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ABSTRACT

In dimensionality reduction, a set of points in Rd is mapped into Rk such that all distances between points

are approximately preserved although the target dimension k is smaller then the original dimension d. One

method for achieving this, which has lately received much attention, is called Random Projections. The

purpose of this thesis is twofold. One, to drive at the theoretical roots of this phenomenon. Second, to

purpose improved algorithmic constructions that achieve it. Our results divide into two main paradigms.

For the case where k is significantly smaller then d (k ∈ o(poly(d))) we gain an improvement by designing

more efficient algorithms for applying certain linear algebraic transforms. For the case where k is only

moderately smaller then d (k ∈ ω(d1/3)) we propose a new construction and prove its correctness using a

new framework which is formally defined. Our results are shown to be impossible to achieve using existing

approaches. We supplement our theoretical work with relevant experimental results which demonstrate its

practicality.



2. INTRODUCTION TO RANDOM PROJECTIONS

2.1 Linear embedding and the JL property

In many applications one is given a set of n points in some high dimension, say d, and is interested in

embedding these points into a space of lower dimension, k, such that all distances are preserved almost

exactly.

More precisely, given n vectors {x1, . . . , xn} in Rd we are interested in a mapping Ψ : Rd → Rk such that

k ¿ d and

∀i, j (1− ε)‖xi − xj‖ ≤ ‖Ψ(xi)−Ψ(xj)‖ ≤ (1 + ε)‖xi − xj‖ (2.1)

for a constant 0 ≤ ε ≤ 1/2.

Naturally, one might approach this task in a deterministic fashion by evaluating the incoming vectors.

However, it has been well known that a randomized approach to this problem is significantly easier. Johnson

and Lindenstrauss in [3] were the first to give such a randomized construction and the final step in their



proof is still common to all random projection schemes; Let Ψ be a linear mapping (a k × d matrix) chosen

from a probability distribution Dk,d such that the length of any vector x ∈ Rd is ε preserved with very

high probability. Let the vector x be the difference xi − xj . Since Ψ is a linear operator we have that

Ψ(xi)−Ψ(xj) = Ψ(xi − xj) = Ψ(x). Moreover, since there are
(
n
2

)
< n2 pairwise distances, if we ε preserve

the length of each vector x with probability larger then 1− 1
2n2 then, by the union bound, the entire metric

is ε preserved with probability at least 1/2. Without loss of generality, we can consider only unit vectors,

‖x‖2 = 1. The notation Sd−1 stands for the d− 1 dimensional sphere, i.e the set {x ∈ Rd | ‖x‖2 = 1}.

We have that if

∀x ∈ Sd−1 Pr
Ψ∼Dk,d

[|‖Ψx‖ − 1| > ε] ≤ 1
2n2

(2.2)

Then for every i and j simultaneously

∀i, j (1− ε)‖xi − xj‖ ≤ ‖Ψ(xi)−Ψ(xj)‖ ≤ (1 + ε)‖xi − xj‖ (2.3)

with probability at least 1/2.

The surprising fact about the JL (Johnson Lindenstrauss) lemma is that this can be achieved by a matrix

who’s size is logarithmic in n. To see this we define the JL property.

Definition 2.1.1. A distribution Dk,d over k × d matrices exhibits the JL property (JLP) if

∀x ∈ Sd−1 Pr
Ψ∼Dk,d

[|‖Ψx‖ − 1| > ε] ≤ c1e
−c2kε2

(2.4)

For some constants c1 and c2.

Given such a distribution, we satisfy equation 2.2 for k = Ω(log(n)/ε2).

c1e
−c2kε2 ≤ 1

2n2

k = Ω(log(n)/ε2)

Johnson and Lindenstrauss showed that the uniform distribution over k× d projection matrices exhibits

the JL property. This means that any set of n points in Rd (equipped with the `2 metric) can be embedded

into dimension k = O(log(n)/ε2) with distortion ε using a randomly generated linear mapping Ψ. Moreover

Noga Alon [4] showed that this result is essentially tight (in its dependence on n).
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It is remarkable to notice that the target dimension k is independent of the original dimension d. Further,

the randomized algorithm which achieves this is independent of the input vectors {x1, . . . , xn}, (depends

only on their number). These properties make random projections a critical ingredient in many algorithms.

Examples for such application can by found in: approximate nearest neighbor searching [5, 6, 7, 8, 9], learning

[10, 11, 12], matrix low rank approximation [13, 14, 15, 16, 17, 18, 19, 20], others linear algebraic operations

[21, 22, 23, 24], and many other algorithms and applications, e.g, [25, 26, 27, 28, 29, 30].

2.2 Classic results, review of known JL distributions

The construction of Johnson and Lindenstrauss is simple. They proposed to choose Ψ uniformly at random

from the space of projection matrices. In other words, Ψ contains a random k dimensional subspace of Rd.

One technique to sample from this distribution is to start with a k× d matrix whose entries are chosen i.i.d

gaussian. Then, orthogonalize and normalize its rows (Using Grahm-Schmidt for example). The idea of

the proof was as follows; since the distribution is rotational invariant, projecting any fixed vector x onto a

random subspace is equivalent (statistically) to projecting a random vector in Rd onto the first k vectors of

the canonical basis. Johnson and Lindenstrauss proceed to give the relevant concentration over Sd−1 which

proves the lemma.

Their proof, however, can be made significantly simpler by considering a slightly modified construction.

Gupta and Dasgupta [31] as well as Frankl and Maehara [32] suggested that each entry in Ψ be chosen

uniformly at random from a Gaussian distribution (without orthogonalization). These proofs still relay on

the rotational invariance of the distribution but are significantly easier. A sketch of a possible proof is given

below.1

Since the distribution of Ψ is the same as the that of Ψ′ = ΨU for any complete orthogonal transformation

U . We look at ΨUUT x for U such that Ux = e1 = (1, 0, . . . , 0)T (w.l.o.g ‖x‖ = 1). Since ‖Ψ′e1‖ is the norm

of Ψ′(1), the first column of Ψ′, and Ψ′ distributes like Ψ, we need only show that Pr[
∣∣‖Ψ(1)‖ − 1

∣∣ > ε] ≤
1 This proof is not the one supplied in [31] or in [32]. The authors encountered this idea in several informal discussions but

are not aware of its specific origin.
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c1e
−c2kε2

. In other words, because the distribution is rotationally invariant the probability for failure (large

distortion) is equal for all vectors in Rd. We therefor choose to calculate it for the vector (1, 0, . . . , 0)T which

is trivial given the tail properties of the χ-square distribution.

More difficult to prove are cases where the distribution is not rotationally invariant. The first such

construction was given by Dimitris Achlioptas [33] who proposed a matrix Ψ such that Ψ(i, j) ∈ {−1, 0, 1}

with constant probabilities. Matousek [34] extended this result to any i.i.d sub-gaussian variables. These

proofs relay on slightly weaker condition which is the independence of the rows of Ψ.

Denote by Ψ(i) the i’th row of Ψ, ‖Ψx‖2 =
∑k

i=1〈Ψ(i),x〉2. We notice that if the rows of Ψ(i) are i.i.d

then 〈Ψ(i),x〉2 are also i.i.d. By characterizing the distribution of the variables 〈Ψ(i),x〉2 one can derive a

concentration result using a quantitative version of the central limit theorem. We review such a result by

Matousek [34] further into the introduction.

2.3 Motivation for accelerating random projections

In many of the applications mentioned in section 2.1 the original dimension d is very large whereas the target

dimension in manageable in size. An implementation of any of the constructions described in the last section

requires O(kd) bits to store and O(kd) operations to apply to each input vector. This is, in many cases,

impractical. For example, if the incoming vectors are the grey scale values of a 5MP images, and the target

dimension is 1000, the matrix Ψ will occupy 20G of space/memory (in 4 byte float precision).2 This amount

of memory use is (as of today) extremely inconvenient. On most modern machines it will invoke intensive

paging and thus perform very poorly.

In some situation, one might be able to avoid storing the matrix Ψ altogether. Mainly, when the task

is to embed only a given fixed set of points. In this case, one can generate each row of Ψ, apply it to all

the points, and discard it. This generate-and-forget method can not be used in the Nearest Neighbor setup

for example because query points must be projected using the same matrix as the data points and are not
2 It is worth mentioning that Achlioptas’s matrix will only occupy 1/32 of this amount since each entry is representable by

1 bit instead of a 32 bit float.
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known in advance. Nevertheless, this idea is used in practice quite intensively mainly due to it’s simplicity.

Regardless of space usage and handling, applying these matrices is prohibitive from the time stand point.

For the described modest application even when the matrix fits in memory the running time on a 3Ghz

processor will be in the minutes, for each projected vector. This prevents this method from being used in

any real time system or on any moderately large data sets. If random projection is to be used in practice

one must come up with faster, more efficient, ways of accomplishing it.

2.4 Sparse Projective matrices

The first direction worth exploring in order to accelerate the projection process is to sparsify Ψ. Applying a

matrix to any vector requires as many operations as the number of nonzeros in the matrix. If the i.i.d entries

in Ψ are very likely to be zero then the number of non-zeros in Ψ should be much less then kd. However

intuitive this idea is, it can be shown that unless the number of nonzeros in Ψ is O(kd) the same success

probability cannot be achieved. One way to see this is to consider projecting the vector [1, 0, . . . , 0]T . The

resulting quantity ‖Ψx‖2 is exactly the norm of the first column of Ψ. Hance, the norm of the first column

of Ψ must statistically concentrate around 1, i.e, |∑k
i=1 Ψ(i, 1)2 − 1| ≤ ε with probability at least 1 − 1/n.

Since any event with probability 1−1/n ≤ Pr < 1 must relay on at least log(n) random bits we get that any

column of Ψ contains O(log(n)) nonzeros3. Since we view ε as a constant we get that each column contains

also O(k) nonzeros. Therefore, the entire matrix contains O(kd) nonzeros and our hope for sparse projection

matrices is shattered.

As we saw, sparse matrices cannot exhibit the JL property. We showed this by considering vectors like

x = [1, 0, . . . , 0]T . Notice however that these horribly sparse vectors are actually very few. By ”few” we

mean that a very small portion of Sd−1 is occupied by sparse vectors. We can therefore ask: can sparse

projective matrices preserve lengths of non-sparse vectors? This question was asked and answered by Ailon

and Chazelle in [1] which proposed the FJLT algorithm. It is worth mentioning that this result was the first

to give an asymptotical acceleration of a JL transform. Their work gave theoretical insights and motivations
3 Under the assumption that producing each Ψ(i, j) requires a constant number of random bits

11



the can be seen throughout this document. They showed that if the `∞ of the input vector x is bounded

by
√

k/d then Ψ can (in expectancy) contain only O(k3) nonzeros. This result was then generalized by

Matousek [34] who showed that any vector x such that ‖x‖∞ ≤ η can be projected with ε distortion and

high probability by a matrix containing only O(k2η2d) non-zeros in expectancy. Ailon and Chazelle further

showed that any vector in x ∈ Rd can be isometrically, randomly, rotated such that their ‖Φx‖∞ ≤
√

k/d.

Here Φ is a fast randomized isometry which takes only O(d log(d)) operations to apply. For completeness

we show a sketch of the proof by Matousek [34].

The idea is as follows, when we consider the term ‖Ψx‖22 we can look at it as
∑

y2(i) where yi = 〈Ψ(i), x〉

and Ψ(i) denotes the i’th row of Ψ. Since the entries of Ψ are i.i.d, so are the random variables yi. We need

only show that the sum of k such variables concentrates in the right way. It turns out that it is sufficient

for yi to be distribute s.t E[yi] = 0, V ar[yi] = k−1/2 and yi have a uniform sub-gaussian tail. the definitions

are given below.

Definition 2.4.1 (Matousek [34]). A real random variable Y is said to have a sub-gaussian upper tail if for

some α

Pr(Y > t) ≤ E[e−αt2 ] (2.5)

for all t > 0. If this condition holds only up to some t ≤ t0, the distribution of Y is said to have a sub-

gaussian upper tail up to t0. A collection of variables Yi is said to have uniform sub-gaussian upper tail if

they are all sub-gaussian with the same constant α

Lemma 2.4.1 (Matousek [34]). Let Yi be i.i.d random variables with E[Yi] = 0, V ar[Yi] = 1 and Yi have a

uniform sub-gaussian tail up to at least
√

k. Define the random variable Z = 1√
k
(
∑k

i=1 Y 2
i −1). The variable

Z has a sub-gaussian tail up to at least
√

k.

Proving lemma 2.4.1 turns out to be rather technical and it is given in full detail in [34]. However, given

12



its correctness, the JL property follows almost directly. Let Yi =
√

kyi where yi = 〈Ψi, x〉. First notice that:

‖Ψx‖22 − 1 =
k∑

i=1

y2
i − 1 (2.6)

=
1
k

k∑

i=1

Y 2
i − k (2.7)

=
1√
k

Z (2.8)

Where Z = 1√
k
(
∑k

i=1 Y 2
i − 1). Assume that E[Yi] = 0, V ar[Yi] = 1 and Yi exhibit a uniform sub-gaussian

upper tail up to
√

k. According to lemma 2.4.1, Z is sub-gaussian up to
√

k. Which is used as follows:

Pr[|‖Ψx‖2 − 1| > ε] ≤ 2Pr[‖Ψx‖22 − 1 > 2ε] (2.9)

= 2 Pr[Z > 2
√

kε] (2.10)

≤ 2e−C(2
√

kε)2 = c1e
−c2kε2 (2.11)

The last equation follows from the fact that Z is sub-gaussian up to
√

k and ε ≤ 1/2. This matches the

success probability required by the JL property (definition 2.1.1).

A simple example can be random gaussian entries for Ψ(i, j) (normalized be 1/
√

k). Due to the rotational

invariance of the gaussian distribution Yi is itself distributed like a gaussian with mean zero and variance

one. Clearly a gaussian has a sub-gaussian upper tail. This proves the JL lemma in yet another way.

Matousek further gives the connection between the `∞ of x and the required (expected) density of Ψ in

order for Yi to have the appropriate sub gaussian tails. We take s(i) as independent copies of s such that

s =





+ 1√
q with probability q/2

− 1√
q with probability q/2

0 with probability1− q

(2.12)

Lemma 2.4.2 (Matousek [34]). Let η2 ≤ q, let x ∈ Sd−1 such that ‖x‖∞ ≤ η, and let Y =
∑d

i=1 s(i)x(i),

where the s(i) are as described above. Then Y has a sub-gaussian tail up to
√

2q/η.

Combining lemmas 2.4.1 and 2.4.2 we obtain the minimal expected sparsity for Ψ required for vectors

whose `∞ is bounded by η. Lemma 2.4.1 requires
√

2q/η ≥
√

k and thus q = Θ(η2k). The expected number

of non-zeros in Ψ is therefore kdq = O(k2η2d).
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Putting these ideas together proves the following lemma

Lemma 2.4.3 (Matousek [34]). Let η ∈ [1/
√

d, 1] be a constant. Set q to be

q = C0η
2k (2.13)

for some sufficiently large constant C0. Let Ψ(i, j) be i.i.d

Ψ(i, j) =





+ 1√
qk

with probability q/2

− 1√
qk

with probability q/2

0 with probability 1− q

(2.14)

The lemma claims that:

Pr [|‖Ψx‖ − 1|] ≤ c1e
−c2kε2

(2.15)

For all x ∈ Sd−1 such that ‖x‖∞ ≤ η.

Furthermore, Matousek claims that the above bound for q is, up to a constant, tight.

We turn to discuss the FJLT algorithm. Notice that for n random vectors in Sd−1, with constant

probability, maxi ‖xi‖∞ ≤ O(
√

log(n)/d) (assuming n ≥ d). Also, the required expected number of non-

zeros in Ψ is O(kdq) = O(k2η2d). n random vectors in Rd can, therefore, be projected using a matrix

containing O(k3) entries (in expectancy). This is, of course, better than O(kd) for any k ∈ o(d1/2). The

FJLT algorithm therefore begins with isometrically rotating all incoming vectors xi such that the `∞ norms

of the resulting (rotated) vectors are all bounded by O(
√

log(n)/d) and then use a sparse projective matrix.

The result is recaped below:

Lemma 2.4.4 (Ailon, Chazelle [1]). Let Ψ = PHD be chosen according to the following distribution:

• H: The Walsh Hadamard d× d Matrix (deterministic).

• Ds: A diagonal matrix whose diagonal is random ±1 with probability 1/2

• P : A k by d matrix whose i.i.d entries are either zero with probability 1 − q or normally distributed

according to N(0, q−1) with probability q.

where q = Θ(ε3 log2(n)d−1).4 The distribution for Ψ exhibits the JL property. Moreover, applying Ψ to any
4 We assume that q < 1. if q ≥ 1 we set q = 1 and the claim is trivial due to [32]
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vector x ∈ Rd requires O(d log(d) + min{kd, log3(n)ε−2)} operations in expectancy.

Fig. 2.1: A sketch of the FJLT construction. The FJLT algorithm was given in [1] and recaped in lemma 2.4.4.

Given the formalization above in order to prove this lemma we only need show that

∀ x ∈ Sd−1 Pr[‖HDx‖∞ >
√

log(n)/d] ≤ 1/n. (2.16)

This can be easily seen by noticing that each H(i, j) = ±1/
√

d and so (HDx)(i) = 1√
d

∑d
j=1 b(j)x(j) where

b(j) are ±1 variables w.p 1/2 each. Using the Hoeffding bound and then a union bound for all coordinates

and and all vectors yields the desired result.

Finally, the running time can be thought of as O(d log(d) + k3). Where d log(d) operations are needed

to perform the Walsh Hadamard transform and O(k3) to apply the sparse projective matrix P .5

2.5 Our contributions

2.5.1 Fast linear transforms

The first improvement we propose is a slight revision to the FJLT algorithm. We notice that when k

is significantly smaller than d, the FJLT algorithm wastefully computes the entire Fourier of Hadamard

transforms. This is inefficient since at most O(k3) coefficient are required which is potentially much less

5 It is worth mentioning that this result holds also for mapping into Rk equipped with the `1 matric.
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than d. We show simple algorithms which compute partial Walsh Hadamard and partial Fourier transforms

in O(d log(k)) operations instead of O(d log(d)). This simple modification reduces the running of the FJLT

algorithm to O(d log(k) + k3) which gives an improvement over the inefficient construction whenever k ∈

o(poly(d)). This will be discussed in detail in chapter 3.

Another interesting fact is the following. Given any log(d)× d matrix over a finite alphabet A, one can

apply A to any vector in Rd in O(d) operations. Although similar results have been known for over fifty

years our construction is new and slightly more general. We nickname our algorithm the mailman algorithm

and we describe it in chapter ??. Combining the mailman algorithm with Achlioptas’s ±1 projection matrix

gives an optimal O(d) projection time for the case where k ∈ O(log(d)).

2.5.2 A two stage framework

Inspired by the ideas in [1] and later [34] we consider linear dimensionality reduction as a two stage process.

In the first stage, each vector x ∈ Sd−1 is rotated isometrically in Rd, using a random isometry Φ, such

that with high probability Φx lays in some smaller subset of Sd−1 which we denote by χ. A useful example

discussed above for χ is the set of unit vectors such that ‖x‖∞ ≤ η for some constant η. In the second stage,

the vectors Φx are projected into dimension k using a k × d matrix A. Our requirement from A is that

∀x ∈ χ Pr [|‖ADsx‖2 − 1| ≥ ε)] ≤ 1/n (2.17)

The matrix Ds is a diagonal random ±1 matrix. It is added so that A itself might be deterministic. In

words, the requirement from A is that it (composed with Ds) projects vectors from χ into Rk with high

probability and accuracy. There is no such guaranty for vectors not in χ. We say that χ is the probabilistic

domain of A. Intuitively, this requirement is easier to fulfill for a smaller χ. However, mapping all vectors

into a smaller χ (applying Φ) might require more randomness and computational effort. This intuitive notion

seems to repeat itself.

Chapter 4 is dedicated to characterizing the relation between any matrix A and its corresponding prob-

abilistic domain χ.
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2.5.3 Dense fast projective matrices

The accelerations described thus far all relay on the spareness of the projection matrix A. Their proofs relied

on the independence of A’s entries. We propose to replace the choice of A from sparse and random i.i.d to

dense and deterministic.

In chapter 5 we take A to be a ±1 four-wise independent matrix (definition 5.1.2). We show that one

can apply both A and its appropriate Φ in time O(d log(k)) for k ∈ O(d1/2−δ) for any positive constant δ.

This matches the FJLTr algorithm when k ∈ O((d log(d))1/3) but outperforms it when k ∈ O(d1/2−δ) and

k ∈ ω((d log(d))1/3).

The second construction, described in chapter 6, is a dense orthogonal ±1 matrix which can be applied

to any vector in Rd in linear time, i.e O(d). We term these matrices lean Walsh matrices. Since the trivial

lower bound on the running time of dimension reduction is O(d) searching for projections which require this

amount of time is worthwhile. We show that lean Walsh matrices are strictly better suited for this task then

sparse projections. It is, however, not clear if there exists and appropriate random rotation which is also

applicable in linear time.
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2.5.4 Results summary

Näıve or Slower Faster then näıve O(d log(k)) Optimal, O(d)

k in o(log d) JL, FJLT FJLTr, FWI JL + Mailman

k in ω(log d)

and o(poly(d))
JL FJLT FJLTr, FWI

k in Ω(poly(d))

and o((d log(d)1/3)
JL FJLT, FJLTr, FWI

k in ω((d log d)1/3)

and O(d1/2−δ)
JL FJLT, FJLTr FWI

k in O(d1/2−δ)

and k < d

JL, FJLT, FJLTr JL concatenation

Tab. 2.1: Result summary. Schematic comparison of asymptotic running time of six projection algorithms. 1) JL: a

näıve implementation of Johnson-Lindenstrauss. 2) FJLT: the fast JL transform by Ailon Chazelle [1]. 3)

FJLTr: a revised version of the FJLT algorithm, Chapter 3 and [2]. 4) FWI: A new two stage projection

process, chapter 5 and [2]. 5) JL concatenation: a concatenation of several independent projections. 6)

JL + Mailman: implementation of the Mailman algorithm [35] to Achlioptas’s result. The results termed

FJLTr, FWI, JL + mailman, and JL concatenation are described in this thesis.
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The rectangular k × d matrix A
Application

time
x ∈ χ if ‖x‖2 = 1 and:

Johnson, Lindenstrauss [3]
k rows of a random unitary matrix

O(kd)

Various Authors [32, 31, 33] i.i.d random entries O(kd)

Ailon, Chazelle [1] Sparse Gaussian entrees O(k3) ‖x‖∞ = O((d/k)−1/2)

Matousek [34] Sparse ±1 entries O(k2dη2) ‖x‖∞ ≤ η

This thesis [2]
4-wise independent ±1 matrix

(deterministic)
O(d log k) ‖x‖4 = O(d−1/4)

This thesis [36]
Any deterministic matrix

(deterministic)
? ‖x‖A = O(k−1/2)

This thesis [36]
Lean Walsh Transform

(deterministic)
O(d) ‖x‖∞ = O(k−1/2d−δ)

Tab. 2.2: Different distributions for k × d matrices and the subsets χ of Sd−1 for which they constitute a random

projection (composed with a random diagonal ±1 matrix). The meaning of ‖ · ‖A is given in Definition

4.2.1.
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3. REVISED FAST JOHNSON LINDENSTRAUSS TRANSFORM

In this chapter we review the Fast Johnson Lindenstrauss transform result by Ailon and Chazelle [?] and

improve its running time by revising it slightly. The FJLT algorithm (recaped in subsection 3.1) performers

dimensionality reduction from dimension d to dimension k in O(d log(d) + k3) operations (per vector).

This running time cannot be optimal. One way to see this is the case where k ∈ o(log(d)). In this case

dk ∈ o(d log(d) + k3) and the FJLT algorithm is slower than a näıve implementation of the JL lemma. This

chapter is dedicated to revising the FJLT to use efficient versions of the Walsh Hadamard and Discrete Fourier

transforms. Other than using more efficient transforms the revised FJLT algorithm (FJLTr) is identical to

the FJLT algorithm and does not need to be reproved. This chapter’s results appeared in [2] and in [37].

3.1 Review of the FJLT algorithm

The FJLT result claims that a composition of three matrices PHD exhibits the JLP for P , H, and D being:

• D: A diagonal matrix who’s diagonal is random ±1 with probability 1/2

• H: Either a Walsh Hadamard d× d Matrix or a d× d Discrete Fourier matrix.

• P : A k by d matrix who’s i.i.d entries are either zeros with probability 1 − q or normally distributed

according to N(0, q−1)

where q = Θ(ε3 log2(n)d−1) and we assume that q < 1. (if q ≥ 1 we set q = 1 and the claim is trivial due to

prior constructions).

Lemma 3.1.1 (Ailon, Chazelle [1]). Let Ψ = PHD be chosen according to the distribution described above,

then Ψ exhibits the JL property. Moreover, applying Ψ to any vector in x ∈ Rd requires O(d log(d) +



min{kd, log3(n)ε−2)} operations in expectancy.

The running time required for applying Ψ depends on the number of nonzeroes, nnnz, in P , E(nnnz) =

kdq = kε3 log2(n). By recalling that k = Θ(log(n)/ε2) and viewing ε as a constant we get that E(nnnz) =

O(k3). Using Markov’s inequality for the random variable nnnz gives Pr(nnnz > 1
δ E(nnnz)) ≤ δ. Thus, the

case where nnnz > 1
δ E(nnnz) can be added to the overall failure probability and the number of non-zeros in

P can be thought of as O(k3).

Observe that computing Ψx = PHDx as proposed by the FJLT algorithm, i.e, P (H(Dx)), is wasteful.

The number of coefficients needed is at most the number of non-zeros in P which is O(k3). The number of

coefficients computed by H(Dx)) is d which is potentially mush larger then k3. Clearly, computing only the

relevant O(k3) coefficients is beneficial. The next two sections describe how to efficiently achieve this for

both the Walsh Hadamard and the Distraite Fourier transforms.

3.2 Trimmed Walsh Hadamard transform

The Walsh Hadamard transform of a vector x ∈ Rd is the result of the matrix-vector multiplication Hx

where H is a d × d matrix whose entries are H(i, j) = (−1)〈i,j〉. Here 〈i, j〉 means the dot product over F2

of the bit representation of i and j as binary vectors of length (log d).

The number of operation to compute a single coefficient (Hx)(i) =
∑d−1

i=0 (−1)〈i,j〉x(j), denoted by T (d, 1),

is O(d). Moreover, all d coefficients can be computed in O(d log(d)). We remind the reader that the Walsh-

Hadamard matrix (up to normalization) can be recursively described as

H1 =




1 1

1 −1


 , Hq =




Hq/2 Hq/2

Hq/2 −Hq/2




Claim 3.2.1. Any k′ coefficients of a d×d Hadamard transform can be computed in T (d, k′) = O(d log(k′))

operations.

Proof. Computing k′ coefficients out of a d × d Hadamard transform H can be viewed as computing the

outcome of PHx where P is k′ × d matrix containing k′ nonzeros, one per row. Define x1 and x2 to be the
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first and second halves of x. Similarly, we define P1 and P2 as the left and right halves of P respectively.

PHqx =
(

P1 P2

)



Hq/2 Hq/2

Hq/2 −Hq/2







x1

x2




=P1Hq/2(x1 + x2) + P2Hq/2(x1 − x2)

(3.1)

Let P1 and P2 contain k′1 and k′2 nonzeros respectively, k1 + k2 = k′. Equation 3.1 yields the following

recurrence relation T (d, k′) = T (d/2, k1) + T (d/2, k2) + d. The base cases are T (d, 0) = 0 and T (d, 1) = d.

We use induction to show that T (d, k′) ≤ 2d log2(k′ + 1).

T (d, k) = T (d/2, k′1) + T (d/2, k′2) + d By the recusance relation

≤ 2
d

2
log2(k

′
1 + 1) + 2

d

2
log2(k

′
2 + 1) + d By the induction assumption

≤ 2d log2(
√

2(k′1 + 1)(k′2 + 1))

≤ 2d log2(k
′
1 + k′2 + 1) for all k′1 + k′2 = k′ ≥ 1

≤ 2d log2(k
′ + 1)

The last sequence of inequalities together with the base cases also give a simple and efficient Divide and

Conquer algorithm.

Fig. 3.1: A diagram describing the trimmed Walsh Hadamard transform.
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3.3 Trimmed Discrete Fourier Transform

Since in [1] both Hadamard and Fourier transforms were considered, for completeness, we also remind the

reader the Cooley Tukey DFT (Discrete Fourier Transform) algorithm and describe a simple trimmed Version

of it.

The discrete Fourier Transform fx = DFT (x) for a vector x ∈ Rd is given by fx(i) =
∑d−1

j=0 e2π
√−1ij/d.

Thus, any single coefficient fx(i) is easily computed in O(d) operations. Fast DFT algorithms compute all

d coefficients in O(d log(d)) operations instead of O(d2). The Coley Tukey algorithm is a generalization of

the more well known Radix-2 algorithm. A sketch of the algorithm is shown in figure 3.3.

Fig. 3.2: A sketch describing the famous Fast DFT Coley Tukey Algorithm. The sketch does not show the multipli-

cation by twiddle factors of the temporary array (in the middle).

In order to compute k′ coefficients from DFT (x) we divide x into L blocks of size d/L and begin with

the first step of the Cooley Tukey algorithm which performs d/L DFT’s of size L between the blocks (and

multiplies them by twiddle factors). In the second step, instead of computing DFT’s inside each block, each

coefficient is computed directly, by summation, inside its block. These two steps require (d/L) ·L log(L) and

k′d/L operations respectively. By choosing k′/ log(k′) ≤ L ≤ k′ we achieve a running time of O(d log(k′)).
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Fig. 3.3: A sketch describing the trimmed DFT Coley Tukey Algorithm. If k′/ log(k′) ≤ L ≤ k′O(1) computing k′

coefficient requires only O(d log(k′)) operations.

3.4 FJLTr conclusion

The proposed revised FJLT algorithm (FJLTr) is thus identical to the original FJLT algorithm except for

replacing the application of Ψ as P (H(Dx)) by (PH)(Dx) using the fast trimmed transforms above. Taking

k′ = k3 gives the running time of the FJLTr algorithm to be O(d log(k) + k3). This is asymptotically faster

then the näıve O(dk) for arbitrary small values of k. The FJLTr and FJLT algorithms perform asymptotically

identical when k = O(poly(d)). However, for any k ∈ o(poly(d)) the FJLTr algorithm outperforms the FJLT

algorithm. Table 3.4 summarizes this chapter’s result.
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Näıve or Slower Faster then näıve O(d log(k))

k in o(log d) JL,FJLT FJLTr

k in ω(log d)

and o(poly(d))
JL FJLT FJLTr

k in Ω(poly(d))

and o(d log(d)1/3)
JL FJLT, FJLTr

k in ω((d log d)1/3)

and o(d1/2)
JL FJLT, FJLTr

k in Ω(d1/2)

and O(d)
JL, FJLT, FJLTr

Tab. 3.1: Result summary. Schematic comparison of asymptotic running time of three projection algorithms. a

näıve implementation of Johnson-Lindenstrauss (JL), the fast Johnson-Lindenstrauss transform by Ailon

Chazelle (FJLT), and the revised Fast Johnson-Lindenstrauss transform (FJLTr)

.
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4. TWO STAGE PROJECTION PROCESS

Given a fixed matrix A we consider the concentration behavior of a the random variable Y = ‖ADsx‖2
where Ds is a random ±1 diagonal matrix. If Y concentrates sufficiently well around the value ‖x‖2 we get

that ADs behaves like a good random projection for x. The concentration of Y very much depends on both

A and x. This chapter is dedicated to exploring the relation between A, x, and the concentration of Y .

Namely, we seek a set χ(A) ⊂ Rd such that x ∈ χ(A) guaranties that ADs is a good random projection for

x.

4.1 Concentration result

Since our mapping is linear we can assume without loss of generality that all the vectors in χ have norm 1.

We say that a k × d matrix, A, is a good projection for χ if:

∀x ∈ χ Pr[|‖ADsx‖2 − 1| ≥ ε] ≤ 1/n (4.1)

for some constants n and 0 < ε < 1/2. We also denote by Ds a diagonal matrix who’s entrees are ±1 with

probability 1/2 each.1

Consider the term ADsx, it can be expanded into the sum ADsx =
∑d

i=1 A(i)x(i)s(i), where s(i) are

random i.i.d ±1 variables. One can consider this to be a random walk in dimension k where the i’th step

is the vector A(i)x(i) ∈ Rk. The variable Y is thus the distance from the origin that such a random walk

yields. We measure the concentration of Y using a result by Talagrand [38]. His result actually holds in a

much more general setting of convex Lipschitz bounded functions over Banach spaces. In our case, the finite
1 Notice that if A is taken to be any of the known constructions (denoted by Ψ in the introduction) adding Ds does not

change their distributions.



k dimensional vector space suffices. Notice that we can replace the term ADsx with ADxs where Dx is a

diagonal matrix holding on its diagonal the values of x, i.e Dx(i, i) = x(i) and s is a vector of random ±1.

The convex function in mind, is a function f(s) = ‖Ms‖ on the random sign vector s, where M = ADx.

Lemma 4.1.1 (Variation on Talagrand [38]). For a matrix M and a random ±1 vector s. Define the random

variable Y = ‖Ms‖2. Denote by µ the median of Y and σ = ‖M‖2→2 the spectral norm of M , then:

Pr[|Y − µ| > ε] < 4e−ε2/8σ2
(4.2)

The lemma asserts that ‖ADsx‖ distributes like a (sub) Gaussian around it’s median, with standard

deviation 2σ. Let us first compute the expected value of Y 2 = ‖ADsx‖2 by expanding the square term.

E(Y 2) = E(‖ADsx‖22) = E




d∑

i,j=1

〈A(i), A(j)〉x(i)x(j)s(i)s(j)


 (4.3)

=
d∑

i=1

‖A(i)‖2x2(i) = ‖x‖2 = 1 (4.4)

The last equation holds if the columns of A are normalized. From this point on we shell assume that this is

the case. To estimate the median, µ, we substitute t2 → t′ and compute:

E[(Y − µ)2] =
∫ ∞

0

Pr[(Y − µ)2] > t′]dt′

≤
∫ ∞

0

4e−t′/(8σ2)dt′ = 32σ2

Furthermore, (E[Y ])2 ≤ E[Y 2] = 1, and so E[(Y − µ)2] = E[Y 2]− 2µE[Y ] + µ2 ≥ 1 − 2µ + µ2 = (1− µ)2.

Combining, |1− µ| ≤ √
32σ. We set ε = t + |1− µ|:

Pr[|Y − 1| > ε] ≤ 4e−ε2/32σ2
, for ε > 2|1− µ| (4.5)

If we set k = 33 log(n)/ε2 (for log(n) larger than a sufficient constant) and set σ ≤ k−1/2 equation 4.5 meets

the requirements of equation 4.1. Moreover, since |1− µ| ≤ √
32σ the condition ε > 2|1− µ| is met for any

constant ε. We see that σ = ‖ADx‖2→2 ≤ k−1/2 is a sufficient condition for the projection to succeed w.h.p.
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4.2 χ(A) the probabilistic Image

As discussed above the value of the term σ = ‖ADx‖ plays a crucial role in the random projection concen-

tration phenomenon. We formally define ‖x‖A as ‖ADx‖2→2 below.

Definition 4.2.1. For a given matrix A ∈ Rk×d we define the vector seminorm of x ∈ Rd with respect to A

as ‖x‖A ≡ ‖ADx‖2→2 where Dx is a diagonal matrix such that Dx(i, i) = x(i).

Claim 4.2.1. Let A be a constant matrix such that no column of A has zero norm. ‖x‖A induces a proper

norm on Rd.

Proof. Scalability) For any x and a constant c, ‖cx‖A = |c| · ‖x‖A.

positive definiteness) For any x > 0 and a matrix A with no zero columns ‖x‖A > 0. To see this we multiply

ADx from the left by a test vector yT .

(yT ADx)(i) = 〈yT , A(i)〉x(i) (4.6)

‖ADx‖22→2 ≤ ‖yT ADx‖22 (4.7)

=
d∑

i=1

〈yT , A(i)〉2x2(i) (4.8)

The last sum is larger the zero if y is set to A(i) for i such that |x(i)| > 0.

The triangle inequality) For any x1 and x2 we have:

‖x1 + x2‖A = ‖ADx1+x2‖2→2 (4.9)

= ‖ADx1 + ADx2‖2→2 (4.10)

≥ ‖ADx1‖2→2 + ‖ADx2‖2→2 (4.11)

= ‖x1‖A + ‖x2‖A (4.12)

In the case of dense random projections all columns of A have norm 1 and thus ‖x‖A induces a proper

norm. Also, recall from the previous section that a sufficient condition on x is that ‖ADx‖ = ‖x‖A ≤
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O(k−1/2). This gives us a concise geometric description of χ as the intersection of the Euclidian unit sphere

and a ball of radius k−1/2 in A-norm.

Definition 4.2.2. Let A be a column normalized matrix. Let n and 0 < ε < 1/2 be constants and let

k = 33 log(n)/ε2.

χ(A, ε, n) ≡ Sd−1
⋂ {

x | ‖x‖A ≤ k−1/2
}

(4.13)

Lemma 4.2.1. For any column normalized matrix A and χ as in definition 4.2.2 the following holds:

∀x ∈ χ(A, ε, n) Pr
[∣∣∣‖ADsx‖2 − 1

∣∣∣ ≥ ε)
]
≤ 1/n (4.14)

Proof. To see this we substitute ‖x‖2A = σ2 ≤ 1/k into equation 4.5.

4.3 `p bounds on A-norms

We turn to bound ‖x‖A for a given A and x using more manageable terms. We use ‖x‖p to denote the

p-norm of x, ‖x‖p =
(∑d

i=1 |xi|p
)1/p

where 1 ≤ p < ∞ and ‖x‖∞ = maxd
i=1 |xi|. The dual norm index q

is defined by the solution to 1/q + 1/p = 1. We remind the reader that ‖x‖p = supy,‖y‖q=1 xT y. For a real

k × d matrix A, the matrix norm ‖A‖p1→p2
is defined as the operator norm of A : (Rd, `p1) → (Rk, `p2)

‖A‖p1→p2
= sup

x∈Rd,‖x‖p1
=1

‖Ax‖p2
= sup

x∈Rd,‖x‖p1
=1

sup
y∈Rk,‖x‖q2

=1

yT Ax (4.15)

Lemma 4.3.1. For any dual norm indices p and q

‖x‖A ≤ ‖x‖2p‖AT ‖2→2q (4.16)

Proof. We multiply the matrix ADx from the left by a test vector y ∈ Rk.

‖x‖2A = ‖ADx‖22→2 = max
y,‖y‖2=1

‖yT ADx‖22 (4.17)

= max
y,‖y‖2=1

d∑

i=1

x2(i)(yT A(i))2 (4.18)

≤
(

d∑

i=1

x2p(i)

)1/p (
max

y,‖y‖2=1

d∑

i=1

(yT A(i))2q

)1/q

(4.19)

= ‖x‖22p‖AT ‖22→2q (4.20)
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The transition from the second to the third line follows from Hölder’s inequality which states that for vectors

z1, z2 ∈ Rd,
∑d

i=1 z1(i)z2(i) ≤ ‖z1‖p‖z2‖q for dual norms p and q.

4.4 Conclusion

This chapter gave two results which together provide the skeleton on which we build from this point on.

First, a matrix A can be used to project any vector x such ‖x‖A ≤ k−1/2. Second, ‖x‖A ≤ ‖x‖2p‖AT ‖2→2q

for any dual norms p and q. This gives a convenient relation between A and χ(A), namely

{x ∈ Sd−1|‖x‖2p‖AT ‖2→2q ≤ k−1/2} ⊂ χ(A) (4.21)

Our framework is thus as follows: Choose a column normalized matrix A ∈ Rk×d and a norm index q.

Compute ‖AT ‖2→2q and set η = k−1/2/‖AT ‖2→2q. The randomized isometry Φ is then required to achieve

w.h.p ‖Φx‖2p ≤ η. Given the results of this chapter, such a construction guaranties that the combination

ADsΦ exhibits the JL property.

Note that A might consist of more the k rows which might help in reducing its operator norm. In this

case ADsΦ is still a good random projection matrix but it does not necessarily exhibit the JL property. This

is the case, for example, in chapter 6.
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5. FOUR-WISE INDEPENDENCE AND RANDOM PROJECTIONS

In previous sections we showed that the running time of the FJLT algorithm can be reduced to O(d log(k)+k3)

by using efficient partial fast transforms. This, however, reduces to O(k3) when d log(k) = o(k3). As claimed

in the introductory chapter of this thesis and in [34] the k3 term is unavoidable if one uses sparse random i.i.d

projection matrices. The goal of this chapter is to show that fixed dense projections can be used to improve

the running time to O(d log(k)) for larger values of k, namely, for k ∈ d1/2−δ for any positive constant δ.

This would require the use of a two stage projection (chapter 4). We will use a k×d four-wise independent

matrix (definition ??) B and claim that χ(B) = {x ∈ Sd−1 | ‖x‖4 = O(d−1/4)}. We further claim that there

exists a mapping Φ such that for any x ∈ Sd−1 with high probability Φ(x) ∈ χ(B). Finally, we claim that

both Φ and B can be applied in O(d log(d)) operations to any vector. Since we are currently interested in

the case where k ∈ O(poly(d)) this also serves as a solution in O(d log(k)) running time.

Unfortunately, k×d four-wise independent matrices only exist when k ∈ O(d1/2). Moreover, the mapping

Φ only succeeds with high enough probability when k ∈ O(d1/2−δ) for a constant positive δ. We thus improve

on the FJLT algorithm for values of k such that k ∈ O(d1/2−δ) and k ∈ θ((d log(d))1/3). This chapters main

contribution is given formally in theorem 5.0.1.

Theorem 5.0.1. Let δ > 0 be some arbitrarily small constant. For any d, k satisfying k ≤ d1/2−δ there

exists an algorithm constructing a random matrix A of size k × d satisfying JLP, such that the time to

compute x 7→ Ax for any x ∈ Rd is O(d log k). The construction uses O(d) random bits and applies to both

the Euclidean and the Manhattan cases.

We will prove a slightly weaker running time of O(d log(d)) since, as explained above, we are interested

in the case where k ∈ O(poly(d)) and so O(d log(d)) = O(d log(k)). We will however provide in section 5.5



a sketch for reducing our constructions running time to O(d log k) for smaller values of k.

5.1 Tools from Error Correcting Codes

Definition 5.1.1. A matrix A ∈ Rk×d is a code matrix if every row of A is equal to some row of Hd

multiplied by
√

d/k. The normalization is chosen so that columns have Euclidean norm 1.

Let A be a code matrix, as defined above. The columns of A can be viewed as vectors over F2 under the

usual transformation ((+) → 0, (−) → 1). Clearly, the set of vectors thus obtained are closed under addition,

and hence constitute a linear subspace of Fm
2 . Conversely, any linear subspace V of Fm

2 of dimension ν can

be encoded as an m × 2ν code matrix (by choosing some ordered basis of V ). We will borrow well known

constructions of subspaces from coding theory, hence the terminology. Incidentally, note that Hd encodes

the Hadamard code, equivalent to a dual BCH code of designed distance 3.

Definition 5.1.2. A code matrix A of size k × d is a-wise independent if for each 1 ≤ i1 < i2 < . . . <

ia ≤ k and (b1, b2, . . . , ba) ∈ {+1,−1}a, the number of columns A(j) for which (A(j)
i1

, A
(j)
i2

, . . . , A
(j)
ia

) =

k−1/2(b1, b2, . . . , ba) is exactly d/2a.

Lemma 5.1.1. There exists a 4-wise independent code matrix of size k×fBCH(k) , where fBCH(k) = Θ(k2).

The family of matrices is known as binary dual BCH codes of designed distance 5. Details of the

construction can be found in [?].

Finally, we remind the reader the results of lemmas 4.2.1 and 4.3.1. Let Dx denote the diagonal matrix

such D(i, i) = x(i), and ‖x‖B ≡ ‖BDx‖2→2. First, we have that if ‖x‖B = O(k−1/2) then the matrix

BDs exhibits the JL property with respect to x, where Ds is a diagonal random i.i.d ±1 matrix. Second

‖x‖B ≤ ‖BT ‖2→4‖x‖4. We thus turn to compute the two different factors ‖BT ‖2→4 and ‖x‖4.

5.2 Bounding ‖BT‖2→4 Using BCH Codes

Lemma 5.2.1. Assume B is a k × d 4-wise independent code matrix. Then ‖BT ‖2→4 ≤ (3d)1/4k−1/2.
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Proof. For y ∈ `k
2 , ‖y‖ = 1,

‖yT B‖44 = dEj∈[d][(yT B(j))4]

= dk−2
k∑

i1,i2,i3,i4=1

Ebi1 ,bi2 ,bi3 ,bi4
[yi1yi2yi3yi4bi1bi2bi3bi4 ]

= dk−2(3‖y‖42 − 2‖y‖44) ≤ 3dk−2 ,

(5.1)

where bi1 through bik
are independent random {+1,−1} variables. We now use the BCH codes. Let B̃

denote the k × fBCH(k) matrix from the Lemma 5.1.1 (we assume here that k = 2a − 1 for some integer a;

This is harmless because otherwise we can reduce onto some k′ = 2a − 1 such that k/2 ≤ k′ ≤ k and pad

the output with k − k′ zeros). In order to construct a matrix B of size k × d for k ≤ d1/2−δ, we first make

sure that d is divisible by fBCH(k) (by at most multiplying d by a constant factor and padding with zeros),

and then define B to be d/fBCH(k) copies of B̃ side by side. Clearly B remains 4-wise independent. Note

that B may no longer be a code matrix, but x 7→ Bx is still computable in time O(d log k) by performing

d/fBCH(k) Walsh transforms on blocks of size fBCH(k).

5.3 Controlling ‖x‖4 for k < d1/2−δ

We define a randomized orthogonal transformation Φ that is computable in O(d log d) time and succeeds

with probability 1−O(e−k) for all k < d1/2−δ. Success means that ‖Φx‖4 = O(d−1/4). (Note: Both big-O’s

hide factors depending on δ). Note that this construction gives a running time of O(d log d). We discuss

later how to do this for arbitrarily small k with running time O(d log k).
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The basic building block is the product HD′, where H = Hd is the Walsh-Hadamard matrix and D′ is

a diagonal matrix with random i.i.d. uniform {±1} on the diagonal. Note that this random transformation

was the main ingredient in [?]. Let H(i) denote the i’th column of H.

We are interested in the random variable X = ‖HD′x‖4. We define M as the d× d matrix with the i’th

column M (i) being xiH
(i), we let p = 4 (q = 4/3), and notice that X is the norm of the Rademacher random

variable in `d
4 corresponding to M (using the notation of Section ??). We compute the deviation σ,

σ = ‖M‖2→4 = ‖MT ‖4/3→2

= sup
y∈`k

4/3
‖y‖4/3=1

(∑

i

x2
i (y

T H(i))2
)1/2

≤
(∑

x4
i

)1/4

sup

(∑

i

(yT H(i))4
)1/4

= ‖x‖4‖HT ‖ 4
3→4 .

(5.2)

(Note that HT = H.) By the Hausdorff-Young theorem, ‖H‖ 4
3→4 ≤ d−1/4. Hence, σ ≤ ‖x‖4d−1/4. We now

get by Theorem ?? that for all t ≥ 0,

Pr[|‖HD′x‖4 − µ| > t] ≤ 4e−t2/(8‖x‖24d−1/2) , (5.3)

where µ is a median of X.

Claim 5.3.1. µ = O(d−1/4) .

Proof. To see the claim, notice that for each separate coordinate, E[(HD′x)4i ] = O(d−2) and then use linear-

ity of expectation to get E[‖HD′x‖44] = O(d−1). By Jensen’s inequality, E[‖HD′x‖b
4] ≤ E[‖HD′x‖44]b/4 =

O(d−b/4) for b = 1, 3. Now

E[(‖HD′x‖4 − µ)4] =
∫ ∞

0

Pr[(‖HD′x‖4 − µ)4 > s]ds

≤
∫ ∞

0

4e−s1/2/(8‖x‖24d−1/2)ds

= O(d−1) .

This implies by multiplying the LHS out that −γ1d
−3/4µ−γ2d

−1/4µ3 +µ4 ≤ γ3d
−1, where γi > 0 are global

constants for i = 1, 2, 3. The statement of the claim immediately follows.
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Let c9 be such that µ4 ≤ c9d
−1/4. We weaken inequality (5.3) using the last claim to obtain the following

convenient form:

Pr[‖HD′x‖4 > c9d
−1/4 + t] ≤ 4e−t2/(8‖x‖24d−1/2) . (5.4)

In order to get a desired failure probability of O(e−k) set t = c8k
1/2‖x‖4d−1/4. For k < d1/2−δ this gives

t < c8d
−δ/2‖x‖4. In other words, with probability 1−O(e−k) we get

‖HD′x‖4 ≤ c9d
−1/4 + c8d

−δ/2‖x‖4 .

Now compose this r times: Take independent random diagonal {±1} matrices D′ = D(1), D(2), . . . , D(r) and

define Φ(r)
d = HD(r)HD(r−1) · · ·HD(1). Using a union bound on the conditional failure probabilities, we

easily get:

Lemma 5.3.1. [`4 reduction for k < d1/2−δ] With probability 1−O(e−k)

‖Φ(r)x‖4 = O(d−1/4) (5.5)

for r = d1/2δe.

Note that the constant hiding in the bound (5.5) is exponential in 1/δ.

Combining the above, the random transformation A = BDΦ(r) has Euclidean JLP for k < d1/2−δ, and

can be applied to a vector in time O(d log d). This proves the Euclidean case of Theorem 5.0.1.

5.4 Reducing to Manhattan Space for k < d1/2−δ

We sketch this simpler case. As we did for the Euclidean case, we start by studying the random variable

W ∈ `k
1 defined as W = ‖k1/2BDx‖1 for B as described in Section ?? and D a random ±1-diagonal matrix.

In order to characterize the concentration of W (the norm of a Rademacher r.v. in `k
1) we compute the

deviation σ, and estimate a median µ. As before, we set M to be the k × d matrix with the i’th column

being k1/2B(i)xi.
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σ = sup
y∈`k∞
‖y‖=1

‖yT M‖2 = sup

(
k

d∑

i=1

x2
i (y

T B(i))2
)1/2

≤ sup k1/2‖x‖4‖yT B(i)‖4 = k1/2‖x‖4‖BT ‖∞→4

(5.6)

Using the tools developed in the Euclidean case, we can reduce ‖x‖4 to O(d−1/4) with probability 1 −

O(e−k) using Φr(d), in time O(d log d) (in fact, O(d log k) using the improvement from Section 5.5). Also we

already know from Section 5.2 that ‖BT ‖2→4 = O(d1/4k−1/2) if B is comprised of k × fBCH(k) dual BCH

codes (of designed distance 5) matrices side by side (assume fBCH(k) divides d). Since ‖y‖∞ ≥ k−1/2‖y‖2

for any y ∈ `k, we conclude that ‖BT ‖∞→4 = O(d1/4). Combining, we get σ = O(k1/2). We now estimate

the median µ of W .

In order to calculate µ we first calculate E(W ) = kE[|P |] where P is any single coordinate of k1/2BDx.

We follow (almost exactly) a proof by Matousek in [34] where he uses a quantitative version of the Central

Limit Theorem by König, Schütt, and Tomczak [39].

Lemma 5.4.1. [König-Schütt-Tomczak] Let z1 . . . zd be independent symmetric random variables with

∑d
i=1 E[z2

i ] = 1, let F (t) = Pr[
∑d

i=1 zi < t], and let ϕ(t) = 1
2π

∫ t

−∞ e−x2/2dx. Then

|F (t)− ϕ(t)| ≤ C

1 + |t|3
d∑

i=1

E[|zi|3]

for all t ∈ R and some constant C.

Clearly we can write P =
∑d

i=1 zi where zi = D′
ixi and each D′

i is a random±1. Note that
∑d

i=1 E[|zi|3] =

‖x‖33. Let β be the constant
∫∞
−∞ |t|dϕ(t) (the expectation of the absolute value of a Gaussian).

|E[|P |]− β| =
∣∣∣∣
∫ ∞

−∞
|t|dF (t)−

∫ ∞

−∞
|t|dϕ(t)

∣∣∣∣

≤
∫ ∞

−∞
|F (t)− ϕ(t)| dt

≤ ‖x‖33
∫ ∞

−∞

C

1 + |t|3 dt .

We claim that ‖x‖33 = O(k−1). To see this, recall that ‖x‖2 = 1, ‖x‖4 = O(d−1/4). Equivalently, ‖xT ‖2→2 = 1

and ‖xT ‖4/3→2 = O(d−1/4). By applying Riesz-Thorin, we get that ‖x‖3 = ‖xT ‖3/2→2 = O(d−1/6), hence

‖x‖33 = O(d−1/2). Since k = O(d1/2) the claim is proved.
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By linearity of expectation we get E(W ) = kβ(1±O(k−1)). We now bound the distance of the median

from the expected value.

|E(W )− µ| ≤ E[|W − µ|]

=
∫ ∞

0

Pr[|W − µ| > t]dt

≤
∫ ∞

0

4e−t2/(8σ2)dt = O(k1/2)

(we used our estimate σ = O(k1/2) above.) We conclude that µ = kβ(1 + O(k−1/2)). This clearly shows

that (up to normalization) the random transformation BDΦ(r) (where r = d1/δe) has the JL property with

respect to embedding into Manhattan space. The running time is O(d log d).

5.5 Reducing the running time to O(d log k) for small k

Recall the construction in Section ??: δ > 0 is an arbitrarily small constant, we assume that k ≤ d1/2−δ,

that kδ is an integer and that β = fBCH(k)kδ divides d (all these requirements can be easily satisfied by

slightly reducing δ and at most doubling d). The matrix B is of size k × d, and was defined as follows:

B = (Bk Bk · · ·Bk) ,

where Bk is the k × fBCH(k) code matrix from Lemma 5.1.1. Let B̂ denote kδ copies of Bk, side by

side. So B̂ is of size k × β and B consists of d/β copies of B̂. As in Section ?? we start our construction

by studying the distribution of the `2 estimator Y = ‖BDx‖2, where D is our usual random ±1 diagonal

matrix. Going back to (??) (recall that M is the matrix whose i’th column M (i) is xiB
(i)), we recompute

the deviation σ:

σ = ‖M‖2→2 = sup
y∈`k

2
‖y‖=1

‖yT M‖2

= sup

(
d∑

i=1

x2
i (y

T B(i))2
)1/2

= sup




d/β∑

j=1

∑

i∈Ij

x2
i (y

T B(i))2




1/2

,
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where Ij is the j’th block of β consecutive integers between 1 and d. Applying Cauchy-Schwartz, we get

σ ≤ sup
y∈`k

2
‖y‖=1




d/β∑

j=1

‖xIj
‖24‖yT B̂‖24




1/2

=
(
sup ‖yT B̂‖4

)
‖x‖(4,2) = ‖B̂T ‖2→4‖x‖(4,2) ,

(5.7)

where ‖ · ‖(p1,p2) is defined by

‖x‖(p1,p2) =




d/β∑

j=1

‖xIj
‖p2

p1




1/p2

and xIj
∈ `β

p1
is the projection of x onto the set of coordinates Ij . Our goal, as in Section ??, is to

get σ = O(k−1/2). By the properties of dual BCH code matrices (Lemma 5.2.1), we readily have that

‖B̂T ‖2→4 = O((fBCH(k)kδ)1/4k−1/2) which is O(kδ/4) by our construction. We now need to somehow

”ensure” that ‖x‖(4,2) = O(k−1/2−δ/4) in order to complete the construction.

As before, we cannot directly control x (and its norms), but we can multiply it by random orthogonal

matrices without losing `2 information. Let H ′ be a block diagonal d × d matrix with d/β blocks of the

Walsh-Hadamard matrix Hβ :

H ′ =




Hβ

Hβ

. . .

Hβ




.

Let D′ be a random diagonal d× d matrix over ±1. The random matrix H ′D′ is orthogonal. We study the

random variable X ′ = ‖H ′D′x‖(4,2). Let M ′ be the matrix with the i’th column M ′(i) defined as xiH
′(i).

We notice that X ′ is the norm of the Rademacher random variable in `d
(4,2) corresponding to M .

Remark: The results on Rademacher random variables, presented in Section ??, apply also to ”nonstan-

dard” norms such as ‖ · ‖(p1,p2). The dual of ‖ · ‖(p1,p2) is ‖ · ‖(q1,q2), where q1, q2 are the usual dual norm

indices of p1, p2, respectively. It is an exercise to check that ‖x‖(p1,p2) = sup‖y‖(q1,q2)=1 xT y. We compute
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the deviation σ′ and a median µ′ of X ′ (as we did in (5.2)):

σ′ = ‖M‖2→(4,2) = ‖MT ‖(4/3,2)→2

= sup
y∈`k

(4/3,2)
‖y‖=1

(∑

i

x2
i (y

T H(i))2
)1/2

= sup




d/β∑

j=1

∑

i∈Ij

x2
i (y

T H ′(i))2




1/2

≤ sup




d/β∑

j=1

‖xIj
‖24‖yT

Ij
Hβ‖24




1/2

≤ sup




d/β∑

j=1

‖xIj‖24‖yIj‖24/3‖HT
β ‖24/3→4




1/2

= ‖Hβ‖4/3→4 sup




d/β∑

j=1

‖xIj
‖24‖yIj

‖24/3




1/2

,

where the first inequality is Cauchy-Schwartz. By the inequality (
∑

j Aj)1/2 ≤ ∑
j A

1/2
j holding for all

nonnegative A1, A2, . . . , we get

σ′ ≤ ‖Hβ‖4/3→4 sup
y∈`k

(4/3,2)
‖y‖=1

d/β∑

j=1

‖xIj‖4‖yIj‖4/3

≤ ‖Hβ‖4/3→4‖x‖(4,2) .

(The rightmost inequality is from the fact that
∑d/β

j=1 ‖yIj‖24/3 = 1 and the definition of ‖x‖(4,2).) By

Hausdorff-Young, ‖Hβ‖4/3→4 ≤ β−1/4 = O(k−1/2−δ/4), hence σ′ = O(k−1/2−δ/4‖x‖(4,2)). Any median µ′ of

X ′ is O(k−1/2−δ/4) (details omitted). Applying Theorem ??, we get that for all t ≥ 0,

Pr[X ′ > µ′ + t] ≤ 4e−t2/(8σ′2)

≤ ĉ1 exp{−ĉ2t
2k1+δ/2/‖x‖2(4,2)} ,

for some global ĉ1, ĉ2 > 0. Setting t = Θ(‖x‖(4,2)k
−δ/4), we get that

Pr[‖H ′D′x‖(4,2) > µ′ + t] = O(e−k) .

Similarly to the arguments leading to Lemma 5.3.1, and with possible readjustment of the parameter δ, we

get using a union bound
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Lemma 5.5.1. [`(4,2) reduction for k < d1/2−δ] Let H ′, D′ be as above, and let Φ′ = H ′D′. Define Φ′(r)

to be a composition of r i.i.d. matrices, each drawn from the same distribution as Φ′. Then With probability

1−O(e−k)

‖Φ′(r)x‖(4,2) = O(k−1/2−δ/4)

for r = d1/2δe.

Combining the above, the random transformation A = BDΦ′(r) has the JL Euclidean property for

k < d1/2−δ, and can be applied to a vector in time O(d log k), as required. Indeed, multiplying by Φ′ is done

by doing a Walsh transform on d/β blocks of size β each, resulting in time O(d log k). Clearly the number

of random bits used in choosing A is O(d).

5.6 JL concatenation

The previous section produced a fast random projection from dimension d to k in O(d log(k)) as long as

k ≤ d1/2−δ for any constant positive δ. It, however, fails to exhibit the JL property for larger values of k.

The only construction described thus far that exhibits the JL property for these values of k is the trivial

one which requires O(kd) operations to apply. This sudden increase in running time for a small increase

in the target dimension k is unnatural. This section resolves this problem and allows to smoothly increase

the running time from O(d log(k)) to O(dk) as k grows. The idea described is a natural one. We claim

that a concatenation of projections which independently exhibit the JL property also exhibits the JLP. This

improves our performance by allowing us to break the target dimension k into m sections of length k′ each

and apply m fast transforms from dimension d to dimension k′.

Lemma 5.6.1. Let Dk′,d be a distribution over k′ × d matrices which exhibits the JL property. Define the

distribution Dm
k′,d to be a vertical concatenation of m matrices chosen independently from Dk′,d normalized

by 1√
m

. The distribution Dm
k′,d over k′m× d matrices exhibits the JL property as well.

Proof. Let A be a vertical concatenation of m, k′× d, matrices A1, A2, . . . , Am such that A1, A2, . . . , Am are

chosen i.i.d from a distribution Dk′,d which exhibits the JL property. Let yi = Aix, let Yi = ‖yi‖22 and let
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Zi =
√

k′(Yi − 1). Since Dk′,d is JL we have that

Pr(Yi > 1 + 3ε) ≤ Pr(‖yi‖ > 1 + ε) (5.8)

< c1e
c2k′ε2

(5.9)

Pr(Zi > u) ≤ c1e
−c2u2

for u ≤ ε
√

k′. (5.10)

Moreover we have that E(Zi) = 0. Let us define the random variable Y = ‖Ax‖22. From the concatenation

structure we have that Y =
∑m

i=1
1
mYi.

Y − 1 =
m∑

i=1

1
m

(Yi − 1) (5.11)

=
1√
k′m

m∑

i=1

1√
m

√
k′(Yi − 1) (5.12)

=
1√
k

m∑

i=1

1√
m

Zi (5.13)

(5.14)

Lemma 5.6.2. (Matousek [34] (Lemma 2.2)) Let Z1, . . . , Zm be independent random variables, satisfying

E[Zi] = 0, V ar[Z1] = 1 and all having a uniform sub-gaussian tail. Let α1, . . . , αm be such that
∑m

i=1 α2
i = 1,

the variable Z =
∑m

i=1 αiZi has E[Z] = 0, V ar[Z] = 1 and a sub-gaussian tail.

The following lemma holds also if V ar[Z1] = Const for a constant other then 1. From equation 5.8 we

have that Zi are sub-gaussian, mean zero and constant variance. Therefore, the variable Z =
∑m

i=1
1√
m

Zi also

distributed like a sub-gaussian. Finally we have that
√

k(Y −1) = Z and thus Pr(
√

k(Y −1) > u) ≤ c1e
−c2u2

.

Replacing u =
√

kε we get Pr(Y > 1 + ε) ≤ c1e
−c2kε2

which is the JL property.

Composing the result of lemma 5.6.1 and the efficient FJLT construction gives us the best result possible

for the cases where k ≥ d1/2−δ. We take k′ to be d1/2−δ and perform m = k/k′ = kd−1/2+δ independent

transforms. Since each transform can be computed in O(d log(d)) operations, the entire transform is com-

putable in O(kd1/2+δ log(d)). This outperforms the naive algorithm up to k = Ω(d) achieving a running

time of O(d3/2+δ log(d)).
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5.7 Results summary

The current chapter described another approach in which a random projection can be obtained faster then

the FJLT algorithm. Using dense orthogonal fast transforms was suggested. This permitted the acceleration

to be useful for larger values of k than the FJLT algorithm permitted. The asymptotic running times of the

improvements we achieved thus far are give in table 5.7.

Näıve or Slower Faster then näıve O(d log(k))

k in o(log d) JL,FJLT FJLTr, FWI

k in ω(log d)

and o(poly(d))
JL FJLT FJLTr, FWI

k in Ω(poly(d))

and o((d log(d)1/3)
JL FJLT, FJLTr, FWI

k in ω((d log d)1/3)

and O(d1/2−δ)
JL FJLT, FJLTr FWI

k in O(d1/2−δ)

and k < d

JL,FJLT,FJLTr JL concatenation

Tab. 5.1: Result summary. Schematic comparison of asymptotic running time of five projection algorithms. A näıve

implementation of Johnson-Lindenstrauss (JL), the fast JL transform by Ailon Chazelle (FJLT), denoted

by FJLTr the revised FJLT algorithm (chapter 3 and [2]), the result of this chapter denoted by FWI, and

the projection composition method described above (JL concatenation)
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6. TOWARDS LINEAR TIME DIMENSIONALITY REDUCTION

In this chapter we present a kJL × d random projection matrix that is applicable to vectors x ∈ Rd in O(d)

operations if d ≥ k2+δ′
JL . Here, kJL is the minimal Johnson Lindenstrauss dimension and δ′ is arbitrarily

small. The projection succeeds, with probability 1−1/n, in preserving vector lengths, up to distortion ε, for

all vectors such that ‖x‖∞ ≤ ‖x‖2k−1/2
JL d−δ (for arbitrary small δ). Sampling based approaches are either

not applicable in linear time or require a bound on ‖x‖∞ that is strongly dependant on d. Our method

overcomes these shortcomings by rapidly applying dense tensor power matrices to incoming vectors.

In the present work we examine the connection between A and χ for any matrix A (Section ??). We

propose in Section 6.1 a new type of fast applicable matrices and in Section 6.2 explore their χ. These

matrices are constructed using tensor products and can be applied to any vector in Rd in linear time, i.e, in

O(d). Due to the similarity in their construction to Walsh-Hadamard matrices and their rectangular shape

we term them Lean Walsh Matrices1.

Due to their construction the Lean Walsh matrices are of size d̃× d where d̃ = dα for some 0 < α < 1. In

order to reduce the dimension to kJL ≤ d̃, kJL = O(log(n)/ε2)), we compose the lean Walsh matrix, A, with

a known Johnson Lindenstrauss matrix construction R. Applying R in O(d) requires some relation between

d, kJL and α as explained in subsection 6.2.1.
1 The terms Lean Walsh Transform or simply Lean Walsh are also used interchangeably.



The rectangular kJL × d matrix A
Application

time
x ∈ χ if ‖x‖2 = 1 and:

Johnson, Lindenstrauss [?]
kJL rows of a random unitary ma-

trix
O(kd)

Various Authors [?, ?, 33, 34] i.i.d random entries O(kd)

Ailon, Chazelle [?] Sparse Gaussian entrees O(k3) ‖x‖∞ = O((d/k)−1/2)

Matousek [34] Sparse ±1 entrees O(k2dη2) ‖x‖∞ ≤ η

this work [2] 4-wise independent Code matrix O(d log k) ‖x‖4 = O(d−1/4)

This work Any deterministic matrix ? ‖x‖A = O(k−1/2)

This work Lean Walsh Transform O(d) ‖x‖∞ = O(k−1/2d−δ)

Tab. 6.1: Types of k × d matrices and the subsets χ of Rd for which they constitute a random projection. The

meaning of the norm ‖ · ‖A is given in Definition 4.2.1.

6.1 Lean Walsh transforms

The Lean Walsh Transform, similar to the Walsh Transform, is a recursive tensor product matrix. It is

initialized by a constant seed matrix, A1, and constructed recursively by using Kronecker products A`′ =

A1 ⊗ A`′−1. The main difference is that the Lean Walsh seeds have fewer rows than columns. We formally

define them as follows:

Definition 6.1.1. A1 is a Lean Walsh seed (or simply ’seed’) if i) A1 is a rectangular matrix A1 ∈ Cr×c,

such that r < c; ii) A1 is absolute valued 1/
√

r entree-wise, i.e, |A1(i, j)| = r−1/2; iii) the rows of A1 are

orthogonal; and iv) all inner products between its different columns are equal in absolute value to a constant

ρ ≤ 1/
√

(c− 1). ρ is called the Coherence of A1.

Definition 6.1.2. A` is a Lean Walsh transform, of order `, if for all `′ ≤ ` we have A′` = A1 ⊗ A`′−1,

where ⊗ stands for the Kronecker product and A1 is a seed according to definition 6.1.1.
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The following are examples of seed matrices:

A′1 = 1√
3




1 1 −1 −1

1 −1 1 −1

1 −1 −1 1




A′′1 = 1√
2




1 1 1

1 e2πi/3 e4πi/3




r′ = 3, c′ = 4, ρ′ = 1/3 r′′ = 2, c′′ = 3, ρ′′ = 1/2

(6.1)

These examples are a part of a large family of possible seeds. This family includes, amongst other construc-

tions, sub-Hadamard matrices (like A′1) or sub-Fourier matrices (like A′′1). A simple construction is given for

possible larger seeds.

Fact 6.1.1. Let F be the c× c Discrete Fourier matrix such that F (i, j) = e2π
√−1ij/c. Define A1 to be the

matrix consisting of the first r = c−1 rows of F normalized by 1/
√

r. A1 is a lean Walsh seed with coherence

1/r.

Proof. The facts that |A1(i, j)| = 1/
√

r and that the rows of A1 are orthogonal are trivial. Moreover, due to

the orthogonality of the columns of F , the inner product of two different columns of A1 must equal ρ = 1/r

in absolute value.

∣∣∣〈A(j1)
1 , A

(j2)
1 〉

∣∣∣ =
1
r

∣∣∣∣∣
r∑

i

F̄ (i, j1)F (i, j2)

∣∣∣∣∣ =
1
r

∣∣−F̄ (c, j1)F (c, j2)
∣∣ =

1
r

(6.2)

here F̄ (·, ·) stands for the complex conjugate of F (·, ·).

We use elementary properties of Kronecker products to characterize A` in terms of the number of rows,

r, the number of columns, c, and the coherence, ρ, of A1. The following facts hold true for A`:

Fact 6.1.2. i) A` is of size2 dα × d, where α = log(r)/ log(c) < 1 is the skewness of A1 ii) for all i and j,

A`(i, j) ∈ ±d̃−1/2 which means that A` is column normalized; and iii) the rows of A` are orthogonal.

Fact 6.1.3. The time complexity of applying A` to any vector z ∈ Rd is O(d).

2 The size of A` is r` × c`. Since the running time is linear, we can always pad vectors to be of length c` without effecting

the asymptotic running time. From this point on we assume w.l.o.g d = c` for some integer `
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Proof. Let z = [z1; . . . ; zc] where zi are sections of length d/c of the vector z. Using the recursive decom-

position for A` we compute A`z by first summing over the different zi according to the values of A1 and

applying to each sum the matrix A`−1. Denoting by T (d) the time to apply A` to z ∈ Rd we get that

T (d) = rT (d/c) + rd. Due to the Master Theorem, and the fact that r < c we have that T (d) = O(d). More

precisely, T (d) ≤ dcr/(c− r).

For clarity, we demonstrate Fact 6.1.3 for A′1 (equation 6.1):

A′`z = A′`




z1

z2

z3

z4




=
1√
3




A′`−1(z1 + z2 − z3 − z4)

A′`−1(z1 − z2 + z3 − z4)

A′`−1(z1 − z2 − z3 + z4)




(6.3)

In what follows we characterize χ(A, ε, n) for a general Lean Walsh transform by the parameters of its seed,

r, c and ρ. The omitted notation, A, stands for A` of the right size to be applied to x, i.e, ` = log(d)/ log(c).

Moreover, we freely use α to denote the skewness log(r)/ log(c) of the seed at hand.

6.2 An `p bound on ‖ · ‖A

After describing the lean Walsh transforms we turn our attention to exploring their ”good” sets χ .We remind

the reader that ‖x‖A ≤ k−1/2 entails x ∈ χ:

‖x‖2A = ‖ADx‖22→2 = max
y,‖y‖2=1

‖yT ADx‖22 (6.4)

= max
y,‖y‖2=1

d∑

i=1

x2(i)(yT A(i))2 (6.5)

≤
(

d∑

i=1

x2p(i)

)1/p (
max

y,‖y‖2=1

d∑

i=1

(yT A(i))2q

)1/q

(6.6)

= ‖x‖22p‖AT ‖22→2q (6.7)

The transition from the second to the third line follows from Hölder’s inequality for dual norms p and q,

satisfying 1/p + 1/q = 1. We are now faced with the computing ‖AT ‖2→2q in order to obtain the constraint

on ‖x‖2p.
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Theorem 6.2.1. [Riesz-Thorin] For an arbitrary matrix B, assume ‖B‖p1→r1 ≤ C1 and ‖B‖p2→r2 ≤ C2

for some norm indices p1, r1, p2, r2 such that p1 ≤ r1 and p2 ≤ r2. Let λ be a real number in the interval

[0, 1], and let p, r be such that 1/p = λ(1/p1) + (1 − λ)(1/p2) and 1/r = λ(1/r1) + (1 − λ)(1/r2). Then

‖B‖p→r ≤ Cλ
1 C1−λ

2 .

In order to use the theorem, let us compute ‖AT ‖2→2 and ‖AT ‖2→∞. From ‖AT ‖2→2 = ‖A‖2→2 and

the orthogonality of the rows of A we get that ‖AT ‖2→2 =
√

d/d̃ = d(1−α)/2. From the normalization of

the columns of A we get that ‖AT ‖2→∞ = 1. Using the theorem for λ = 1/q, for any q ≥ 1, we obtain

‖AT ‖2→2q ≤ d(1−α)/2q. It is worth noting that ‖AT ‖2→2q might actually be significantly lower then the given

bound. For a specific seed, A1, one should calculate ‖AT
1 ‖2→2q and use ‖AT

` ‖2→2q = ‖AT
1 ‖`

2→2q to achieve a

possibly lower value for ‖AT ‖2→2q.

Lemma 6.2.1. For a lean Walsh transform, A, we have that for any p > 1 the following holds:

{x ∈ Rd | ‖x‖2 = 1, ‖x‖2p ≤ k
−1/2
JL d−

1−α
2 (1− 1

p )} ⊂ χ(A, ε, n) (6.8)

where kJL = O(log(n)/ε2), α = log(r)/ log(c), r is the number of rows, and c is the number of columns in

the seed of A.

Proof. We combine the above and use the duality of p and q:

‖x‖A ≤ ‖x‖2p‖AT ‖2→2q (6.9)

≤ ‖x‖2pd
1−α
2q (6.10)

≤ ‖x‖2pd
1−α

2 (1− 1
p ) (6.11)

The desired property, ‖x‖A ≤ k
−1/2
JL , is achieved if ‖x‖2p ≤ k

−1/2
JL d−

1−α
2 (1− 1

p ) for any p > 1.

6.2.1 Controlling α and choosing R

We see that increasing α is beneficial from the theoretical stand point since it weakens the constraint on

‖x‖p. However, the application oriented reader should keep in mind that this requires the use of a larger

seed, which subsequently increases the constant hiding in the big O notation of the running time.
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Consider the seed constructions described in Fact 6.1.1 for which r = c − 1. Their skewness α =

log(r)/ log(c) approaches 1 as their size increases. Namely, for any positive constant δ there exists a constant

size seed such that 1− 2δ ≤ α ≤ 1.

Lemma 6.2.2. For any positive constant δ > 0 there exists a Lean Walsh matrix, A, such that:

{x ∈ Rd | ‖x‖2 = 1 , ‖x‖∞ ≤ k−1/2d−δ} ⊂ χ(A, ε, n) (6.12)

Proof. Generate A from a seed such that its skewness α = log(r)/ log(c) ≥ 1− 2δ and substitute p = ∞ into

the statement of Lemma 6.2.1.

The constant α also determines the minimal dimension d (relative to kJL) for which the projection can be

completed in O(d) operations, the reason being that the vectors z = ADsx must be mapped from dimension

d̃ (d̃ = dα) to dimension kJL in O(d) operations. This is done using the Ailon and Liberty [2] construction

serving as the random projection matrix R. R is a kJL × d̃ Johnson Lindenstrauss projection matrix which

can be applied in d̃ log(kJL) operations if d̃ = dα ≥ k2+δ′′
JL for arbitrary small δ′′. For the same choice of

a seed as in lemma 6.2.2, the condition becomes d ≥ k2+δ′′+2δ
JL which can be achieved by d ≥ k2+δ′

JL for

arbitrary small δ′ depending on δ and δ′′. Therefore for such values of d the matrix R exists and requires

O(dα log(kJL)) = O(d) operations to apply.

6.3 Comparison to sparse projections

Sparse random ±1 projection matrices where analyzed by Matousek in [34]. For completeness we restate his

result. Theorem 4.1 in [34] (slightly rephrased) claims the following:

Theorem 6.3.1 (Matousek 2006 [34]). let ε ∈ (0, 1/2) and α ∈ [1/
√

d, 1] be constant parameters. Set

q = C0α
2 log(n) for a sufficiently large constant C0. Let S be a random variable such that

S =





+ 1√
q with probability q/2

− 1√
q with probability q/2

0 with probability 1− q

(6.13)
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Let k be C1 log(n)/ε2 for a sufficiently large C1. Let the matrix A ∈ {− 1√
q , 0, + 1√

q}k×d contain i.i.d copies

of S then

Pr[|‖Ax‖22 − 1| > ε] ≤ 1/n (6.14)

For any x ∈ Sd−1 such that ‖x‖∞ ≤ α.

With constant probability the number of nonzeros in A is O(kdq) = O(k2dα2) (since ε is a constant

log(n) = O(k)). In the terminology of this paper we say that for A containing O(k2dα2) nonzeros (as above)

χ(A, ε, n) = {x ∈ Sd−1|‖x‖∞ ≤ α}.

Notice that for a linear application time, O(d), lean Walsh matrices require a weaker lower bound on the

`∞ norm of x. By setting the number of nonzeros in the sparse A to O(d) we get ‖x‖∞ ≤ α ≤ k−1. Whereas

lean Walsh matrices require ‖x‖∞ ≤ k−1/2d−δ which is larger as long as d is polynomial in k.

6.4 Conclusions

We have shown that any k × d (column normalized) matrix, A, can be composed with a random diagonal

matrix to constitute a random projection matrix for some part of the Euclidian space, χ. Moreover, we have

given sufficient conditions, on x ∈ Rd, for belonging to χ depending on different `2 → `p operator norms of

AT and lp norms of x. We have also seen that lean Walsh matrices exhibit both a ”large” χ and a linear

time computation scheme. These properties make them good building blocks for the purpose of random

projections.

However, as explained in the introduction, in order for the projection to be complete, one must design

a linear time preprocessing matrix Ψ which maps all vectors in Rd into χ (w.h.p). Achieving such Ψ

would be extremely interesting from both the theoretical and practical stand point. Possible choices for Ψ

may include random permutations, various wavelet/wavelet-like transforms, or any other sparse orthogonal

transformation.
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