Parameterized st-Orientations of Graphs:
Algorithms and Experiments

Charalampos Papamanthou! and Ioannis G. Tollis?

! Department of Computer Science, Brown University, P.O. Box 1910,
Providence RI, U.S.A.
cpap@cs.brown.edu
2 Department of Computer Science, University of Crete, P.O. Box 2208 &
Institute of Computer Science, FORTH, P.O. Box 1385
Heraklion, Greece
tollis@ics.forth.gr

Abstract. st-orientations (st-numberings) or bipolar orientations of
undirected graphs are central to many graph algorithms and applica-
tions. Several algorithms have been proposed in the past to compute an
st-orientation of a biconnected graph. However, as indicated in [1], the
computation of more than one st-orientation is very important for many
applications in multiple research areas, such as this of Graph Drawing.
In this paper we show how to compute such orientations with certain
(parameterized) characteristics in the final st-oriented graph, such as
the length of the longest path. Apart from Graph Drawing, this work
applies in other areas such as Network Routing and in tackling difficult
problems such as Graph Coloring and Longest Path. We present primary
approaches to the problem of computing longest path parameterized st-
orientations of graphs, an analytical presentation (together with proof
of correctness) of a new O(mlog®n) (O(mlogn) for planar graphs) time
algorithm that computes such orientations (and which was used in [I])
and extensive computational results that reveal the robustness of the
algorithm.

1 Introduction

The problem of orienting an undirected graph such that it has one source, one
sink, and no cycles (st-orientation) is central to many graph algorithms and
applications, such as graph drawing [2I345I6], network routing [7J§] and graph
partitioning [9].

st-numberings were first introduced in 1967 in [I0], where it is proved that
given any edge {s,t} of a biconnected undirected graph G, we can define an
st-numbering. The proof of a theorem in [I0] gives a recursive algorithm that
runs in time O(nm). However, in 1976 Even and Tarjan proposed an algorithm
that computes an st-numbering of an undirected biconnected graph in O(n+m)
time [I1]. Ebert [12] presented a slightly simpler algorithm for the computation
of such a numbering, which was further simplified by Tarjan [I3]. The planar

M. Kaufmann and D. Wagner (Eds.): GD 2006, LNCS 4372, pp. 220 2007.
© Springer-Verlag Berlin Heidelberg 2007

Parameterized st-Orientations of Graphs: Algorithms and Experiments 221

case has been extensively investigated in [I4] where a linear time algorithm is
presented which may reach any st-orientation of a planar graph. Additionally,
in [15] a parallel algorithm is described (running in O(logn) time using O(m)
processors) and finally in [16] another linear time algorithm for the problem is
presented. An overview of the work concerning bipolar orientations is presented
in [17].

However, as indicated in [I], the computation of more than one st-orientation
is very important for many applications in the area of Graph Drawing. Most al-
gorithms use any algorithm that produces such an orientation, e.g., [11], without
expecting any specific properties of the oriented graph.

In this paper we approach the problem of computing st-orientations of specific
properties. We present and give proof of correctness of algorithms that are able
to control the length of the longest path of the resulting directed acyclic graph.
The algorithms run in O(mlog®n) time (O(mlogn) time for planar graphs).
This provides significant flexibility to many graph algorithms and applications
[23I7I8I9]. We also present extensive experimental results that reveal the robust-
ness of the algorithm.

2 Preliminaries

2.1 The Very First Approach

The aim of this work has always been the computation of st-orientations of
longest path length that can be efficiently controlled by an input. Towards this
goal, we investigated the possibility of modifying the existing linear algorithms in
order to produce longest path parameterized st-orientations. These algorithms,
such as [I1], proceed by choosing over a set a vertices. Thus in order to pro-
duce multiple st-orientations using these algorithms, one should try to consider
different combinations of successive vertices. Some heuristics applied for the
Tarjan-Even algorithm are described in [I8], where after extensive computa-
tional results, we reached to the conclusion that exploiting the freedom of choice
of successive vertices this algorithm gives us, can only lead to st-orientations that
almost have no difference in the longest path length. After similar attempts on
other existing algorithms, it became evident that linear time was not enough
to produce both a correct st-orientation and to be able to discriminate between
different longest path length st-orientations. As a result of this, we seeked for
new algorithms that achieve this goal.

2.2 Exploiting Biconnectivity

The main idea behind the algorithm was the explosion of the biconnectivity
structure of a graph. This finally seemed to be of great importance in a way
that we could compute both a correct st-orientation of a graph and we could
efficiently influence the length of the longest path of the computed st-orientation
by using some information this structure can provide.

222 C. Papamanthou and I1.G. Tollis

Following, we introduce some terminology and preliminary results. Through-
out the paper, Ng(v) denotes the set of neighbors of node v in graph G, s the
source of the graph, ¢ the sink of the graph and () the length of the longest path
of a node u from the source s of the graph. Let G = (V, E) be a one-connected
undirected graph, i.e., a graph that contains at least one vertex whose removal
causes the initial graph to disconnect. The vertices that have that property are
called separation vertices, articulation points or cutpoints. Each one-connected
graph is composed of a set of blocks (biconnected components) and cutpoints
that form a tree structure. This tree is called the block-cutpoint tree [19] of the
graph and its nodes are the blocks and cutpoints of the graph. Suppose now
that G consists of a set of blocks B and a set of cutpoints C. The respective
block-cutpoint tree T'= (B UC, U) has |B| 4+ |C| nodes and |B| + |C| — 1 edges.
The edges (i,7) € U of the block-cutpoint tree always connect pairs of blocks
and cutpoints such that the cutpoint of a tree edge belongs to the vertex set of
the corresponding block.

The block-cutpoint tree is a free tree, i.e., it has no distinguished root. In
order to transform this free tree into a rooted tree, we define the t-rooted block-
cutpoint tree with respect to a vertex t. Consequently, the root of the block-
cutpoint tree is the block that contains t.

Finally, we define the leaf-blocks of the t¢-rooted block-cutpoint tree to be
the blocks, except for the root, of the block-cutpoint tree that contain a single
cutpoint. The block-cutpoint tree can be computed in O(n + m) time with an
algorithm similar to DFS [19]. Following, we give the description of the algorithm.

3 The Algorithm

The main idea of the algorithm is based on the successive removal of nodes
and the simultaneous update of the t-rooted block-cutpoint tree. We call each
removed node a source, because at the time of its removal it is effectively chosen
to be a source of the remainder of the graph. We initially remove s, the first
source, which is the source of the desired st-orientation and orient all its incident
edges from s to all its neighbors. After this removal, there exist three possibilities:

— The graph remains biconnected

— The graph is decomposed into several biconnected components but the
number of leaf-blocks remains the same

— The graph is decomposed into several biconnected components and the
number of leaf-blocks changes

This procedure continues until all nodes of the graph but one are removed. Fi-
nally, we encounter the desired sink, ¢, of the final st-orientation. The updated
biconnectivity structure gives us information about the choice of our next source.
Actually, the biconnectivity maintenance allows us to remove nodes and simul-
taneously maintain a "map” of possible vertices whose future removal may or
may not cause dramatic changes to the structure of the tree.

As it will be clarified in the next sections, at every step of the algorithm
there will be a set of potential sources to continue the execution. Our aim is to

Parameterized st-Orientations of Graphs: Algorithms and Experiments 223

establish a connection between the current source choice and the length of the
longest path of the resulting st-oriented graph.

Lemma 1. Let G = (V, E) be an undirected biconnected graph and s, t be two
of its nodes. Suppose we remove s and all its incident edges. Then there is at
least one neighbor of s lying in each leaf-block of the t-rooted block-cutpoint tree
of G — {s}. Moreover, this neighbor is not a cutpoint.

Proof. Tf graph G — {s} is still biconnencted, the proof is trivial, as the ¢-rooted
block-cutpoint tree consists of a single node (the biconnected component G —
{s}), which is both root and leaf-block of the ¢-rooted block-cutpoint tree. If
graph G — {s} is one-connected, suppose that there is a leaf-block ¢ of the ¢-
rooted block-cutpoint tree defined by cutpoint ¢ such that N(s)N¢ = {@D}. Then
¢, if removed, still disconnects G and thus G is not biconnected, which does not
hold. The same occurs if N(s) N ¢ = {c}. Hence there is always at least one
neighbor of s lying in each leaf-block of the t-rooted block-cutpoint tree, which
is not a cutpoint. [l

Let now G = (V, E) be an undirected biconnected graph and s, ¢ two of its
nodes. We will compute an st-orientation of GG. Suppose we recursively produce
the graphs Gi11 = G; — {v;}, where vy = sand G; =G foralli=1,...,.n—1
(note that the subscript ¢ of v; denotes the order with which the nodes are
removed).

During the procedure (which we call STN) we always maintain a t-rooted
block-cutpoint tree. Additionally, we maintain a structure @) that plays a major
role in the choice of the next source.) initially contains the desired source
for the final orientation, s. Finally we maintain the leaf-blocks of the t-rooted
block-cutpoint tree. During every iteration ¢ of the algorithm node v; is chosen
so that

— it is a non-cutpoint node that is an element of @
— it belongs to a leaf-block of the ¢t-rooted block-cutpoint tree

Note that for ¢ = 1 there is a single leaf-block (the initial biconnected graph)
and the cutpoint that defines it is the desired sink of the orientation, . When a
source v; is removed from the graph, we have to update @ in order to be able to
choose our next source. @) is then updated by removing v; and by inserting all
nodes u € Ng, (v;) except for t.

Each time a node v; is removed we orient all its incident edges from v; to its
neighbors. The procedure continues until Q gets empty. Let F' = (V' E’) be the
directed graph computed by this procedure. We claim that F' = (V' E’) is an
st-oriented graph:

Lemma 2. During STN, every node becomes a source exactly once. Addition-
ally, after exactly n—1 iterations (i.e., after all nodes but t have been processed),
Q becomes empty.

Proof. Let v # t be a node that never becomes a source. This means that all
incident edges (u,v) have direction u — v. As the algorithm gradually removes

224 C. Papamanthou and I1.G. Tollis

sources, by simultaneously assigning direction, one u must be a cutpoint (as
v # t will become a biconnected component of a single node). But all nodes
u are chosen to be neighbors of prior sources. By Lemma [I, u can never be a
cutpoint, hence node v # t will certainly become a source exactly once. Finally,
Q gets empty at the end of the algorithm as each time at least one node is added
into @ and exactly one node is removed from it. O

By Lemmas[I], 2] we see that at each iteration of the algorithm there will be at
least one node to be chosen as a future source.

Corollary 3. Suppose after a vertex v is removed, r different leaf-blocks are
created. Then in each leaf-block of the t-rooted block-cutpoint tree there exists at
least one non-cutpoint node that belongs to Q. (I

Lemma 4. The directed graph F = (V' E’) has exactly one source s and exactly
one sink t.

Proof. Node v; = s is indeed a source, as all edges (v, N(v1)) are assigned a
direction from vy to its neighbors in the first step. Node ¢ is indeed a sink as it is
never chosen to become a current source and all its incident edges are assigned
a direction from its neighbors to it during prior iterations of STN. We have to
prove that all other nodes have at least one incoming and one outgoing edge. As
all nodes v # t become sources exactly once, there will be at least one node
such that (v,u) € E’. Sources v # t are actually nodes that have been inserted
into @) during a prior iteration of the algorithm. Before being chosen to become
sources, all nodes v # s # t are inserted into @ as neighbors of prior sources
and thus there is at least one u such that (u,v) € E’. Hence F has exactly one
source and one sink. a

Lemma 5. The directed graph F = (V', E’) has no cycles.

Proof. Suppose STN has ended and there is a directed cycle v;, vjy1,..., V41,7
in F. This means that (vj,vj41), (Vj+1,0j42), ..., (Vj41,v;) € E'. During STN,
after an edge (vg,vk+1) is inserted into E’, vy is deleted from the graph and
never processed again and wvg41 is inserted into @ so that it becomes a future
source. In our case after edges (v;,vj11), (Vj41, Vj42),- -, (Vj4i—1, vj41) will have
been oriented, nodes v;, vj41,...,vj4+1—1 will have been deleted from the graph.
To create a cycle, v; should be inserted into @ as a neighbor of v;4;, which does
not hold as v; ¢ Ng,,,(vj41) (v; has already been deleted from the graph). Thus
F has no cycles. O

By Lemmas [,] we have:
Theorem 6. The directed graph F = (V', E’) is st-oriented. O

Alg.1is a recursive algorithm for the st-orientation computation of a biconnected
undirected graph G. During the execution of the algorithm we can also compute
an st-numbering f (line 9) of the initial graph. Actually, for each node v; that is

Parameterized st-Orientations of Graphs: Algorithms and Experiments 225

Algorithm 1. STN(G, s, 1)

Initialize F = (V', E');

Initialize m(i) = 0 for all nodes 4 of the graph; (timestamp vector)
J = 0; {Initialize a counter}

Q = {s}; {Insert s into Q}

STREC(G, s); {Call the recursive algorithm}

function STREC(G,v)

J=i+1L

f(v) =73;

: V=V —{v}; {A source is removed from G}

: VI =V'u{v}; {and is added to F}

: for all edges (v,i) € E do

E=FE—{(v,0)}

E' =FE U{(v,9)}

: end for

: Q =QU{N(v) ~t} —{v}; {The set of possible next sources}
- m(N (o)) = j;

. if @ == {Q} then

f) =mn;

return;

: else

T(t, B}, Bf, ..., Bj)=UpdateBlocks(G); { Update the block-cutpoint tree; hj- is
the cutpoint that defines the leaf-block B}

23: for all leaf-blocks (Bj, h}) do

NN N = o = = = = e s e
MR O©®XTIDU A WN—O®

24: choose v, € B; N Q ~ {h}}
25: STREC(G, v);

26: end for

27: end if

removed from the graph, the subscript ¢ is the final st-number of node v;. The
st-numbering can also be computed in linear time after the algorithm has ended,
by executing a topological sorting on the computed st-oriented graph F'.

Note that in the algorithm we use a vector m(v) (line 17), where we store a
timestamp for each node v of the graph that is inserted into (). These timestamps
are of great importance during the choice of the next candidate source and will
give us the opportunity to control the length of the longest path. Actually, they
express the last time that a node v became candidate for removal.

Note that the recursion is executed exactly n — 1 times. The running time
of each recursive call is consumed by the procedure that updates the block-
cutpoint tree, which is O(n + m) [19]. Hence it is easy to conclude that STN
runs in O(nm) time. However, it can be made to run faster by a more efficient
algorithm to maintain biconnectivity.

In fact, Holm, Lichtenberg and Thorup [20] investigated the problem of main-
taining a biconnectivity structure without computing the block-cutpoint tree
from scratch. They presented a fully dynamic algorithm that supports the inser-
tion and deletion of edges and maintains biconnectivity in O(log5 n) amortized

226 C. Papamanthou and I1.G. Tollis

time per edge insertion or deletion. In our case, only deletions of edges are done.
If we use this algorithm in order to keep information about biconnectivity, we
obtain the following:

Theorem 7. Algorithm STN can be implemented to run in O(mlog5 n)
time. (]

Finally, for planar graphs, we can compute biconnected components in O(logn)
amortized time per edge deletion due to [2I]. Hence, the algorithm can be im-
plemented to run in O(mlogn) time for planar graphs .

Finally, the st-orientation algorithm defines an st-tree Ts (Figure[I)). Its root is
the source of our graph s (p(s) = —1). It can be computed during the execution
of the algorithm. When a node v is removed, we simply set p(u) = v for every
neighbor u of v, where p(u) is a pointer to the father of each node u. The father
of a vertex can be updated many times until the algorithm terminates. This tree
is a directed tree that has two kinds of edges, the tree edges, which show the last
father-ancestor assignment between two nodes made by the algorithm and the
non-tree edges that include all the remaining edges. The non-tree edges never
produce cycles. Finally, note that the sink ¢ is always a leaf of the st-tree Tj.

Fig. 1. Algorithm execution on a graph (left) and the respective st-tree (right). Beside
each node of the graph the STN rank of visit is depicted.

As it happens with every st-oriented graph, there is a directed path from every
node v to t and hence the maximum depth of the st-tree will be a lower bound
for the length of the longest path, I(¢):

Theorem 8. Let G be an undirected biconnected graph and s, t two of its nodes.
Suppose we run STN on it and we produce the st-oriented graph F' and its st-tree
Ts. If d(T) denotes the mazimum depth of the st-tree then I(t) > d(T%). O

Additionally, there is a strong connection between the structure of the t-rooted
block-cutpoint tree and the length of the longest path of the st-oriented graph
that STN computes:

! 'We thank Philip Klein for this observation.

Parameterized st-Orientations of Graphs: Algorithms and Experiments 227

Theorem 9. Suppose STN is run on an undirected st-Hamiltonian gmpiﬁ G.
Let k; denote the number of the leaf-blocks of the t-rooted block-cutpoint tree
after the i-th removal of a node, for i = 1,2,....n— 1. Then I(t) < n—1—

D kisk, (ki —kiz1). O

4 Longest Path Parameterized Orientations

4.1 Maximal and Minimal Case

We have used two approaches in order to produce st-oriented graphs with long
longest path and st-oriented graphs with small longest path. As presented in
Section 3, during each iteration of the algorithm a timer j (line 8 of Algorithm
1) is incremented and each vertex x that is inserted into @ gets a timestamp
m(x) = j.

Our investigation has revealed that if vertices with high timestamp are chosen
then long sequences of vertices are formed and thus there is higher probability
to obtain a long longest path length. We call this way of choosing vertices MAX-
STN. Actually, MAX-STN resembles a DFS traversal (it searches the graph at
a maximal depth). Hence, during MAX-STN, the next source v is arbitrarily
chosen from the set {v € Q" : m(v) = max{m(i) : i € Q'}}.

On the contrary, we have observed that if vertices with low timestamp are
chosen, then the final st-oriented graph has relatively small longest path length.
We call this way of choosing vertices MIN-STN, which in turn resembles a BFS
traversal. Hence, during MIN-STN, the next source v is arbitrarily chosen from
the set {v € Q' : m(v) = min{m() : ¢ € Q'}}. Note that the choice of the
new vertex with the minimum or maximum timestamp does not influence the
running time of the algorithm (it can be done in O(logn) time) since we can
implement Q" as a priority queue.

4.2 Medium (Parameterized) Case

Instead of computing st-oriented graphs with either long or small length of
longest path, it would be desirable to be able to produce medium (parame-
terized) longest path st-oriented graphs. So the question that arises is: Can we
insert a parameter into our algorithm, for example a real constant p € [0, 1] so
that our algorithm computes a directed acyclic graph of length of longest path
that is a function of p?

It turns out that this is feasible if we modify STN. As the algorithm is exe-
cuted exactly n times (n vertices are removed from the graph), we can execute
MAX-STN for the first pn iterations and MIN-STN for the remaining (1 — p)n
iterations. We call this method PAR-STN(p) and we say that it produces an st-
oriented graph with length of longest path from s to ¢ equal to A(p). Note that
PAR-STN(0) is equivalent to MIN-STN and A(0) = A(t), while PAR-STN(1)

2 We say that a graph is st-Hamiltonian when it has at least one simple path from s
to t that contains all the other nodes of the graph.

228 C. Papamanthou and I1.G. Tollis

is equivalent to MAX-STN and A(1) = £(¢). PAR-STN has been tested and it
produces longest paths with A(p) > p(n — 1), when applied to st-Hamiltonian
graphs. Actually, A(p) is very close to p(n — 1). Additionally, it has been ob-
served that if we switch the order of MAX-STN and MIN-STN execution, i.e.,
execute MIN-STN for the first pn iterations and MAX-STN for the remaining
(1 — p)n iterations, then we get longest paths with A(p) < p(n — 1). These
observations are fully clarified in the experimental results, where it is evident
that the algorithm can compute many st-numberings within [A(¢), £(¢)]. In this
way, applications that use st-numberings can use this interval to compute an
optimized solution.

4.3 Longest Path Timestamps and Weighted Graphs

If we apply a relaxation phase during STN, we can compute the longest path
length I(v) from s to every node v during the execution of STN. This can be
achieved as follows: At the beginning, we initialize the longest path vector [to
be the zero vector, hence [(v) = 0 Vv € V. Suppose that at a random iteration of
the algorithm we remove a node u and we orient all u’s incident edges (u, i) away
from u. For every oriented edge (u,i) € E’ of weight w,,; (in case of unweighted
graphs it is w,; = 1) we relax [(i) as follows:

1: for all (u,i) € E' do
2. if I(4) < l(u) + wy; then

3: 1(i) = l(u) + wui;
4: end if
5: end for

Instead of now using the timestamps m(u) to choose the next source of the
algorithm, we can use the online computed longest paths I(u).

This method mainly applies to the case of weighted graphs. By using the
relaxed longest path length as a timestamp, we can produce long or short st-
orientations of weighted graphs. Hence, the presented algorithm, implemented
with the longest path timestamp method can be used to compute weighted
numberings on the weighted st-oriented graph that is produced.

5 Some Applications

There are many areas where parameterized st-orientations can apply. For exam-
ple, many Graph Drawing Algorithms [2I34I5/6] use an st-orientation as their
first step. Actually, the length of the longest path of the used st-orientation de-
termines the area bounds of the final drawing (the area can be reduced by a
factor of n for some classes of graphs [I]). More details can be found in [IJ.

Additionally, MAX-STN can be used as a heuristic for the longest path prob-
lem in undirected graphs. Actually, as we will see in the experimental results
section, MAX-STN produces near optimal results for this problem.

MIN-STN can even be used to compute good colorings of graphs. By pro-
ducing a good solution for the minimum st-orientation problem we can obtain a

Parameterized st-Orientations of Graphs: Algorithms and Experiments 229

good solution for the graph coloring problem, based on the polynomial reduction
between the two problems [22].:

Theorem 10. ([22]) Let G = (V,E) be a connected graph and let G' = (V' U
{s,t},{E U {s,i} U{t,i}Vi € V}). x is the chromatic number of G if and only
if G' can be st-oriented with a minimum longest path length st-orientation with
I(t) = x+1. O

Based on the above theorem (which actually justifies the N P-hardness of the
minimum longest path length st-orientation problenﬁ), we used PAR-STN(0) to
st-orient G’ and derive a coloring for G. We give some indicative results for the
graph coloring problem in the experimental results section.

6 Experimental Results

The first tests were conducted on st-Hamiltonian Graphs (Table 1). We used
this class of graphs as they have an a priori known upper bound for the max-
imum longest path length equal to n — 1. In this way, we could see how effec-
tive the parameter p is. In order to construct the graphs in random, we com-
pute a random permutation P of the vertices of the graph. Then we construct
a cycle by adding the undirected edges (P(1), P(2)),(P(2),P(3)),...,(P(n —
1), P(n)), (P(n), P(1)) and we chose at random two adjacent nodes of the cycle
to be the source s and the sink ¢ of our graph. This guarantees the existence of
a Hamiltonian path from s to ¢ and a possible maximum longest path length of
every st-oriented graph of length n — 1. Finally we add the remaining nd — n
edges, given that the density of the desired graph is d. We keep a list of edges
that have not been inserted and make exactly nd — n random choices on this
list, by simultaneously inserting the chosen undirected edge into the graph and
updating the list of the remaining undirected edges. During the execution of the
algorithm, ties between the timestamps of the candidate sources are broken at
random. We isolate the nodes that satisfy the current timestamp condition (i.e.,
the nodes with maximum timestamp in case of MAX-STN and the nodes with
minimum timestamp in case of MIN-STN) and afterwards we choose a node
from the isolated set at random.

The second series of experiments was conducted on low density (roughly equal
to 1.5) planar graphs (Table 2). These graphs were constructed as follows: We
build up a tree of n nodes by randomly picking up a node and setting it to be
the root of the tree. Then we connect the current tree (initially it only consists
of the root) with a node that does not belong to the current tree and which is
chosen at random. We execute the same procedure till all nodes are inserted into
the tree. Then we connect the leaves of the tree following a preorder numbering
so that all crossings are avoided.

Finally, the third series of experiments were conducted on weighted graphs
(Figure). We used the algorithm described section 4.3 and make use of

3 Note that the maximum longest path length st-orientation problem is NP-hard by
reduction from the directed Hamilton Path problem.

230 C. Papamanthou and I1.G. Tollis

Table 1. Results for density 6.5 st-Hamiltonian graphs

Iy 2000 T T T T T T T T T
1800 p=1 // 4
n p=0 p=0.3 p=0.5 p=0.7 p=1 1eoor / 1
1(t) 1(t) 1(t) 1(t) 1(t) /
(n—=1) (n—1) (n—1) (n—-1) (n—1) 1400 / o7 4
200 0.085 0.372 0.568 0.743 0.963
400 0.051 0.341 0.540 0.731 0.964 1200 / 1
600 0.041 0.332 0.532 0.726 0.963 1000l // os]
800 0.033 0.330 0.527 0.721 0.962 o pens_—~
1000 0.027 0.325 0.521 0.716 0.967 s00l- /) _—]
1200 0.024 0.322 0.521 0.718 0.965 -
1400 0.024 0.318 0.515 0.714 0.964 600 _—
1600 0.020 0.318 0.515 0.712 0.964
1800 0.020 0.315 0.514 0.710 0.966 400 1
2000 0.019 0.314 0.514 0.710 0.964
200 B
o n

—
0 200 400 600 800 1000 1200 1400 1600 1800 2000

n

Table 2. Results for low density planar graphs

i) 3000 T

n p=0 p=0.5 p=1 2500(
1(t) 1(t) 1(t)

250 123.10 168.90 216.90
500 229.50 297.40 399.60
750 360.10 489.40 629.10
1000 485.20 639.60 831.40
1250 592.30 818.00 1060.70
1500 651.00 991.60 1304.10
1750 842.10 1145.70 1486.30
2000 910.30 1302.80 1686.10
2250 1077.20 1448.40 1892.60
2500 1134.10 1539.80 2053.50
2750 1350.70 1700.70 2198.10 500
3000 1451.30 2025.80 2590.20
3250 1418.80 2156.00 2814.40

2000

1500 -

1000

L L L L L L
) 500 1000 1500 2000 2500 3000 3500

the parameter p in the same way as in the case of undirected graphs. The
weighted graphs were constructed as follows. Firstly we construct a respective
st-Hamiltonian unweighted graph.

Then we set a value W to be an upper bound on the weights of the edges of the
graph. We set the weights of the edges that lie on a hamiltonian path from s to ¢
equal to W. Clearly, the maximum longest path length of an st-orientation that
corresponds to such weighted graphs is (n — 1)WW. The weights of the remaining
edges are uniformly distributed in [1, W].

From Tables 1 and 2 we can see that, by using parameter p, we can influence
the length of the longest path of the final st-oriented graph. It is remarkable that
for the class of st-Hamiltonian graphs (Table 1) the computed length of longest
path for a parameter p is approximately p(n — 1). For the class of low density

Parameterized st-Orientations of Graphs: Algorithms and Experiments 231

0
—p=0 |200 400 600 800 1000 1200 1400 1600 1800 2000

0
200 400 600 800 1000 1200 1400 1600 1800 2000
n

I L L L ! ! L

0
200 400 600 800 1000 1200 1400 1600 1800 2000
n

Fig. 2. Results for weighted graphs for W = 10, 20, 30 (up to bottom)

planar graphs (Table 2), the algorithm performs very well and indeed computes
different st-orientations according to the parameter. Finally, for the class of the
weighted graphs, note that the length of the longest path of the st-orientation
is in absolute accordance with the value of the parameter p and the value W.
More resutls can be found at http://www.csd.uoc.gr/~cpap/MSc thesis.ps.

As far as the applications of parameterized st-orientations in graph
coloring are concerned, we have tested known benchmarks available at
http://mat.gsia.cmu.edu/COLOR/instances.html (Table 3) and got good

Table 3. Some benchmark graphs for which MIN-STN has computed an optimal or
near optimal coloring

file name n m optimal coloring MIN-STN (p=0) coloring

games120.col 120 368 9 9
jean.col 80 254 10 10
huck.col 74 301 11 11
zeroin.i.1l.col 211 4100 49 49
mulsol.i.3.col 184 3916 31 31
mulsol.i.1.col 197 3925 49 49
fpsol2.i.1.col 496 11654 65 65
miles250.col 128 387 8 9
anna.col 138 493 11 12

inithx.i.2.col 645 13979 31 32

232 C. Papamanthou and I1.G. Tollis

results for most of the tested graphs. Results are promising for other classes
of graphs also.

7 Conclusions and Future Work

In this paper, we show that there is a very efficient way to control the length of
the longest path of a produced st-orientation. In this way, we are able to produce
more than one st-numberings of certain quality. This work is especially important
from an applied point of view. The parameterized st-orientations can be used by
various algorithms that use an st-numbering as their first step. In this way, better
solutions to certain problems can be produced [I]. Concerning future work, some
interesting questions that come out of this work are the following:(a) Can we
prove that the presented algorithm may reach any possible st-orientation (note
that the algorithm can also choose non-cutpoint nodes that belong to some block
of the block-cutpoint tree)? and (b) Can we compute an st-orientation given a set
of edges that have a predefined orientation (constrained st-orientation problem)?
(c) Implementation of efficient data structures for the t-rooted block-cutpoint
tree.

Acknowledgements. The authors would like to thank Franco P. Preparata
(Brown University), Roberto Tamassia (Brown University) and Mihalis
Yannakakis (Columbia University) for useful comments and discussions.

References

1. C. Papamanthou and I.G. Tollis. Applications of parameterized st-orientations
in graph drawing algorithms. In LNCS Graph Drawing 2004, volume 3843, pages
355-367, 2005.

2. R. Tamassia and I.G. Tollis. A unified approach to visibility representations of
planar graphs. Disc. and Comp. Geom., 1:321-341, 1986.

3. A. Papakostas and I.G. Tollis. Algorithms for area-efficient orthogonal drawings.
Computational Geometry: Theory and Applications, 9:83-110, 1998.

4. G.D. Battista, P. Eades, R. Tamassia, and I.G. Tollis. Annotated bibliography
on graph drawing algorithms. Computational Geometry: Theory and Applications,
4:235-282, 1994.

5. G.D. Battista, P. Eades, R. Tamassia, and I.G. Tollis. Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall, 1999.

6. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hierar-
chical systems. IEEE Trans. on Systems, Man, and Cybernetics, SMC-11(2):109—
125, 1981.

7. F. Annexstein and K. Berman. Directional routing via generalized st-numberings.
SIAM J. Discrete Math., 13(2):268-279, 2000.

8. M. Mursalin Akon, S. Asaduzzaman, M.S. Rahman, and M. Matsumoto. Proposal
for st-routing. Tellecommunication Systems, 25(3-4):287-298, 2004.

9. S. Nakano, M.S. Rahman, and T. Nishizeki. A linear-time algorithm for four-
partitioning four-connected planar graphs. Information Processing Letters, 62:315—
322, 1997.

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Parameterized st-Orientations of Graphs: Algorithms and Experiments 233

A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing of
graphs. In P. Rosenstiehl(ed.) Theory of Graphs: Tihany, Academic Press, New
York, pages 115-118, 1968.

S. Even and R. Tarjan. Computing an st-numbering. Theoretical Computer Science,
2:339-344, 1976.

J. Ebert. st-ordering the vertices of biconenected graphs. Computing, 30(1):19-33,
1983.

R. Tarjan. Two streamlined depth-first search algorithms. Fundamentae Informat-
ica, 9:85-94, 1986.

P. Rosenstiehl and R. Tarjan. Rectilinear planar layout and bipolar orientation of
planar graphs. Discrete Comput. Geom., 1:343-353, 1986.

Y. Maon, B. Schieber, and U. Vishkin. Parallel ear decomposition search (eds) and
st-numbering in graphs. Theoret. Comput. Sci, 47:277-298, 1986.

Ulrik Brandes. Eager st-ordering. In LNCS ESA 2002, volume 2461, pages 247-256,
2002.

H.D. Fraysseix, P.O. de Mendez, and P. Rosenstiehl. Bipolar orientations revisited.
Discrete Applied Mathematics, 56:157-179, 1995.

C. Papamanthou and I.G. Tollis. st-numberings and longest paths, manuscript,
ICS-FORTH 2004.

J. Hopcroft and R. Tarjan. Efficient algorithms for graph manipulation. Comm.
ACM, 16:372-378, 1973.

J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge and bicon-
nectivity. J. ACM, 48(4):723-760, 2001.

Tams Lukovszki and Willy-B. Strothmann. Decremental biconnectivity on planar
graphs technical report, university of paderborn, tr-ri-97-186.

T. Gallai. On directed paths and circuits. In P. Erdos(ed.) Theory of Graphs:
International Symposium July 1966, pages 215-232, 1967.

	Introduction
	Preliminaries
	The Very First Approach
	Exploiting Biconnectivity

	The Algorithm
	Longest Path Parameterized Orientations
	Maximal and Minimal Case
	Medium (Parameterized) Case
	Longest Path Timestamps and Weighted Graphs

	Some Applications
	Experimental Results
	Conclusions and Future Work

