
Yale University

Department of Computer Science

A Robust and Verifiable
Cryptographically Secure Election Scheme

(Extended Abstract)

Josh D. Cohen Michael J. Fischer

YALEU/DCS/TR-416
July, 1985

A Robust and Verifiable
Cryptographically Secure Election Scheme†

(Extended Abstract)

Josh D. Cohen Michael J. Fischer

Yale University
New Haven, Connecticut

1 Introduction

Cryptographic techniques are becoming important for
a wide variety of distributed computing tasks where
the processing agents are either unreliable or untrust-
worthy. (Cf. [DiHe76], [DLM82], [Rab83], [RSA78],
etc.)
This paper describes a cryptographic scheme for

holding a secure secret ballot election in which all com-
munication is public. Voters cast their votes electroni-
cally, suitably encrypted, and a “government” releases
a tally and a proof of its correctness which can be ver-
ified by all.
The scheme has several novel aspects. First, it is

robust in the sense that no conspiracy of dishonest
voters can prevent, with more than very low proba-
bility, the successful completion of the election. Sec-
ond, the government, even acting in collusion with a
conspiracy of dishonest voters, cannot release a false
tally without being detected by every honest voter,
except with very low probability. Third, if any con-
spiracy of dishonest voters can compromise privacy by
gaining more than a very slight amount of informa-
tion about how the honest voters voted, beyond that
which is contained in the tally, then we can find an ef-
ficient algorithm for a certain number-theoretic prob-
lem which has no known efficient solution. The proof
is by a polynomial-time reduction of the latter prob-
lem to the former, and the reduction is valid regardless
of the actual complexity of the number-theoretic prob-
lem. Moreover, none of these properties depend on any
unsubstantiated cryptographic assumptions, although
compromising privacy is of course only as hard as the
number-theoretic problem.
Our scheme introduces a new form of “interactive

proof” by which one participant gives passive observers
high confidence that certain claims are true without
releasing related private information. Previous uses of

†This work was supported in part by the National Security
Agency under Grant MDA904-84-H-0004.

interactive proof have required that both parties ac-
tively participate in the proof [GM83], [GMR85].
While we make intuitive appeal to notions such as

“election”, “voter”, “cheating”, “privacy”, etc. in moti-
vating our work, the actual theorems apply to a formal
model in which the necessary concepts are precisely
defined. Thus, the above claim about the difficulty
of compromising the privacy of votes applies to our
formally defined “conspiracy”, which is a collection of
processes in the model with certain well-defined powers
and limitations. How closely our formal model corre-
sponds to life in the real world is a question that can-
not be treated mathematically, but by formalizing the
problem, we can at least bring into focus the assump-
tions upon which our results depend.
Our election scheme consists of a set of processes

called “voters” and a distinguished process called the
“government”. Processes communicate via publicly
readable bulletin boards, one for each sender. All par-
ties have access to a global clock, and every message
is automatically time-stamped by the current value of
the global clock when it is posted. Thus, every party to
the scheme can see every message and can determine
for each who posted it and when.1

In addition, our model includes a “beacon” (see
[Rab83]) which is a publicly-readable source of random
bits. For simplicity, we assume that the beacon oper-
ates only on demand. A process wanting a beacon bit
posts a special request on its bulletin board. Within a
bounded time thereafter, the beacon responds by plac-
ing a random bit, time-stamped and identified as com-
ing from the beacon, on the sender’s bulletin board.
In greater detail, our scheme satisfies the following

properties:

1. Each voter has a function to check the elec-
tion results. With very high probability, either

1Implementing the automatic time-stamping feature can be
difficult in practice. All we actually require is that all honest
participants in the election be able to agree for each message
whether or not it was posted prior to a given deadline, but even
this presents practical difficulties.

1

the election passes the check and the announced
tally of votes is correct, or the election fails the
check and the government is not following its pre-
scribed protocol. This holds even though some
of the voters may be dishonest, where a dis-
honest voter is defined to be any voter process
running some polynomial-time probabilistic algo-
rithm other than the one prescribed by the pro-
tocol. Thus, with very high probability, no set of
dishonest voters can invalidate an election or cast
more than its share of votes.

2. If a set of conspiring voters (not including the gov-
ernment) can obtain more than a small epsilon ad-
vantage at compromising the privacy of the honest
voters, then a probabilistic polynomial time solu-
tion exists to a certain number-theoretic problem
that is believed to be hard.

We do not claim to protect the privacy of individual
votes from the government, making our scheme unsuit-
able in many practical situations. However, the role of
the government could be played by a black box which
has its output carefully monitored and which is de-
stroyed (along with its ability to compromise privacy)
as soon as its essential tasks are completed. Insuring
privacy from the government while retaining the desir-
able features of our scheme appears to be very difficult.
The problem to which privacy is reduced is a weak

version of the so called residue problem. A number
z is (by definition) an rth residue modulo n if and
only if there exists x such that z ≡ xr (mod n).
Given numbers n and z with z < n, the question
of whether or not z is an rth residue modulo n is
decidable (in fact all roots can be be found) with
O(r(log r)2(log log r)(log n)) expected arithmetic oper-
ations in the ring of integers modulo n if the factor-
ization of n is known. (See [Ben81], [Rab80].) Adle-
man and McDonnell in [AdMc82] (see also [APR83],
[Adl80]) show that an oracle which takes an r and a
z and determines whether or not z is an rth residue
(modulo n) can be used to generate an efficient (al-
though not quite polynomial time) algorithm to factor
n. Note that when r = 2, this problem is the prob-
lem of determining quadratic residues used by Rabin,
Goldwasser and Micali, and others as the basis of prov-
ably secure cryptosystems and pseudo-random number
generators ([GM82], [GMT82], [Rab79]).
In the weak rth residue problem used here, r remains

fixed but large (greater than the number of potential
voters), and the algorithm is only required to work
with high probability for integers of a restricted form
(which we call “admissible”), and then only for an in-
verse polynomial sized fraction of such numbers. Nev-

ertheless, no such probabilistic algorithm is known, and
we believe this version of the problem is also hard.

1.1 Related Work

Various cryptographic schemes have been proposed for
boardroom voting in which participants pass encrypted
messages from one to another while performing encryp-
tion and decryption operations until a certain point is
reached at which all are confident of the outcome of the
vote ([DLM82], [Mer83], [Yao82]). These all share the
problems that the active participants must be known in
advance and if one participant stops following its pro-
tocol during the election, the election cannot be con-
tinued. (In our scheme, only the potential participants
need be known in advance.)
Chaum [Cha81] proposes the use of a trusted “mix”

(similar to our “government”) to scramble pairs of
votes and digital pseudonyms. The votes are publicly
revealed, but the identity of the corresponding voters
is protected by the mix. Our scheme has properties
very similar to those of a mix, but the approach is
very different. Instead of hiding voters, the scheme in
this paper hides the actual values of the votes. There
is far less interaction with the government than with
the mix paradigm, and, perhaps most importantly, we
are able to prove our claimed privacy properties.

2 Definitions

We sketch below the model we have in mind for the
election problem and the conditions that we want a
solution to have.

2.1 Verifiable Elections

A J-voter election system E is an asynchronous sys-
tem of J + 1 communicating processes together with
a beacon and a global clock. The processes may be
thought of as probabilistic Turing machines extended
with operations for communication. The program run
by such a process is called a protocol. One process G
is designated as the government, and the other process
v1, . . . , vJ are designated as (potential) voters. We de-
note the set of voter processes by V . G and V are
fixed in advance, and each process knows the desig-
nation of every process. The beacon is a secure and
trusted source of independent unbiased random bits.
The global clock provides a publicly readable non-
decreasing function of real time t that is bounded above
and below by polynomials in t. Processes are asyn-
chronous, but we assume the step times are polynomi-
ally related to real time. Thus, there exist polynomials

2

p, q such that each process takes at least p(t) and at
most q(t) steps up to time t.

Communication is via bulletin boards which can be
thought of as restricted shared memories. Each pro-
cess controls one bulletin board, which it is said to
own. The correspondence between bulletin boards and
processes is fixed in advance and known to all pro-
cesses. Each bulletin board can be read by every pro-
cess, but it can only be written by its owner and by
the beacon, and then only by appending new messages,
not by altering old ones. Messages are automatically
time-stamped with the current value of the global clock
and are posted to the bulletin board in time-stamp or-
der. The beacon only writes in response to a special
“beacon-request” message which the owner can post.
Within a bounded time after such a request, the beacon
posts a random bit to the requester’s bulletin board,
suitably time-stamped and signed by the beacon.
In addition, there is a publicly-readable number N

called a security parameter which serves as the (only)
input to each process. N controls the liklihood that
the election is correct and that privacy is maintained.
A J-voter election scheme S consists of a collection

of protocols for use by a J-voter election system, a
polls-closing time function tclose, a termination time
function tend, and a function check. tclose and tend de-
pend only on N and satisfy 0 < tclose(N) < tend(N).
The function check returns either good or bad and de-
pends on N and the messages posted to the public
bulletin boards before time tend(N). check must be
computable in time polynomial in N .
S prescribes a protocol πG for the government pro-

cess and two possible protocols for each voter: πyes to
be used to cast a “yes” vote and protocol πno to be
used to cast a “no” vote.
An election under S consists of a run of a J-voter

election system E for which check returns good. Any
process of E which follows (one of) its protocol(s)
prescribed by S is said to be proper; otherwise it is
improper. We say that a voter casts a valid “yes”
vote (resp. “no” vote) if the messages it posts up to
time tclose(N) are consistent with the protocol πyes

(resp. πno). We say it votes properly if it casts a valid
“yes” or “no” vote; otherwise it votes improperly. Note
that a proper voter by definition always votes properly,
but an improper voter may or may not vote properly,
and if it votes improperly, that fact may or may not
be detectable by others.
The tally of an election is the pair (tyes, tno) where

tyes and tno are the number of voters who cast valid
“yes” and “no” votes, respectively. As part of its pro-
tocol, the government releases a pair (t̂yes, t̂no) which
is said to be correct if (t̂yes, t̂no) = (tyes, tno).

Let δ be a function of N . The scheme S is said to be
verifiable with confidence δ if, for any election system
E , check satisfies the following properties for random
runs of E using security parameter N :

1. If the government is proper in E , then, with prob-
ability at least 1 − δ(N), check returns good and
the government releases a correct pair (t̂yes, t̂no).

2. Whether or not the government is proper, the joint
probability is at most δ(N) that check returns
good and the government releases an incorrect pair
(t̂yes, t̂no) (or fails to release any pair at all).

S is said to be verifiable if it is verifiable with confi-
dence δ for some inverse polynomial function2 δ.

2.2 Public Voting

A simple example of a verifiable election scheme is one
in which each voter publicly posts a single “yes” or
“no” vote by a certain deadline tclose(N), chosen large
enough to insure that each proper voter has sufficient
time to post its vote. Thus, a vote is valid if it is
the only message on its bulletin board that was posted
before time tclose(N). The government then counts the
valid “yes” and “no” votes and announces the totals.
tend(N) is chosen large enough to give the government
sufficient time to examine all of the voters’ bulletin
boards and to compute and post the tally.

check returns good if and only if the totals of the
valid votes are the same as those announced by the gov-
ernment. Thus, by computing the function check, any
participant can verify the accuracy of the announced
tally.

2.3 Privacy

Preserving privacy in an election does not always imply
the inability of one voter to determine another’s vote.
For example, in the case of a unanimous mandate, ev-
ery voter knows every other voter’s vote. More gen-
erally, any coalition of voters can determine the sub-
tally of the remaining voters by subtracting their own
votes from the totals. We say that privacy is main-
tained if any conspiracy of voters has at most a small
advantage at distinguishing between any two vote as-
signments that have the same subtally on the set of
proper voters.
In order to account for the possibility of a collection

of improper voters acting in concert, we augment our
2δ is said to be an inverse polynomial function if δ(N) =

1/p(N) for some non-constant polynomial p with positive leading
coefficient.

3

model to permit private communication channels be-
tween improper processes. However, we do not want to
assume that private channels are always available, so
we do not permit their use in the protocols prescribed
by a verifiable election scheme. In other words, the ad-
versaries can communicate secretly among themselves
but the proper processes cannot.
To formalize the privacy requirement, let C ⊆ V

be a set of voter processes (the conspirators), and let
c0 ∈ C. We define a (c0, C)-consipracy C to consist
of an assignment of protocols to processes in C (pos-
sibly with private communication among themselves)
such that c0 produces an output in {0, 1} which we de-
note “output(C)”. We require the running time of each
process in C to be polynomial in N .
We now define what it means for a conspiracy C to

compromise privacy of a J-voter election scheme S.
Let H = V −C (the honest voters), and let h0 and h1

be assignments of votes to voters in H such that the
subtally of votes in h0 is the same as that in h1. For
each i ∈ {0, 1}, define an election system Ei as follows.
Every process in C runs the protocol assigned to it
by C, every voter process vj ∈ H runs protocol πhi(j),
and the government process G runs its proper protocol
πG. For a fixed security parameter N , let pi be the
probability that output(C) = 1 on a random run of Ei,
and let ε be a real number. We say that C distinguishes
h0 from h1 with ε advantage if

|p1 − p0| > ε.

In other words, the conspiracy has an ε advantage in
determining whether the votes correspond to assign-
ment h0 or to h1 in a given election with security pa-
rameter N .
We say that C compromises the privacy of (h0, h1) in

S if, for some inverse polynomial function ε, C distin-
guishes h0 from h1 with ε(N) advantage on infinitely
many values of N . Finally, we say that S is secure if
for every (c0, C)-conspiracy C and every pair of vote
assignments h0, h1 to voters in V − C that have the
same subtally, C does not compromise the privacy of
(h0, h1) in S.
The election problem is to find, for each J , a J-voter

election scheme that is verifiable and secure.

3 A Provably Secure Election
Scheme

We now describe our election scheme. It is based on
a simple paradigm, which we present first. Then we
describe our means of encrypting votes, and finally we
give the complete protocol.

3.1 An Election Paradigm

The basic election paradigm upon which our scheme is
based operates in four phases and is shown in Figure
1. The participants are the government G and a set of
voters V = {v1, v2, . . . , vJ}. Implicit in the paradigm is
that each phase must be completed by all participants
before the next begins. This is achieved by setting
deadlines in advance for the completion of each phase.

1. G: Select and reveal a set of pa-
rameter values S to be used
in the election and interactively
prove that S conforms to certain
specifications.

2. Each vj : Select and reveal an unmarked
ballot Bj consisting of one en-
crypted “yes” vote and one en-
crypted “no” vote in random or-
der and interactively prove that
Bj is of this form.

3. Each vj : Select one vote as the actual vote
on the ballot Bj .

4. G: Release the tally and an interac-
tive proof that the tally is correct.

Figure 1: The election paradigm.

3.2 Encryption of Votes

The basic idea behind the election scheme that we
present in the next section is the encoding of votes
by certain integers modulo a number n of a restricted
form.
Fix r throughout to be a prime number greater than

J , the number of potential voters. Let N as usual be
the security parameter. We say n is N -admissible if it
is the product of two primes p and q of length N for
which r|(p − 1) and r |(q − 1). Let n be N -admissible
and let y be relatively prime to n. We say w is an i-vote
(with respect to r, n, and y) if w is relatively prime to
n, 0 ≤ i < r, and w ≡ yixr (mod n) for some integer
x, and we say w is a vote if it is an i-vote for some i.
The following lemma gives conditions under which w
is an i-vote for a unique i in the range 0 ≤ i < r.

Lemma 1 Let n be N -admissible. Let w and y be rel-
atively prime to n, and assume that y is not an rth

residue modulo n. Then w is an i-vote for exactly one
integer i in the range 0 ≤ i < r.

An i-vote is said to be valid if i ∈ {0, 1}. 0-votes

4

(numbers of the form xr) encode “no” votes, and 1-
votes (numbers of the form yxr) encode “yes” votes.

An (unmarked) ballot is a (randomly ordered) pair
of votes. It is of type (i, j) if it consists of one i-vote
and one j-vote. A ballot of type (0, 1) is said to be
valid. A set of ballots is valid if every member is valid.

There are two things of interest to note about un-
marked ballots. First, a valid ballot B = {w,w′}
contains no information as to the intended vote of
the voter, so an unused ballot can be proved valid
simply by revealing two numbers f and g such that
B = {fr, ygr}. Second, two ballots {v, v′} and {w,w′}
can be proven to be of the same type either by ex-
hibiting rth roots modulo n of v/w and v′/w′ or by
exhibiting rth roots modulo n of v/w′ and v′/w. Thus,
given a partition of a set X of valid ballots into two
subsets Y and Z, one can prove that all ballots in Y
are valid and all ballots in Z are of the same type (i, j),
and this can be done without revealing any information
as to whether any particular vote on a ballot in Z is
an i-vote or a j-vote. This is the basis of an interactive
proof of validity for a set of ballots. Since there is at
most one partition of an invalid set of ballots into two
subsets Y and Z such that Y is valid and all ballots
in Z are of the same type, the chance that the proof
will succeed on an invalid set of ballots for a randomly
chosen partition is only 2−η, where η = |X|.
The ability of each voter to verify the tally depends

on a structural property of i-votes. Lemma 1 defines a
mapping h : w �→ i that takes a vote w to the unique
i in the range 0 ≤ i < r for which w is an i-vote.
h : Z∗

n → Zr is a homomorphism since if w1 is an i1-
vote and w2 is an i2-vote, then w1 · w2 is an (i1 + i2)-
vote. The following lemma is immediate.

Lemma 2 If each of w1, w2, . . . , wk is a valid vote and
k < r, then W =

∏
wj is a t-vote, where

t = |{j : wj is a “yes” vote}|.

Thus, to verify that (t̂yes, t̂no) is, with high probabil-
ity, the correct tally of the election, it suffices to verify
that, with high probability, the conditions needed by
Lemma 1 hold, that the total number of valid votes
is t̂yes + t̂no, and that the product of all valid votes
is a t̂yes-vote. This is accomplished by incorporating
appropriate “interactive proofs” into the protocol in a
way that can be checked by the procedure check.

3.3 The Scheme S0
The complete scheme S0, based on the paradigm of Fig-
ure 1, is shown in Figure 2. η1, η2, and η4 are parame-
ters that affect both the chance that a bad election will

go undetected and also the degree of privacy attained.
In order to achieve the desired levels of confidence and
privacy, we choose these parameters as integer func-
tions of N and r as follows:

η1(N, r) = N,

η2(N, r) = �log2(rN)�,
η4(N, r) = �log2(N)�.

The time allowed for each phase grows as N6. Thus,
we let tclose = cN6 and tend = 2cN6 for appropriately
chosen c. (The actual constant of proportionally of
course depends on the assumed step time of the pro-
cessors.)
In step 4a, S0 uses the function checkV (j) which

checks voter vj . It returns good if and only if all of the
following hold.

• In step 2a, voter vj posts η2 + 1 ballots Bj,i,
0 ≤ i ≤ η2, consisting of pairs of integers rela-
tively prime to n. (We denote the first and second
components of these pairs by Bj,i[1] and Bj,i[2],
respectively.)

• In step 2c, for each i such that bi = 1, voter vj

posts integers fi and gi such that {fr
i , yg

r
i } ≡ Bj,i

(mod n), and for each i such that bi = 0, vj posts
integers xi and x̂i such that either

{xr
i , x̂

r
i } ≡ {Bj,i[1]/Bj,0[1], Bj,i[2]/Bj,0[2]}

or

{xr
i , x̂

r
i } ≡ {Bj,i[1]/Bj,0[2], Bj,i[2]/Bj,0[1]}

as sets modulo n.

• In phase 3, the selected vote wj ∈ Bj,0.

To complete the specification of our election scheme,
we describe the procedure check. It returns good if and
only if all of the following hold.

• In step 1a, the government releases η1 pairs of in-
tegers (ni, yi) such that 1 < yi < ni and 2N − 1 ≤
|ni| ≤ 2N .

• In step 1c, for each i = m, the government releases
primes pi and qi of length N whose product is ni

such that ri|(pi − 1), ri |(qi − 1), gcd(yi, ni) = 1,
and yi is not an rth residue modulo ni.

• In step 4a, the government releases η4 numbers
Ci.

5

Phase 1 steps executed by government:

1a. Release η1 randomly-chosen pairs (ni, yi)
such that ni isN -admissible, gcd(yi, ni) =
1, and there exists no xi such that xr

i ≡ yi

(mod ni).
1b. Use beacon to generate a random integer

m, 1 ≤ m ≤ η1.
1c. For all i = m, reveal length N primes pi

and qi such that ni = piqi, ri|(pi−1), and
ri |(qi − 1). Denote (nm, ym) by (n, y).

Phase 2 steps executed by each voter vj ∈ V :

2a. For 0 ≤ i ≤ η2, randomly select fi and gi

such that gcd(fi, n) = gcd(gi, n) = 1, and
release a ballot Bj,i consisting of the two
numbers (fr

i mod n) and (ygr
i mod n) in

random order.
2b. Use beacon to generate η2 random bits

bi, 1 ≤ i ≤ η2.
2c. For all i such that bi = 1, reveal fi and gi.

For all i such that bi = 0, reveal fi · f−1
0

and gi · g−1
0 mod n.

Phase 3 executed by each voter vj ∈ V :

3. Select one element of Bj,0 as the actual
vote wj . To vote “yes”, select wj = ygr

0.
To vote “no”, select wj = fr

0 .

Phase 4 steps executed by government:

4a. Compute Γ = {j : checkV (j) = good}
and W =

∏
j∈Γ wj mod n. Randomly se-

lect η4 numbers ci such that gcd(ci, n) = 1
and reveal all Ci = cr

i .
4b. Use beacon to generate η4 random bits

bi, 1 ≤ i ≤ η4.
4c. Compute x and t such that W ≡ ytxr

(mod n) and 0 ≤ t < r. Reveal (t, |Γ|−t).
For all i such that bi = 1, reveal ci. For
all i such that bi = 0, reveal cix.

Figure 2: The election scheme S0.

• In step 4c, the government releases a pair (t, t′)
such that t+ t′ = |Γ|, where Γ = {j : checkV (j) =
good}; for each i such that bi = 1, the government
releases ci such that cr

i ≡ Ci; and for each i such
that bi = 0, the government releases an integer c′i
such that yt(c′i)

r ≡ Ci

∏
j∈Γ wj (mod n).

4 Correctness

In this section, we sketch briefly the proof that the
scheme S0 presented in Section 3 is a verifiable J-voter
election scheme as defined in Section 2.

4.1 Termination within the Allowed
Time Bounds

The protocol comprises a number of “primitive oper-
ations” on length N numbers. A primitive operation
is a basic arithmetic operation modulo n, a greatest
common divisor computation, or the computation of
an rth root modulo n = pq, where p and q are known.
The basic arithmetic operations and gcd can easily be
performed in time O(N3). Each rth root can be found
using O(r(log r)2(log log r)(log n)) expected modulo n
arithmetic operations as mentioned in Section 1. Since
r is fixed independent of N and n is of length O(N),
the total expected time is O(N4).
All of the steps of S0 except for 1a require at most

O(N) primitive operations; hence the total expected
time for all of these steps is O(N5).
In step 1a, values of p, q, and y must be chosen of

the required form. The expected number of y’s to be
tested is a constant since only 1 out of every r of the
possible y such that gcd(y, n) = 1 are rth residues. A
generalization of the prime number theorem guaran-
tees that both among integers p such that r|(p − 1)
and among integers q such that r |(q − 1), the density
of primes is about 1

N (see [Kra84, page 23]). Since pri-
mality testing (with high confidence) can be completed
in O(N3) time, a p and q of the desired form can be
found in O(N4) expected time. Thus, η1 = N such
pairs can be found in expected time O(N5).
We see that the total expected time required by both

the government and the voter protocols is O(N5). It
follows that by proper choice of c, the fraction of runs in
which some proper process fails to complete its proto-
col in time cN6 can be made smaller than 1/N . Hence,
the voter protocols finish by time tclose and the govern-
ment protocol finishes by time tend with probability at
least 1− 1/N .

6

4.2 Correctness of the Tally

The main tool in showing that the announced tally is
correct is the use of interactive proofs in steps 1, 2, and
4. The basic idea of these interactive proofs is to force
an agent who would produce fraudulent information to
“outguess” the beacon, which can be done successfully
with only low probability.
In phase 1, the government prepares η1 pairs of pa-

rameters of which only one will be used. All of the
remaining pairs must be of the required form or the
government will be detected as being improper. Un-
less the government can successfully guess which pair
will be used, it cannot subvert an election by planting
parameters which do not conform to the specifications
of the scheme. By making η1 sufficiently large, we can
make the probability of this occurring arbitrarily small.
In phases 2 and 4, a more sophisticated interactive

proof following the ideas of [FMR84] and [GMR85] is
used in which the probability of successful cheating is
exponentially small. In these cases, undetected sab-
otage by a single voter would require predicting the
values of all η2 beacon bits, which of course can hap-
pen with probability only 2−η2 , so the probability that
at least one of a set of k conspirators can successfully
cheat is at most k2−η2 ≤ r2−η2 .
The interactive proofs thus give high confidence

(1−1/η1 = 1−1/N) that the parameter values chosen
by the government satisfy the specifications and high
confidence (1 − r2−η2 ≥ 1 − 1/N) that no vote is im-
proper. It must still be shown that the government
cannot release a false tally.
Since, by lemma 2, the product of valid votes yields a

t-vote, where t is the correct tally of the “yes” votes in
the election, the released tally must be correct unless
one or more of the interactive proofs admits a fraudu-
lent value. This is used to derive the following lemma.

Lemma 3

1. With probability at least (1−1/(rN)), checkV (j) =
good if and only if voter vj votes properly.

2. If the government is proper in E, then, with prob-
ability at least 1 − 2/N , check returns good and
the government releases a correct pair (t̂yes, t̂no).

3. Whether or not the government is proper, the
joint probability is at most 3/N that check returns
good and the government releases an incorrect pair
(t̂yes, t̂no) (or fails to release any pair at all).

Proof: (sketch)
1. If vj votes properly, then checkV (j) = good. If vj

does not vote properly, then checkV (j) = bad unless

the interactive proof of phase 2 succeeds, which occurs
with probability at most 2−η2 ≤ 1/(rN).
2. Assume the government is proper. By the timing

analysis in Section 4.1, it fails to complete its protocol
within the allowed time bound with probability at most
1/N . If it does complete its protocol, the released tally
is correct unless the wrong votes are counted. By part
1 of this lemma, the probability that the vote of a voter
who votes improperly is counted or the vote of a voter
who votes properly is not counted is at most 1/(rN),
so the probability that some voter is miscounted is at
most r times that, or 1/N . Hence, with probability at
least 1 − 2/N , the government completes its protocol,
counts the correct votes, and releases a correct tally.
In such a case, check always returns good.
3. The government can release an incorrect tally and

still have check return good only if either the parame-
ters n, y used to conduct the election do not meet the
required specifications, or the wrong votes are counted,
or the government succeeds in phase 4 in “proving”
that

∏
wj mod n is a t-vote for some t other than the

correct value. The probability that bad parameters
will be used and not detected is at most 1/η1 = 1/N .
From part 1, the probability that the wrong votes are
counted is at most r2−η2 ≤ 1/N . Finally, the proba-
bility of a false proof in phase 4 going undetected is at
most 2−η4 ≤ 1/N . Thus, the chance that check = good
and the released tally is incorrect is at most 3/N .

The following is an immediate consequence of
Lemma 3.

Theorem 1 S0 is verifiable with confidence 3/N .

5 Security

It remains to show that if the votes of proper voters
can be compromised by a conspiracy of improper vot-
ers, then our weak rth residue problem (defined below)
can be efficiently solved. Recall that we are assum-
ing here that the government is proper, for we have no
protection against an improper government reading a
vote and divulging it to others.
The proof is by a reduction. Assuming a conspir-

acy C exists that can compromise the election scheme
S0, then we construct a probabilistic polynomial time
algorithm to solve the weak residue problem.

5.1 The Weak rth Residue Problem

Let B be a probabilistic expected polynomial time algo-
rithm that takes two inputs n and z with z less than n
and produces a single bit of output. We say B is a weak

7

rth residue tester if there exists an inverse polynomial
function ε′ such that for infinitely many numbers N ,
for an ε′(N) fraction of the N -admissible numbers n,
and for all z < n,

Prob[output(B) = 1 ⇔ z is an rth residue]
> 1− ε′(N).

In other words, B can distinguish with very high prob-
ability between rth residues and non-rth residues for
a significant fraction of the admissible numbers of in-
finitely many different lengths.

5.2 The Reduction

Let C be a (c0, C)-conspiracy that compromises the
privacy of (h0, h1) in S0. We construct a probabilistic
polynomial time algorithm B that solves the weak rth

residue problem.
Recall from Section 2 the construction of the systems

Ei, i ∈ {0, 1}, from the conspiracy C and the vote as-
signments h0 and h1. Let pi(n) be the probability that
C outputs 1 on runs of Ei, given that the first param-
eter chosen in phase 1 is n. Since C compromises the
privacy of (h0, h1) in S0, there are infinitely many val-
ues of N for which C distinguishes h0 from h1 with an ε
advantage, where ε is an inverse polynomial function.

Consider such an N . We have by definition that

|p0 − p1| > ε(N),

where for i ∈ {0, 1}, pi is the probability that
output(C) = 1 on a random run of Ei. But pi is the ex-
pected value of pi(n), where n is a randomly-chosen N -
admissible number. It follows that for at least ε(N)/2
of the N -admissible numbers n, we have

|p0(n)− p1(n)| > ε(N)/2.

Given inputs n and z, B works by repeatedly “simu-
lating” random elections in the systems E0 and E1 ex-
cept that instead of the government randomly choosing
its parameters n and y in phase 1 of S0, the simulator
forces them to particular values: n is set to the value
of the input “n” to the residue tester, and parameter
y is set to zixr for randomly chosen i and x satisfy-
ing 0 < i < r, 0 ≤ x < n, and gcd(x, n) = 1. y has
the property that it is an rth residue modulo n if and
only if z is. However, it can be shown that y is chosen
uniformly from among the set of all rth residues (re-
spectively non-rth residues) which are relatively prime
to n. Call a simulated election using parameters de-
rived from n and z as above an (n, z)-pseudo election.

Let qi(n, z) be the probability that C outputs 1 on
an (n, z)-pseudo election of system Ei. If z is an rth

residue, a symmetry argument shows that

q0(n, z) = q1(n, z),

for then the ballots of the honest voters consist of pairs
of random rth-residues in both E0 and E1, and the two
runs are totally indistinguishable to processes in C. On
the other hand, if z is a non-rth residue, then qi(n, z) ≈
pi(n), so if n is such that |p0(n)−p1(n)| > ε(N)/2, then

|q0(n, z)− q1(n, z)| > ε′(N),

where ε′ is another inverse polynomial function of N .
Hence, whether or not z is an rth residue can be deter-
mined with high probability by using statistical sam-
pling to distinguish the case that q0(n, z) = q1(n, z)
from the case that |q0(n, z)− q1(n, z)| > ε′(N). It fol-
lows using standard techniques of probability theory
that by running polynomially-many (n, z)-pseudo elec-
tions, these two cases can be distinguished with error
that goes to zero with increasing N more rapidly than
any inverse polynomial function.
We still have said little about how the simulation is

carried out. It is not simply a matter of simulating
the steps of the individual processors in Ei, for the
simulator has two problems.
First, we only want B to simulate elections in which

the government parameters selected in phase 1 are the
partciular values n and y, for otherwise we gain no
information about whether or not z is an rth residue
modulo n. Hence, rather than simulate truely ran-
dom elections, B manipulates the beacon to insure that
these parameters are the chosen ones. It does this in
a way that still looks random to the other processors
by choosing in step 1a a random number m′ between
1 and η1 and forcing nm′ = n and ym′ = y, and then
in step 1b forcing m, the number that would be chosen
by the beacon in a real run of Ei, to be m′.
The second problem is that the simulator does not

know the factorization of n, yet step 4c seems to re-
quire that information. Examination of the protocol,
however, will show that it suffices to know the values
of the rth roots used to generate all votes cast, for this
enables the simulator to compute t directly, and know-
ing t, to compute xr. Although it is still unable to find
x, it can successfully simulate phase 4 in the following
unorthodox way:

• Generate η4 random bits bi, 1 ≤ i ≤ η4.

• For each i, 1 ≤ i ≤ η4, randomly select a number
di such that gcd(di, n) = 1. If bi = 1, then let
Ci = dr

i . If bi = 0, then let Ci = dr
i /x

r.

8

• Simulate step 4a by revealing the numbers Ci.

• Simulate step 4b by using the bi as the beacon
values.

• Simulate step 4c by revealing (t, |Γ| − t) and the
numbers di.

Thus, a run of E0 or E1 can be simulated by B if it is
able to extract the rth roots used to generate all votes
cast. B itself chose the roots (in step 2a) for all of the
voters in H, so it remains only to extract the roots
for the votes cast by processes in C that voted prop-
erly. (These correspond with high probability to the
processes j ∈ C for which checkV (j) = good.) To do
this, B “re-runs” portions of the election using different
beacon values at each of the steps where a process in C
must interactively prove that its ballot is valid (that is,
when it is posting the messages that would be posted
by a proper voter in phase 2). B tries to find a sec-
ond run which has checkV (j) = good and which agrees
with the first run up to the posting of the numbers
(fr

i mod n) and (ygr
i mod n) of step 2a but differs in

some beacon bit bi in step 2b. In one of the runs, fi and
gi (mod n) will appear on the bulletin board (corre-
sponding to what a proper voter would do in step 2c),
and in the other, the bulletin board will have fi · f−1

0

and gi · g−1
0 (mod n). Dividing corresponding values

yields f0 and g0.
B succeeds in the simulation if it finds the roots for

all j ∈ C for which checkV (j) = good. It will not al-
ways succeed, for it might turn out, for example, that
checkV (j) = bad in every run except the given one.
However, through a fairly lengthly analysis, which we
defer to the full paper, it can be argued that such bad
cases are relatively infrequent and that B succeeds of-
ten enough to satisfy our theorem.
This yields:

Theorem 2 If there is no expected polynomial time
weak rth residue tester, then S0 is secure.

6 Extensions, Variations, and
Conclusions

6.1 Multiway Elections

We have considered only elections with two possible
choices—“yes” and “no”. The scheme presented ex-
tends easily to elections where many choices are al-
lowed. In a three-way election, for example, the r
used can be the product of two (known) primes r1 and
r2. Votes could then be either of the form xr, yxr, or
yr1xr. As long as r1 and r2 are both greater than the

maximum possible number of voters, the product of
the votes will be uniquely expressible in the form ytxr

(mod n) for 0 ≤ t < r, where t in turn is uniquely
expressible as t = ar1 + b for 0 ≤ b < r1. a and b
respectively denote the number of votes of the forms
yr1xr and yxr. The remaining valid votes are of the
form xr.

6.2 Eliminating the Beacon

The beacon used in these protocols can be replaced by
a small set of “tellers” under the assumption that each
voter trusts at least one of the tellers. The tellers to-
gether generate a random bit by each generating a ran-
dom bit, releasing a one-way encryption of the bit, and
then (when all encrypted bits have been released), re-
leasing the actual (unencrypted) bit. The bits are then
XORed to produce a single pseudo-random bit. This
bit is random as long as any one teller’s bit is itself ran-
dom. A teller can, by refusing to release the decryption
of a bit at some stage, bias the simulated beacon bit.
If, however, improper tellers are excluded from further
participation, the number of tellers is small, and the
group of beacon bits in the process of being produced
when the bad teller was exposed are recomputed from
the beginning, then it can be shown that the dishonest
tellers’ influence is not sufficient to hinder the accuracy
and security properties of the scheme.
One means of encrypting a bit for use by the teller’s

protocol is to generate an rth residue modulo some n to
indicate a 1 and a non-rth residue to indicate a 0. This
has the feature that security of the entire election re-
mains dependent solely upon the difficulty of deciding
rth residues.

6.3 Related Schemes

In addition to the election scheme presented in this pa-
per, a number of related schemes which all conform to
the election paradigm of Figure 1 can be devised. One
of these schemes is based upon the difficulty of com-
puting the discrete logarithm modulo a known prime
([Adl79], [PoHe78], [CLS85]). Another is based upon
the difficulty of determining the order of an element
modulo the product of two unknown primes. A third
proposed scheme encrypts a vote using the low order
bit of a message encrypted by RSA [RSA78]. The ma-
jor requirement of such a scheme seems to be the ex-
istance of a function that can be computed on a set of
encrypted data which preserves the sum of the unen-
crypted components (see [RAD78]), but we do not yet
know if that is sufficient for the correctness and secu-
rity properties to carry over in general, nor have we

9

even investigated these particular examples carefully.
Nevertheless, the variety of number theoretic problems
on which such schemes can be based and the ease with
which they have been found gives additional reason to
believe in the usefulness of the general paradigm.
The notion of verifiability through generalized inter-

active proofs, as used in the election scheme presented
here, seems to be quite powerful and may find applica-
tion in other kinds of protocols as well.

6.4 Open Problems

One major disadvantage of our election paradigm is the
government’s powerful ability to read any vote. There
are many applications in which a higher level of secu-
rity is required. One way to achieve this, as suggested
earlier, is to implement the government’s process as a
carefully monitored black box.
Eliminating altogether the government’s ability to

read individual’s votes in a situation in which the num-
ber of voters is not known in advance, however, seems
to be extremely difficult. For example, if the govern-
ment is able to compute a tally for an arbitrary subset
of the eligible voters, then it can compute a tally with
and without the vote of a particular voter and thus de-
termine that voter’s vote. Thus, any such scheme must
somehow restrict the government’s ability to compute
tallies to the set of voters who actually cast a vote in
the election. We leave open the problem of finding such
a scheme or proving its non-existence.
One possible tactic which may alleviate this problem

in practice is to distribute the government’s powers.
With such a mechanism, it might be required that all
parties which share the power cooperate in order to
compute a tally. In such a case, it might be possible to
maintain privacy under the assumption that the parties
do not all collaborate to compromise the secrecy of an
individual vote. No such mechanism for generalizing
the paradigm presented here is yet known, but this
may provide a fruitful avenue for further research.

References

[Adl80] Adleman, L. “On Distinguishing Prime
Numbers from Composite Numbers.” Proc.
21st IEEE Symp. on Foundations of Com-
puter Science, Syracuse, NY (Oct. 1980),
387–406.

[Adl79] Adleman, L. “Subexponential Algorithm
for The Discrete Logarithm Problem.”
Proc. 20th IEEE Symp. on Foundations of

Computer Science, San Juan, PR (Oct.
1979), 55–60.

[AdMc82] Adleman, L. and McDonnell, R. “An Ap-
plication of Higher Reciprocity to Compu-
tational Number Theory.” Proc. 23rd IEEE
Symp. on Foundations of Computer Sci-
ence, Chicago, IL pp. (Nov. 1982), 100–106.

[APR83] Adleman, L., Pomerance, C., and Rum-
ley, R. “On Distinguishing Prime Num-
bers from Composite Numbers.” Annals of
Math. 117, (1983), 173–206.

[Ben81] Ben-Or, M. “Probabilistic Algorithms in
Finite Fields.” Proc. 22rd IEEE Symp.
on Foundations of Computer Science,
Nashville, TN pp. (Oct. 1981), 394–398.

[Cha81] Chaum, David L. “Untraceable Electronic
Mail, Return Addresses, and Digital Pseu-
donyms.” Comm. ACM 24, 2, (Feb. 1981),
84–88.

[CLS85] Coppersmith, D., Liscov, A., and Schroep-
pel R. “Discrete Logarithms in GF (p).” to
appear in Algorithmica.

[DLM82] DeMillo, R., Lynch, N. and Merritt,
M. “Cryptographic Protocols.” Proc. 14th

ACM Symp. on Theory of Computing, San
Francisco, CA (May 1982), 383–400.

[DiHe76] Diffie, W. and Hellman, M. E. “New Di-
rections in Cryptography.” IEEE Trans.
on Information Theory 22, 6, (Nov. 1976),
644–654.

[FMR84] Fischer, M., Micali, S., and Rackoff,
C. “A Secure Protocol for the Oblivious
Transfer.” Presented at Eurocrypt84, Paris,
France (Apr. 1984). (Not in proceedings.)

[GM82] Goldwasser, S. and Micali, S. “Probabilis-
tic Encryption & How to Play Mental
Poker, Keeping Secret All Partial Informa-
tion.” Proc. 14th ACM Symp. on Theory of
Computing, San Francisco, CA (May 1982),
365–377.

[GM83] Goldwasser, S. and Micali, S. “Proofs
With Untrusted Oracles.” Unpublished
Manuscript (May 1983).

[GMT82] Goldwasser, S., Micali, S., and Tong, P.
“Why and How to Establish a Private Code
On a Public Network.” Proc. 23rd IEEE

10

Symp. on Foundations of Computer Sci-
ence, Chicago, IL (Nov. 1982), 134–144.

[GMR85] Goldwasser, S., Micali, S., and Rackoff
C. “The Knowledge of Complexity of In-
teractive Proof-Systems.” Proc. 17th ACM
Symp. on Theory of Computing, Provi-
dence, RI (May 1985), 291–304.

[Kra84] Kranakis, E. “Theoretical Aspects of the
Security of Public Key Cryptography.”
Yale University Department of Computer
Science Technical Report 341. (Sep. 1984).

[Mer83] Merritt, M. “Cryptographic Protocols.”
Ph.D. Thesis presented at Georgia Institute
of Technology (Feb. 1983).

[PoHe78] Pohlig, S. and Hellman, M. “An Improved
Algorithm for Computing Logarithms Over
GF(2) and Its Cryptographic Significance.”
IEEE Trans. on Information Theory 24, 1
(Jan. 1978), 106–110.

[Rab79] Rabin, M. “Digitalized Signatures and
Public-key Functions as Intractable as Fac-
torization.” MIT/LCS/TR-212. MIT Tech-
nical Report (Jan. 1979).

[Rab80] Rabin, M. “Probabilistic Algorithms in Fi-
nite Fields.” SIAM Journal on Computing
9, 2 (May 1980), 273–280.

[Rab83] Rabin, M. “Transaction Protection by Bea-
cons.” J. Comp. Sys. Sci. 27, 2 (Oct. 1983),
256–267.

[RAD78] Rivest, R. L., Adleman, L., and Dertouzos,
M.L. “On Data Banks and Privacy Homo-
morphisms.” Foundations of Secure Com-
putation, ed. by R. A. DeMillo, et. al. Aca-
demic Press, New York, 1978, 169–179.

[RSA78] Rivest, R. L., Shamir, A., and Adleman,
L. “A Method for Obtaining Digitial Sig-
natures and Public-key Cryptosystems.”
Comm. ACM 21, 2 (Feb. 1978), 120–126.

[Yao82] Yao, A. “Protocols for Secure Computa-
tions.” Proc. 23rd IEEE Symp. on Foun-
dations of Computer Science, Chicago, IL
(Nov. 1982), 160–164.

11

