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As storage-outsourcing services and resource-sharing networks have become popular, the problem of efficiently proving the
integrity of data stored at untrusted servers has received increased attention. In the provable data possession (PDP) model, the
client preprocesses the data and then sends it to an untrusted server for storage, while keeping a small amount of meta-data.
The client later asks the server to prove that the stored data has not been tampered with or deleted (without downloading the
actual data). However, existing PDP schemes applies only to static (or append-only) files.

We present a definitional framework and efficient constructions for dynamic provable data possession (DPDP), which
extends the PDP model to support provable updates to stored data. We use a new version of authenticated dictionaries based
on rank information. The price of dynamic updates is a performance change from O(1) to O(logn) (or O(nε logn)), for
a file consisting of n blocks, while maintaining the same (or better, respectively) probability of misbehavior detection. Our
experiments show that this slowdown is very low in practice (e.g., 415KB proof size and 30ms computational overhead for a
1GB file). We also show how to apply our DPDP scheme to outsourced file systems and version control systems (e.g., CVS).

1. INTRODUCTION
In cloud storage systems, the server (or peer) that stores the client’s data is not necessarily trusted.
Therefore, users would like to check if their data has been tampered with or deleted. However,
outsourcing the storage of very large files (or whole file systems) to remote servers presents an ad-
ditional constraint: the client should not download all stored data in order to validate it since this
may be prohibitive in terms of bandwidth and time, especially if the client performs this check fre-
quently (therefore authenticated data structure solutions [Tamassia 2003] cannot be directly applied
in this scenario).

Ateniese et al. [Ateniese et al. 2011] have formalized a model called provable data possession
(PDP). In this model, data (often represented as a file F ) is preprocessed by the client, and metadata
used for verification purposes is produced. The file is then sent to an untrusted server for storage, and
the client may delete the local copy of the file. The client keeps some (possibly secret) information
to check server’s responses later. The server proves the data has not been tampered with by respond-
ing to challenges sent by the client. The authors present several variations of their scheme under
different cryptographic assumptions. These schemes provide probabilistic guarantees of possession,
where the client checks a random subset of stored blocks with each challenge.

However, PDP and related schemes [Ateniese et al. 2011; Dodis et al. 2009; Juels and Kaliski.
2007; Shacham and Waters 2013] apply only to the case of static, archival storage, i.e., a file that
is outsourced and never changes (simultaneously with our work, Ateniese et al. [Ateniese et al.
2008] present a scheme with somewhat limited dynamism, which is discussed in detail in the re-
lated work section). While the static model fits some application scenarios (e.g., libraries and sci-
entific datasets), it is crucial to consider the dynamic case, where the client updates the outsourced
data—by inserting, modifying, or deleting stored blocks or files—while maintaining data posses-
sion guarantees. Such a dynamic PDP scheme is essential in practical cloud computing systems for
file storage [Kallahalla et al. 2003; Li et al. 2004], database services [Maheshwari et al. 2000], and
peer-to-peer storage [Kubiatowicz et al. 2000; Muthitacharoen et al. 2002].

In this paper, we introduce a framework and efficient constructions for dynamic provable data
possession (DPDP), which extends the PDP model to support provable updates on the stored data.
Given a file F consisting of n blocks, we define an update as either insertion of a new block (any-
where in the file, not only append), or modification of an existing block, or deletion of any block.

1Work mainly done while at Brown University.
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Therefore our update operation describes the most general form of modifications a client may wish
to perform on a file.

Our DPDP solution is based on a new variant of authenticated dictionaries, where we use rank
information to organize dictionary entries. Thus we are able to support efficient authenticated oper-
ations on files at the block level, such as authenticated insert and delete. We prove the security of
our constructions using standard assumptions.

We also show how to extend our construction to support data possession guarantees of a hierar-
chical file system as well as file data itself. To the best of our knowledge, this is the first construction
of a provable storage system that enables efficient proofs of a whole file system, enabling verifica-
tion at different levels for different users (e.g., every user can verify her own home directory) and at
the same time not having to download the whole data (as opposed to [Goodrich et al. 2008]). Our
scheme yields a provable outsourced versioning system (e.g., CVS), which is evaluated in Section
6 by using traces of CVS repositories of three well-known projects.

1.1. Contributions
The main contributions of this work are summarized as follows:

(1) We introduce a formal framework for dynamic provable data possession (DPDP);
(2) We provide the first efficient fully dynamic PDP solution;
(3) We present a rank-based authenticated dictionary built over a skip list. This construction yields a

DPDP scheme with logarithmic computation and communication and the same detection prob-
ability as the original PDP scheme (DPDP I in Table I);

(4) We give an alternative construction (Section 7.1) of a rank-based authenticated dictionary us-
ing an RSA tree [Papamanthou et al. 2008]. This construction results in a DPDP scheme with
improved detection probability but higher server computation (see DPDP II in Table I);

(5) We present practical applications of our DPDP constructions to outsourced file systems and
versioning systems (e.g., CVS, with variable block size support);

(6) We perform an experimental evaluation of our skip list-based scheme.

Now, we outline the performance of our schemes. Denote with n the number of blocks. The
server computation, i.e., the time taken by the server to process an update or to compute a proof
for a block, is O(log n) for DPDP I and O(nε log n) for DPDP II; the client computation, i.e., the
time taken by the client to verify a proof returned by the server, is O(log n) for both schemes;
the communication complexity, i.e., the size of the proof returned by the server to the client, is
O(log n) for both schemes; the client storage, i.e., the size of the meta-data stored locally by the
client, isO(1) for both schemes; finally, the probability of detection, i.e., the probability of detecting
server misbehavior, is 1 − (1 − f)C for DPDP I and 1 − (1 − f)Ω(logn) for DPDP II, for fixed
logarithmic communication complexity, where f is the ratio of corrupted blocks andC is a constant,
i.e., independent of n.

We observe that for DPDP I, we could use a dynamic Merkle tree (e.g., [Li et al. 2006; Naor and
Nissim 1998]) instead of a skip list to achieve the same asymptotic performance. We have chosen
the skip list due to its simple implementation and the fact that algorithms for updates in the two-
party model (where clients can access only a logarithmic-sized portion of the data structure) have
been previously studied in detail for authenticated skip lists [Papamanthou and Tamassia 2007] but
not for Merkle trees.

1.2. Related work
The PDP scheme by Ateniese et al. [Ateniese et al. 2011] provides an optimal protocol for the static
case that achieves O(1) costs for all the complexity measures listed above. They review previous
work on protocols fitting their model, but find these approaches lacking: either they require expen-
sive server computation or communication over the entire file [Gazzoni and Barreto 2006; Oprea
et al. 2005], linear storage for the client [Sebe et al. 2004], or do not provide security guarantees
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Table I. Comparison of PDP schemes: original PDP scheme [Ateniese et al. 2011]; Scalable PDP [Ateniese et al. 2008]; our scheme based
on authenticated skip lists (DPDP I); and our scheme based on RSA trees (DPDP II). A star (*) indicates that a certain operation can be
performed only a limited (pre-determined) number of times. RO means the scheme is proven secure only in the Random Oracle model. We
denote with n the number of the blocks of the file, with f the fraction of the corrupted blocks, and with C a constant, i.e., independent of n.
In all constructions, the storage space is O(1) at the client and O(n) at the server.

Scheme Server Client Comm. Model Block operations Probability
comp. comp. append modify insert delete of detection

PDP [Ateniese et al. 2011] O(1) O(1) O(1) RO X 1− (1− f)C

Scalable PDP [Ateniese et al. 2008] O(1) O(1) O(1) RO X∗ X∗ X∗ 1− (1− f)C

DPDP I O(logn) O(logn) O(logn) standard X X X X 1− (1− f)C

DPDP II O(nε logn) O(logn) O(logn) standard X X X X 1− (1− f)Ω(logn)

for data possession [Schwarz and Miller 2006]. Note that using [Ateniese et al. 2011] in a dynamic
scenario is insecure due to replay attacks. As observed in [Dwork et al. 2009], in order to avoid
replay attacks, an authenticated tree structure that incurs logarithmic costs must be employed and
thus constant costs are not feasible (under certain assumtptions) in a dynamic scenario. The optimal
PDP construction was generalized by Ateniese et al. [Ateniese et al. 2009].

Juels and Kaliski present proofs of retrievability (PORs) [Juels and Kaliski. 2007], focusing on
static archival storage of large files. Their scheme’s effectiveness rests largely on preprocessing
steps that the client conducts before sending a file F to the server: “sentinel” blocks are randomly
inserted to detect corruption, F is encrypted to hide these sentinels, and error-correcting codes
are used to recover from corruption. As expected, the error-correcting codes improve the error-
resiliency of their system. Unfortunately, these operations prevent any efficient extension to support
updates, beyond simply replacing F with a new file F ′. Furthermore, the number of queries a client
can perform is limited, and fixed a priori. Shacham and Waters have an improved version of this
protocol called Compact POR [Shacham and Waters 2013], but their solution is also static (see
[Dodis et al. 2009] for a summary of POR schemes and related trade-offs).

In our solution, we regard encryption as external to our system. If the user wants to have confiden-
tiality of her data, she can provide us with a file whose blocks are encrypted independently, for the
sake of efficiency. If the the file blocks are much larger than the block size of the block cipher used
for encryption, which will be the case in reality, then confidentiality requirement is satisfied without
sacrificing performance, especially when our variable-block-size scheme in Section 5 is employed.
Since our construction does not modify the file and assumes no property on it, our system will work
in perfect compliance.

But, any other use of encrypting the file or employing error-correction codes will result in a
huge degradation of performance. For example, Compact POR uses Reed-Solomon codes [Reed
and Solomon 1960]. Modification in a single block propagates to O(n) other blocks in the file.
Therefore, the cost metrics will all jump to Ω(n). One immediate idea to overcome this problem
is to employ erasure codes with locality. But using only local codes will be insecure, keeping the
probability of detecting a cheating adversary low while being able to effectively erase a block by
erasing only a small number of encoded blocks, as pointed out by Küpçü [Küpçü 2010a; 2010b].

Simultaneously with our work, Ateniese et al. have developed a dynamic PDP solution called
Scalable PDP [Ateniese et al. 2008]. Their idea is to come up with all future challenges during
setup and store pre-computed answers as metadata (at the client, or at the server in an authenticated
and encrypted manner). Because of this approach, the number of updates and challenges a client
can perform is limited and fixed a priori. Also, one cannot perform block insertions anywhere (only
append-type insertions are possible). Furthermore, each update requires re-creating all the remaining
challenges, which is problematic for large files. Under these limitations (otherwise the lower bound
of [Dwork et al. 2009] would have been violated), they provide a protocol with optimal asymptotic
complexityO(1) in all complexity measures giving the same probabilistic guarantees as our scheme.
Lastly, their work is in the random oracle model whereas our scheme is provably secure in the
standard model (see Table I for full comparison). A more detailed comparison with variants [Wang
et al. 2009; Zheng and Xu 2011] developed after our DPDP construction is included in Section 7.2.
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Several other related works deserve to be cited even though they are focused on distributing the
storage to more than a single server [Bowers et al. 2009; Curtmola et al. 2008], or cloud architecture
[Kamara and Lauter 2010], public verifiability via third parties [Shah et al. 2008; Wang et al. 2010]
or data recoverability [Ateniese et al. 2014].

Our work is also closely related to memory checking, for which lower bounds are presented
in [Dwork et al. 2009; Naor and Rothblum 2005]. Specifically, in [Dwork et al. 2009] it is proved
that all non-adaptive and deterministic checkers have read and write query complexity summing up
to Ω(log n/ log log n) (necessary for sublinear client storage), justifying the O(log n) cost in our
scheme. Note that for schemes based on cryptographic hashing, an Ω(log n) lower bound on the
proof size has been shown [Clarke et al. 2003; Tamassia and Triandopoulos 2005]. Related bounds
for other primitives have been shown by Blum et al. [Blum et al. 1994].

Recently, there were some interesting dynamic POR constructions. Iris [Stefanov et al. 2012]
is based on the idea of aggregating multiple updates from multiple clients and sending one batch
update to the server. The aggregation is performed by a trusted portal, and the performance is
amortized. PORAM [Cash et al. 2013], on the other hand, employs oblivious RAM techniques to
hide the information about which blocks are being updated from the server. Since the server does not
get to observe which blocks are inter-related through the encoding, he cannot corrupt such an inter-
related set to effectively corrupt an original block. Moreover, they use erasure codes independently
for each block, and thus keep the construction efficient. Similar, more efficient, techniques have also
emerged [Shi et al. 2013; Chandran et al. 2013].

Also recently, two other works have improved our version control system extension. First, Etemad
and Küpçü [Etemad and Küpçü 2013] realized that versions are append-only, and thus we may
employ static PDP to keep the versions. Later, Chen and Curtmola [Chen and Curtmola 2014]
presented an even more efficient verifiable version control system.

2. MODEL
We build on the PDP definitions from [Ateniese et al. 2011]. We begin by introducing a general
DPDP scheme and then show how the original PDP model is consistent with this definition.

Definition 2.1 (DPDP Scheme). In a DPDP scheme, there are two parties. The client wants to
off-load her files to the untrusted server. A complete definition of a DPDP scheme should describe
the following (possibly randomized) efficient procedures:

— KeyGen(1k)→ {sk, pk} is a probabilistic algorithm run by the client. It takes as input a security
parameter, and outputs a secret key sk and a public key pk. The client stores the secret and public
keys, and sends the public key to the server;

— PrepareUpdate(sk, pk,F , info,Mc) → {e(F ), e(info), e(M )} is an algorithm run by the client
to prepare (a part of) the file for untrusted storage. As input, it takes secret and public keys, (a part
of) the file F with the definition info of the update to be performed (e.g., full re-write, modify
block i, delete block i, add a block after block i, etc.), and the previous metadata Mc. The output
is an “encoded” version of (a part of) the file e(F ) (e.g., by adding randomness, adding sentinels,
encrypting for confidentiality, etc.), along with the information e(info) about the update (changed
to fit the encoded version), and the new metadata e(M ). The client sends e(F ), e(info), e(M ) to
the server;

— PerformUpdate(pk,Fi−1,Mi−1, e(F ), e(info), e(M )) → {Fi,Mi,M
′
c ,PM ′

c
} is an algorithm

run by the server in response to an update request from the client. The input contains the public
key pk, the previous version of the file Fi−1, the metadata Mi−1 and the client-provided val-
ues e(F ), e(info), e(M ). Note that the values e(F ), e(info), e(M ) are the values produced by
PrepareUpdate. The output is the new version of the file Fi and the metadata Mi, along with the
metadata to be sent to the client M ′c and its proof PM ′

c
. The server sends M ′c ,PM ′

c
to the client;
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— VerifyUpdate(sk, pk,F , info,Mc,M
′
c ,PM ′

c
) → {accept, reject} is run by the client to verify

the server’s behavior during the update. It takes all inputs of the PrepareUpdate algorithm,2 plus
the M ′c ,PM ′

c
sent by the server. It outputs acceptance (F can be deleted in that case) or rejection

signals;
— Challenge(sk, pk,Mc)→ {c} is a probabilistic procedure run by the client to create a challenge

for the server. It takes the secret and public keys, along with the latest client metadata Mc as input,
and outputs a challenge c that is then sent to the server;

— Prove(pk,Fi,Mi, c)→ {P} is the procedure run by the server upon receipt of a challenge from
the client. It takes as input the public key, the latest version of the file and the metadata, and the
challenge c. It outputs a proof P that is sent to the client;

— Verify(sk, pk,Mc, c, P ) → {accept, reject} is the procedure run by the client upon receipt of
the proof P from the server. It takes as input the secret and public keys, the client metadata Mc,
the challenge c, and the proof P sent by the server. An output of accept ideally means that the
server still has the file intact. We will define the security requirements of a DPDP scheme later.

We assume there is a hidden input and output clientstate in all functions run by the client, and
serverstate in all functions run by the server. Some inputs and outputs may be empty in some
schemes. For example, the PDP scheme of [Ateniese et al. 2011] does not store any metadata at
the client side. Also sk, pk can be used for storing multiple files, possibly on different servers. All
these functions can be assumed to take some public parameters as an extra input if operating in
the public parameters model, although our construction does not require such modifications. Apart
from {accept, reject}, algorithm VerifyUpdate can also output a new client metadata Mc. In most
scenarios, this new metadata will be set as Mc = M ′c .

Retrieval of a (part of a) file is similar to the challenge-response protocol above, composed of
Challenge,Verify,Prove algorithms, except that along with the proof, the server also sends the re-
quested (part of the) file, and the verification algorithm must use this (part of the) file in the veri-
fication process. We also note that a PDP scheme is consistent with the DPDP scheme definition,
with algorithms PrepareUpdate, PerformUpdate and VerifyUpdate specifying an update that is a
full re-write (or append).

As stated above, PDP is a restricted case of DPDP. The PDP scheme of [Ateniese et al. 2011]
has the same algorithm definition for key generation, defines a restricted version of PrepareUpdate
that can create the metadata for only one block at a time, and defines Prove and Verify algorithms
similar to our definition. It lacks an explicit definition of Challenge (though one is very easy to
infer). PerformUpdate consists of performing a full re-write or an append (so that replay attacks
can be avoided), and VerifyUpdate is used accordingly, i.e., it always accepts in case of a full re-
write or it is run as in DPDP in case of an append. It is clear that our definition allows a broad range
of DPDP (and PDP) schemes.

We now define the security of a DPDP scheme, inspired by the security definitions of [Ateniese
et al. 2011; Dodis et al. 2009]. Note that the restriction to the PDP scheme gives a security definition
for PDP schemes compatible with the ones in [Ateniese et al. 2011; Ateniese et al. 2008].

Definition 2.2 (Security of DPDP). We say that a DPDP scheme is secure if for any proba-
bilistic polynomial time (PPT) adversary who can win the following data possession game with
non-negligible probability, there exists an extractor that can extract (at least) the challenged parts of
the file by resetting and challenging the adversary polynomially many times.

DATA POSSESSION GAME: Played between the challenger who plays the role of the client and
the adversary who acts as a server.

(1) KEYGEN: The challenger runs KeyGen(1k) → {sk, pk} and sends the public key pk to the
adversary;

2However, in our model F denotes part of some encoded version of the file and not part of the actual data (though for
generality purposes we do not make it explicit).
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(2) ACF QUERIES: The adversary is very powerful. The adversary can mount adaptive chosen file
(ACF) queries as follows. The adversary specifies a message F and the related information info
specifying what kind of update to perform (see Definition 2.1) and sends these to the challenger.
The challenger runs PrepareUpdate on these inputs and sends the resulting e(F ), e(info), e(M )
to the adversary. Then the adversary replies with M ′c ,PM ′

c
which are verified by the challenger

using the algorithm VerifyUpdate. The result of the verification is told to the adversary. The
adversary can further request challenges, return proofs, and be told about the verification results.
The adversary can repeat the interaction defined above polynomially-many times;

(3) SETUP: Finally, the adversary decides on messages F ∗i and related information info∗i for all
i = 1, . . . , R of adversary’s choice of polynomially-large (in the security parameter k) R ≥ 1.
The ACF interaction is performed again, with the first info∗1 specifying a full re-write (this
corresponds to the first time the client sends a file to the server). The challenger updates his
local metadata only for the verifying updates (hence, non-verifying updates are considered not
to have taken place—data has not changed);

(4) CHALLENGE: Call the final version of the file F , which is created according to the verifying
updates the adversary requested in the previous step. The challenger holds the latest metadata
Mc sent by the adversary and verified as accepting. Now the challenger creates a challenge
using the algorithm Challenge(sk, pk,Mc) → {c} and sends it to the adversary. The adversary
returns a proof P . If Verify(sk, pk,Mc, c, P ) accepts, then the adversary wins. The challenger
has the ability to reset the adversary to the beginning of the challenge phase and repeat this step
polynomially-many times for the purpose of extraction. Overall, the goal is to extract (at least)
the challenged parts of F from the adversary’s responses which are accepting.

Definition 2.3 (Alternative Security Definition for DPDP). A DPDP scheme is secure if for any
PPT f -adversary who can win the data possession game with non-negligible probability on f -
fraction of blocks, there exists a PPT f -extractor algorithm that can extract f -fraction of blocks of
the file with high probability by resetting and challenging the adversary polynomially many times.

THEOREM 2.4. Definitions 2.2 and 2.3 are equivalent.

PROOF. The f -extractor employs the extractor (in Definition 2.2) on subsets of all f -fraction
of the blocks each time, until all those blocks are extracted. If the f -adversary succeeds with non-
negligible probability on those f -fraction of the blocks, then extractor will succeed in extracting
subsets of these. For the other direction, as long as the number of challenged blocks is less than or
equal to f ∗ n, then the extractor can employ the f -extractor for the purposes of extraction.

Remark 2.5. 1/n ≤ f ≤ 1, since the adversary must corrupt at least one block to attack suc-
cessfully.

Remark 2.6. If f < 1 then the extractor cannot extract the whole file. In this case, the DPDP
scheme should catch the adversary with some probability. This “probability of detection” will be
discussed later.

Note that our definition coincides with extractor definitions in proofs of knowledge. For an ad-
versary that answers a non-negligible fraction of the challenges, a polynomial-time extractor must
exist. Furthermore, this definition can be applied to the POR case [Dodis et al. 2009; Juels and
Kaliski. 2007; Shacham and Waters 2013], in which by repeating the challenge-response process,
the extractor can extract the whole file with the help of error-correcting codes. The probability of
catching a cheating server is analyzed in Section A.

Finally, if a DPDP scheme is to be truly publicly verifiable, the Verify algorithm should not make
use of the secret key. Since that is the case for our construction (see Section 4), we can derive a
public verifiability protocol usable for official arbitration purposes; as explained by Küpçü [Küpçü
2013].
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3. RANK-BASED AUTHENTICATED SKIP LISTS
In order to implement our first DPDP construction, we use a modified version of the authenticated
skip list data structure [Goodrich et al. 2001]. This new data structure, which we call a rank-based
authenticated skip list, is based on authenticated skip lists but indexes data in a different way. Note
that we could have based the construction on any authenticated search data structure, e.g., Merkle
tree [Merkle 1987] instead. This would perfectly work for the static case. But in the dynamic case,
we would need an authenticated red-black tree, and unfortunately no algorithms have been previ-
ously presented for rebalancing a Merkle tree while efficiently maintaining and updating authen-
tication information (except for the three-party model, e.g., [Li et al. 2006]). Yet, such algorithms
have been extensively studied for the case of the authenticated skip list data structure [Papamanthou
and Tamassia 2007]. Before presenting the new data structure, we briefly introduce authenticated
skip lists.

The authenticated skip list is a skip list [Pugh 1990] (see Figure 1) with the difference that every
node v above the bottom level (which has two pointers, namely rgt(v) and dwn(v)) also stores a
label f(v) that is a cryptographic hash and is computed using some collision-resistant hash function
h (e.g., SHA-1 in practice) as a function of f(rgt(v)) and f(dwn(v)). Using this data structure, one
can answer queries like “does 21 belong to the set represented with this skip list?” and also provide
a proof that the given answer is correct. To be able to verify the proofs to these answers, the client
must always hold the label f(s) of the top leftmost node of the skip list (node w7 in Figure 1). We
call f(s) the basis (or root), and it corresponds to the client’s metadata in our DPDP construction
(Mc = f(s)). In our construction, the leaves of the skip list represent the blocks of the file. When
the client asks for a block, the server needs to send that block, along with a proof that the block is
intact.

We can use an authenticated skip list to check the integrity of the file blocks. However, this
data structure does not support efficient verification of the indices of the blocks, which are used
as query and update parameters in our DPDP scenario. The updates we want to support in our
DPDP scenario are insertions of a new block after the i-th block and deletion or modification of
the i-th block (there is no search key in our case, in contrast to [Goodrich et al. 2001], which
basically implements an authenticated dictionary). If we use indices of blocks as search keys in
an authenticated dictionary, we have the following problem. Suppose we have a file consisting of
100 blocks m1,m2, . . . ,m100 and we want to insert a block after the 40-th block. This means that
the indices of all the blocks m41,m42, . . . ,m100 should be incremented, and therefore an update
becomes extremely inefficient. To overcome this difficulty, we define a new hashing scheme that
takes into account rank information.

3.1. Authenticating ranks
Let F be a file consisting of n blocks m1,m2, . . . ,mn. We store at the i-th bottom-level node of
the skip list a representation T (mi) of block mi (we will define T (mi) later). Block mi will be
stored elsewhere by the untrusted server. Each node v of the skip list stores the number of nodes at
the bottom level that can be reached from v. We call this value the rank of v and denote it with r(v).
In Figure 1, we show the ranks of the nodes of a skip list. An insertion, deletion, or modification of
a file block affects only the nodes of the skip list along a search path. We can recompute bottom-up
the ranks of the affected nodes in constant time per node.

The top leftmost node of a skip list will be referred to as the start node. For example, w7 is the
start node of the skip list in Figure 1. For a node v, denote with low(v) and high(v) the indices of
the leftmost and rightmost nodes at the bottom level reachable from v, respectively. Clearly, for the
start node s of the skip list, we have r(s) = n, low(s) = 1 and high(s) = n be the nodes that can
be reached from v by following the right or the down pointer respectively. Using the ranks stored at
the nodes, we can reach the i-th node of the bottom level by traversing a path that begins at the start
node, as follows. For the current node v, assume we know low(v) and high(v). Let w = rgt(v) and
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Fig. 1. Example of rank-based skip list.

z = dwn(v). We set

high(w) = high(v) ,

low(w) = high(v)− r(w) + 1 ,

high(z) = low(v) + r(z)− 1 ,

low(z) = low(v) .
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If i ∈ [low(w), high(w)], we follow the right pointer and set v = w, else we follow the down pointer
and set v = z. We continue until we reach the i-th bottom node. Note that we do not have to store
high and low. We compute them on the fly using the ranks.

In order to authenticate skip lists with ranks, we extend the hashing scheme defined in [Goodrich
et al. 2001]. We consider a skip list that stores data items at the bottom-level nodes. In our applica-
tion, the node v associated with the i-th block mi stores item x(v) = T (mi). Let l(v) be the level
(height) of node v in the skip list (l(v) = 0 for the nodes at the bottom level).

Let || denote concatenation. We extend a hash function h to support multiple arguments by defin-
ing

h(x1, . . . , xk) = h(h(x1)|| . . . ||h(xk)) .

We are now ready to define our new hashing scheme:

Definition 3.1 (Hashing scheme with ranks). Given a collision resistant hash function h, the
label f(v) of a node v of a rank-based authenticated skip list is defined as follows.
Case 0: v = null

f(v) = 0 ;

Case 1: l(v) > 0

f(v) = h(l(v), r(v), f(dwn(v)), f(rgt(v))) ;

Case 2: l(v) = 0

f(v) = h(l(v), r(v), x(v), f(rgt(v))) .

Before inserting any block (i.e. if initially the skip list was empty), the basis, i.e., the label f(s) of
the top leftmost node s of the skip list, can easily be computed by hashing the sentinel values of the
skip list; —the file consists of only two “fictitious” blocks— block 0 and block +∞.

Table II. Proof for the 5-th block of the file F stored in the skip list of Figure 1.

node v v3 v4 v5 w3 w4 w5 w6 w7

l(v) 0 0 0 2 2 3 3 4
q(v) 0 1 1 1 1 5 1 1
g(v) 0 T (m4) T (m5) f(v1) f(v6) f(v7) f(v8) f(v9)

3.2. Queries
Suppose now the file F and a skip list on the file have been stored at the untrusted server. The client
wants to verify the integrity of block i and therefore issues query atRank(i) to the server. The server
executes Algorithm 1, described below, to compute T (i) and a proof for T (i) (for convenience we
use T (i) to denote T (mi)).

Let vk, . . . , v1 be the path from the start node, vk, to the node associated with block i, v1. The
reverse path v1, . . . , vk is called the verification path of block i. For each node vj , j = 1, . . . , k, we
define boolean d(vj) and values q(vj) and g(vj) as follows, where we conventionally set r(null) =
0:

d(vj) =

{
rgt j = 1 or j > 1 and vj−1 = rgt(vj)

dwn j > 1 and vj−1 = dwn(vj)
,

q(vj) =


r(rgt(vj)) if j = 1

1 if j > 1 and l(vj) = 0

r(dwn(vj)) if j > 1, l(vj) > 0 and d(vj) = rgt

r(rgt(vj)) if j > 1, l(vj) > 0 and d(vj) = dwn

,
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g(vj) =


f(rgt(vj)) if j = 1

x(vj) if j > 1 and l(vj) = 0

f(dwn(vj)) if j > 1, l(vj) > 0 and d(vj) = rgt

f(rgt(vj)) if j > 1, l(vj) > 0 and d(vj) = dwn

.

The proof for block i with data T (i) is the sequence Π(i) = (A(v1), . . . , A(vk)) where A(v) =
(l(v), q(v), d(v), g(v)). So the proof consists of tuples associated with the nodes of the verification
path. Boolean d(v) indicates whether the previous node is to the right or below v. For nodes above
the bottom level, q(v) and g(v) are the rank and label of the successor of v that is not on the path.
The proof Π(5) for the skip list of Figure 1 is shown in Table II. Due to the properties of skip lists,
a proof has expected size O(log n) with high probability (whp).

ALGORITHM 1: (T ,Π) = atRank(i)

1: Let v1, v2, . . . , vk be the verification path for block i;
2: return representation T of block i and proof Π = (A(v1), A(v2), . . . , A(vk)) for T ;

3.3. Verification
After receiving from the server the representation T of block i and a proof Π for it, the client
executes Algorithm 2 to verify the proof using the stored metadata Mc.

ALGORITHM 2: {accept, reject} = verify(i,Mc, T ,Π)

1: Let Π = (A1, . . . , Ak), where Aj = (lj , qj , dj , gj) for j = 1, . . . , k;
2: λ0 = 0; ρ0 = 1; γ0 = T ; ξ0 = 0;
3: for j = 1, . . . , k do
4: λj = lj ; ρj = ρj−1 + qj ; δj = dj ;
5: if δj = rgt then
6: γj = h(λj , ρj , γj−1, gj);
7: ξj = ξj−1;
8: else {δj = dwn}
9: γj = h(λj , ρj , gj , γj−1);

10: ξj = ξj−1 + qj ;
11: end if
12: end for
13: if γk 6= Mc then
14: return reject;
15: else if ρk − ξk 6= i then
16: return reject;
17: else {γk = Mc and ρk − ξk = i}
18: return accept;
19: end if

Algorithm 2 iteratively computes tuples (λj , ρj , δj , γj) for each node vj on the verification path
plus a sequence of integers ξj . If the returned block representation T and proof Π are correct, at
each iteration of the for-loop, the algorithm computes the following values associated with a node vj
of the verification path:

— integer λj = l(vj), i.e., the level of vj ;
— integer ρj = r(vj), i.e., the rank of vj ;
— boolean δj , which indicates whether the previous node vj−1 is to the right or below vj ;
— hash value γj = f(vj), i.e., the label of vj ;
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— integer ξj , which is equal to the sum of the ranks of all the nodes that are to the right of the nodes
of the path seen so far, but are not on the path.

LEMMA 3.2. If T is the correct representation of block i and sequence Π of length k is the
correct proof for T , then the following properties hold for the values computed in iteration k of the
for-loop of Algorithm 2:

(1) Value ρk is equal to the number of nodes at the bottom level of the skip list, i.e., the number n
of blocks of the file;

(2) Value ξk is equal to n− i; and
(3) Value γk is equal to the label of the start node of the skip list.

Table III. The proof Π′(5) as produced by Algorithm 4 for the update “insert a new block with data T
after block 5 at level 1”.

node v v2 v3 v4 v5 w w3 w4 w5 w6 w7

l(v) 0 0 0 0 1 2 2 3 3 4
r(v) 1 1 2 3 4 5 6 11 12 13
f(v) T T (m5) T (m4) T (m3) f(v2) f(v1) f(v6) f(v7) f(v8) f(v9)

3.4. Updates
The possible updates in our DPDP scheme are insertions of a new block after a given block i,
deletion of a block i, and modification of a block i.

To perform an update, the client issues first query atRank(i) (for an insertion or modification)
or atRank(i − 1) (for a deletion), which returns the representation T of block i or i − 1 and its
proof Π′. Also, for an insertion, the client decides the height of the tower of the skip list associated
with the new block. Next, the client verifies proof Π′ and computes what would be the label of the
start node of the skip list after the update, using a variation of the technique of [Papamanthou and
Tamassia 2007]. Finally, the client asks the server to perform the update on the skip list by sending
to the server the parameters of the update (for an insertion, the parameters include the tower height).

We outline in Algorithm 3 the update algorithm performed by the server (performUpdate) and in
Algorithm 4 the update algorithm performed by the client (verUpdate). Input parameters T ′ and Π′

of verUpdate are provided by the server, as computed by performUpdate.
Since updates affect only nodes along a verification path, these algorithms run in expected

O(log n) time whp and the expected size of the proof returned by performUpdate is O(log n) whp.

ALGORITHM 3: (T ′,Π′) = performUpdate(i, T , upd)

1: if upd is a deletion then
2: set (T ′i ,Π′i) = atRank(i) and (T ′i−1,Π

′
i−1) = atRank(i− 1);

3: set T ′ = T ′i ∪ T ′i−1 and Π′ = Π′i ∪Π′i−1;
4: else {upd is an insertion or modification}
5: set (T ′,Π′) = atRank(i);
6: end if
7: if upd is an insertion then
8: insert element T in the skip after the i-th element;
9: else if upd is a modification then

10: replace with T the i-th element of the skip list;
11: else {upd is a deletion}
12: delete the i-th element of the skip list;
13: end if
14: update the labels, levels and ranks of the affected nodes;
15: return (T ′,Π′);
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ALGORITHM 4:
{accept, reject} = verUpdate(i,Mc, T , upd, T ′,Π′)

1: if upd is a deletion then
2: split T ′ into T ′i and T ′i−1. Also split Π′ into Π′i and Π′i−1;
3: set decision = verify(i,Mc, T ′i ,Π′i) ∧ verify(i− 1,Mc, T ′i−1,Π

′
i−1);

4: else {upd is an insertion or modification}
5: set decision = verify(i,Mc, T ′,Π′);
6: end if
7: if decision = reject then
8: return reject;
9: else {decision = accept}

10: from i, T , T ′, and Π′, compute and store the updated label M ′c of the start node;
11: return accept;
12: end if

To give some intuition of how Algorithm 4 produces proof Π′(i), the reader can verify that Ta-
ble III corresponds to Π′(5), the proof that the client produces from Table II in order to verify the
update “insert a new block with data T after block 5 at level 1 of the skip list of Figure 1”. This
update causes the creation of two new nodes in the skip list, namely the node that holds the data
for the 6-th block, v2, and node w (5-th line of Table III) that needs to be inserted in the skip list at
level 1. Note that f(v2) = h(0||1||T , 0||1||T (data(v1))) is computed as defined in Definition 3.1
and that the ranks along the search path are increased due to the addition of one more block.

4. DPDP SCHEME CONSTRUCTION
In this section, we present our DPDP I construction. First, we describe our algorithms for the pro-
cedures introduced in Definition 2.1. Next, we develop compact representatives for the blocks to
improve efficiency (blockless verification). In the following, n is the current number of blocks of
the file. The logarithmic complexity for most of the operations are due to well-known results about
authenticated skip lists [Goodrich et al. 2001; Papamanthou et al. 2008]. Most of the material of this
section also applies to the DPDP II scheme presented in Section 7.1.

4.1. Core construction
The server maintains the file and the metadata, consisting of an authenticated skip list with ranks
storing the blocks. Thus, in this preliminary construction, we have T (b) = b for each block b. The
client keeps a single hash value, called basis, which is the label of the start node of the skip list. We
implement the DPDP algorithms as follows.

— KeyGen(1k)→ {sk, pk}: Our scheme does not require any keys to be generated. So, this proce-
dure’s output is empty, and hence none of the other procedures make use of these keys;

— PrepareUpdate(sk, pk,F , info,Mc) → {e(F ), e(info), e(M )}: This is a dummy procedure that
outputs the file F and information info it receives as input. Mc and e(M ) are empty (not used);

— PerformUpdate(pk,Fi−1,Mi−1, e(F ), e(info), e(M )) → {Fi,Mi,M
′
c ,PM ′

c
}: Inputs

Fi−1,Mi−1 are the previously stored file and metadata on the server (empty if this is the first
run). e(F ), e(info), e(M ), which are output by PrepareUpdate, are sent by the client (e(M ) be-
ing empty). The procedure updates the file according to e(info), outputting Fi, runs the skip list
update procedure on the previous skip list Mi−1 (or builds the skip list from scratch if this is the
first run), outputs the resulting skip list as Mi, the new basis as M ′c , and the proof returned by
the skip list update as PM ′

c
. This corresponds to calling Algorithm 3 on inputs a block index j,

the new data T (in case of an insertion or a modification) and the type of the update upd (all this
information is included in e(info)). Note that the index j and the type of the update upd is taken
from e(info) and the new data T is e(F ). Finally, Algorithm 3 outputs M ′c and PM ′

c
= Π(j),

which are output by PerformUpdate. The expected runtime is O(log n) whp;
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— VerifyUpdate(sk, pk,F , info,Mc,M
′
c ,PM ′

c
) → {accept, reject}: Client metadata Mc is the

label of the start node of the previous skip list (empty for the first time), whereas M ′c is empty.
The client runs Algorithm 4 using the index j of the update, Mc, previous data T , the update type
upd, the new data T ′ of the update and the proof PM ′

c
sent by the server as input (most of the

inputs are included in info). If the procedure accepts, the client sets Mc = M ′c (new and correct
metadata has been computed). The client may now delete the new block from its local storage.
This procedure is a direct call of Algorithm 4. It runs in expected time O(log n) whp;

— Challenge(sk, pk,Mc) → {c}: This procedure does not need any input apart from knowing the
number of blocks in the file (n). It might additionally take a parameter C which is the number of
blocks to challenge. The procedure creates C random block IDs between 1, . . . , n. This set of C
random block IDs are sent to the server and is denoted with c. The runtime is O(C);

— Prove(pk,Fi,Mi, c)→ {P}: This procedure uses the last version of the file Fi and the skip list
Mi, and the challenge c sent by the client. It runs the skip list prover to create a proof on the
challenged blocks. Namely, let i1, i2, . . . , iC be the indices of the challenged blocks. Prove calls
Algorithm 1 C times (with arguments i1, i2, . . . , iC) and sends back C proofs. All these C proofs
form the output P . The runtime is O(C log n) whp;

— Verify(sk, pk,Mc, c, P ) → {accept, reject}: This function takes the last basis Mc the client has
as input, the challenge c sent to the server, and the proof P received from the server. It then runs
Algorithm 2 using as inputs the indices in c, the metadata Mc, the data T and the proof sent by
the server (note that T and the proof are contained in P ). This outputs a new basis. If this basis
matches Mc then the client accepts. Since this is performed for all the indices in c, this procedure
takes O(C log n) expected time whp.

The above construction requires the client to download all the challenged blocks for the verification.
A more efficient method for representing blocks is discussed in the next section.

4.2. Blockless verification
We can improve the efficiency of the core construction by employing homomorphic tags, as in [Ate-
niese et al. 2011]. However, the tags described here are simpler and more efficient to compute. Note
that it is possible to use other homomorphic tags like BLS signatures [Boneh et al. 2001] as in
Compact POR [Shacham and Waters 2013].

We represent a block b with its tag T (b). Tags are small in size compared to data blocks, which
provides two main advantages. First, the skip list can be kept in memory. Second, instead of down-
loading the blocks, the client can just download the tags. The integrity of the tags themselves is
protected by the skip list, while the tags protect the integrity of the blocks.

In order to use tags, we modify our KeyGen algorithm to output pk = (N, g), where N = pq is
a product of two primes and g is an element of high order in Z∗N . The public key pk is sent to the
server; there is no secret key.

The tag T (b) of a block b is defined by

T (b) = gb mod N .

The skip list now stores the tags of the blocks at the bottom-level nodes. Therefore, the proofs
provided by the server certify the tags instead of the blocks themselves. Note that instead of storing
the tags explicitly, the server can alternatively compute them as needed from the public key and the
blocks.

The Prove procedure computes a proof for the tags of the challenged blocks mij (1 ≤
i1, . . . , iC ≤ n denote the challenged indices, where C is the number of challenged blocks and
n is the total number of blocks). The server also sends a combined block M =

∑C
j=1 ajmij , where

aj are random values sent by the client as part of the challenge. The size of this combined block
is roughly the size of a single block. Thus, we have a much smaller overhead than for sending C
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blocks. Also, the Verify algorithm computes the value

T =

C∏
j=1

T (mij )aj mod N ,

and accepts if T = gM mod N and the skip list proof verifies.
The Challenge procedure can also be made more efficient by using the ideas in [Ateniese et al.

2011]. First, instead of sending random values aj separately, the client can simply send a random
key to a pseudo-random function that will generate those values. Second, a key to a pseudo-random
permutation can be sent to select the indices of the challenged blocks 1 ≤ ij ≤ n (j = 1, . . . , C).
The definitions of these pseudo-random families can be put into the public key. See [Ateniese et al.
2011] for more details on this challenge procedure. We can now outline our main result (for the
proof of security see Section A):

THEOREM 4.1. Assume the existence of a collision-resistant hash function and that the fac-
toring assumption holds. The dynamic provable data possession scheme presented in this section
(DPDP I) has the following properties, where n is the current number of blocks of the file, f is the
fraction of tampered blocks, and C = O(1) is the number of blocks challenged in a query:

(1) The scheme is secure according to Definition 2.2;
(2) The probability of detecting a tampered block is 1− (1− f)C;
(3) The expected update time is O(log n) at both the server and the client whp;
(4) The expected query time at the server, the expected verification time at the client and the ex-

pected communication complexity are each O(log n) whp;
(5) The client space is O(1) and the expected server space is O(n) whp.

Note that the above results hold in expectation and with high probability due to the properties of
skip lists [Pugh 1990].

Intuition for the Proof. Before looking at our full proof below, we present the intuition for our
proof.

(1) Our challenger will have two sub-entities: An extractor who extracts the challenged blocks
from the adversary’s proof, and a reductor who breaks the collision-resistance of the hash function
or factors N , if the extractor fails to extract the original blocks. As the only difference from the
real game, the challenger provides the reductor the blocks (together with their ids) whose update
proofs have verified, so that the reductor can keep them in its storage. Note that the extractor does
not know the original blocks, only the reductor does. Also note that the reductor keeps updating the
blocks in its storage when the adversary performs updates. Therefore, the reductor always keeps the
latest version of each block. This difference is invisible to the adversary, and so he will behave in
the same way as he would to an honest client.

(2) Consider the case where the version of our DPDP scheme without the tags is used (hence
blockless-verification is not possible). At the end of the security game, the adversary will reply to
the challenge sent by the challenger. The extractor just outputs the block(s) contained in the proof
sent by the adversary. If this proof verifies, and hence the adversary wins, it must be the case that
either all the blocks are intact (and so the extractor succeeded in outputting the original blocks) or
otherwise the reductor breaks collision-resistance since now the original block together with the
extracted block constitute a collision, failing Lemma A.1.

(3) Now we can consider the blockless-verification version of our DPDP construction. But, for
simplicity, assume that only one block is challenged. Call the block sent in the proof by the adversary
b, and the original challenged block stored at the reductor m. The extractor just outputs b. If the
extractor succeeds in extracting the correct block (i.e. b = m), then we are done. Now suppose
the extractor fails, which means b 6= m. Now, if gb = gm mod N , then the reductor breaks the
factoring assumption, since this means b = m mod φ(N) , which means b−m = kφ(N) for some
integer k 6= 0 (since the extractor failed to extract the original block). Hence, L = b −m can be
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used in Miller’s Lemma [Miller 1975], which leads to factoring N . Otherwise gb 6= gm mod N .
This means, there are two different tags that can provide a verifying skip list proof. By Lemma A.1,
the reductor can break the collision-resistance of the hash function by outputting (gb mod N) and
(gm mod N).

Finally, we extend our simpler proofs above to a proof of the full scheme with multiple challenges
(see Appendix). The overall idea will be the same, and the way we will address multiple challenges
will be by (i) solving a system of linear equations as in the extractor at the last paragraph of the
proof of Theorem 4.3 in [Ateniese et al. 2011], and (ii) finding a subset of items that will work
exactly as in case (3) above.

4.3. Generic Construction
At this point, we observe two main points that efficient DPDP constructions should have:

(1) For efficient proofs (i.e. blockless verification), the DPDP scheme should use homomorphic
tags over the data. The homomorphism property was previously formalized by Ateniese et al.
[Ateniese et al. 2009], and thus we do not want to repeat the formalization here. Instead, we
would like to mention possible alternative approaches and an intuitive discussion below.

(2) For dynamism of data, the DPDP protocol should employ a data structure with efficient mem-
bership queries (i.e. an authenticated data structure). We will discuss possible alternative data
structures below.

Thus, we can say that in general, a DPDP scheme does the following: (1) Considers the data as
composed of some number of chunks (e.g., as a single whole, or n blocks). (2) Creates homomorphic
tags over the chunks. (3) Puts a data structure on top of the tags.

When a challenge comes, the server does the following: (1) Creates the combined chunk in a
way that will match the homomorphic property of the tags. (2) Creates membership proofs using
the data structure proving that the tags of the challenged blocks are in the latest version of the data
structure. (3) Sends the combined chunk, together with the data structure proofs (that include the
tags) to the client as the proof.

Alternatives for Homomorphic Tags:
As long as the tags have a homomorphism property, this can be used to combine the chunks into a
single large chunk, providing blockless verification. It is possible that the tags include order infor-
mation (e.g., PDP [Ateniese et al. 2011] tags contain a hash of the block index in the tag), or the tags
do not care about the order information (e.g., in our DPDP construction, since rank-based authenti-
cated skip list will handle the block indexing issues, tags are not related to block indices). But, for
a dynamic system to be efficient, it must be the case that the tags do not contain order information,
since otherwise an update may cause all tags to be updated.

Tags may be related to the file as a whole, to blocks of the file, or to even smaller units (e.g.,
sectors in POR [Juels and Kaliski. 2007]). As seen in our tests in Section 6, the size of the unit in a
tag matters for performance, and should be optimized.

Furthermore, as long as the homomorphic property is there, RSA-based tags, or BLS-signature-
based tags may be used, along with other alternatives. If a prime-order group is used for computing
tags, it must be remembered that each unit (e.g., block) must be smaller than the order of the group,
since otherwise the server may just store the equivalent value that is smaller than the group order
and still pass the verification. RSA-type groups where the order is unknown do not have this issue.

Alternatives for Ordered Data Structure:
Rank-based authenticated skip list is a neat example of an ordered and authenticated data structure
that allows membership queries efficiently (O(log n) whp where n is the number of leaves, which
corresponds to the number of blocks in the file). To the best of our knowledge, rank-based authen-
ticated skip list is the first construction of an ordered authenticated data structure that has log n
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performance. Later variants (although not fully detailed) include Merkle trees (used in [Wang et al.
2009]) and range-based 2-3 trees [Zheng and Xu 2011]. The most important advantage of a skip
list over balanced trees is that the authenticated version is much easier to implement, without the
complication of the authenticated rebalancing operations. Since a skip list will have log n height
with high probability, the need for complex authenticated balancing operations to obtain guaranteed
log n performance is not well-justified. Recently, a variant of our rank-based authenticated skip list
construction called FlexList is also proposed, with improved efficiency, and the ability to handle
multiple challenges and updates at once [Kachkeev et al. 2013; Esiner et al. 2013; Esiner et al.
2014].

Yet even more alternative authenticated data structures include hash lists (i.e. an array of hash
values of each block), or simply a hash of the whole file (in general, we consider this as a value
rather than a data structure because of its simplicity). But, such structures do not provide efficient
DPDP. (1) If a single hash of the file is kept at the client, even though this is very efficient in terms
of client storage (O(1)) and server storage (no extra tags or data structure to keep), the updates are
very inefficient. Even a single change in the file would require recomputing the hash of the whole
file —an operation that is extremely slow for large files. (2) If a hash list is used, the client will need
O(n) space to keep one hash per block, even though the server storage is optimal as the first case.
Modification of a block will be an O(1) operation; just requiring the client to recompute the hash of
that block. Yet, an insertion into the file may cause O(n) time.

5. EXTENSIONS AND APPLICATIONS
Our DPDP scheme supports a variety of distributed data outsourcing applications where the data is
subject to dynamic updates. In this section, we describe extensions of our basic scheme that employ
additional layers of rank-based authenticated dictionaries to store hierarchical, application-specific
metadata for use in networked storage and version control.

5.1. Variable-sized blocks
We now show how we can augment our hashing scheme to support variable-sized blocks (e.g., when
we want to update a byte of a certain block). Recall that our ranking scheme assigns each internal
node u a rank r(u) equivalent to the number of bottom-level nodes (data blocks) reachable from the
subtree rooted at u; these nodes (blocks) are conventionally assigned a rank equal to 1. We support
variable-sized blocks by defining the rank of a node at the bottom level to be the size of its associated
block (i.e. in bytes). Each internal node, in turn, is assigned a rank equivalent to the amount of bytes
reachable from it. Queries and proofs proceed the same as before, except that ranks and intervals
associated with the search path refer to byte offsets, not block indices, with updates phrased as, e.g.,
“insert m bytes at byte offset i”. Such an update would require changing only the block containing
the data at byte index i. Similarly, modifications and deletions affect only those blocks spanned by
the range of bytes specified in the update.

5.2. Directory hierarchies
We can also extend our DPDP scheme for use in storage systems consisting of multiple files within
a directory hierarchy. The key idea is to place the start node of each file’s rank-based authenticated
structure (from our single-file scheme) at the bottom node of a parent dictionary used to map file
names to files. Using key-based authenticated dictionaries [Papamanthou and Tamassia 2007], we
can chain our proofs and update operations through the entire directory hierarchy, where each direc-
tory is represented as an authenticated dictionary storing its files and subdirectories. Thus, we can
use these authenticated dictionaries in a nested manner, with the start node of the topmost dictionary
representing the root of the file system (as depicted in Figure 2(a)).

This extension provides added flexibility for multi-user environments. Consider a system admin-
istrator who employs an untrusted storage provider. The administrator can keep the authenticated
structure’s metadata corresponding to the topmost directory, and use it to periodically check the
integrity of the whole file system. Each user can keep the label of the start node of the dictionary
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corresponding to her home directory, and use it to independently check the integrity of her home
file system at any time, without need for cooperation from the administrator.

Since the start node of the authenticated structure of the directory hierarchy is the bottom-level
node of another authenticated structure at a higher level in the hierarchy, upper levels of the hierar-
chy must be updated with each update to the lower levels. Still, the proof complexity stays relatively
low: For example, for the rank-based authenticated skip list case, if n is the maximum number of
leaves in each skip list and the depth of the directory structure is d, then proofs on the whole file
system have expected O(d log n) size and computation time whp.

(a) A file system skip list with blocks as leaves, directories
and files as roots of nested skip lists.

(b) A version control file system. Notice the additional level
of skiplists for holding versions of a file. To eliminate redun-
dancy at the version level, persistent authenticated skip lists
could be used [Anagnostopoulos et al. 2001]: the complex-
ity of these proofs will then be O(logn+ log v + d log f).

Fig. 2. Applications of our DPDP system.

5.3. Version control
We can build on our extensions further to efficiently support a versioning system (e.g., a CVS repos-
itory, or versioning filesystem). Such a system can be supported by adding another additional layer
of key-based authenticated dictionaries [Papamanthou and Tamassia 2007], keyed by revision num-
ber, between the dictionaries for each file’s directory and its data, chaining proofs as in previous
extensions. (See Figure 2(b) for an illustration.) As before, the client needs only to store the top-
most basis; thus we can support a versioning system for a single file with only O(1) storage at
the client and O(log n + log v) proof complexity, where v is the number of the file versions. For a
versioning system spanning multiple directories, let v be the number of versions and d be the depth
of the directory hierarchy. The proof complexity for the versioning file system has expected size
O(d(log n+ log v)).
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The server may implement its method of block storage independently from the dictionary struc-
tures used to authenticate data; it does not need to physically duplicate each block of data that
appears in each new version. However, as described, this extension requires the addition of a new
rank-based dictionary representing file data for each new revision added (since this dictionary is
placed at the leaf of each file’s version dictionary). In order to be more space-efficient, we could use
persistent authenticated dictionaries [Anagnostopoulos et al. 2001] along with our rank mechanism.
These structures handle updates by adding some new nodes along the update path, while preserv-
ing old internal nodes corresponding to previous versions of the structure, thus avoiding unneeded
replication of nodes.

6. PERFORMANCE EVALUATION
We evaluate the performance of our DPDP I scheme (Section 4.2) in terms of communication and
computational overhead, in order to determine the price of dynamism over static PDP. For ease
of comparison, our evaluation uses the same scenario as in PDP [Ateniese et al. 2011], where a
server wishes to prove possession of a 1GB file. As observed in [Ateniese et al. 2011], detecting a
1% fraction of incorrect data with 99% confidence requires challenging a constant number of 460
blocks; we use the same number of challenges for comparison.

DPDP I (99%)
PDP (99%)

(a) Size of proofs of possession on a 1GB file, for 99%
probability of detecting misbehavior.

Proof time: DPDP I (99%)
Proof time: PDP (99%)

(b) Computation time required by the server in response to
a challenge for a 1GB file, with 99% probability of detect-
ing misbehavior.

Fig. 3. Price of Dynamism

6.1. Proof size
The expected size of proofs of possession for a 1GB file under different block sizes is illustrated
in Figure 3(a). Here, a DPDP proof consists of responses to 460 authenticated skip list queries,
combined with a single verification block M = Σaimi, which grows linearly with the block size.
The size of this block M is the same as that used by the PDP scheme in [Ateniese et al. 2011]3, and
is thus represented by the line labeled PDP. The distance between this line and those for our DPDP
I scheme represents our communication overhead—the price of dynamism—which comes from
the skip list query responses (illustrated in Table II). Each response contains on average 1.5 log n
rows, so the total size decreases exponentially (but slowly) with increasing block size, providing
near-constant overhead except at very small block sizes.

3The authors present multiple versions of their scheme. The version without the knowledge of exponent assumption and
the random oracle actually sends this M ; other versions only compute it.
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6.2. Server computation
Next, we measure the computational overhead incurred by the server in answering challenges. Fig-
ure 3(b) presents the results of these experiments (averaged from 5 trials), which were performed on
an AMD Athlon X2 3800+ system with 2GHz CPU and 2GB of RAM. As above, we compute the
time required by our scheme for a 1GB file under varying block sizes, providing 99% confidence.
As shown, our performance is dominated by computing M and increases linearly with the block
size; note that static PDP [Ateniese et al. 2011] must also compute this M in response to the chal-
lenge. Thus the computational price of dynamism—time spent traversing the skip list and building
proofs—while logarithmic in the number of blocks, is extremely low in practice: even for a 1GB
file with a million blocks of size 1KB, computing the proof for 460 challenged blocks (achieving
99% confidence) requires less than 40ms in total (as small as 13ms with larger blocks). We found in
other experiments that even when the server is not I/O bound (i.e. when computing M from mem-
ory) the computational cost was nearly the same. Note that any outsourced storage system proving
the knowledge of the challenged blocks must reach those blocks and therefore pay the I/O cost, and
therefore such a small overhead for such a huge file is more than acceptable.

The experiments suggest the choice of block size that minimizes total communication cost and
computation overhead for a 1GB file: a block size of 16KB is best for 99% confidence, resulting
in a proof size of 415KB, and computational overhead of 30ms. They also show that the price of
dynamism is a small amount of overhead compared to the existing PDP scheme.

In terms of a practical deployment serving multiple clients, note that with 30ms per 460-block
challenge, the server throughput would be 33 clients per second using a single-core machine (with
properties similar to the one in our tests). A 16-core server machine can serve more than 500 clients’
challenges per second. Considering the proof size of 415 KB each, this would require the server
to have about 1.65 Gbit/s upload bandwidth, which would be the limiting factor in such a server
deployment.

6.3. Version control
Finally, we evaluate an application that suits our scheme’s ability to efficiently handle and prove
updates to versioned, hierarchical resources. Public CVS repositories offer a useful benchmark to
assess the performance of the version control system we describe in Section 5. Using CVS repos-
itories for the Rsync [Samba ], Samba [Samba ] and Tcl [Ousterhout ] projects, we retrieved the
sequence of updates from the RCS source of each file in each repository’s main branch. RCS up-
dates come in two types: “insert m lines at line n” or “delete m lines starting at line n”. Note
that other partially-dynamic schemes (i.e. Scalable PDP [Ateniese et al. 2008]) cannot handle these
types of updates. For this evaluation, we consider a scenario where queries and proofs descend a
search path through hierarchical authenticated dictionaries corresponding (in order) to the directory
structure, history of versions for each file, and finally to the source-controlled lines of each file. We
use variable-sized data blocks, but for simplicity, assume a naı̈ve scheme where each line of a file
is assigned its own block; a smarter block-allocation scheme that collects contiguous lines during
updates would yield fewer blocks, resulting in less overhead.

Table IV presents performance characteristics of three public CVS repositories under our scheme;
while we have not implemented an authenticated CVS system, we report the server overhead re-
quired for proofs of possession for each repository. Here, “commits” refer to individual CVS check-
ins, each of which establish a new version, adding a new leaf to the version dictionary for that file;
“updates” describe the number of inserts or deletes required for each commit. Total statistics sum
the number of lines (blocks) and kilobytes required to store all inserted lines across all versions,
even after they have been removed from the file by later deletions.

We use these figures to evaluate the performance of a proof of possession under the DPDP I
scheme: as described in Section 5, the cost of authenticating different versions of files within a
directory hierarchy requires time and space complexity corresponding to the depth of the skip list
hierarchy, and the width of each skip list encountered during the Prove procedure.
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Table IV. Authenticated CVS server characteristics.

Rsync Samba Tcl
dates of activity 1996-2007 1996-2004 1998-2008

# of files 371 1538 1757
# of commits 11413 27534 24054
# of updates 159027 275254 367105

Total lines 238052 589829 1212729
Total KBytes 8331 KB 18525 KB 44585 KB

Avg. # updates/commit 13.9 10 15.3
Avg. # commits/file 30.7 17.9 13.7

Avg. # entries/directory 12.8 7 19.8
Proof size, 99% 425 KB 395 KB 426 KB

Proof size per commit 13 KB 9 KB 15 KB
Proof time per commit 1.2ms 0.9ms 1.3ms

As in the previous evaluation, “Proof size, 99%” in Table IV refers to the size of a response to
460 challenges over an entire repository (all directories, files, and versions). This figure shows that
clients of an untrusted CVS server—even those storing none of the versioned resources locally—
can query the server to prove possession of the repository using just a small fraction (1% to 5%) of
the bandwidth required to download the entire repository. “Proof size and time per commit” refer
to a proof sent by the server to prove that a single commit (made up of, on average, about a dozen
updates) was performed successfully, representing the typical use case. These commit proofs are
very small (9KB to 15KB) and fast to compute (around 1ms), rendering them practical even though
they are required for each commit. Our experiments show that our DPDP scheme is efficient and
practical for use in distributed applications.

7. REMARKS
7.1. Rank-based RSA trees
We now describe how we can use ideas from [Papamanthou et al. 2008] to implement the DPDP II
scheme (see Table I), which has a higher probability of detection, maintains logarithmic communi-
cation complexity but has increased update time.

In [Papamanthou et al. 2008], a dynamic authenticated data structure called RSA tree is presented
that achieves constant expected query time (i.e., time to construct the proof), constant proof size, and
O(nε log n) expected amortized update time, for a given 0 < ε < 1. We can add rank information
to the RSA tree by explicitly storing ranks at the internal nodes. Using this data structure allows the
server to answer O(log n) challenges with O(log n) communication cost since the proof for a block
tag has O(1) size.

The reason for sending additional challenges is the fact that the probability p of detection in-
creases with number C of challenges, since p = 1 − (1 − f)C , where f is the fraction of tam-
pered blocks. Therefore, by using an RSA tree with ranks to implement DPDP, we obtain the
same complexity measures as DPDP I, except for the update time, which increases from O(log n)
to O(nε log n) (expected amortized), and achieve an improved probability of detection equal to
1− (1− f)Ω(logn).

We now describe how we can use the tree structure from [Papamanthou et al. 2008] to support
rank information. In [Papamanthou et al. 2008], an ε is chosen between 0 and 1 and a tree structure4

is built that has O(1/ε) levels, each node having degree O(nε). However, there is no notion of order
in [Papamanthou et al. 2008]. To introduce a notion of order we assume that the elements lie at the
leaves of the tree and we view it as a B-tree with lower bound on the degree t = 3nε/4 and therefore
upper bound equal to 2t = 3nε/2, which are both viewed as constants. Therefore we can use known
B-tree algorithms to do the updates with the difference that we rebuild the tree whenever the number
of the blocks of the file increases from n to 2n or decreases from n to n/4. When we rebuild, we
set the new constants for the degree of the tree. By the properties of the B-tree (all leaves lie at the

4The use of such a tree is dictated by the specific cryptographic primitive used.
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same level), we can prove that it is not possible to change the number of the levels of the tree before
a new rebuilt takes place. To see that, suppose our file initially consists of n blocks. Suppose now,
for contradiction that the number of the levels of the tree changes before a new rebuilt takes place.
Note that a new rebuilt takes place when at least 3n/4 operations (insertions/deletions) take place.
We distinguish two cases:

(1) If the number of the levels of the tree increases, that means that the number b of the added
blocks is at least n1+ε − n. Since there is no rebuilt it should be the case that b ≤ 3n/4 and
therefore that n1+ε − n ≤ 3n/4, which is a contradiction for large n;

(2) If the number of the levels of the tree decreases, that means that the number b of the deleted
blocks is at least n − n1−ε. Since there is no rebuilt it should be the case that b ≤ 3n/4, and
therefore that n− n1−ε ≤ 3n/4, which is again a contradiction for large n.

Therefore before a big change happens in the tree, we can rebuild (by using the same ε and by
changing the node degree) the tree and amortize. This is important, because the RSA tree structure
works for trees that do not change their depth during updates, since the constant proof complexity
comes from the fact that the depth is not a function of the elements in the structure (unlike B-trees),
but is always maintained to be a constant.

Using the above provably secure authenticated data structure based on [Papamanthou et al. 2008]
to secure the tags (where security is based on the strong RSA assumption), we obtain the following
result:

THEOREM 7.1. Assume the strong RSA assumption and the factoring assumption hold. The
dynamic provable data possession scheme presented in this section (DPDP II) has the following
properties, where n is the current number of blocks of the file, f is the fraction of tampered blocks,
and ε is a given constant such that 0 < ε < 1:

(1) The scheme is secure according to Definition 2.2;
(2) The probability of detecting a tampered block is 1− (1− f)Ω(logn);
(3) The update time is O(nε log n) (expected amortized) at the server and O(1) (expected) at the

client;
(4) The expected query time at the server, the expected verification time at the client and the worst-

case communication complexity are each O(log n);
(5) The client space is O(1) and the server space is O(n).

Note that sending O(log n) challenges in [Ateniese et al. 2011; Ateniese et al. 2008] or DPDP I
would increase the communication complexity from O(1) to O(log n) and from O(log n) to
O(log2 n), respectively.

7.2. Other DPDP Constructions
Following ideas from [Papamanthou et al. 2008], we can modify our scheme in Section 7.1 to
implement DPDP III and DPDP IV schemes (see Table V), which are optimized for challenge-
intensive or update-intensive workloads, respectively. Both DPDP III and DPDP IV schemes will
achieve the same probability of detection as our DPDP I scheme. The reasons they are presented
as future work is that we have not analyzed their efficiency carefully, and hence the following table
should be taken only as a good guess of what will happen if ideas in [Papamanthou et al. 2008] will
be incorporated to our DPDP scheme keeping the same tags and the challenge structure.

7.3. POR vs. PDP
One can generalize most secure cloud storage schemes as PDP-type or POR-type schemes. Both
type of schemes are introduced with the same purpose: Alice wants to store her data at a server
that may not necessarily be fully-trusted. Alice would like to obtain a proof that her data is being
kept intact at the server side. The most-widely-accepted definitions for POR-type schemes appear
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Table V. Two new DPDP schemes that will incorporate tags
and proof techniques described in this chapter, together with
ideas from [Papamanthou et al. 2008]. As before, we denote
with n the number of the blocks of the file, with f the frac-
tion of the corrupted blocks, and with C being the number of
challenged blocks (typically a constant independent of n). In
all constructions, the storage space is O(1) at the client and
O(n) at the server.

Scheme DPDP III DPDP IV
Update time (server) O(nε) O(1)
Challenge time (server) O(1) O(nε)
Client computation O(1) O(1)
Communication O(1) O(1)
Model Standard Standard
Append blocks X X
Modify blocks X X
Insert blocks X X
Delete blocks X X
Prob. of detection 1− (1− f)C 1− (1− f)C

in Compact POR [Shacham and Waters 2013] and its generalization [Dodis et al. 2009]. We will
use the definitions in this paper for the PDP-type schemes.

Consider, as an example, Dropbox cloud storage system. When Alice signs up for Dropbox, it
creates a directory on the client’s computer, with some demonstration files inside, and immediately
starts uploading those files. Thus, by choosing these initial demonstration files, the adversary can
easily mount a chosen-file attack. Furthermore, with program updates, the adversary may update
these files, thus forcing Alice’s computer to perform those updates on the server. Therefore, we
conclude that an adaptive chosen-file attack formulation is necessary. Note that this formulation is
similar to a chosen-plaintext attack on an encryption scheme, and its history is full of justification
for adopting such a definition.

After the adversary mounts this adaptive chosen-file attack, then the challenger interacts with
the adversary through the challenge-response protocol. There needs to be an extractor, similar to
the one in zero-knowledge proof of knowledge (ZKPoK) systems, to make sure the server indeed
keeps the file intact. As in ZKPoK systems, the extractor may rewind the adversary and re-challenge
polynomially-many times.

Note that the initial POR-type definition [Juels and Kaliski. 2007] included the extractor as part
of the actual scheme, and required the actual server to be stateless to ensure it works. Later, it was
realized that this is an unnecessary requirement, and formulating an imaginary extractor as in the
ZKPoK systems is enough to ensure security [Ateniese et al. 2011; Shacham and Waters 2013;
Erway et al. 2009]. Therefore, we allow the extractor to rewind the adversary, instead of assuming
a stateless server. Obviously, we need the probability that the extractor succeeds to be high.

We have seen that POR-type schemes provide very strong security guarantees by necessarily sac-
rificing performance. On the other hand, PDP-type schemes can work well under certain scenarios.
Below, we analyze various scenarios:

— For commercial applications that do not require extremely-high guarantees where the server may
be semi-trusted, PDP-type schemes may provide a sufficient guarantee. For example, Alice may
trust that Amazon will not intentionally modify a single bit of her data, but Amazon may try to
hide a system failure where a fraction of her file is lost. In such a case, Amazon will be caught
cheating using a PDP-type scheme.

— For the cases where the file itself is tolerant to minor modifications, again PDP-type schemes
may be sufficient. For example, regular text files may be tolerant to change in a few letters,
image, video or audio files may tolerate a few glitches here and there.

— When employed as a business practice by companies whose reputations matter, there is a great
incentive not to get caught, even with a low probability. Consider Amazon example again. If
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Amazon gets caught cheating, then the financial losses will be intolerable. Note that, on the other
hand, without any provable storage system in use, Amazon is not necessarily afraid of corrupting
user data, since there will be no proof.

— Moreover, the law of large numbers is a very important concern for secure cloud storage scenar-
ios. Even though the probability that a single user Alice catches Amazon cheating is low, Amazon
has too many users. The law of large numbers tells us that some users will catch Amazon cheat-
ing. Besides, remember that the analysis above represents a single challenge-response scenario.
In reality, Alice will challenge the server multiple times. Again, the law of large numbers tells
us that even a single user Alice will catch Amazon cheating after multiple challenge-response
protocol executions.

The scenarios above are in line with the covert adversay model for multi-party computation [Au-
mann and Lindell 2010]. As argued by Aumann and Lindell, this model represents realistic adver-
saries, those who are afraid of legal penalties. Thus, we can say PDP-type schemes work well in
such a covert adversary setting, and thus we expect them to perform as necessary in real scenarios.

In summary, if performance is the main concern, PDP-type schemes should be employed, with
the fact in mind that a single challenge-response is not extremely binding, but multiple random chal-
lenges increase the probability of catching dramatically. On the other hand, if immediate conclusion
is required and the data is highly-sensitive, then POR-type schemes with built-in erasure- and error-
resistance must be employed. Note that, in both cases, if the server corrupts all the data, there is no
technical solution possible to retrieve back the original.

APPENDIX
A. SECURITY
In this section we prove the security of our DPDP scheme. While our proof refers specifically to
the DPDP I scheme, it also applies to the DPDP II scheme discussed in the next section. Indeed,
the only difference between the two schemes is the authenticated structure used for protecting the
integrity of the tags.

To prove security of our DPDP scheme, we need the following assumptions, definitions, facts and
lemmas. We begin with the following lemma, which follows from the two-party authenticated skip
list construction (Theorem 1 of [Papamanthou and Tamassia 2007]) and our discussion in Section 3.

LEMMA A.1. Assuming the existence of a collision-resistant hash function, the proofs gener-
ated using our rank-based authenticated skip list guarantees the integrity of its leaves T (mi) with
non-negligible probability.

Definition A.2 (Factoring assumption). For all PPT adversaries A and large-enough number
N = pq which is a product of two primes p and q, the probability that A can output p or q given N
is negligible in the size of p and q.

Definition A.3. Euler’s φ function for N = pq where p, q are primes is defined as φ(N) =
(p− 1)(q − 1).

Definition A.4. Carmichael λ function for N = pq where p, q are primes is defined as λ(N) =
lcm(p− 1, q − 1) where lcm(x, y) denotes the least common multiple of x and y.

FACT 1. λ(N) | φ(N).

LEMMA A.5 (MILLER’S LEMMA [MILLER 1975]). Let L be a number divisible by λ(N).
Then, there exists a PPT algorithm that factors N with non-negligible probability, given L and
N .

THEOREM A.6 (SECURITY OF DPDP PROTOCOL). The DPDP protocol is secure in the stan-
dard model according to Definition 2.2, assuming the existence of a collision-resistant hash function
and that the factoring assumption holds.
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PROOF. The challenger is given a hash function h, and an integer N = pq but not p or q. The
challenger then samples a high-order element g from Z∗N . He interacts with the adversary in the
data possession game honestly, using the given hash function, and creates and updates the tags
while using N as the modulus and g as the base.

Suppose now the challenger challenges C blocks, namely the blocks with indices i1, i2, . . . , iC .
We recall that in response to each challenge, the proof contains:

(1) The tags Ti1 , Ti2 , . . . , TiC for each block i1, i2, . . . , iC , along with the respective skip list proofs
that correspond to each tag Ti1 , Ti2 , . . . , TiC ;

(2) A “weighted” sum of the form B = ai1bi1 + ai2bi2 + . . .+ aiC biC , where aij (j = 1, . . . , C)
are random numbers known by the challenger.

According to Definition 2.2, the DPDP scheme is secure if, whenever the verification succeeds
with non-negligible probabilty (i.e. the adversary wins the data possession game), the challenger
can extract the actual blocks (which we denote with mi1 ,mi2 , . . . ,miC ) in polynomially-many in-
teractions with the adversary. The idea of the extraction is to reset and challenge with independent
aij and get enough independent linear equations that verifies from the adversary to solve for each
mij (thus, the extractor is just an algebraic linear solver). In the equation above for B, we have C
unknowns. Therefore, we can solve for individual blocks mij if we get C verifying linearly inde-
pendent equations on the same blocks. Therefore, if the adversary can respond to a non-negligible
fraction of challenges, since the extractor needs only polynomially-many (indeed, C) equations,
by rewinding polynomially-many times, the extractor can extract the original blocks. Now suppose
the challenger challenges the adversary for a polynomial number of times and gets C verifying re-
sponses. Then if B1, B2, . . . , BC are the weighted sums received each time, we have the following
equations:

B1 = ai11bi1 + ai12bi2 + . . .+ ai1C biC
B2 = ai21bi1 + ai22bi2 + . . .+ ai2C biC

...
BC = aiC1

bi1 + aiC2
bi2 + . . .+ aiCC

biC

where aij1 , aij2 , . . . , aijC for j = 1, . . . , C are different sets of random numbers sent each time
with the challenge and bi1 , bi2 , . . . , biC are the blocks that the adversary claims to possess. By
solving this system of linear equations we extract the blocks bi1 , bi2 , . . . , biC . This constitutes the
extractor’s output, and if they correspond to the original blocks mi1 ,mi2 , . . . ,miC , then we are
done. Otherwise, meaning there is at least one non-matching block, we show that the reductor can
either break the factoring assumption or the collision-resistance of the hash function.

Suppose now there is a subset of challenged blocks {b1, b2, . . . , bk} ⊆ {bi1 , bi2 , . . . , biC} such
that bj 6= mj for all j = 1, . . . , k (i.e. the extractor failed for those blocks). Let a1, a2, . . . , ak and
T1, T2, . . . , Tk be the random numbers and the tags respectively that correspond to some response
(i.e. to some linear equation of the system) for blocks {b1, b2, . . . , bk}. The reductor first checks to
see if there is any tag mismatch: T| 6= gmj mod N , for some 1 ≤ j ≤ k. If this is the case, the
reductor can output T| and gmj mod N for that particular j as a collision, using Lemma A.1.

Further remember that, since the adversary’s proof verified, we have T ai1i1
T
ai2
i2

. . . T
aiC
iC

= gB

mod N for all B values above. The reductor now computes M =
∑
aijmij , and assuming there

is no tag mis-match (otherwise we would have broken collision-resistance above), we know that
T
ai1
i1

T
ai2
i2

. . . T
aiC
iC

= gai1mi1
+ai2mi2

+...+aiCmiC mod N . This means, gB = gM mod N . Now,
if there is the subset {b1, b2, . . . , bk} of blocks that are different from the original blocks (i.e. B 6=
M ), then B −M can be used to factor N , by using Miller’s Lemma [Miller 1975].

Therefore, if the adversary can respond to a non-negligible fraction of challenges, since the ex-
tractor needs only polynomially-many equations, by rewinding polynomially-many times, the chal-
lenger can either extract the original blocks (using the extractor), or break the collision-resistance
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of the hash function used or the factoring assumption (using the reductor) with non-negligible prob-
ability. This concludes the proof of Theorem A.6.

Concerning the probability of detection, the client probes C blocks by calling the Challenge
procedure. Clearly, if the server tampers with a block other than those probed, the server will not
be caught. Assume now that the server tampers with t blocks. If the total number of blocks is n,
the probability that at least one of the probed blocks matches at least one of the tampered blocks is
1− ((n− t)/n)

C , since choosing C of n− t non-tampered blocks has probability ((n− t)/n)
C .
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