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Distortion lower bounds for line embeddings
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In this paper, we show how we can derive lower bounds and also compute the exact
distortion for the line embeddings of some special metrics, especially trees and graphs
with certain structure. Using linear programming to formulate a simpler version of the
problem gives an interesting intuition and direction concerning the computation of general
lower bounds for distortion into the line. We also show that our lower bounds on special
cases of metrics are a lot better than previous lower bounds.
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1. Introduction

Embedding a metric induced by an unweighted graph
into the line with minimum distortion is a well-known NP-
hard problem [4]. Approximation algorithms and hardness
results are discussed in [3,4,8]. Improved algorithms for
optimal embeddings are presented in [6], where, however,
the embedding is required to be a bijection. In [1], em-
beddings of series-parallel graphs into �1 and embeddings
between two line metrics are discussed. In this paper, we
show how we can derive lower bounds for the line distor-
tion of some special metrics, especially trees and graphs
with certain structure. To do this, we use linear program-
ming to formulate another simpler version of the problem,
where we know the permutation of the vertices of the
graph on the line in advance. This approach gives an inter-
esting intuition and direction concerning the computation
of general lower bounds for distortion into the line.

Problem. Let G = (V , E) be an unweighted graph with
the implied shortest path metric d(u, v). A map f of V
into the real line is non-contracting if | f (u) − f (v)| �
d(u, v) for all u, v . The minimum distortion problem is
to find a map f with minimum distortion, where the
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distortion of a non-contracting map f is defined as
maxu,v∈V | f (u) − f (v)|/d(u, v).

Previous work. There are some results on lower bounds
concerning embeddings into higher dimensions. For exam-
ple you can embed the complete binary tree in the Eu-
clidean space with distortion � �(

√
lg lg n) [5], where n is

the size of the tree. A short proof for that is also presented
in [11]. Also upper bounds for embedding the binary tree
into Euclidean space are presented in [5]. Additionally,
in [2], lower bounds of embeddings of trees into �2 are
discussed. Lower bounds of low distortion embeddings to
higher dimensional spaces are also presented in [5].

However, there are few results for the computation of
lower bounds concerning embeddings into the line. Actu-
ally, in [4,9], it is proved that the least distortion required
to embed the star into the line is �(n). Also, in [3] a lower
bound method that applies to all unweighted graphs is
presented.

In [3], an O (
√

n) approximation algorithm for comput-
ing embeddings of unweighted graphs (n is the size of the
graph) into the line is described. This algorithm partitions
the nodes of the graph into distinct clusters and explicitly
computes the intervals between the nodes on the line.

Define the local density of an unweighted graph
G = (V , E) to be the quantity � such that

� = max

{ |B(v, r)| − 1
}

v∈V ,r∈�>0 2r
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where B(v, r) = {u ∈ V : d(u, v) � r}. In [3], the following
general lower bound on the distortion of the embedding of
an unweighted graph is presented:

Theorem 1. (See [3].) Let G = (V , E) be an unweighted graph
with local density �. Then, any embedding of G into the line has
distortion more or equal than �.

The local density was also extensively used and studied
in the context of bandwidth (see for example [7]).

Our results. We present some unweighted graph cases for
which we are able to prove exact distortion based on lower
bounds produced by using a linear programming formula-
tion. We compute the optimal distortion by computing an
embedding of a distortion c and then by proving that c
is also a lower bound on the optimal distortion of these
graph instances. More specifically we compute the optimal
distortion for a structured tree (we call it two-path tree)
and the n × j square grid. We apply our results to a star
metric, giving a better lower bound and finally we set up
a conjecture for the binary tree.

2. An explicit formula for the minimum distortion

Theorem 2. Given an unweighted graph G = (V , E) then the
minimum distortion embedding of G into the line has distortion
equal to

c∗ = min
π :V →{1,...,n}

{
max{u,v}∈E

{
π(v)−1∑
k=π(u)

rπ
k

}}

where rπ
i = d(π−1(i),π−1(i + 1)).

We start the proof with two simple observations.

Lemma 3. The distortion of a map f that maps the ver-
tices of an unweighted graph G = (V , E) into the line equals
max{u,v}∈E | f (u) − f (v)|.

Proof. For u, v ∈ V , let u = y1, y2, . . . , yk = v be a short-
est path from u to v . Then

∣∣ f (u) − f (v)
∣∣ �

k−1∑
j=1

∣∣ f (y j) − f (y j+1)
∣∣

� c(k − 1) = cd(u, v)

where c = max{u,v}∈E | f (u) − f (v)|. Since for every edge
{u, v} ∈ E it is d(u, v) = 1, the result follows. �
Lemma 4. The map f is non-contracting if and only if
f (yi+1) − f (yi) � d(yi+1, yi) for all i, where f (yi) is a la-
belling of the vertices in order of their embedding on the line by
f , i.e., f (y1) < f (y2) < · · · < f (yn).

Proof. For u, v ∈ V , let i, j be such that u = y j and v = yi ,
and without loss of generality i < j. Then
f (u) − f (v) =
j−1∑
k=i

(
f (yk+1) − f (yk)

)

�
j−1∑
k=i

d(yk+1, yk) � d(y j, yi) = d(u, v).

The inverse holds trivially by the definition of a non-
contracting embedding and the hypothesis. �

Combining the two lemmas, we can write a linear pro-
gram to compute the minimum distortion c of a non-
contracting map, given the permutation π such that π(u)

is the rank of u in the embedding. Here xi is the distance
on the real line between the ith point and the (i + 1)th
point of the embedding.

min(c) s.t.

⎧⎨
⎩

∑π(v)−1
k=π(u)

xk � c ∀{u, v} ∈ E,

xi � d(π−1(i),π−1(i + 1)) ∀i,
xi, c � 0.

Recall that rπ
i = d(π−1(i),π−1(i +1)). It is easy to see that

the minimum is reached when xi = rπ
i , and given that, that

the minimum is obtained for c = max{u,v}∈E {∑π(v)−1
k=π(u)

rπ
k }.

Minimizing over all permutations π yields the proof. �
Theorem 5. Let G be an unweighted graph. Let v1, v2, v3 be
three vertices, and p, p′, p′′ be three paths from v1 to v3 ,
from v3 to v2 and from v2 to v1 respectively. Then

c∗ � 2 min
{

min
u∈p

{
d(v2, u)

}
,min

u∈p′
{

d(v1, u)
}
, min

u∈p′′
{

d(v3, u)
}}

where c∗ is given in Theorem 2.

Proof. Let t denote the minimum of the three quantities.
Let π be an arbitrary permutation and f be the optimal
embedding respecting π . First assume that in π , v2 is be-
tween v1 and v3, and so, f (v2) is between f (v1) and
f (v3). Since p is a path from v1 to v3 in G , there must
exist an edge (x, x′) of p such that f (v2) is between f (x)
and f (x′). Then, since f is non-contracting:

d(x′, v2) + d(v2, x) �
(

f (x′) − f (v2)
) + (

f (v2) − f (x)
)

= f (x′) − f (x) =
π(x′)−1∑
k=π(x)

rπ
k .

Here the last equality comes from the fact that for f op-
timal, the second set of inequalities of the linear program
are tight. Therefore for edge (x, x′)

π(x′)−1∑
k=π(x)

rπ
k � d(x′, v2) + d(v2, x) (1)

which can be more simplified into (decreasing the lower

bound a little bit)
∑π(x′)−1

k=π(x) rπ
k � 2t . The other cases are

similar. Thus, for every permutation π , there exists an

edge (x, x′) such that
∑π(x′)−1

k=π(x) rπ
k � 2t . By Theorem 2 this

implies c∗ � 2t . �
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Fig. 1. A two-path tree T (n, j) (left) and the grid S(n, j) (right).
3. Examples

3.1. The two-path tree

Theorem 6. A two-path tree T (n, j) is an unweighted graph
which is the tree consisting of two paths V = v1, v2, . . . , vn and
U = u1, u2, . . . , un and an edge {v j, u j} such that
j � (n + 1)/2. Let c∗(T (n, j)) denote the optimal distortion
into the line of a 2-path tree T (n, j). Then:

2 j − 2 � c∗(T (n, j)
)
� 2 j − 1.

Proof. To prove the lower bound, use Theorem 5 for the
nodes v1, u1, vn to yield c∗ � 2 min{ j − 1, j,n − j} =
2( j − 1). Also we can get an even better lower bound
equal to 2 j − 1, by using directly Eq. (1). To prove the
upper bound, embed the nodes in the following order (see
Fig. 1):

P (n, j) = vn(1)vn−1(1) . . . (1)v1(j)u j(1)

× u j−1(1) . . . (1)u1(j)u j+1(1)u j+2(1) . . . (1)un

where x(d)y means that node y is embedded after node x
at distance d. Note that the embedding is non-contracting
and also

| f (u j) − f (v j)|
d(u j, v j)

= 2 j − 1

1
= 2 j − 1.

Hence c∗(T (n, j)) � 2 j − 1 and the presented embedding
is optimal. �

Note that Theorem 1 would give a lower bound of �(1)

only, whereas our lower bound is essentially tight.

3.2. The rectangular grid

Theorem 7. Let S(n, j), n � j denote the unweighted graph
with nj nodes consisting of the n × j rectangular grid. Let
c∗(S(n, j)) denote the optimal distortion. Then:

2 j − 2 � c∗(S(n, j)
)
� 2 j − 1.

Proof. Each node of the grid is denoted skl , i = 1, . . . ,n,
l = 1, . . . , j. For the lower bound, use Theorem 5 with
nodes s11, sn1, snj . The paths we are using are
s11, s21, . . . , sn1,

sn1, sn2, . . . , snj,

snj, s(n−1) j, . . . , s1 j, s1( j−1), . . . , s11.

By using again Eq. (1) we can easily get the best lower
bound equal to 2 j − 1. For the upper bound, consider
the embedding (see Fig. 1) represented with the follow-
ing permutation (without loss of generality we assume n
is odd):

p = s11, s12, . . . , s1 j, s2 j, s2( j−1), . . . ,

s21, . . . , snj, sn( j−1), . . . , sn1.

For this permutation π , by the linear programming formu-
lation we have that

c∗(S(n, j)
) = max{u,v}∈E

{
π(v)−1∑
k=π(u)

rπ
k

}

=
π(s21)−1∑
k=π(s11)

rπ
k =

π(sn1)−1∑
k=π(s(n−1)1)

rπ
k = 2 j − 1.

Hence the optimal distortion is 2 j − 1. �
3.3. Star metrics

Consider a star metric that consists of a star with O (1)

branches of length O (n) with the following properties:
Then, our lower bound is �(n), hence tight, whereas the
lower bound by [3] is �(1) (there is no ball of constant
radius that contains O (n) nodes).

3.4. The complete binary tree

Next, we give some thoughts that may help in order to
prove some bounds for the optimal distortion of the com-
plete binary tree.

Corollary 8. The complete binary tree of n nodes and height �

cannot be embedded in the line with a distortion less than
n−1

2(lg(n+1)−1)
= 2�−1

�
= �( n

lgn ) = �( 2�

�
).

Proof. Follows from Theorem 1 if we choose the root as
the center of the ball. �
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Also, we can easily prove the following:

Theorem 9. Let T be a complete binary tree of height �. Then, an
inorder traversal of the tree gives a non-contracting embedding
of distortion 2� − 1.

Finally we believe that the following conjecture holds:

Conjecture 10. The complete binary tree can be embedded into
the line with distortion �(2�).

Optimal embeddings of a complete binary tree under a
different setting though (where non-contractness is not an
issue and also expansion is allowed) are presented in [10].

4. Concluding remarks

In this paper we propose a technique to compute good
lower bounds for the optimal distortion into the line of
certain metrics. We give better lower bounds than the ones
derived when using an already proposed general lower
bound. To do this we use a linear programming formu-
lation that gives the optimal solution when the optimal
permutation of the embedding is known. We give explicit
constructions for various metrics, such as trees, grids and
star metrics. Also, we propose an interesting conjecture.
Finally we note that it might be possible to resolve the
proposed conjecture by taking some ideas from [10] in or-
der to compute an optimal upper bound.
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