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Abstract. A lambda-calculus schema is an expression of the lambda calculus aug-
mented by uninterpreted constant and operator symbols. It is an abstraction of pro-
gramming languages such as LISP which permit functions to be passed to and returned
from other functions. When given an interpretation for its constant and operator sym-
bols, certain schemata, called lambda abstractions, naturally define partial functions over
the domain of interpretation. Two implementation strategies are considered: the reten-
tion strategy in which all variable bindings are retained until no longer needed (implying
the use of some sort of garbage-collected store) and the deletion strategy, modeled after
the usual stack implementation of ALGOL 60, in which variable bindings are destroyed
when control leaves the procedure (or block) in which they were created. Not all lambda
abstractions evaluate correctly under the deletion strategy. Nevertheless, both strate-
gies are equally powerful in the sense that any lambda abstraction can be mechanically
translated into another that evaluates correctly under the deletion strategy and defines
the same partial function over the domain of interpretation as the original. Proof is by
translation into continuation-passing style.

Prologue

The late 1960’s and early 1970’s were an exciting time for theoretical work
in programming languages. Language translation and compilation had been
a major focus of the previous decade. Syntax was finally well understood
and parsers could be generated automatically from grammars. Semantics
was not so well understood, and most real programming languages were
defined only by a user’s manual and a compiler.
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Two general approaches were taken in order to have programming lan-
guages with fully specified semantics: (i) Better specification methods were
developed that were adequate to fully describe existing large programming
languages such as PL/1. (ii) New languages were developed with clean
mathematical structure that were more amenable to formal description.
McCarthy pioneered the latter approach in basing the LISP 1.5 program-
ming language [21] on a simpler functional language, sometimes called “pure
LISP” or M -expressions [20], that was defined in a mathematical style, in-
dependent of a particular machine or implementation.

Pure LISP allows the definition and evaluation of functions over S-
expressions. The lambda notation for functional abstraction is borrowed
from Church’s lambda calculus [4], but otherwise there is little similarity be-
tween the two systems. Pure LISP has no higher-order functions, and call-
by-value evaluation order is implicitly assumed. Two special constructs,
conditional expressions and the label operator, allow recursive functions to
be defined. Limited as it is, pure LISP is nevertheless powerful enough to
express all partial recursive functions and hence provides an adequate basis
for a theory of computation [20].

The LISP 1.5 programming language [21] extends pure LISP in many
ways that make it more useful in practice but at the same time tend to
destroy its clean mathematical properties. Its semantics is defined by an
interpreter written in a mixture of pure LISP and English. The distinction
between programs and data is blurred. Higher-order functions, assignment,
and a global symbol table are added. The simple substitution model used
to define pure LISP is replaced by variable bindings based on hierarchical
environments. Thus, rather than substituting the actual arguments for the
formal parameters when applying a function, the environment is changed
by creating associations called bindings between the formal parameters and
corresponding actual arguments. The environment is consulted whenever
the value of a variable is needed.

In the absence of higher-order functions, the environment can be main-
tained on a simple pushdown stack. New bindings are pushed onto the
stack when a function is called, retained during the evaluation of the body
of the function, and discarded when done. Functional arguments and val-
ues complicate the picture. Free variables in a lambda form should be
interpreted in the environment in which the lambda form occurs, not in
the environment in effect when the function is eventually applied to some
arguments. Because lambda forms are intended to denote functions, any
free variables must receive the same interpretation whenever the function
is used. A standard method of implementation attaches the caller’s envi-
ronment to the lambda form, resulting in a closure. When the closure is
later applied to actual arguments, the body of the lambda form is evalu-
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ated in the attached environment, after first binding the formal parameters
to the actual arguments. Early LISP implementations represent environ-
ments explicitly by lists of bindings (called a-lists). Whenever the value of
a variable is needed, the current a-list is searched. Each closure points to
its environment a-list, and storage occupied by inaccessible environments
is recovered by the garbage collector.

MACLISP [22] compromises the semantics of functional arguments in
order to achieve greater efficiency by using the “shallow-access” model dis-
cussed by Moses [25]. Bindings are stack-based and are discarded when
evaluation of the form creating them is complete. Environments are rep-
resented by pointers into the stack. This has two consequences for the
handling of closures:

• A closure passed as an argument into a function is relatively expen-
sive to evaluate, for the environment must be temporarily changed
to the one attached to the closure before evaluating it and restored
afterwards, either by temporarily popping the stack to the point of
the saved environment or by putting additional bindings on the stack
to shadow those that were changed subsequent to the saved environ-
ment. Either way, this entails a considerable cost in time and storage.

• A closure cannot be passed out of the function which created it, for
the environment of the closure is destroyed when the stack is popped.

Against this backdrop, Hewitt raised the question of just how powerful
a shallow-access LISP is [14]. Even pure LISP is universal since its S-
expressions can easily encode a Turing machine tape, so the question was
refined to ask how powerful such a LISP is without using CONS (or any
function such as LIST which implicitly uses CONS). In particular, Hewitt
asked if it is possible to write a CONS-free function to test if two argument
S-expressions have the same frontier.

We define the frontier of an S-expression to be the list of non-NIL atoms
of S in sequence. Thus, (A (B C) D), ((A (B C . D))), and (((((A) B)
(C D)))) all have the same frontier (A B C D). The frontier is computed
by the following LISP function:

(DEFUN FRONTIER (X)

(COND ((NULL X) NIL)

((ATOM X) (LIST X))

(T (APPEND (FRONTIER (CAR X))

(FRONTIER (CDR X))))))

Here LIST and APPEND have their usual LISP meanings and are easily de-
fined using CONS.
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A formal treatment of Hewitt’s question requires a way of comparing
the expressive power of programming languages. People have the intuitive
feeling that some languages are “more powerful” than others. However,
most realistic programming languages are universal in the sense that they
can simulate Turing machines and hence can compute any partial recursive
function. Because of this, attempts to classify real languages according to
the functions they can compute inevitably fail, for whatever one language
can do, so can another (by simulating the first). This dilemma, in which ar-
guments about relative expressive power become stuck in simulations, and
all apparent distinctions between languages evaporate under close scrutiny,
is known as the “Turing tar pit” and is a major obstacle towards the de-
velopment of a comparative theory of programming languages.

Schemata offer a way out of the dilemma. A schema is a program in
which primitive data and operations are left unspecified, and two schemata
are considered equivalent only if they compute the same result no matter
how their constants and basic operators are interpreted. This precludes
many of the encoding tricks that lead to the Turing tar pit, and schemata
of various kinds can and do differ in expressive power when defined in this
way. Program schemata (also called program schemes), were introduced by
Ianov [15] and subsequently studied by many others (see [6, 17, 26, 27, 32]).
Recursive program schemes, which allow the recursive definition of func-
tions, were also studied [14, 28, 36]. The lambda-calculus schemata of this
paper are natural extensions of recursive schemes, obtained through the
addition of full lambda abstraction. Good surveys of the state of schema-
tology in 1973 are provided by Chandra [3] and Manna [18].

I became intrigued with Hewitt’s question and eventually solved it in
the affirmative by reformulating the question as one about lambda-calculus
schemata and then showing how to translate any lambda-calculus schema
into one that would work correctly under a shallow-access implementation.
Since the LISP CONS operator can be represented as a lambda form using
Church-encoding of pairs [4], it is possible to translate any LISP program
into a lambda-calculus schema which is equivalent to the original program
when interpreted over the domain of S-expressions. In the translated pro-
gram, CONS is only used to construct the S-expression that is the final
result of computation. (See Section 6.) If the original LISP program is
atomic-valued, then CONS is not used at all.

In the process of solving this problem, I rediscovered the notion of contin-
uation and invented a transformation for converting an arbitrary expression
into continuation-passing style (CPS), although I didn’t call it that at the
time. The first reference to CPS of which I am now aware is a 1966 paper by
van Wijngaarden [37]. CPS was also independently discovered by several
others over the next several years [19, 23, 24, 30, 35]. Reynolds [31] pro-
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vides a fascinating historical account of the early discovery and rediscovery
of this concept. His paper alerted me to some of the historical references
mentioned above.

This work was presented in preliminary form at the 1972 ACM Confer-
ence on Proving Assertions about Programs. I am pleased, after 21 years,
to present the final version here.

1. Introduction

ALGOL 60 can be implemented using a stack for storage of all variables
(other than “own”-variables) [8, 29]. Storage is created on the stack when
control enters a block and is discarded upon exit. This is sometimes called
the “deletion strategy”, as the values of the local variables are deleted
upon exit from the block as the stack is popped [2]. ALGOL 60 provides
no way for these variables subsequently to be referenced, so the deleted
variables are no longer needed, and hence, the stack implementation is
correct for that language [12]. Other languages such as LISP [21], PAL [9],
OREGANO [1], etc., do provide ways in which variables bound in an inner
block or procedure may be referenced from outside, so their bindings must
be retained; hence the name “retention strategy”. Berry has shown that
the copy rule of ALGOL, when extended in a natural way to these more
powerful languages, is equivalent to the retention strategy and not to the
deletion strategy [2].

The retention strategy, then, is seemingly more powerful than the dele-
tion strategy. However, we show in this paper that the classes of programs
corresponding to the two strategies are equivalent in a very strong sense—
for every retention strategy program, we can find an equivalent program
that works correctly under the deletion strategy. Moreover, the translation
can be done independently of the particular primitive operations and data
which the language happens to contain, so the corresponding “schemata”,
which are programs in which the primitive operations and data are left
unspecified, are equivalent under all interpretations!

To make these ideas more precise, we abstract from the above languages
the common feature that they permit procedures which can take other pro-
cedures as arguments and return procedures as results. These languages
have, in addition, a number of primitive operations defined over some do-
main of primitive data objects, but we need not concern ourselves with
these, for our results will be true for any interpretation of the primitive
constant and operator symbols. We thus define lambda-calculus schemata
to be lambda-calculus expressions [4], augmented by constant and operator
symbols which stand respectively for primitive data elements and opera-
tions of the underlying interpretation. Our schemata are similar to the ap-
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plicative expressions (AE’s) of Landin [16] and the schemata of Hewitt [14]
and are defined precisely in the next section.

An interpretation assigns to each constant an element of the domain
of interpretation and to each operator a (partial) function on that do-
main, called an operation. Thus, operations are “pure” and do not have
side effects. Given an interpretation, closed lambda abstractions, which
are schemata of the form (λx1 . . . xn . p) having no free variables, define
partial functions on the domain according to the usual rules of lambda-
conversion [4], generalized to multiargument functions. As in LISP, we
consider “call-by-value” order of evaluation in which the arguments to a
function are evaluated before the function is called. We say that two such
schemata are data-equivalent if they compute the same partial function on
the data domain under all interpretations.

A correct implementation of a lambda-calculus schema requires the re-
tention strategy, for during the course of evaluation, a function may return
as a value another function containing free variables. A simple example is
the composition functional,

COMP = (λfg . (λx . (f (g x))))

which returns the function (λx . (f (g x))) containing the free variables
f and g. The bindings of f and g established during the application of
COMP must be retained as long as the returned function is in existence.

Such a program will not work correctly under the deletion strategy, but
any schema which happens never to return as a value another procedure
containing free variables will indeed work properly (as will certain others).
We call such schemata deletion-tolerant. Informally, our main theorem
(Theorem 1) states that every closed lambda abstraction is data-equivalent
to a deletion-tolerant lambda abstraction which can be effectively obtained
from the original lambda abstraction. Thus, although not all programs
work correctly in a deletion-strategy implementation, they can be converted
to an equivalent form which does work correctly.

2. Lambda-Calculus Schemata

Lambda-calculus schemata are expressions of the lambda calculus, aug-
mented by uninterpreted names for constants and operations.

Definition 1 Let N+ be the positive natural numbers. Let D be a set of
symbols called constants. Let 〈F , ρ〉 be a ranked alphabet of symbols called
operators, where ρ:F → N+. (If F ∈ F , then ρ(F ) is its arity, the number
of arguments that it takes.) Let X be a set of symbols called variables. We
assume that D, F , and X are pairwise disjoint.
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A lambda-calculus schema over D, F , and X is a member of a formal
language whose syntax is given by the BNF grammar shown in Figure 1.
The notation X . . . denotes one or more occurrences of X, square brackets
denote optional items, and curly brackets are used for grouping. We also
impose two side conditions that cannot be expressed in BNF:

1. In a 〈prim-appl〉 (F q1 . . . qn), n must equal ρ(F ).

2. In an 〈abstraction〉 (λx1 . . . xn . p), the variables x1, . . . , xn must be
distinct.

〈schema〉 ::= 〈variable〉 | 〈constant〉 | 〈abstraction〉 |
〈prim-appl〉 | 〈fun-appl〉 | 〈conditional〉

〈abstraction〉 ::= ‘(λ’ [ 〈variable〉 . . . ] ‘.’ 〈schema〉 ‘)’

〈prim-appl〉 ::= ‘(’ 〈operator〉 〈schema〉 . . . ‘)’

〈fun-appl〉 ::= ‘(’ 〈schema〉 [ 〈schema〉 . . . ] ‘)’

〈conditional〉 ::= ‘(’ 〈schema〉 ‘→’ 〈schema〉 ‘|’ 〈schema〉 ‘)’

〈variable〉 ::= x where x ∈ X

〈constant〉 ::= c where c ∈ D

〈operator〉 ::= F where F ∈ F

Figure 1: Syntax for lambda-calculus schemata.

Expressions are classified according to the syntactic categories to which
they belong. Names for the categories are shown in Table 1. We also define
S to be the set of schemata, that is, the set of all expressions belonging to
category 〈schema〉.

As is usual in the lambda calculus, any variables x1, . . . , xn that occur
before the dot in the lambda abstraction (λx1 . . . xn .p) are considered to be
formal parameters, and all occurrences of them in the body p are said to be
bound. A variable is free in a schema q if it is not bound by any enclosing
lambda abstraction. Let var(p) be the set of variables that appear free in
a schema p. We say that p is closed if var(p) = ∅.

We will hereafter always assume that D contains the two symbols T and
F, representing the truth values ‘true’ and ‘false’, respectively, and that X
is countably infinite.

For technical convenience, the above definition does not allow operators
to appear without arguments, so in particular, an operator by itself is not a
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Table 1: Terminology and notation for syntactic expressions.

Syntactic category Terminology
〈schema〉 schema
〈abstraction〉 lambda abstraction
〈prim-appl〉 primitive application
〈fun-appl〉 function application
〈conditional〉 conditional
〈variable〉 variable
〈constant〉 constant
〈operator〉 operator

schema. However, this does not restrict the power of our schemata since the
operator symbol F may be replaced by the equivalent lambda abstraction
(λx1 . . . xn . (F x1 . . . xn)), where n = ρ(F ).

A closed lambda-calculus schema becomes a program when given an in-
terpretation for its constants and operators.

Definition 2 An interpretation I is a pair (D, val), where D is the domain
of the interpretation and val is a map which associates to each symbol c ∈ D
an element val(c) ∈ D and to each symbol F ∈ F a primitive operation
val(F ), which is a partial function in Dn → D, where n = ρ(F ). We also
require that val(T) 6= val(F).

The reader will note that this formalism keeps program and data com-
pletely separate. The primitive operations associated with primitive oper-
ators are defined only for arguments in the data domain. Lambda-calculus
schemata, our program elements, are not automatically included in the data
domain, nor is it possible to “execute” a data element. Without denying
the practical importance of being able to dynamically construct and exe-
cute programs, we feel that the distinction between programs and data is
useful in analyzing many programming situations, for it allows us to make
a systematic static translation of a program while leaving the domain of
data on which it operates unchanged. Were programs to reside in the data
domain and to be constructed dynamically (as in some dialects of LISP),
such a static translation would clearly become impossible.
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3. Semantics of Lambda-Calculus Schemata

We define the semantics of lambda-calculus schemata by giving a recursive
evaluator, similar to “eval” and “apply” of LISP. Like LISP, we use call-by-
value order of evaluation rather than call-by-name, and we do not actually
perform string substitution for variables in the schemata but instead main-
tain an environment which gives the current bindings of the free variables
in the schema under consideration. The value of a free variable is obtained
when needed from the environment.

3.1. Environments and Closures

A binding is an ordered pair (x, v), where x ∈ X is a variable and v is
the value to which it is bound. An environment is a finite set of bindings
containing at most one binding for each variable.1 Thus, we may identify
an environment E with a finite function, where E(x) = v if (x, v) is a
binding in E, and E(x) is undefined otherwise. We write var(E) for the set
of variables on which E is defined. We use the notation E[x 7→ v] to denote
the environment E ′ that results from E by binding x to v and leaving
bindings for other variables unchanged. Thus, var(E ′) = var(E)∪{x}, and
for each y ∈ var(E ′),

E′(y) =

{

E(y) if y 6= x;
v if y = x.

In case E = ∅, we may simply write [x 7→ v] in place of E[x 7→ v].

The values to which variables can be bound are called objects. An object
may be either an element from the data domain D or a pair 〈p,E〉, called
a closure, where p is a lambda abstraction and E is an environment that
contains bindings for all free variables in p.

A closure in many ways behaves like data—it may be the binding of some
variable and may be passed to or returned from a function. In addition, it
may be applied to some arguments, behaving then like a function. However,
closures are of interest to us only as vehicles for defining lambda-schemata
evaluation and not as the end products of such evaluations. We consider
the ultimate purpose of a program to be the function on the data domain
which it defines, and it is this which our transformations on programs are
designed to preserve.

Note that environments contain closures and vice versa; hence, their
formal definition is by mutual recursion.

1This is equivalent to the notion of environment used in many LISP implementations in
which an environment is a list of bindings, with no restrictions on the number of bindings
for a given variable, but where the binding actually used is the first one encountered.
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Definition 3 Given an interpretation I = (D, val), we inductively define
the set C of closures (on I) and the set E of environments (on I).

1. ∅ (the empty set) ∈ E.

2. If f ∈ S is a lambda abstraction, E ∈ E, and each free variable of f
is contained in var(E), then 〈f,E〉 ∈ C.

3. If E ∈ E, v ∈ (D ∪ C), and x ∈ X , then E ′ = E[x 7→ v] is in E.

For convenience, we let O denote the set of objects (D ∪ C).

3.2. Retention-Strategy Evaluation

Retention-strategy evaluation is defined by a recursive program over a
fixed interpretation and defines what we consider to be the “correct” se-
mantics. It takes as arguments a schema and an environment. The result,
if the program terminates, is an object in O, called the value of the schema.
Otherwise, the value is undefined. Our evaluation strategy uses “call-by-
value” evaluation order, which means that the actual arguments passed to
a function are evaluated before the function is called.

Like LISP, our evaluator is defined by two functions. evr[p,E] evaluates
the schema p, interpreting free variables according to the environment E.
apr[c,v] applies the closure c to the objects in the vector v. Our evaluation
rules differ from LISP in that the schemata in the function and argument
positions of a function application are evaluated in the same way, and any
lambda abstraction that appears without arguments evaluates to a closure,
regardless of the position in which it appears.

Definition 4 Retention-strategy evaluation is specified by two partial func-
tions:

evr:S × E → O

and
apr:O × (

⋃

n≥0

On) → O.

Let p ∈ S, E ∈ E, c ∈ C, and v1, . . . , vn ∈ O. The values of evr[p,E] and
apr[c, 〈v1, . . . , vn〉] are defined by the recursive equations shown in Figure 2.
These equations are to be interpreted as defining recursive programs for
computing evr and apr.

2

2That is, to compute evr[p, E], find the first case in the definition whose condition
is true for p (if any). Then compute the result specified by that case. In the course
of evaluation, it may be necessary to compute evr and apr for other arguments. These
computations are performed recursively. If any of them fail to terminate, or if an infinite
chain of recursive calls occurs, or if none of the cases apply to p, or if p ∈ X − var(E),
then evr[p, E] is undefined. Similar remarks apply to the computation of apr.
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evr[p,E] =df















































































































val(p) if p ∈ D;

E(p) if p ∈ X ;

〈p,E〉 if p is a lambda abstraction;

v if p = (F q1 . . . qn) is a primitive
application and v = val(F )(v1, . . . , vn),
where vi = evr[qi, E] ∈ D for i = 1, . . . , n;

ξ if p = (q0 q1 . . . qn) is a function
application and ξ = apr[c, 〈v1, . . . , vn〉],
where c = evr[q0, E] ∈ C and
vi = evr[qi, E] ∈ O for i = 1, . . . , n;

evr[q1, E] if p = (b → q1 | q2) and evr[b, E] = val(T);

evr[q2, E] if p = (b → q1 | q2) and evr[b, E] = val(F);

undefined otherwise.

apr[c, 〈v1, . . . , vn〉] =df











evr[p,E′] if c = 〈(λx1 . . . xn . p), E〉, where
E′ = E[x1 7→ v1] . . . [xn 7→ vn];

undefined otherwise.

Figure 2: Defining equations for retention-strategy evaluation.

We define the partial function on the data domain which is computed by
a closed lambda abstraction in a retention-strategy implementation.

Definition 5 Let f = (λx1 . . . xn . p) be a lambda abstraction, let I =
(D, val) be an interpretation, and let E be an environment such that
var(E) ⊇ var(f). We associate with the closure 〈f,E〉 a partial func-
tion fcnr(f,E):Dn → D as follows. For each a1, . . . , an ∈ D, let b =
apr[〈f,E〉, 〈a1, . . . , an〉]. If b ∈ D, then fcnr(f,E)(a1, . . . , an) =df b; other-
wise fcnr(f,E)(a1, . . . , an) is undefined.

If f is closed, then fcnr(f,E) does not depend on E, so we omit mention
of E and write simply fcnr(f).

3.3. Deletion-Strategy Evaluation

A deletion-strategy implementation of lambda-calculus schemata eval-
uation approximates the correct retention-strategy evaluation. Many pro-
grams will work correctly and give the same answers that they would under
the retention strategy, while other programs will fail. We can think of a
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deletion-strategy implementation as being defined by two functions evd and
apd that only approximate the correct functions evr and apr. We will nei-
ther define precisely a deletion-strategy implementation nor attempt an
exact characterization of the set of arguments on which a deletion-strategy
implementation is correct. All we need for our purposes is that evd and apd

be correct on a sufficiently broad subclass of programs. In particular, we
only require that evd (respectively apd) be defined and give the correct an-
swer in the case that every value returned by apr anywhere in the recursive
evaluation of evr (respectively apr) is an element of the data domain D and
never a closure. Thus, we are assuming correctness only when evaluating
schemata in which a function is never returned as the value of another func-
tion. This restriction, enforced by ALGOL 60, prevents deleted bindings
from ever being referenced later in the computation.

Definition 6 Deletion-strategy evaluation is specified by two recursively
defined functions:

evd:S × E → O

and
apd:O × (

⋃

n≥0

On) → O.

Let p ∈ S, E ∈ E, c ∈ C, and v1, . . . , vn ∈ O. The defining equations
for evd are the same as those shown in Figure 2 for evr, except that every
occurrence of evr and apr is replaced by evd and apd respectively. The
defining equation for apd is shown in Figure 3.

apd[c,v] =df











evd[p,E′] if c = 〈(λx1 . . . xn . p), E〉 and evd[p,E′]
∈ D, where E ′ = E[x1 7→ v1] . . . [xn 7→ vn];

undefined otherwise.

Figure 3: Defining equation for deletion-strategy application.

The partial function computed by a closed lambda abstraction in a
deletion-strategy implementation is given by:

Definition 7 Let f = (λx1 . . . xn . p) be a lambda abstraction, let I =
(D, val) be an interpretation, and let E be an environment such that
var(E) ⊇ var(f). We associate with the closure 〈f,E〉 the partial func-
tion fcnr(f,E):Dn → D defined by

fcnd(f,E)(a1, . . . , an) =df apd[〈f,E〉, 〈a1, . . . , an〉].
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If f is closed, then fcnd(f,E) does not depend on E, so we omit mention
of E and write simply fcnd(f).

Lemma 1 Let p be a schema, E an environment, c a closure, and v ∈ On

a vector of objects. Then

1. If evd[p,E] is defined, then evd[p,E] = evr[p,E];

2. If apd[c,v] is defined, then apd[c,v] = apr[c,v].

Proof (sketch): Retention- and deletion-strategy evaluation differ
only when some closure 〈f ′, E′〉 is applied to arguments, and the body
of f ′ evaluates to another closure. In that case, deletion strategy
evaluation is undefined. (Cf. Definition 6.) Because of call-by-value
evaluation order, this causes the evaluation of the entire schema to
be undefined. If this never occurs, then the two evaluation strategies
are identical and produce the same result.

We say that a closed lambda abstraction f is correct in a deletion-strategy
implementation if fcnd(f) = fcnr(f). It follows easily from the definitions
that f is correct in a deletion-strategy implementation if and only if no
closure is ever the result of apr in the recursive evaluation of apr[f,v],
where v is an argument vector at which fcnr(f) is defined.

3.4. Safety

We now define a syntactic condition on f that will ensure its correctness
in a deletion-strategy implementation.

Definition 8 A schema p is said to be safe if, for every function appli-
cation (q0 q1 . . . qn) or primitive application (F q1 . . . qn) that occurs
as a subformula of p, each qi is either a lambda abstraction, a constant, a
variable, or a primitive application.

It follows that every subformula of a safe schema is also safe, so in particular,
the body of a safe lambda-abstraction is a safe schema, and a function
application or conditional can never appear in the first (function) position
of a safe function application, nor can it appear as an argument to a safe
function or primitive application. Hence, in a safe schema, the result of a
function application or conditional must eventually propagate to the top
level to become the final result of the whole evaluation.

We extend the notion of safety to objects and environments in the obvious
way.
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Definition 9 The set of safe objects and safe environments is defined re-
cursively as follows.

1. ∅ (the empty set) ∈ E is safe.

2. v ∈ D is safe.

3. 〈p,E〉 ∈ C is safe if both p and E are safe.

4. E′ = E[x 7→ v] in E is safe if both v and E are safe.

The following lemma provides a partial converse to Lemma 1 for safe
schemata.

Lemma 2 Let p be a safe schema, E a safe environment, c a safe closure,
and v ∈ On a vector of safe objects. Then

1. If evr[p,E] ∈ D then evd[p,E] = evr[p,E].

2. If apr[c,v] ∈ D then apd[c,v] = apr[c,v].

Proof (sketch): Recall that retention- and deletion-strategy eval-
uation differ only when the application of some closure to arguments
results in another closure. In a safe schema using retention-strategy
evaluation, any such result becomes the final result of the whole eval-
uation. Hence, if the whole expression evaluates to a data element, it
must be the case that no application of a closure to arguments results
in a closure, in which case retention strategy and deletion strategy
evaluation coincide.

Corollary 1 Let f be a safe closed lambda abstraction. Then fcnd(f) =
fcnr(f).

3.5. Equivalence

We are interested in transformations on schemata that preserve mean-
ing. Since we view schemata as vehicles for defining partial functions over
the domain of interpretation, we say two schemata are data equivalent if
they define the same partial function for all interpretations using retention-
strategy evaluation.

Definition 10 We define the relation ≡D over pairs of closures, closed
lambda abstractions, and data elements, and we call pairs in the relation
data-equivalent.

Let 〈f,E〉 and 〈f ′, E′〉 be closures, where f = (λx1 . . . xn . p) and f ′ =
(λx1 . . . xn . p′). We write 〈f,E〉 ≡D 〈f ′, E′〉 if fcnr(f,E) = fcnr(f

′, E′)
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for all interpretations I = (D, val). That is, fcnr(f,E) and fcnr(f
′, E′)

are defined at the same points (v1, . . . , vn) ∈ Dn, and they agree at those
points. Let f and f ′ be closed lambda abstractions. We write f ≡D f ′ if
〈f, ∅〉 ≡D 〈f ′, ∅〉. Let a, a′ ∈ D. We write a ≡D a′ if a = a′.

The following is immediate from Definitions 5 and 10.

Lemma 3 Let f , f ′ be closed lambda abstractions. If f ≡D f ′, then
fcnr(f) = fcnr(f

′).

Data equivalence is a rather coarse relation. For example, the schema

p = (λx . ((> x 3) → (+ x 2) | (λx . x)))

is data equivalent to the schema

q = (λx . ((> x 3) → (+ x 2) | ((λx . (x x)) (λx . (x x)))))

for both define partial functions whose domain includes only data elements
v for which val(>)(v, val(3)) = val(T), and on that domain they both
produce the same result val(+)(v, val(2)). However, if w is a data element
for which val(>)(w, val(3)) = val(F), the application of p to w results in a
closure, whereas the application of q to w does not terminate.

Data equivalence is difficult to work with because it is not context-
independent. That is, suppose p is a closed subformula of a larger formula
P , and Q results from P by replacing p with q. Then even though p is
data-equivalent to q, it does not follow that P is data-equivalent to Q. For
example, let P = (λx.((p x) x)) and Q = (λx.((q x) x)), where p and q are
as in the above example, and let the domain of interpretation be the natu-
ral numbers, where >, +, and numerals receive their usual meanings. Then
p ≡D q, but P 6≡D Q, since fcnr(P )(2) = 2 but fcnr(Q)(2) is undefined.

We are thus led to define a stronger notion of equivalence. Intuitively,
we say that two schemata are equivalent if there is no context C that can
distinguish them in terms of their data behavior. That is, p is equivalent
to p′ if, for every schema C, then either (C p) and (C p′) both evaluate to
the same data element d, or neither evaluates to a data element, and this
is true for any environment which binds all free variables in C, p, and p′.

In order to extend our notion of equivalence to closures c and c′, we
supply the closure to the context C by binding it to a new variable z. This
subterfuge is necessary because closures are not a part of the syntax of
lambda calculus schemata and the expressions (C c) and (C c′) are not
schemata.3

3One could imagine an extension of lambda calculus schemata in which data elements
could appear wherever constants are now allowed, and closures could appear wherever
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Definition 11 We define the relation ≡ over pairs of arbitrary schemata,
closures, and data elements, and we call pairs in the relation equivalent.

Let p and p′ be schemata (not necessarily closed). We write p ≡ p′, if
for all interpretations I = (D, val), all schemata C, and all environments
E for which var(E) ⊇ var(p) ∪ var(p′) ∪ var(C), if either evr[(C p), E] ∈ D
or evr[(C p′), E] ∈ D, then evr[(C p), E] = evr[(C p′), E].

Let c and c′ be closures. We write c ≡ c′ if for all interpretations
I = (D, val), all schemata C not containing z as a free variable, and all en-
vironments E for which var(E) ⊇ var(C), if either evr[(C z), E[z 7→ c]] ∈ D
or evr[(C z), E[z 7→ c′]] ∈ D, then

evr[(C z), E[z 7→ c]] = evr[(C z), E[z 7→ c′]].

Finally, let a, a′ ∈ D. We write a ≡ a′ if a = a′.

Note that if p and p′ are equivalent closed lambda abstractions or equivalent
objects, then they are also data equivalent.

4. Translation to Continuation-Passing Form

We define a function Φ to translate an arbitrary lambda-calculus schema
p into a safe schema Φ[p]. The exact semantic relation of p to Φ[p] is
complicated and is the subject of the next section. However, it will be true
that if p is a closed schema that evaluates to a data element v, then Φ[p]
evaluates to a closure which, when applied to a closure g, returns the result
of applying g to v. Thus, the schemata (g p) and (Φ[p] g) will be equivalent
for any g. Similar remarks hold if p has free variables, and p is evaluated
in an environment in which those variables are bound to data elements.

The intuition behind Φ is to modify the schema so that for any sub-
formula g, instead of g passing its evaluation result back to its enclos-
ing context, the context is passed to g as a functional argument called a
continuation4. This requires that g be modified to receive the continuation
argument. If g is a lambda abstraction, then an additional parameter is
added to g for this purpose. Otherwise, g is turned into a lambda abstrac-
tion of one argument. In either case, the modified g applies its continuation
argument to the result that g used to return, thereby avoiding the neces-
sity of returning immediately. Syntactically, this avoids the possible safety

primitive operators are now allowed. Such a system would admit a substitution semantics
as is commonly used to define the pure lambda calculus and might provide some technical
advantages over the operational semantics based on evr and ap

r
that we use here. We

do not pursue this idea further.
4The term “continuation” did not appear in the 1972 version of this paper but was

coined by others.
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violation of having g appear as an argument of another application; hence,
the modified schema is safe.

For example, given (f (g (h a))), we could turn it inside-out to get

(ĥ (λx . (ĝ (λy . (f y)) x)) a), assuming that ĝ and ĥ are the modified
versions of g and h, respectively. Since g and h may be variables which
could each be bound to any object whatsoever, it clearly becomes necessary
to uniformly add the extra argument to every lambda abstraction appearing
in the entire schema, regardless of whether or not it seems to be making
the schema unsafe. Thus, we would also replace f by f̂ and would add an
additional formal parameter k to the call on f which abstracts the context,
resulting in (λk . (ĥ (λx . (ĝ (λy . (f̂ k y)) x)) a)).

The actual translation Φ gives a result somewhat different than the above
example, for we wish to be able to translate a subformula independently of
the context in which it appears. Φ[p] is roughly equivalent to λf .(f p)) and
would be exactly equivalent except that, if p happens to return a closure,
Φ[p] applies its argument not to the same closure but to the encoded version
which has an additional argument as described above. A precise statement
of the relation between p and Φ[p] is given in Lemma 6.

In the definition of Φ, we also use the auxiliary function Ψ which adds a
new argument to a lambda abstraction and translates its body.

Definition 12 Φ and Ψ are transformations on lambda-calculus schemata
and are defined recursively. (Note that Φ bears the same relation to Ψ
as evr does to apr.) The defining equations are shown in Figure 4. The
symbols k, g′, and a′1, . . . , a

′
n denote distinct variables that do not appear

free in p.5

Some intuition into the translations may be gained by the following ex-
amples.

Examples In the following, all symbols x, a, b, . . . are variables.

1. Φ[x] = (λk . (k x)).

5Historical remark: Our choice of placing the continuation parameter first in the mod-
ified lambda-abstraction was rather arbitrary; we could just as easily have followed the
modern convention of placing it last. The only effect this would have on our transfor-
mations is to change λkx1 . . . xn to λx1 . . . xnk in the definition of Ψ, and to change
(g′ k a′

1 . . . a′

n
) to (g′ a′

1 . . . a′

n
k) in the definition of Φ. If we were working in a

framework in which all multiargument functions were curried, then placing the contin-
uation argument last would permit the definition of Ψ[(λx1 . . . xn . p)] to be simplified
to (λx1 . . . xn . Φ[p]). But we cannot curry our functions, for converting an application
(g′ a′

1 . . . a′

n
k) to its curried form ((. . . ((g′ a′

1) a′

2) . . . a′

n
) k) would destroy the safety

we are trying to achieve. Further simplifications to our transformation are indeed possi-
ble, but they require use of more global information about the expression (see [7, 33]).
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Φ[p] =df







































































































































(λk . (k p)) if p ∈ D ∪X ;

(λk . (k Ψ[p])) if p is a lambda abstraction;

(λk . (Φ[a1] (λa′1.
. . .
(Φ[an] (λa′n . (k (F a′1 . . . a′n)))) . . .)))

if p = (F a1 . . . an) is a primitive
application;

(λk . (Φ[g] (λg′.
(Φ[a1] (λa′1.

. . .
(Φ[an] (λa′n . (g′ k a′1 . . . a′n))) . . .)))))

if p = (g a1 . . . an) is a function
application;

(λk . (Φ[a] (λa′ . (a′ → (Φ[b] k) | (Φ[c] k)))))
if p = (a → b | c) is a conditional;

undefined otherwise.

Ψ[(λx1 . . . xn . p)] =df (λkx1 . . . xn . (Φ[p] k)),
where k 6∈ {x1, . . . , xn} and k is not free in p.

Figure 4: Defining equations for continuation-passing form transformation.

2. Φ[(a b)] = (λk . ((λk . (k a))
(λg′ . ((λk . (k b))

(λa′ . (g′ k a′)))))).

3. Ψ[(λx . a)] = (λkx . ((λk . (k a))
k)).

4. Φ[(λx . a)] = (λk . (k (λkx . ((λk . (k a))
k)))).

5. Φ[(λx . (x1 (x2 (x3 x))))] =
(λk . (k (λkx . ((λk . ((λk . (k x1))

(λg′ . ((λk . ((λk . (k x2))
(λg′ . ((λk . ((λk . (k x3))

(λg′ . ((λk . (k x))
(λa′ . (g′ k a′))))))

(λa′ . (g′ k a′))))))
(λa′ . (g′ k a′))))))

k))))
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5. Equivalence of Retention and Deletion Strategies

In this section we state the properties of the continuation-passing transfor-
mation Φ and give our main theorem on the equivalence of power between
the two evaluation strategies.

Let p be a closed schema that evaluates to a data element under every
interpretation. Then it turns out that Φ[p] ≡D (λk . (k p)). However, if
p evaluates to a closure c, Φ[p] is not equivalent to (λk . (k p)), for Φ[p]
applies its functional argument not to c but to a two-argument “encoding”
of c that includes a continuation argument. In that case, Φ[p] is equivalent
to (λk.(k p∗)), where p∗ is obtained from p by adding an extra continuation
argument to every lambda abstraction that occurs in p. For example, if
p = (λx . (+ x 3)), then Φ[p] is equivalent to (λk . (k (λhx . (h (+ x 3))))).
To state precisely the relation between p and Φ[p], we need to define the
encoding function ()∗.

5.1. Star Encoding

The encoding function ()∗ is a bit like the continuation-passing transfor-
mation Φ, except that it does not result in a safe schema; it only adds the
extra continuation parameter to lambda abstractions and function applica-
tions. In greater detail, p∗ is obtained from a schema p by replacing each
lambda abstraction (λx1 . . . xn . q) which appears as a subformula of p by
(λkx1 . . . xn . (k q)), and replacing each function application (g a1 . . . an)
which appears as a subformula of p by (g (λx .x) a1 . . . an). This transfor-
mation is applied recursively to all subformulas, so q, g, and a1 . . . an are
similarly transformed. Thus, we uniformly add a continuation parameter
to every lambda abstraction, and we uniformly pass the identity function
as the continuation to every (transformed) function application. The effect
of this is to make p∗ and p evaluate identically, except that if p evaluates
to a closure c, then p∗ evaluates to a closure c′, where c′ ≡ c∗.6

Definition 13 Let p be a schema. The encoding function p∗ is defined
recursively by the equation given in Figure 5.

6Actually, c′ is essentially the same as c∗, differing possibly only in the choice of names
for bound variables.
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p∗ =df







































































p if p ∈ D ∪X ;

(λkx1 . . . xn . (k q∗))
if p = (λx1 . . . xn . q) is a lambda abstraction,
where k ∈ X − (var(q) ∪ {x1, . . . xn});

(F q∗1 . . . q∗n) if p = (F q1 . . . qn) is a primitive application;

(g∗ (λx . x) q∗1 . . . q∗n)
if p = (g q1 . . . qn) is a function application;

(a∗ → b∗ | c∗) if p = (a → b | c) is a conditional;

undefined otherwise.

Figure 5: Defining equation for star encoding.

Definition 14 We extend ()∗ to objects and environments in the obvious
way. Let z ∈ (O ∪ E). Then

z∗ =df























z if z ∈ D;

〈f∗, E∗〉 if z = 〈f,E〉 ∈ C;

{(x, v∗) | (x, v) ∈ E} if z = E ∈ E ;

undefined otherwise.

The following lemma expresses the intuitively obvious property that evr

commutes with ()∗.

Lemma 4 Let p be a schema and E an environment such that var(E) ⊇
var(p). Then

(evr[p,E])∗ ≡ evr[p
∗, E∗].

Proof (sketch): Proof is by induction on the number of steps to
compute evr[p, E].

There are three base cases. If p ∈ D, then (evr[p, E])∗ = (val(p))∗ =
val(p) = val(p∗) = evr[p

∗, E∗]. If p ∈ X , then (evr[p, E])∗ =
(E(p))∗ = E∗(p∗) = evr[p

∗, E∗]. If p = (λx1 . . . xn . q) is a lambda ab-
straction, then (evr[p, E])∗ = 〈p, E〉∗ = 〈p∗, E∗〉 = evr[p

∗, E∗]. This
last step follows since p∗ is also a lambda abstraction.

The interesting case is for function application. Let p = (g q1 . . . qn).
Suppose that evr[g, E] = 〈(λx1 . . . xn .r), F 〉 for some r and F . (If not,
then one can show that evr[p, E] and evr[p

∗, E∗] are both undefined.)
Let vi = evr[qi, E], i = 1, . . . , n. Then

evr[p, E] = evr[(g q1 . . . qn), E]
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= apr[〈(λx1 . . . xn . r), F 〉, 〈v1, . . . , vn〉]

= evr[r, F [x1 7→ v1] . . . [xn 7→ vn]]. (1)

By definition of star encoding, p∗ = (g∗ (λx . x) q∗
1

. . . q∗n). By
induction, (evr[g, E])∗ ≡ evr[g

∗, E∗]. Hence,

evr[g
∗, E∗] ≡ 〈(λx1 . . . xn . r), F 〉∗

= 〈(λkx1 . . . xn . (k r∗)), F ∗〉. (2)

Let wi = evr[q
∗

i , E∗], and let w = 〈〈(λx . x), E∗〉, w1, . . . , wn〉. Then
applying line 2 gives

evr[p
∗, E∗] = evr[(g

∗ (λx . x) q∗
1

. . . q∗n), E∗]

≡ apr[〈(λkx1 . . . xn . (k r∗)), F ∗〉,w]

= evr[r
∗, F ∗[x1 7→ w1] . . . [xn 7→ wn]]. (3)

Finally, we have

(evr[r, F [x1 7→ v1] . . . [xn 7→ vn]])∗

≡ evr[r
∗, (F [x1 7→ v1] . . . [xn 7→ vn])∗] (4)

≡ evr[r
∗, F ∗[x1 7→ w1] . . . [xn 7→ wn]] (5)

Here, line 4 follows by induction, and line 5 uses the facts that v∗

i ≡ wi

for i = 1, . . . , n, which also follow by induction. Combining lines 1, 5,
and 3 gives

(evr[p, E])∗ = evr[p
∗, E∗]

as desired.

The remaining cases are handled similarly.

Corollary 2 Let p be a schema such that var(p) ⊆ {x1, . . . , xn}. Then

(λx1 . . . xn . p∗) ≡D (λx1 . . . xn . p).

Proof: The conditions of the corollary ensure that (λx1 . . . xn . p∗)
and (λx1 . . . xn.p) are closed lambda-abstractions. Let v1, . . . , vn ∈ D,
and let E = E∗ = [x1 7→ v1] . . . [xn 7→ vn]. Let

a = evr[p, E] = apr[〈(λx1 . . . xn . p), ∅〉, 〈v1, . . . , vn〉]

and

b = evr[p
∗, E∗] = apr[〈(λx1 . . . xn . p∗), ∅〉, 〈v1, . . . , vn〉].

By Lemma 4, a∗ ≡ b.

If a ∈ D, then a = a∗ by Definition 14, and a∗ = b follows from
Definition 11. Hence, a = a∗ = b. Conversely, if b ∈ D, then b = a∗ ∈
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D. Also, a∗ = a by Definition 14 and the fact that a ∈ O. Again, we
have a = a∗ = b. From Definition 5, it follows that

fcnr((λx1 . . . xn . p∗)) = fcnr((λx1 . . . xn . p)).

Hence, Definition 10 gives

(λx1 . . . xn . p∗) ≡D (λx1 . . . xn . p)

as desired.

Lemma 5 Let g, k, a1, . . . , an be schemata. Then

(g∗ k a∗1 . . . a∗n) ≡ (k (g a1 . . . an)∗).

Proof (sketch): Suppose g = (λx1 . . . xn . q). Then g∗ =
(λk′x1 . . . xn . (k′ q∗)), where k′ 6∈ var(q∗). Hence

(g∗ k a∗

1
. . . a∗

n)

= ((λk′x1 . . . xn . (k′ q∗)) k a∗

1
. . . a∗

n)

≡ (k ((λx1 . . . xn . q∗) a∗

1
. . . a∗

n))

≡ (k ((λk′x1 . . . xn . (k′ q∗)) (λx . x) a∗

1
. . . a∗

n))

≡ (k (g∗ (λx . x) a∗

1
. . . a∗

n))

= (k (g a1 . . . an)∗)

If g is not a lambda abstraction, then by Lemma 4, both g and g∗

evaluate to closures or neither do. In the former case, Lemma 4 is
used to relate the two, and an argument similar to the one above is
applied. In the latter case, both sides of the equivalence are undefined
because of our use of call-by-value semantics.

5.2. Properties of the Continuation-Passing Transformation

The next lemma relates the meaning of Φ to the encoding function ()∗.

Lemma 6 Let p be a schema, and let k ∈ X − var(p). Then

Φ[p] ≡ (λk . (k p∗)).

Proof (sketch): Proof is by induction on the structure of p. The
lemma is obvious for p ∈ D ∪ X .

Suppose p is function application. For simplicity of notation, assume
that p has only one argument, so p = (g a). By induction, Φ[g] ≡



LAMBDA-CALCULUS SCHEMATA 281

(λk . (k g∗)) and Φ[a] ≡ (λk . (k a∗)). Then

Φ[(g a)] = (λk . (Φ[g] (λg′ . (Φ[a] (λa′ . (g′ k a′))))))

≡ (λk . ((λk . (k g∗)) (λg′ . (Φ[a] (λa′ . (g′ k a′))))))

≡ (λk . ((Φ[a] (λa′ . (g∗ k a′)))))

≡ (λk . ((λk . (k a∗)) (λa′ . (g∗ k a′))))

≡ (λk . (g∗ k a∗)).

By Lemma 5, (g∗ k a∗) ≡ (k (g a)∗). Hence,

Φ[p] = Φ[(g a)] ≡ (λk . (k (g a)∗)) ≡ (λk . (k p∗)).

The other cases are handled similarly.

Lemma 7 Let p be a schema. Then Φ[p] is safe.

Proof: Safety requires that none of the arguments to a function ap-
plication or primitive application be themselves function applications
or conditionals. Inspection of the equations in Figure 4 show that
for any schema p, if Φ[p] is defined, then Φ[p] is a lambda abstrac-
tion. Further inspection then shows that for every function applica-
tion q = (q0 q1 . . . qn) or primitive application (F q1 . . . qn) that
occurs as a subformula of Φ[p], each qi is either a lambda abstraction,
a constant, a variable, or a primitive application. Hence, Φ[p] is safe.

We are now in a position to state and prove our main theorem.

Theorem 1 Let f be a closed lambda abstraction. We can effectively find
a closed lambda abstraction f ′ such that for all interpretations, fcnd(f

′) =
fcnr(f

′) = fcnr(f).

Proof: By assumption, f = (λx1 . . . xn . p) for some schema p with
var(p) ⊆ {x1, . . . , xn}. Let f ′ = (λx1 . . . xn . (Φ[p] (λx . x))). Φ[p] is a
lambda abstraction, and by Lemma 7, Φ[p] is safe. Hence, f ′ is also
safe, so fcnd(f

′) = fcnr(f
′) by Corollary 1. From Lemma 6, we have

f ′ = (λx1 . . . xn . (Φ[p] (λx . x)))

≡ (λx1 . . . xn . ((λk . (k p∗)) (λx . x))

≡ (λx1 . . . xn . p∗). (6)

By Corollary 2,

f = (λx1 . . . xn . p) ≡D (λx1 . . . xn . p∗). (7)

Lines 6 and 7 give f ≡D f ′, so by Lemma 3, fcnr(f) = fcnr(f
′).

Hence, fcnd(f
′) = fcnr(f

′) = fcnr(f) as desired.
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6. Applications to LISP

The original motivation for this work was a question of LISP [20], namely,
what can one compute in a deletion-strategy implementation of LISP (such
as the “shallow-access” implementation [25]) without using CONS or any
function that implicitly uses CONS, but allowing functional arguments (i.e.,
FUNCTION)?7 The obvious approach of defining CONS as the Church pairing
function (see [4]) does not work directly in a deletion-strategy implemen-
tation of LISP. However, it can be made to work by using the CPS trans-
formation described in Section 4 to translate the resulting expression into
an equivalent safe form. In this section, we describe in greater detail the
relationship between LISP and lambda calculus schemata.

Before proceeding, we need to clarify what we mean by “LISP”. Pure
LISP, and various dialects such as LISP 1.5 [21], MACLISP [22], and Com-
mon LISP [34], all share a common core, but there are significant differences
with respect to crucial issues of variable binding strategy and evaluation
rules. For example, if F is a variable bound to a function, MACLISP al-
lows the application (F 3), whereas Common LISP requires one to write
(FUNCALL F 3).

Rather than tie ourselves to a particular version of LISP, we take an
alternate tack. Let S be the set of all LISP S-expressions. Let DS = {’ξ |
ξ ∈ S}, that is, each member of DS consists of an S-expression preceded by
a single quote. Let FS = {cons, car, cdr, eq, atom}. Let X be the set of all
LISP symbols. Let IS = (DS , valS) be an interpretation, where DS = S,
valS(DS) maps each constant name of the form ’ξ to the S-expression ξ, and
valS(FS) gives each primitive operator its usual LISP interpretation. We
identify T with ’t and F with ’nil. We call lambda-calculus schemata
over the alphabets D, F , X and interpreted according to IS basic LISP
programs.

For example, the basic LISP program

make-funny-list =df (λx . ((atom x) → (cons x ’foo) | x))

corresponds naturally to the MACLISP program

(DEFUN MAKE-FUNNY-LIST (X)

(COND ((ATOM X) (CONS X ’FOO))

(T X)))

7
CONS is the operation in LISP that allocates a word of storage from the heap. By

disallowing CONS, we are prohibiting all explicit use of heap storage by the program,
so our question is really about the extent to which memory allocated by FUNCTION can
replace heap storage in the context of LISP.
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While both seem to be defining a symbol “make-funny-list”, there is an
important difference. We regard make-funny-list as a meta-symbol that
abbreviates a particular schema; it is not a part of the language of lambda-
calculus schemata. Most versions of LISP do include defined symbols as
part of the language and allow them to be used in circular definitions to
express recursion, e.g.,

(DEFUN LAST (X)

(COND ((ATOM (CDR X)) (CAR X))

(T (LAST (CDR X)))))

However, recursion can be expressed without circular definitions by using
a call-by-value version of the Y-operator (see [10]), so we lose no expressive
power by not providing for defined symbols in basic LISP.

We can now reformulate our question as, “What can one compute in
a deletion-strategy implementation of basic LISP?” It is clear that CONS
is required to construct any non-atomic answer that does not happen to
already appear in the program as a constant, but if we restrict ourselves to
atomic-valued functions, we get:

Theorem 2 CONS-free basic LISP, even in a deletion-strategy implementa-
tion, is universal in the sense that it can compute any computable atomic-
valued partial function of S-expressions.

Proof (sketch): The general method is to first implement the given
function in basic LISP. Then we replace all occurrences of cons, car,
and cdr by new lambda abstractions mycons , mycar , and mycdr ,
respectively, which define ordered pairs using Church-encoding [4].
They are defined as follows:

mycons=df (λxy . (λs . (s → x | y)))

mycar =df (λs . (s T))

mycdr =df (λs . (s F))

For the modified program to work correctly, it is necessary to Church-
encode each input S-expression and each constant. This can be done
with the function

enc =df (λx . ((atom x) → x | (mycons (enc (car x)) (enc (cdr x)))))

Finally, the resulting basic LISP expression is converted by Theorem 1
into a data-equivalent safe program.

To obtain a similar theorem for other versions of LISP, one can in prin-
ciple write a LISP interpreter in basic LISP and then eliminate CONS from
it as in the proof of Theorem 2 above.



284 MICHAEL J. FISCHER

A consequence of the above theorem is that free storage may be saved
at the expense of increased use of the stack. In the absence of CONS, the
stack must grow arbitrarily large, since some form of unbounded storage is
necessary in order to be universal, and the stack is the only storage we are
permitting.

Another consequence is that no implementation of LISP which properly
handles FUNARG’s can use only a “pure” pushdown store; it must have point-
ers into the stack, use free storage for purposes other than implementing
CONS (as in the “a-list” implementation), or use some other such device, for
we know that a machine with just a pure pushdown store is not universal.

Finally, we obtain as a corollary an automaton-theoretic result (which
is also easy to prove directly). A “stack” implementation of LISP may
be thought of as a stack automaton in the sense of Ginsburg et al. [11],
augmented by the addition of pointers which may point to elements lower
down in the stack. (These pointers represent bindings.) A careful analysis
of the use of these pointers reveals that the head of the stack automaton
need only be able to move around the stack in three ways: down to the
next lower element, down to the destination of a given pointer, or up to
the top. Theorem 2 says that such a machine is universal, but we know
that a stack automaton lacking pointers is not. This contrasts with the fact
that pointers do not increase the power of a pushdown store machine (see
Cole [5] and Hewitt [13]).
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