r,minD > r, where

minC is the minimum element in C and maxC is the
maximum element in C.

Proof (Soundness proof for RANGE). By check 1 and
Assumption 2, the adversary, with all but negligible prob-
ability, can use extractors ε1, ε2, ε3 to derive coefficients
bi, b

′
i, di such that Bs = g

∑q−1
i=0 bis

i

, Br,s = g
∑q−1

i=0 b
′
ir

isq−i

and Ds = g
∑q−1

i=0 dis
i

.
Claim 1: Bs and Br,s share the same coefficients in the
polynomial on the exponent, with all but negligible proba-
bility. (i.e. ∀i : bi = b′i. )
Proof of Claim 1:

By check 2, if ∃i : bi 6= b′i, then

e(Bs/Br,s, g) = e(gr−1,Zs,r)

⇔ e(g
∑q−1

i=0 (bi−b′i)si+(r−1)Z(s,r), g) = e(g,Zs,r)
r−1

⇔ e(g, g)(
∑q−1

i=0 (bi−b′i)si)/(r−1) = e(g,Zs,r)e(g
−Z(s,r), g).

The adversary can evaluate the right side, which breaks
Lemma 2. Therefore, ∀i : bi = b′i with all but negligible
probability.
Claim 2: Let Cs = g

∑q−1
i=0 cis

i

and Ds = g
∑q−1

i=0 dis
i

, (Cs is
computed by the client, and shares the same ci with Cr,s.)
Then ∀i ∈ [q], at most one of bi, ci, di is nonzero.
Proof of Claim 2: The proof is the same as for intersection.
For example, if ∃i ∈ [q] : bi 6= 0 and ci 6= 0, then by the
check of B ∩ C, the adversary can evaluate gG(r)sq , which
breaks Assumption 3.
Claim 3: Bs,Br,s,Ds are the correct accumulators for sets
B,D such that B, C,D are pairwise disjoint and B∪C∪D =
A.
Proof of Claim 3: Let As = g

∑q−1
i=0 ais

i

, where ai ∈ {0, 1}.
By check 6, if ∃i : ai 6= bi + ci + di, then if there is only
one index i such that ai 6= bi + ci + di (we use k to denote
it), then we have

As = Bs × Cs ×Ds ⇔ g
∑q−1

i=0 ais
i

= g
∑q−1

i=0 (bi+ci+di)s
i

⇔ g(ak−bk−ck−dk)sk = 1.

Which is impossible as s ∈ Z∗p; if there is more than one
index i such that ai 6= bi + ci + di, we use k to denote the
smallest one, then we have

As = Bs × Cs ×Ds

⇔ g
∑q−1

i=0 ais
i

= g
∑q−1

i=0 (bi+ci+di)s
i

⇔ g
∑q−1

i=k+1(ai−bi−ci−di)si+(ak−bk−ck−dk)sk = 1

⇔ g1/s = g
− 1

ak−bk−ck−dk

∑q−1
i=k+1(ai−bi−ci−di)si−k−1

⇔ e(g, g)1/s = e(g, g)
− 1

ak−bk−ck−dk

∑q−1
i=k+1(ai−bi−ci−di)si−k−1

.

Which breaks Lemma 1. Therefore, ∀i : ai = bi+ci+di. As
ai ∈ {0, 1}, by Claim 2, if ai = 0, then bi = ci = di = 0;
if ai = 1, one of bi, ci, di equals 1 and the other two are
0s. This is equivalent to Claim 3.

By the security of queries MAX and MIN, maxB is the
maximum of B and minD is the minimum of D, with all but
negligible probability. As maxB < l,minC ≥ l,maxC ≤
r,minD > r, together with Claim 3, C is the correct answer
to the range query.
Complexity. The proof size is O(1) and the verification
time is O(|C|). The prover time is O(n2), where n is the
size of the set, which is dominated by the algorithms for
intersection.

3.8. Nested Queries

We utilize a similar idea to [19] to support nested
queries. For each (single) function in Q, instead of
outputting the result R, we propose an algorithm
QueryNested() that outputs the digest of the result dR with
a proof, instead of the result R itself. Similarly, we have
VerifyNested() that verifies the correctness of dR without



accessing R. In this way, to support a nested query, we
can apply QueryNested() and VerifyNested() recursively for
each single function in the nested query. For example, to
retrieve the result of A ∩ B ∪ C, the server first sends the
digest dI of the intermediate result I = A∩B with its proof,
and the client verifies it through VerifyNested(). Then with
the correct digest of I, the client can verifiably compute
R = I ∪ C. The verification complexity is proportional to
the number of single functions in the nested query and the
size of the final result, but not to the size of any intermediate
result or the original set.
Verifying the digest of an intersection. We first describe
such QueryNested() and VerifyNested() algorithms for in-
tersection. Recall in Section 3.3, the client can already
check the correctness of the accumulator value Ir for I,
without seeing I. (I is only used to compute the digest
from scratch and check the equality in the last step). We
simply extend it to also retrieve the other three values Is,
Is,r and Ir,s. For Is,r, we apply the same construction as
the proof 2 and check 2 for RANGE query in Section 3.7, i.e.
I(r)−I(s, r) = (s−1)Z(s, r) if Is,r is correctly computed.
For Is and Ir,s, as in our construction, s and r are totally
symmetric, we rerun the same algorithms for the server and
the client with s and r switched. In this way, the digest dI
can be verified without seeing the result I. The algorithm
is as follows:
{π, dR} ← QueryNested(A,B,∩, pk):

1) Run the original algorithm Query() as in Section 3.3
without outputting R. Let π1 be the proof except the
element Ir.

2) Compute I(y)−I(x, y) = (x− 1)Z(x, y). Set Zs,r =
gZ(s,r), Is,r = gI(s,r) and Is,r,γ = gγI(s,r).

3) Repeat 1 and 2 with s and r switched. Let π2, Zr,s and
Ir,s,γ be the corresponding proofs.

4) Output dI = Is, Ir, Is,r, Ir,s and π =
π1, π2,Zs,r,Zr,s, Is,r,γ , Ir,s,γ .

{accept, reject} ← VerifyNested(dA, dB,∩, π, dR, pk):
1) Run the original algorithm Verify() as in Section 3.3

without the last check.
2) Check if e(Ir/Is,r, g) = e(gs−1,Zs,r) and

e(Is,r, gγ) = e(Is,r,γ , g).
3) Repeat 1 and 2 with s and r switched.
4) Output accept if and only if all checks above pass.

Proof (Soundness proof for intersection (nested)). Let
d∗I = I∗s , I∗r , I∗s,r, I∗r,s be the digest returned by the adver-
sary Adv. By check 1 and the same proof as in Section 3.3,
I∗r = Ir, otherwise Adv breaks either Lemma 1 or Assump-
tion 3.

By the second part of check 2 and Assumption 2, Adv,
with all but negligible probability, can use extractors ε to
derive coefficients a′i such that Is,r = g

∑q−1
i=0 a

′
is

irq−i

. Mean-
while, we use ai to denote the coefficient of I∗r = Ir =

g
∑q−1

i=0 air
i

. Similar to the proof of Claim 1 in Section 3.7,
by check 2, if ∃i : ai 6= a′i, then

e(Ir/Is,r, g) = e(gs−1,Zs,r)

⇔ e(g
∑q−1

i=0 (ai−a′i)r
i+(s−1)Z(s,r), g) = e(g,Zs,r)

s−1

⇔ e(g, g)(
∑q−1

i=0 (ai−a′i)r
i)/(s−1) = e(g,Zs,r)e(g

−Z(s,r), g).

The adversary can evaluate the right side, which breaks
Lemma 2. Therefore, ∀i : ai = a′i with all but negligible
probability, thus I∗s,r = Is,r.

As s and r are symmetric, step 3 guarantees that I∗s = Is
and I∗r,s = Ir,s.

The digest of the result for other set operations in a
nested query can be computed by the relationship described
in Section 3.4.
Verifying the digest of a range query. The algorithms in
Section 3.7 still work if we let the server return the digest
instead of C, with the consistency check C(s) − C(r, s) =
(r − 1)Z(s, r) for the polynomials on the exponent of
Cs, Cr,s. In addition, as C is not directly returned, we need
to rely on MAX and MIN queries to retrieve maxC and minC .
As in the intersection, Cr and Cs,r can be retrieved through
the same algorithms with s and r switched. The formal
algorithms and the security proof are omitted.
Complexity. The proof size is O(d) and the verification
complexity is O(d + |R|) for a nested query with d single
queries and the final result R. (E.g. d = 2 in A ∩ B ∪ C.)
Other functions inside nested queries. We support other
functions inside nested queries. E.g., MAX(A)∪MIN(B).
However, as the result of a function is a single number,
Query() and Verify() need not to be changed. The client
retrieves the result of a function, views it as a set, computes
its digest and proceeds to the next query. All these can be
done in O(1) time and thus the complexity above remains
unchanged.

4. Zero-Knowledge Expressive Accumulators

In this section, we extend ESA to zk-ESA, providing
perfect zero-knowledge operations. Our zk-ESA supports
zero-knowledge set operations, SUM/COUNT, MAX/MIN and
nested queries. We recall that zero-knowledge nested queries
and functions are not supported in prior work (e.g., [25]).

4.1. Zero-Knowledge Definition

The security property of the accumulator in Definition 1
only guarantees that a malicious server cannot return an
incorrect answer to pass the verification. However, the client
may learn extra information about the sets through the
proof. We introduce a notion of zero-knowledge proofs
for our accumulator, which is the same as that for RSA
accumulators in [18]. It guarantees that even an unbounded
malicious client cannot learn anything about the set beyond
what is queried. We formalize this in a similar way to the
definition of zero-knowledge sets in [25]. We require that
there exists a simulator with no access to the sets such that a
malicious client cannot distinguish whether he is interacting
with the algorithms of the scheme or with the simulator.

To build a zero-knowledge accumulator, the setup algo-
rithm defined in Section 2.2 needs to additionally output



an auxiliary information auxA for a set A to hide the
information of the set. This auxiliary information is sent
to the server. Algorithm Query takes the auxiliary infor-
mation associated with its input sets to generate proofs,
and update also updates the auxiliary information. We
will use the algorithms with the auxiliary information in
the zero-knowledge definition below. We first describe two
experiments involving a challenger, an adversary Adv and a
simulator Sim = (Sim1,Sim2,Sim3,Sim4):
RealAdv(1

k):
1. The challenger runs (sk, pk)← genkey(1k,U) and sends
pk to Adv.
2. Adv picks sets A1, . . . ,Al and sends them to the chal-
lenger.
3. The challenger runs (dAi

, auxAi
) ← setup(Ai, sk) for

i = 1, . . . , l and returns dA1
, . . . , dAl

.
4. Adv runs the following polynomially many times:

4.1. The challenger runs (dA′i , auxA′i) ←
update(dAi , upd, pk) for i ∈ {1, . . . , l}, forwards
dA′i to Adv.

4.2. Adv sends a query Q and indices i1, . . . , il′
to the challenger. The challenger runs {πQ,R} ←
Query(Ai1 , . . . ,Ail , Q, pk, auxAi1

, . . . , auxAi
l′

) and re-
turns the output.
5. Adv outputs a bit b.
IdealAdv,Sim(1k):
1. The simulator runs (sk, pk) ← Sim1(1k,U) and sends
pk to Adv.
2. Adv picks sets A1, . . . ,Al.
3. Without seeing A1, . . . ,Al, the simulator runs
(dAi

, auxAi
) ← Sim2(sk) for i = 1, . . . , l and returns

dA1
, . . . , dAl

.
4. Adv runs the following polynomially many times:

4.1. The simulator runs (dA′i , auxA′i) ← Sim3(dAi
, pk)

for i ∈ {1, . . . , l}, forwards dA′i to Adv.
4.2. Adv sends a query Q and indices i1, . . . , il′ to the

simulator. With oracle access to the answer R, the simula-
tor runs {πQ,R} ← Sim4(Q, sk, pk, auxAi1

, . . . , auxAi
l′

)
and returns the output.
5. Adv outputs a bit b.

Definition 2 An ESA scheme is perfect zero-knowledge if
for all unbounded adversaries Adv and all sets A1, . . . ,Al,
there exists a PPT simulator Sim such that

Pr[RealAdv(1
λ) = 1]− Pr[IdealAdv,Sim(1λ) = 1] = 0.

Note that in the update algorithm and the zero-
knowledge definition above, the identity of the updated set
is leaked during the update. (i.e. the updated set is the set
whose digest is changed.) However, this information can be
easily hided by rerandomizing and refreshing the digests of
all sets during each update.

At the end of this section, we are able to prove that the
following theorem holds for our zk-ESA scheme.

Theorem 2 The zk-ESA scheme proposed in this section
is correct, sound and perfect zero-knowledge according to
Definition 1 and Definition 2, under Assumption 1, 2 and 3.

4.2. Setup

Algorithm genkey(1k,U) picks sk = s, r, t, α, β, γ, δ
at random from Z∗p. It runs pub = (p,G,GT , e, g) ←
BilGen(1k). It sets pk as:
• pk′ as defined in Section 3.1.
• gt.
• gts

i

, gαts
i

for i ∈ [q − 1].
• gtr

i

, gβtr
i

for i ∈ [q − 1].
• gtr

isj , gδtr
isj for (i, j) ∈ ([2q− 1] \ {q})× ([2q− 1] \

{q}).
• gtr

isq , gγtr
isq for i ∈ [q − 1].

Algorithm setup(A, sk) adds a randomizer on the exponent
of each element in the original ESA. It sets the accu-
mulator dA of a set A as As = gA(s)+r1ts

min+1

,Ar =
gA(r)+r2tr

min+1

, As,r = gA(s,r)+r3ts
max−1rq−max+1

, Ar,s =

gA(r,s)+r4tr
max−1sq−max+1

, where min and max are the min-
imum and maximum elements in A and r1, r2, r3, r4 are
randomly selected from Z∗p. It sends auxA = (r1, r2, r3, r4)
to the prover.

4.3. Zero-Knowledge Set Operations

We first give a zero knowledge protocol for intersection.
For simplicity, we use min, max, r1, r2, r3, r4 for set A and
min′,max′, r5, r6, r7, r8 for set B in this section. The server
views s, r, t as variables and computes

(
∑
i∈A

si + r1ts
min+1)× (

∑
i∈B

risq−i + r8tr
max′−1sq−max′+1)

=
∑
i∈I

risq +
∑

i∈A\I,j∈B\I

rjsq+i−j +

r1ts
min+1

∑
i∈B

risq−i + r8tr
max′−1sq−max′+1

∑
i∈A

si

= I(r)sq + q(s, r, t, r1, r8).

The server computes the proof as Q1 = gq(s,r,t,r1,r8),Q2 =
gδq(s,r,t,r1,r8) and returns the result I. The client verifies the
relationship above through pairings. The formal algorithms
are as follows:
{π,R} ← Query(A,B,∩, pk, auxA, auxB): Let I = A ∩ B
be the intersection. Compute polynomial q(s, r, t, r1, r8)
defined above. Compute Q1 = gq(s,r,t,r1,r8),Q2 =
gδq(s,r,t,r1,r8) and Output R = I and π = Q1,Q2.
{accept, reject} ← Verify(dA, dB,∩, π, I, pk):
Output accept if and only if e(As,Br,s) =

e(g
∑

i∈I r
i

, gs
q

)e(Q1, g) and e(Q1, g
δ) = e(Q2, g).

We first show that the soundness still holds, and then
prove the scheme is zero-knowledge.
Proof (Soundness proof for zk-intersection). Suppose
an adversary Adv returns I∗ 6= I and passes the verifi-
cation, then by Assumption 2, Adv with all but negligi-
ble probability, can use extractor ε to extract aij , bij for



i, j = 0, . . . , q−1, q+1, . . . , 2q−1 and ci for i = 0, . . . , q−1
such that Q1 = g

∑
aijs

irj+
∑
bijts

irj+
∑
citr

isq .
By the first check,

e(As,Br,s) = e(g

∑
i∈I∗

ri

, gs
q

)e(Q1, g)

gI(r)sq+q(s,r,t,r1,r8) = g

∑
i∈I∗

risq+
∑
aijs

irj+
∑
bijts

irj+
∑
citr

isq

g
(I(r)−

∑
i∈I∗

ri)sq

= g
∑
aijs

irj+
∑
bijts

irj+
∑
citr

isq−q(s,r,t,r1,r8)

As I∗ 6= I, I(r)−
∑

i∈I∗ r
i is a non-constant polynomial

of r and the right side can be evaluated by Adv. This breaks
a variant of Assumption 3 with pk defined in Section 4.2,
which can be easily reduced to Assumption 3.
Proof (Zero-knowledge proof). We present the real proto-
col first, followed by the interaction with a simulator. We
will show that the corresponding steps in the real world and
the ideal world are indistinguishable.
RealAdv(1

λ):
1. The challenger runs pk ← genkey(1k,U) where pk is
defined in Section 4.2, sends pk to Adv.
2. Adv picks sets A,B and sends them to the challenger.
3. The challenger sets dA, dB as defined above and sends
dA, dB to Adv.
4. Adv sends the intersection query.
The challenger returns the answer I and the proof Q1 =
gq(s,r,t,r1,r8), Q2 = gδq(s,r,t,r1,r8).
5. Adv outputs a bit b.
IdealAdv,Sim(1λ):
1. The simulator picks s, r, t, α, β, γ, δ and outputs pk ←
Sim1(1k,U) where pk is defined in Section 4.2. The sim-
ulator stores s, r, t, α, β, γ, δ.
2. Adv picks sets A,B.
3. Sim sets dA = (gr1 , gr2 , gr3 , gr4) and dB =
(gr5 , gr6 , gr7 , gr8), where r1, . . . , r8 are randomly chosen
in Z∗p and sends dA, dB to Adv.
4. Adv sends the intersection query.
With the oracle access to the answer I, Sim sends the
answer I and the proof Q1 = gr1r8−I(r)sq , Q2 =
gδ(r1r8−I(r)sq).
5. Adv outputs a bit b.

In Step 1 of both worlds, pk is computed as in Sec-
tion 4.2, thus the two cases are obviously indistinguish-
able. There is no information received from the chal-
lenger/simulator in Step 2. In Step 3 of the ideal world,
for each possible value of r1, there exist a unique r′1 s.t.
As = gr1 = gA(s)+r′1ts

min+1

. The same argument holds
for r2, . . . , r8. In Step 4, Q1 = gr1r8−I(r)sq = gq(s,r,r

′
1r
′
8)

for the same r′1, r
′
8 obtained from step 2. As r1, r8 are

randomly chosen and Adv has no access to them, the values
above in the two cases are indistinguishable. Q2 is uniquely
determined by I and Q1. Therefore, the two cases are
indistinguishable.

Membership can be reduced to {x} ∩ A = {x} and
subset is reduced to A ∩ B = A. Similar proofs of correct-
ness, soundness and zero-knowledge apply. The protocols
for other set operations will be discussed in the next section.

4.4. Zero-Knowledge Nested Queries

It is challenging to extend the zero knowledge pro-
tocol in Section 4.3 to support nested queries. The rea-
son is that our solution in Section 3.8 requires the server
to return the accumulator of an intersection dI instead
of I. The client checks the validity of dI and uses
it to continue performing other operations in the nested
query. With zk-ESA, the accumulator is randomized, the
server can simply return a random number and any ran-
dom number is a valid accumulator for some set. There-
fore, in zk-ESA, we require the algorithms to satisfy
the following security property: for any adversary Adv,
there exist a PPT extractor ε that Pr[({πQ, dR}; auxR) ←
(Adv||ε)(A,B, Q, pk, auxA, auxB); accept ← Verify(dA,
dB, Q, πQ, dR, pk) : (dR, auxR) 6= setup(R, sk)] ≈ 0. I.e.,
if the accumulator returned passes the verification, the server
can use the extractor to extract the auxiliary information
and express the accumulator in the correct form defined in
Section 4.2.

We are going to give the protocol for zero knowledge
intersection in a nested query below and sketch the security
proof according to this property, followed by the proof of
zero knowledge.
{π, dI} ← QueryNested(A,B,∩, pk, auxA, auxB):

1) Compute q(s, r, t, r1, r8) as defined in Section 4.3,
set Ir = gI(r)+r9tr

min′′+1

, where min′′ is
the minimum element in I. Output π1 =

gβ(I(r)+r9tr
min′′+1),π2 = gq(s,r,t,r1,r8)−r9trmin′′+1sq ,

π3 = gδ(q(s,r,t,r1,r8)−r9trmin′′+1sq).
2) Compute I(r) + r9tr

min′′+1 − I(s, r) −
r11ts

max′′−1rq−max′′+1 = (s − 1)Z(s, r) +
t(r9r

min′′+1− r11s
max′′−1rq−max′′+1). Set Z = gZ(s,r),

Imin = gr9r
min′′+1

, Imin,β = gβr9r
min′′+1

,Imax =

gr11s
max′′−1rq−max′′+1

, Imax,γ = gγr11s
max′′−1rq−max′′+1

,
Is,r = gI(s,r)+r11ts

max′′−1rq−max′′+1

and
Is,r,γ = gγ(I(s,r)+r11ts

max′′−1rq−max′′+1).
3) Repeat 1 and 2 with s and r switched.
4) Output dI = Is, Ir, Is,r, Ir,s and π to include all the

proofs.

{accept, reject} ← VerifyNested(dA, dB,∩, πo, dR, pk):

1) Check if e(As,Br,s) = e(Ir, gs
q

)e(π2, g)), e(π1, g) =
e(Ir, gβ), e(π3, g) = e(π2, g

δ).
2) Check if e(Ir/Is,r, g) =

e(gs−1,Z1)e(gt, Imin/Imax), e(Is,r, gγ) =
e(Is,r,γ , g), e(Imin, gβ) = e(Imin,β , g) and
e(Imax, gγ) = e(Imax,γ , g).

3) Repeat 1 and 2 with s and r switched.
4) Output accept if and only if all checks above pass.

Proof (Soundness proof for zk-nested intersection). We
consider Ir first. Suppose an adversary Adv returns I∗r that
is not an accumulator value of I and passes the verifica-
tion, then by Assumption 2, Adv with all but negligible
probability, can use an extractor ε1 to derive bij , cij for



i, j = 0, . . . , q−1, q+1, . . . , 2q−1 and di for i = 0, . . . , q−1
such that π2 = g

∑
bijs

irj+
∑
cijts

irj+
∑
ditr

isq . He can use
another extractor ε2 to derive ei, fj for i = 0, . . . , q−1, j =

0, . . . , 2q − 1 such that Ir = g
∑
eir

i+
∑
fjtr

j

By the first
check,

e(As,Br,s) = e(Ir, gs
q

)e(π2, g)

⇔ gI(r)sq+q(s,r,t,r1,r2) =

g(
∑
eir

i+
∑
fjtr

j)sq+
∑
bijs

irj+
∑
cijts

irj+
∑
ditr

isq

⇔ g(I(r)−
∑
eir

i))sq =

g
∑
fjtr

jsq+
∑
bijs

irj+
∑
cijts

irj+
∑
ditr

isq−q(s,r,t,r1,r2)

As I∗ is not an accumulator value of I, I(r) −
∑
eir

i is
a non-constant polynomial of r and the right side can be
evaluated by Adv. This breaks a variant of Assumption 3
with pk defined in Section 4.2.

By Check 2 and Assumption 2, Adv with all but negli-
gible probability, can use an extractor ε3 to derive e′i, f

′
i for

i = 0, . . . , q − 1 such that Is,r = g
∑
e′is

irq−i+
∑
f ′its

irq−i

.
He can use another extractor ε4 to derive the coefficients
for Imin and Imax. For simplicity, instead of denoting their
coefficients, we denote Imin/Imax = gZ3(s,r,t), which is
sufficient for the proof. Suppose ∃i : e′i 6= ei, e.g., Is,r
is not the correct value for the accumulator of I, then by
Check 2,

e(Ir/Is,r, g) = e(gs−1,Z)e(gt, Imin/Imax)

⇔ e(g
∑

(ei−e′i)r
i+

∑
(fi−f ′i)tri+(s−1)Z′(s,r)+tZ2(s,r), g) =

e(gs−1,Z)e(gt, gZ3(s,r,t))

⇔ e(g, g)

∑
(ei−e′i)r

i+
∑

(fi−f′i)tr
i+tZ2(s,r)−tZ3(s,r,t)

s−1 =

e(g,Z/gZ
′(s,r))

As ∃i : e′i 6= ei,
∑

(ei − e′i)ri is a non-constant polynomial
and the right side can be evaluated by Adv, which breaks a
variant4 of Lemma 2.

As s, r are symmetric, by Check 3, the correctness of
Is, Ir,s can be proved in the same way above with s and r
switched.

The intuition is that the verification guarantees that Ir
returned by the server must have

∑
i∈I r

i on the exponent.
The server has the freedom to choose the randomizer, and
to ensure zero knowledge, he will add r9tr

min′′+1 on the
exponent5.

Proof (Zero-knowledge proof).

4. On the left side, the polynomial has one more variable t than
Lemma 2. This can be easily reduced to Lemma 2 by a black-box reduction.

5. The server can set for example r9 = 0 and still passes the verification.
However, the server loses the zero knowledge guarantee of his sets, but the
soundness of the result is still maintained.

RealAdv(1
λ):

1. The challenger runs pk ← genkey(1k,U) where pk is
defined in Section 4.2, sends pk to Adv.
2. Adv picks sets A,B and sends them to the challenger.
3. The challenger sets dA, dB as defined above and sends
dA, dB to Adv.
4. Adv sends the intersection query.
The challenger returns the answer dI and the proof π
defined above.
5. Adv outputs a bit b.
IdealAdv,Sim(1λ):
1. The simulator picks s, r, t, α, β, γ, δ and outputs pk ←
Sim1(1k,U) where pk is defined in Section 4.2. The sim-
ulator stores s, r, t, α, β, γ, δ.
2. Adv picks sets A,B.
3. Sim sets dA = (gr1 , gr2 , gr3 , gr4) and dB =
(gr5 , gr6 , gr7 , gr8), where r1, . . . , r8 are randomly chosen
in Z∗p and sends dA, dB to Adv.
4. Adv sends the intersection query.
Sim sends the answer Ir = gr9 , Is,r = gr11 and the proof
π1 = gβr9 , π2 = gr1r8−r9s

q

,Z = g
r9−r11

s−1 −
r13−r14

t , Imin =
g

r13
t , Imin,β = gβ

r13
t , Imax = g

r14
t , Imax,γ = gγ

r14
t . Sim

repeats the above with s and r switched.
5. Adv outputs a bit b.

In Step 1 of both worlds, pk is computed as in Sec-
tion 4.2, thus the two cases are obviously indistinguish-
able. There is no information received from the chal-
lenger/simulator in Step 2. In Step 3 of the ideal world,
for each possible value of r1, there exist a unique r′1 s.t.
As = gr1 = gA(s)+r′1ts

min+1

. The same argument holds for
r2, . . . , r8. In Step 4 of the ideal world, for each possible
value of r9, there exist a unique r′9 s.t. Ir = gr9 =

gI(r)+r′9tr
min′′+1

. In Step 4, π1 = gβr9 = gβ(I(r)+r′9tr
min′′+1).

Similarly, π2,Z in the proof of the ideal world is equal to
their counter part in the real world masked by a unique and
different random number. In addition, Imin and Imax are
uniformly distributed in both worlds and Imin,β , Imax,γ are
uniquely determined by them. As r1, . . . , r14 are randomly
chosen and Adv has no access to them, the values above in
the two cases are indistinguishable.
Other set operations. Other set operations cannot be re-
duced to intersection trivially in zk-ESA. E.g., in section 3.8,
to get the digest of U = A ∪ B, the client can himself
compute dU = dA × dB/dI . This no longer holds, because
there is a randomizer on the exponent of each accumulator
value.

Instead, we propose a more complicated protocol as
following: the client first computes dU∗ = dA×dB/dI . Note
that as mentioned above, this is not the correct accumulator
for U , and only the randomizer part is wrong. E.g.,

U∗s = gU(s)+r1ts
min+1+r2ts

min′+1−r3tsmin′′+1

,

but the correct one should be gU(s)+r4ts
min′′′+1

. Therefore,
the client further asks the server to return the correct digest
dU , and runs the zero knowledge intersection protocol with
the server to check U∗ ∩ U = U∗ and U ∩ U∗ = U , using



the digests dU and dU∗ . In this way, it guarantees that dU
returned by the server is the correct digest for U and the
client can further use it to perform other operations in the
nested query.

Other set operations can be handled in similar ways.

4.5. Zero-Knowledge Sum and Count

In this section, we give zero-knowledge protocols for
SUM and COUNT. To obtain the result of a count query for
set A, the client wants to evaluate the polynomial on the
exponent of As at s = 1, t = 0. We use F (x, y) to denote
the polynomial, then F (x, y)−F (1, 0) = (x− 1)q1(x, y) +
yq2(y). Notice when F (x, y) = A(x) + r1yx

min+1, the
degree of y in q1(x, y) is 1 and q2(y) = r1. The server
then selects randomly r5 ∈ Z∗p and sets π1 = gq1(s,t)+r5t

and π2 = gq2(t)−r5(s−1). The server returns the answer
F (1, 0) together with the proofs. To verify, the client checks
e(As/gF (1,0), g)

?
= e(gs−1, π1)e(gt, π2).

The correctness and soundness can be proved similarly
to that in [37]. We give the proof of zero-knowledge below.

Proof (Zero-knowledge proof for COUNT).
RealAdv(1

λ):
1. The challenger runs pk ← genkey(1k,U) where pk is
defined in Section 4.2, sends pk to Adv.
2. Adv picks sets A and sends them to the challenger.
3. The challenger sets dA as defined in Section 4.2 and
sends it to Adv.
4. Adv sends the count query.
The challenger returns the answer count and the proof
pi1 = gq1(s,t)+r5t, π2 = gq2(t)−r5(s−1).
IdealAdv,Sim(1λ):
1. The simulator picks s, r, t, α, β, γ, δ and outputs pk ←
Sim1(1k,U) where pk is defined in Section 4.2. The sim-
ulator stores s, r, t, α, β, γ, δ.
2. Adv picks sets A.
3. Sim sets dA = (gr1t, gr2t, gr3t, gr4t), where r1, r2, r3, r4

are randomly chosen in Z∗p and sends dA to Adv.
4. Adv sends the count query.
With the oracle access to the answer count, Sim sends the
answer count and the proof π1 = g

r5
s−1 , π2 = g

r1t−count−r5
t .

In step 1 of both worlds, pk is computed as in Sec-
tion 4.2, thus the two cases are obviously indistinguish-
able. There is no information received from the chal-
lenger/simulator in step 2. In step 3 of the ideal world,
for each possible value of As = gr1t, there exist a r′1 s.t.
As = gr1t = gA(s)+r′1ts

minA+1. The same argument holds
for other accumulator values. Therefore, Adv cannot distin-
guish the two cases through As. In step 4 of both worlds,
π1 is uniformly distributed and there exists a unique π2 for
each π1. Therefore, the two cases are indistinguishable.

SUM also relies on the polynomial evaluation on the
exponent and can be handled similarly.

4.6. Zero-Knowledge Maximum and Minimum

We first describe the zero-knowledge protocol for
MIN. To generate the proof, the server sets π =
g(A(s)−smin)/smin+1+r1t and returns the result min together
with the proof π. The client then checks if e(As, g)

?
=

e(gs
min

, g)e(π, gs
min+1

).
The correctness and soundness follows directly from the

original proofs for MIN in Section 3.6. We give the proof
of zero-knowledge below.

Proof (Zero-knowledge proof for MIN).
RealAdv(1

λ):
1. The challenger runs pk ← genkey(1k,U) where pk is
defined in Section 4.2, sends pk to Adv.
2. Adv picks sets A and sends them to the challenger.
3. The challenger sets dA as defined in Section 4.2 and
sends it to Adv.
4. Adv sends the MIN query.
The challenger returns min and π = g(A(s)−smin)/smin+1+r1t.
IdealAdv,Sim(1λ):
1. The simulator picks s, r, t, α, β, γ, δ and outputs pk ←
Sim1(1k,U) where pk is defined in Section 4.2. The sim-
ulator stores s, r, t, α, β, γ, δ.
2. Adv picks sets A.
3. Sim sets dA = (gr1 , gr2 , gr3 , gr4), where r1, r2, r3, r4

are randomly chosen in Z∗p and sends dA to Adv.
4. Adv sends the MIN query.
With the oracle access to the answer min, Sim sends min

and π = g
r1−smin

smin+1 .

In step 3 of the ideal world, for each possible value of
As = gr1 , there exist a r′1 s.t. As = gr1 = gA(s)+r′1ts

min+1

.
The same argument holds for other accumulator values.
Therefore, Adv cannot distinguish the two cases through

As. In step 4 of the ideal world, π = g
r1−smin

smin+1 =
g(A(s)−smin)/smin+1+r′1t for the same r′1. Therefore, the two
cases are indistinguishable.

To support zero-knowledge MAX, a similar protocol to
MIN is applied to the accumulator value Ar,s.

4.7. Zero-Knowledge Updates

Zero-knowledge updates are again very simple in our
construction. The client first checks the validity of the update
using zero-knowledge membership query (i.e. x /∈ A for
(ADD, x) and x ∈ A for (REMOVE, x)). If the update is valid,
the client updates the digest through multiplication/division.
Finally, the client asks the server to rerandomize the digest,
and checks the new digest is for the updated set using
intersections, as described in Section 4.4.

In addition, to hide which set is updated, the client
chooses a random element for each set that is not updated,
refreshes all digests and sends all random elements to the
server.



5. Applications

5.1. Keyword Search

Our scheme can be applied to verifiable keyword search
implemented by the inverted index data structure [1]. The
file IDs of all the documents containing a common term in
the dictionary are grouped into a set indexed by that term.
A keyword search query for terms w1 and w2 returns all
documents that contain both terms. This can be naturally
modeled as an intersection of the two sets indexed by w1

and w2, and thus supported by our ESA.
In addition, it is common in practice to have range

constrains on the result. E.g., in keyword search in the email
inbox, a keyword search query could be “return emails that
contain terms w1 and w2 and are received between time t1
and t2”. To support such query, we embed a timestamp in
the most significant bits of the file ID. For file i, the new
file ID is ID′i = ti||IDi, where || means concatenation. Note
that ID′ still uniquely determines a file. Then the inverted
index data structure is constructed and the sets indexed by
w1 and w2 contain groups of ID′s. An intersection of the
two sets gives all ID′s that contain the two terms. After
that, a RANGE query for [t1||00 . . . 0, t2||11 . . . 1] on the
result of intersection gives those received between t1 and
t2 (assuming ID is in binary representation). Such a RANGE
on the result of an intersection can be supported by our ESA
efficiently. In contrast, in prior work (e.g., [38]), either the
verification is not optimal or additional data structures (e.g.,
segment tree) are used. Moreover, we can even support more
complicated keyword search queries such as “return the total
number of emails that contain terms w1 and w2 and are
received between time t1 and t2, except those contain terms
w3 and w4 between t3 and t4”, which can be translated to
a nested query containing COUNT, RANGE, intersection and
set difference.

5.2. SQL Database Queries

Our scheme can be used for verifying database SQL
queries. Verifiable database has been studied by various
prior works [35], [28], [36], [43], [44], [29] and the most
expressive system, IntegriDB, is proposed by Zhang et.
al in [45], supporting update, SQL range queries, JOIN,
SUM, MAX/MIN, COUNT, AVG and limited nesting of such
queries. It applies the bilinear accumulator as a building
block for set operations and SUM queries.

IntegriDB requires the accumulator to support algo-
rithms for authenticated intersection, union, set difference
and sum, which are all supported by our ESA. Therefore,
by replacing the bilinear accumulator with ESA, we can
support the same set of SQL queries as in [45]. Moreover,
We will show that by applying our ESA, we can further
support public update, join query with duplicates in nested
queries, DISTINCT query (unique values in a column) and
improve the complexity of MAX/MIN.
Public updatability. One limitation of IntegriDB is that it
only supports efficient update from the data owner with the

secret key, which is inherited from the bilinear accumulator.
As mentioned in Section 3.2, it takes quasilinear time to
insert/delete an element by a client without the secret key
in bilinear accumulator (same as computing from scratch).
Even for the data owner with the secret key, one key
operation used in IntegriDB during the update is combining
the accumulators of two disjoint sets (e.g. compute dA∪B
given dA and dB, where A ∩ B = Ø). As these sets are
not stored by the data owner, IntegriDB relies on extra
information stored in the authenticated data structure, which
is the encryption of the exponent for each accumulator.

These problems can be solved by applying our ESA
as the accumulator. First, as mentioned in Section 3.2, it
takes O(1) time for both insertion and deletion by a client
without the secret key. Second, given the accumulators for
two disjoint sets, the accumulator for the union is simply
their product. Therefore, we support public update.

Join with duplicates. Another open problem listed in [45]
is how to support join query with duplicates in a nested
query. A join query in SQL returns the Cartesian prod-
uct of the matching elements in the joined columns
(and their corresponding rows). E.g., the result of a join
query on c1 = [1, 1, 1, 2, 2, 3] and c2 = [1, 1, 2, 2, 4] is
[1, 1, 1, 1, 1, 1, 2, 2, 2, 2]. In IntegriDB, a Merkle tree [33]
is built for each of c1 and c2, where the leaves stores all
unique values and their cardinalities in the column. Besides,
a bilinear accumulator is computed by modeling the columns
as multi-sets. To support a join query, the client first retrieves
the intersection of the two columns using the accumulator
(intersection of multi-sets I = {1, 1, 2, 2}), then for each
unique value in the intersection, the client issues a search
query to the Merkle tree to determine its cardinality in each
column and computes the Cartesian product himself. The
proof size and the verification complexity is O(|R| log n),
where |R| is the size of the result and n is the maximum
size of the joined columns.

This technique cannot be generalized to a join query
inside a nested query. E.g., if a SQL sum query is applied
on top of the join query, then the client must compute the
summation himself after getting the result of join, which is
not efficient. How to support join queries with duplicates in
nested queries is listed as an open problem in [45].

By using our ESA, we can both support join queries
with duplicates in nested queries and improve the com-
plexity. We construct the accumulator value for the col-
umn c1 as: acc(c1) = g

∑
nis

xi
= g3s+2s2+s3 , where ni

is the cardinality of element xi. Similarly for c2, we set
acc(c2) = g2rsq−1+2r2sq−2+r4sq−4

. Notice that acc(c1) ×
acc(c2) = (6r + 4r2)× sq +Q(s, r), where the coefficient
6r+4r2 before sq is exactly the exponent of the accumulator
for the result of join [1, 1, 1, 1, 1, 1, 2, 2, 2, 2]. Therefore, by
running the same algorithms for intersection as described in
Section 3.3, the joined column in the result can be verified.
With this improvement, the proof size is O(1) and the
verification complexity is O(|R|), both of which are totally
independent of the size of the original database.

Moreover, the solution above can be easily generalized



TABLE 2. COMPARING WITH RAM-BASED GENERIC SCHEME. QUERY IS SUM((A ∩ B) ∪ (C ∩ D)). A,B, C,D HAVE n ELEMENTS EACH.

n setup time prover time verification time proof size update time server storage

1,000 [6] 9,000s 4,300s 19ms 288Bytes ?? 23GB
ESA 0.01s 3.6s 9ms 540Bytes 2.4× 10−6s 60MB

10,000 [6] 90,000s 43,000s 19ms 288Bytes ?? 230GB
ESA 0.1s 360s 9ms 540Bytes 2.4× 10−6s 6GB

5× 106
[6] 4.5× 107s 2.15× 107s 19ms 288Bytes ?? 1.2× 105GB

ESA 5s 9× 107s 9ms 540Bytes 2.4× 10−6s 1.5× 106GB

to nested queries. It is not hard to prove that SUM, COUNT,
MAX/MIN, RANGE functions are still working with the
modified accumulator. Therefore, a SQL sum query on the
result of a join query is supported by applying a SUM on the
digest of the result of join. The proof size and verification
complexity are both O(1), which is optimal.
Max/Min. IntegriDB relies on the tree structure to support
SQL max/min query. E.g., to retrieve the maximum of a
column, the server first sends the claimed maximum max,
and the client then queries the range [max,∞] to an au-
thenticated interval tree [45] and accepts if and only if the
result contains a single element max. The proof size and the
verification complexity are logarithmic on the size of the
column and it requires there is no duplicate in the column.

ESA can answer it directly using the MAX query for set.
The proof size and the verification complexity are O(1) and
we support duplicates.
Unique values. DISTINCT query is used in SQL to return
all unique values in a column. Similar to join query, we view
each column as a multi-set, and encode the cardinality ni of
each element i in the accumulator: acc(c) = g

∑
nis

i

. ESA
can then support the distinct query as following: the server
returns the value/cardinality pair (i, ni) of each unique value
and the client computes the accumulator from scratch and
checks the equality with the one stored. The proof size and
the verification complexity are both linear to the number of
unique values. The same trick does not work in IntegriDB
using bilinear accumulator. The proof could be the same,
but the complexity to computes the bilinear accumulator
gΠ(s+i)ni from scratch is quasilinear in n =

∑
ni, which

could be much more than the number of the unique values.

6. Comparison with Generic Schemes

Generic systems for verifiable computation (VC) can
be classified into two categories: circuit-based and RAM-
based. To apply circuit-based VC on expressive verifiable
set operations, queries are compiled to a circuit and the
VC system is run on the resulting circuit. As indicated in
Table 1, circuit-based VC does not support arbitrary nesting
of the queries. A bound on the degree of the nested query
must be known in advance. Update is also not supported
and the sets must be hard coded to the circuit.

RAM-based VC can support all queries and has better
prover time and proof size than our ESA, as shown in Ta-
ble 1. However, it is slower in practice for sets of reasonable

size. In this section, we compare the performance of ESA
to an efficient RAM-based generic VC system, SNARKs
for C [6]. For SNARKs for C, the sets would be hardcoded
in a program that takes a query as input and outputs the
result. We estimate the performance by first expressing the
queries in TinyRAM and then using this to determine the
three parameters that affect performance: the number of
instructions (L), the number of cycles (T) and the size of the
input and output (N). We then use those parameters along
with [6, Fig.9̃] to estimate the running time and the server
storage (evaluation key size). We were unable to estimate
the update time for SNARKs for C.

For ESA, we use the benchmark from an efficient bi-
linear group implementation: ate-pairing6 (the same library
is also used in SNARKs for C). In order to compare the
performance on the same machine, we first find the number
of CPU cycles for operations such as multiplication and
pairing, then use the number of CPU cycles to estimate the
running time on the same machine used in [6]. A multi-
plication of two elements in the group takes around 2500
CPU cycles and a pairing takes 1.4 million CPU cycles,
as reported in the benchmark. These roughly correspond to
0.6 microsecond and 0.3ms on the computed used in [6],
with a 3.40 GHz Intel Core i7-4770 CPU and 32 GB of
RAM. Note that these are the only two operations used
in our construction. Exponentiation, which is much more
expensive than multiplication, is never used in ESA, as all
the coefficients on the exponent of accumulators are 1s.
Therefore, ESA is very efficient in practice.

As a representative example, we test the query SUM((A∩
B)∪(C∩D)), where every set of A,B, C,D has n elements.
We also show the time to delete one element from set A. As
shown in Table 2, ESA is faster in all aspects even for sets
that contain 10000 elements. In particular, the setup time
is faster than SNARKs for C by orders of magnitude. Note
that the gap remains the same for larger sets, as the setup
complexity is O(n) for both schemes. The prover time is
faster by 1194× for n = 1000 and 120× for n = 10000.
Only when the size of the sets reaches 5 million, the prover
time starts to be slower for ESA. The verification time for
ESA is only 9ms, which is 2 times faster than SNARKs
for C. The overhead of the proof size for ESA is only
1.9×, both are only several hundred of bytes. The server
storage is smaller by 97% in ESA for a universe of 10,000.
Although the prover time, proof size and server storage will

6. https://github.com/herumi/ate-pairing



eventually be larger than for SNARKs for C for larger sets
and more complicated nested queries, Table 2 already shows
practicality of ESA for reasonable sets and queries.

In addition, we also consider a more involved solution
using circuit-based VC. The client constructs a circuit-based
VC for intersection. The VC takes two digests as input from
the client, takes two sets from the server as the external
input, verifies the validity of the two sets, computes their
intersection, and finally outputs the digest of this intersec-
tion. In this way, the size of the clients input and the output
are both constant. After executing one operation, the client
can get back the digest of the intermediate result and feed
it to the next operation in a nested query. In this solution,
the digest should be updatable for dynamic sets.

We estimate the performance of this solution. We use the
incremental hash in [3] and implement the same query as in
Table 2. For n=10,000, it roughly takes 120000s of prover
time using this approach with libsnark [4]. The scheme is
always slower than RAM-based VC, thus we do not include
it in the table.
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Appendix A.
Justification of Assumption 2

Assumption 4 Let W be a set of q elements in Z∗p. For
every PPT adversary Adv there exists a PPT extractor ε
such that

Pr
[
pub← BilGen(1k);α, s← Z∗p;σ = (pub, {gs

i

}i∈W ,

{gαs
i

}i∈W); (c, ĉ; {ai}i∈W)← (Adv||ε)(σ, z) :

ĉ = cα ∧ c 6=
∏
i∈W

gais
i

]
≈ 0.

for any auxiliary information that is generated indepen-
dently of α.

Assumption 4 is a variant of the standard q-PKE as-
sumption, in which the powers are consecutive starting from
1 (e.g., W = {1, . . . , q}).

Assumption 2 can be easily reduced to Assumption 4 by
setting r = st (for an unknown t). In this way, sirj = si+tj

and Assumption 2 is equivalent to Assumption 4 with the
cardinality of W being q2.

Appendix B.
Justification of Assumption 3

We now prove Assumption 3 holds. To do that, we rely
on the following assumption which obviously holds in the
generic group model [14]—we omit the proof in this paper.

Assumption 5 For every non-uniform probabilistic polyno-
mial time adversary A

Pr
[
pub← BilGen(1λ); r ← Zp;σ = (pub, {gr

i

}) for i =

[4q2] \ {3q, 5q, 7q, . . . , q(4q − 1)};

(a1, . . . , a2q−1, h)← A(σ) : h = g
∑2q−1

i=1 air
(2i+1)q

]
≈ 0.

Informally, the public key includes all powers of gr
i

from 1 to 4q2, except odd multiples 3q, 5q, . . . , q(4q − 1).
The assumption says that it is infeasible for an adversary to
output an combination of these missing powers.
Proof. Suppose there exist an adversary Adv that breaks this
assumption, we construct and adversary Adv′ to break As-
sumption 5 as following: pub← BilGen(1λ); r ← Zp; given
σ = (pub, {gri}) for i = [4q2]\{3q, 5q, 7q, . . . , q(4q−1)},
Adv′ sets s = r2q (without knowing r) and randomly
chooses α, β, γ, δ ← Z∗p and sets σ′ = pk, pk is defined
in Section 3.1. Note that Adv′ can use σ to compute all
terms in pk when s = r2q. (E.g., gr

isj = gr
2qj+i

for
(i, j) ∈ [2q − 1] \ {q} × [2q − 1] \ {q}.) Adv′ then feed
σ′ to Adv to get G(·), h such that h = gG(s)rq . Notice
that G(s)rq contains all the missing powers in σ (e.g.,
srq = r3q, s2rq = r5q). Adv′ sets a1, . . . , a2q−1 as the
coefficients in G(s) and outputs a1, . . . , a2q−1, h, which
breaks Assumption 5.

Appendix C.
Lemmas Derived from Assumptions

Lemma 1 Based on Assumption 1, for every PPT Adv

Pr
[
pub← BilGen(1λ); s, r, α, β, γ, δ ← Zp;σ = pk;

(c, h)← Adv(σ) : h = e(g, g)1/(c+s)
]
≈ 0.

Lemma 2 Based on Assumption 1, for every PPT Adv

Pr
[
pub← BilGen(1λ); s, r, α, β, γ, δ ← Zp;σ = pk;

(w(·), c, h)← Adv(σ) : h = e(g, g)
w(s)
r+c

]
≈ 0.

Lemma 3 Based on Assumption 1, for every PPT Adv

Pr
[
pub← BilGen(1λ); s, r, α, β, γ, δ ← Zp;σ = pk;

(w(·), c, h)← Adv(σ) : h = e(g, g)
w(s)
r+cs

]
≈ 0.

where pk is defined in Section 3.1, and w(·) is a non-zero
polynomial.


