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K-Means definition

)
°
° ) ) ®
v Vg
° )
) )
® Un
Ut
)
We are given a set of points v1, ..., v, ..., v, in Euclidean space.
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K-Means definition
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For each point we assign a cluster identifier from the set {1, ..., k}.
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K-Means definition

All input points who share the same identifier are called a cluster.
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K-Means definition
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The assignment cost is the minimal sum of squared distances to cluster centers.
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K-Means definition
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More accurately ¢; = |‘;i‘ Dowes, v and W= Sh 2ves; 1V — cil|3-
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Prior work (very partial list)

Batch Setting
m Lloyd provides a popular and powerful heuristic [20]
m Ostrovsky, Rabani, Schulman and Swamy prove Lloyds for “well clusterable” inputs [23]
m Arthur and Vassilvitskii, k-means++ provides an expected O(log(k)) approximation [5]

m Kanungo, Mount, Netanyahu, Piatko, Silverman and Wu give a constant approximation ratio
with local search [18]

m Bahmani, Moseley, Vattani, Kumar and Vassilvitskii parallelize k-means++ [8]
Streaming setting
m Guha, Meyerson, Mishra, Motwani and O’Callaghan, divide-and-conquer techniques [17].
m Ailon, Jaiswal and Monteleoni [3] build on both [17] and [5].
m Meyerson, Shindler and Wong use techniques similar to facility location [22]
Online
m Charikar, Chekuri, Feder, and Motwani, Online k-centers [9]
m Choromanska and Monteleoni analyze online k-means with experts advise [10]
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Online K-Means definition

U1

In online k-means we receive one point at a time.
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Online K-Means definition

U1

We then immediately assign it a cluster identifier.
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Online K-Means definition
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We then receive the next point.
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Online K-Means definition
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And so on...

Vg

YAHOO!



Motivation for online k~-means

Entertainment 73
'Game of Thrones' star Natalie Dormer says Jon Snow
poster has 'given the game away'

The “Game of Thrones" cast and creators really know how to milk toying with

their audience about potential spoilers. Natalie Dormer appeared on Jimmy.

‘Game of Thrones's Game Of Thrones:
5.1 Why Book Readers George R.R. Martin
ey

=,/ Should Not Abandon ‘astonished’ by fan

Celebrity

Samuel L. Jackson Might Be the One to Bring Down
Donald Trump's Campaign

Samuel L. Jackson appeared on Late Night with Seth Meyers Tuasday night
to address a recent insulting Donald Trump tweet. 'l don't know..

Here's How It Sounds
When Samuel L.
Jackson Is Your

Donald Trump Claims He
| Doesn't Know Samuel L.
I Jackson Atter Hatetul

Yahoo show news stories, which are “clusters” of articles. These evolve over time.
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Motivation for online k~~-means

An Analysis of Single-Layer Networks
in Unsupervised Feature Learning
Adurn Conten E

lak Lo Asclrow Y.

“Surprisingly, we have shown that
even the K-means clustering
algorithm — an extremely simple
learning algorithm with no
parameters to tune — is able to
achieve state-of-the-art performance
on both CIFAR-10 and NORB datasets
‘when used with the network
parameters that we have identified in
‘this work.

Algorithm Accuracy (error)
Conv. Neural Network [16] 93.4% (6.6%) |
Deep Boltzmann Machine [26] 92.8% (7.2%)
Deep Belief Network [20] 95.0% (5.0%)
(Best result of [11]) 94.4% (5.6%)
Deep neural network [27] 97.13% (2.87%)
Sparse auto-encoder 96.9% (3.1%)
Sparse RBM 96.2% (3.8%)
K-means (Hard) 96.9% (3.1%)
K-means (Triangle) 97.0% (3.0%)
K-means (Triangle, 4000 features) | 97.21% (2.79%)

Online learning needs online k-means for feature engineering.
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Online k&-means Algorithm

input: V, k
C « first k+ 1 distinct vectors in V;and n=%k+ 1
(For each of these yield itself as its center)
w* 4 min, yec|lv—0]?/2
r<1,q <0 i =uw"/k
for v € the remainder of V do
n<n+1
with probability p = min(D?(v, C)/f,, 1)
C CU{v}; ¢ < g +1
if ¢- > 3k(1 4 log(n)) then
r<r+1 ¢ 0 fr<2 fio1
end if
yield: ¢ = argmin.cc||v— ¢||?
end for
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Online k-means algorithm

CRCH

The first £+ 1 points are assigned to different clusters
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Online k-means algorithm

®

4

X F = llvs — va|2/2k

f- k gives a lower bound on the cost of any k-means solution.
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Online k-means algorithm
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If the cost of assigning a point to an existing cluster is more than f, a new cluster is created
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Online k-means algorithm
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Otherwise, a new cluster is created with probability p
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Online k-means algorithm
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Every time 3k(1 + log(n)) clusters are added, the value of fis doubled.
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Online K-Means immediate observation

We must prove two things about this algorithm

Number of clusters
The algorithm does not create too many clusters.

Cost of clustering

The cost of the clustering is not much worse than optimal
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Number of clusters: immediate observation
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To be competitive with k-means, online k-means must use more than £ clusters!
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Number of clusters: immediate observation
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Let v = max,  ||v— ¢/||/ min, » ||v— ¢/||, than log(vy) are needed regardless of k.
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Number of clusters

Theorem
Let C be the set of clusters defined by the algorithm. Then

E[|C|]] = O (klog nlogyn) .

max, s ||lv—2'|

Where v = —“——— Is the dataset “aspect ratio”.
ol [Jo—2/||

Proof idea: there are two phases:

1. While fis too small: adding clusters is “too easy”. But, fdoubles every time 3k(1 + log(n))
clusters are added.

2. When fis large enough: creating new clusters is hard enough such that at most
O (klog nlog vyn) are created in expectation.
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Cost of clustering

Theorem

Let W be the cost of the online assignments of the algorithm and W* the optimal k-means
clustering cost. Then

E[W] = O(W" logn) .

Proof idea: sum expected cost on rings around centers

1. After we pick a center from the ring, the cost is at most 16 times optimal.

2. The expected cost before that (or if no center is chosen) is not expected to be high. YAHOO!



Experimental results

L Classification
Classification )

Dataset nnz n d accuracy with agetiacyANIl

k-means features
raw features

20news-binary | 2.44E+6 | 1.88E+4 | 6.12E+4 0.9532 0.9510
adult 5.86E+5 | 4.88E+4 | 1.04E+2 0.8527 0.8721
ijicnn1 3.22E+5 | 2.50E+4 | 2.10E+1 0.9167 0.9405
letter 2.94E+5 | 2.00E+4 | 1.50E+1 0.7581 0.7485
maptaskcoref | 6.41E+6 | 1.59E+5 | 5.94E+3 0.8894 0.8955
nomao 2.84E+6 | 3.45E+4 | 1.73E+2 0.5846 0.5893
poker 8.52E+6 | 9.47E+5 | 9.00E+0 0.5436 0.6209
shuttle 2.90E+5 | 4.35E+4 | 8.00E+0 0.9247 0.9973
skin 4.84E+5 | 2.45E+5 | 2.00E+0 0.9247 0.9988
vehv2binary 1.45E+7 | 2.99E+5 | 1.04E+2 0.9666 0.9645
wa8all 7.54E+5 | 5.92E+4 | 2.99E+2 0.9638 0.9635

Online k-means gives a boost for online learning, especially in low dimensions.
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Online k-means algorithm
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The number of retuned clusters is well concentrated.
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Online k-means algorithm
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The total error goes reduces with & (as expected)
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Online k-means algorithm
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Interestingly, uniformly selecting centers improve at the same rate.
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Online k-means algorithm
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In comparison to k-means++, this algorithm is consistently worse.
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Online k-means algorithm
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Nevertheless, in most scenarios it performs as well (even though it’s online!)
YAHOO!



Thank you
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