
Abstract

The Lifestreams Software Architecture

Eric Thomas Freeman

Yale University

May 1997

\Typical" computer users struggle to organize and �nd their own electronic docu-
ments, manage their schedules and correspondence, and �lter an ever increasing deluge
of information. The process is made worse as users are forced to combine the disparate
features of many applications to achieve these tasks. These problems suggest that
our current software systems are ill-equipped to handle the demands of the typical
computer user. Research has shown that common desktop environments (such as the
Macintosh \desktop") are often badly �tted to users' needs.

In an attempt to do better we have reduced \information management" to a few
simple and unifying concepts and created \Lifestreams." Lifestreams is a software ar-
chitecture based on a simple data structure, a time-ordered stream of documents, that
can be manipulated with a small number of powerful operators to locate, organize,
summarize and monitor information.

In this dissertation we �rst provide motivation for Lifestreams. We then present
the model and discuss the development of our research prototype. Our prototype re-
alizes many of the system's de�ning features and has allowed us to experiment with
the model's key ideas with actual users (of di�ering levels of computer experience)
over the course of its development. Results from its use suggest that Lifestreams is
an e�ective software architecture for managing common computer tasks; its simple
organizational storage system (the stream) combined with a small number of pow-
erful operators provides a uni�ed framework that subsumes many separate desktop
applications to accomplish and handle the most common personal communication, re-
minding, and storage and retrieval tasks. In addition, Lifestreams suggests valuable
new capabilities for electronic systems.

The Lifestreams Software Architecture

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by

Eric Thomas Freeman
May 1997

Copyright c
 1997 by Eric Thomas Freeman

All Rights Reserved

iii

Acknowledgements

This dissertation could not have been completed without the support and contri-
butions of my colleagues and friends. First and foremost I owe thanks to my thesis
committee: my advisor, David Gelernter, provided inspiration, endless ideas and en-
couragement throughout my graduate career. Nick Carriero acted as a co-advisor and
through technical discussions and his careful reading of the dissertation greatly im-
proved the quality of the �nal work. Ben Bederson, my external reader, provided
outside encouragement and criticism and was particularly helpful with his guidance in
the evaluation aspects of this dissertation. Last, Martin Schultz was supportive and
interested in the project throughout.

I also owe sincere gratitude to Scott Fertig who acted as a mentor and made many
contributions to the work (as well as being a good friend). My wife, Elisabeth, not only
provided love and support, but also endured using the early Lifestreams systems and
was always the �rst to read rough dissertation drafts. David Kaminsky interested me
in coming to Yale and acted as a mentor early on. Susanne Hupfer and Rob Bjornson
were friends and colleagues and �lled many days with interesting discussion.

Contents

1 Introduction 1

1.1 Problems with Current Software Systems : : : : : : : : : : : : : : : : : 2
1.1.1 Finding and Filing : 2
1.1.2 Reminding : 4
1.1.3 Archiving : 5
1.1.4 Summarizing Information : 6
1.1.5 Incompatible and Disparate Applications : : : : : : : : : : : : : 6

1.2 Typical Users and Common Tasks : 7
1.3 New Directions for Software Systems : 8
1.4 Outline : 10

2 The Model 12

2.1 The Concept : 12
2.1.1 What is a lifestream? : 14
2.1.2 Document Creation and Storage : : : : : : : : : : : : : : : : : : 14
2.1.3 \On Demand" Organization : 16
2.1.4 Overviews : 16
2.1.5 Agents : 16
2.1.6 Chronology as a Storage Model : : : : : : : : : : : : : : : : : : : 17

2.2 The Formal Model : 17
2.2.1 The Linda Coordination Language : : : : : : : : : : : : : : : : : 18
2.2.2 Documents and Attributes : 19
2.2.3 Streams and Substreams : 21
2.2.4 Lifestreams Re�nement : 26
2.2.5 Constructing a \User Interface" : : : : : : : : : : : : : : : : : : : 32

2.3 Summary : 39

3 The Implementation 40
3.1 General Architecture : 40
3.2 Server Infrastructure : 41

3.2.1 Document Collection Subsystem : : : : : : : : : : : : : : : : : : 41

iv

CONTENTS v

3.2.2 Indexing Subsystem : 42
3.2.3 Substreams Storage Subsystem : : : : : : : : : : : : : : : : : : : 47
3.2.4 Putting it All Together : 49
3.2.5 Reality Check : 53

3.3 Client Infrastructure : 54
3.3.1 Our Document Model : 54
3.3.2 Communication : 55

3.4 Embedded Computation : 57
3.4.1 The Agent Language : 57
3.4.2 Implementing Embedded Processes : : : : : : : : : : : : : : : : : 59

3.5 The \Summarize" Architecture : 60
3.6 Summary : 62

4 The Interface 63

4.1 Interface Design : 63
4.2 The X Windows Interface : 64

4.2.1 Navigating through Time : 66
4.2.2 Basic Operations : 67
4.2.3 Color and Animation : 69
4.2.4 Future Time : 70
4.2.5 Opening, Viewing and Editing Documents : : : : : : : : : : : : : 72

4.3 The Command-line Interface : 81
4.3.1 Viewing/Editing Documents : 81
4.3.2 Substreams : 81
4.3.3 Time : 83
4.3.4 New, Clone and Transfer : 83
4.3.5 Summaries and Personal Agents : : : : : : : : : : : : : : : : : : 83

4.4 The PDA Client : 86
4.4.1 Communication : 87
4.4.2 The Newton Interface : 87

4.5 Summary : 92

5 Common Tasks 94
5.1 Finding and Filing Practices : 94
5.2 Electronic Mail : 96
5.3 Contact Management : 97
5.4 Managing Bookmarks : 101
5.5 Calendar Applications : 102
5.6 Personal Finances : 107
5.7 Summary : 109

CONTENTS vi

6 Evaluation 111

6.1 Scope and Methodology : 111
6.2 Subjects : 113
6.3 Procedure : 114

6.3.1 Introduction and Training : 114
6.3.2 Evaluation : 114

6.4 Overall Subjective Reaction : 115
6.4.1 Reaction to chronology : 116
6.4.2 Understanding the \metaphor" : : : : : : : : : : : : : : : : : : : 117
6.4.3 How does it compare to other systems/metaphors? : : : : : : : : 117

6.5 Learning : 118
6.6 Interface Layout and Design : 119
6.7 System Capabilities and Performance : 120

6.7.1 Overview of System Use : 120
6.7.2 Use of Substreams : 122
6.7.3 Substream Accuracy : 124
6.7.4 Substream Size : 125
6.7.5 Substream Response Time : 125
6.7.6 Substream Management Styles : : : : : : : : : : : : : : : : : : : 126

6.8 Summary : 127

7 Information Management Revisited 129
7.1 Information \Types" : 129
7.2 Malone Revisited : 131

7.2.1 Finding : 131
7.2.2 Reminding : 132

7.3 Task Analysis : 132
7.3.1 Whittaker and Sidner : 132
7.3.2 Erickson : 134
7.3.3 Tasks from the Knowledge Navigator : : : : : : : : : : : : : : : : 136

7.4 Lansdale Revisited : 136
7.5 Summary : 139

8 Related Work 140

8.1 Information Retrieval Systems : 140
8.1.1 WAIS : 140
8.1.2 Tapestry : 141
8.1.3 MIT Semantic File System : 141
8.1.4 Glimpse : 142
8.1.5 Apple Find : 143

8.2 Database Management Systems : 143
8.3 Personal Information Managers : 143

CONTENTS vii

8.3.1 ToDo List Managers : 144
8.3.2 Contact Managers and Time Trackers : : : : : : : : : : : : : : : 144
8.3.3 The Newton : 144
8.3.4 Guy Friday : 145

8.4 Schedulers and Meeting Makers : 146
8.5 Corporate Document Systems : 146

8.5.1 Document Systems: Lotus Notes : : : : : : : : : : : : : : : : : : 146
8.5.2 Work
ow Systems : 147

8.6 New Paradigms : 147
8.6.1 Memoirs : 147
8.6.2 Dynamic Queries : 148
8.6.3 LifeLines : 148

8.7 Summary | Surveying the Landscape : : : : : : : : : : : : : : : : : : : 149

9 Conclusions 153

A Lifestreams Primitives 161

B User Questionnaire 164

List of Figures

2.1 The Basic Lifestreams Operations. : 15
2.2 The de�nition of extract. : 20
2.3 The de�nition of replace. : 21
2.4 The de�nition of freeze. : 21
2.5 Lifestreams Tuple Space. : 23
2.6 The de�nition of append. : 24
2.7 The de�nition of read. : 24
2.8 The de�nition of write. : 25
2.9 The de�nition of �lter. : 26
2.10 The de�nition of retrieve. : 27
2.11 The de�nition of incremental �lter. : 27
2.12 The de�nition of incremental retrieve. : : : : : : : : : : : : : : : : : : : 28
2.13 The (time-aware) de�nition of append. : : : : : : : : : : : : : : : : : : : 30
2.14 The (time-aware) de�nition of write. : 31
2.15 The de�nition of add agent. : 31
2.16 The de�nition of append with agents. : 32
2.17 Expression of Lifestreams user interface in terms of the primitives. : : : 34
2.18 Expression of Lifestreams user interface in terms of the primitives (cont). 35
2.19 The simple summary. : 36
2.20 The de�nition of apply. : 36
2.21 The de�nition of substream copy. : 37
2.22 The de�nition of a receipt agent. : 38
2.23 The de�nition of a subscription agent. : : : : : : : : : : : : : : : : : : : 39

3.1 The Document Storage Subsystem. : 42
3.2 The Indexing Subsystem. : 43
3.3 In search: computing a substream. : 46
3.4 The Substream Data Structure. : 48
3.5 In match: computing a documents membership in a substream. : : : : : 49
3.6 De�nition of the Server Read and Write Routines. : : : : : : : : : : : : 50
3.7 De�nition of the Server Append Routine. : : : : : : : : : : : : : : : : : 51
3.8 De�nition of the Server Filter Routine. : : : : : : : : : : : : : : : : : : : 52

viii

LIST OF FIGURES ix

3.9 De�nition of the Server Retrieve Routine. : : : : : : : : : : : : : : : : : 53
3.10 An example MIME-encode Lifestreams document. : : : : : : : : : : : : 58
3.11 Embedded Process Architecture. : 60

4.1 The X Windows Interface. : 65
4.2 Browsing Back in Time. : 66
4.3 Browsing Back in Time with a Substream. : : : : : : : : : : : : : : : : : 68
4.4 Transferring a Document. : 69
4.5 Using Find. : 69
4.6 Selecting a Substream. : 70
4.7 Use of Animation within X Windows Interface. : : : : : : : : : : : : : : 71
4.8 Specifying Time. : 72
4.9 The Calendar Dialog Box. : 73
4.10 Future Documents on Stream. : 74
4.11 An Example Mailcap File. : 75
4.12 The X Windows Interface Handles MIME-typed Documents. : : : : : : 77
4.13 Editing Document Attributes. : 78
4.14 Choosing a Mime Type. : 79
4.15 Editing an Agent. : 79
4.16 The Command-line Interface. : 82
4.17 Substreams in the CLI. : 84
4.18 Time in the CLI. : 85
4.19 Reminder personal agent in the command-line client. : : : : : : : : : : : 86
4.20 The Newton Interface. : 88
4.21 Documents in a stream are displayed as an overview. : : : : : : : : : : : 89
4.22 Substreams are displayed in place of folders. : : : : : : : : : : : : : : : : 90
4.23 The clock glance has been replaced by a date/time editor. : : : : : : : : 91
4.24 The Transfer dialog. : 92
4.25 The Find dialog. : 92

5.1 A Summary of Email. : 98
5.2 A Businesscard Document. : 99
5.3 A Phonecall Document. : 99
5.4 The Phone Call Personal Agent. : 100
5.5 A Summary of Phone Calls. : 101
5.6 A Summary of Bookmarks. : 103
5.7 Day at a Glance Summarizer. : 104
5.8 Week at a Glance Summarizer. : 105
5.9 The X Windows Calendar Interface. : 106
5.10 Meeting Maker Requesting Recipients. : : : : : : : : : : : : : : : : : : : 107
5.11 Meeting Maker Scheduler. : 107
5.12 Meeting Maker Document Agent. : 108

LIST OF FIGURES x

5.13 A Summary of Stock Performance. : 109

6.1 Size of substreams returned from FINDs. : : : : : : : : : : : : : : : : : 123
6.2 Average time to compute and display a substream. : : : : : : : : : : : : 126

7.1 Dialog from Apple's \Knowledge Navigator". : : : : : : : : : : : : : : : 137

A.1 The complete stream primitives. : 161
A.2 The complete stream primitives (cont). : : : : : : : : : : : : : : : : : : : 162
A.3 The complete stream primitives (cont). : : : : : : : : : : : : : : : : : : : 163

List of Tables

2.1 The document attributes along with their type and function. : : : : : : 20

3.1 Comparison of WAIS and Lifestreams indexing. : : : : : : : : : : : : : 54

6.1 Subjects' overall reactions to Lifestreams. : : : : : : : : : : : : : : : : : 115
6.2 Subjects' reactions to learning in Lifestreams. : : : : : : : : : : : : : : 118
6.3 Subjects' reactions to screen layout and design. : : : : : : : : : : : : : 119
6.4 Subjects' reactions to system capabilities. : : : : : : : : : : : : : : : : : 121
6.5 Use of Lifestreams operations. : 122
6.6 Query use over testing period. : 123
6.7 Size of Substreams. : 126
6.8 Locating information through persistent substreams. : : : : : : : : : : 127

8.1 Comparison features over landscape of systems. : : : : : : : : : : : : : : 152

xi

Chapter 1

Introduction

Despite rapid advances in many areas of computer science (user interfaces, commu-
nications technologies, object-oriented systems) over the last several decades, com-
puters are widely acknowledged to be harder to use than they could or should be
[Kap91, MH92, Hil95, Cor96]. Typical computer users struggle to organize and �nd
their electronic documents, manage their schedules and correspondence and �lter an
ever increasing deluge of data from the Internet. Matters get worse when users are
forced to draw on the disparate features of many applications to achieve these tasks.

These problems suggest that our current \operating system interfaces" are ill-
equipped to handle the demands of the \typical" computer user. By operating system
interface we are referring to the predominant computer interfaces and systems used
by typical computer users; namely, those based on the desktop metaphor. Through-
out the dissertation we will refer to these systems generically as \current software
systems," \desktop systems" and \operating system interfaces." We will also de�ne
\typical users" later in this chapter.

The Lifestreams software architecture is an attempt to do better than current sys-
tems. Lifestreams is a new software architecture for managing personal electronic in-
formation based on a simple data structure | a time-ordered stream of documents |
combined with a small number of powerful operators for locating, organizing, summa-
rizing and monitoring information. Our prototype implementation (which we present
as a \proof of concept") realizes many of the system's de�ning features and has allowed
us to experiment with the model's key ideas.

This dissertation gives motivation for Lifestreams, presents a formal Lifestreams
model, and reports on the development of (and our practical experiences with) the
research prototype. Our results show that Lifestreams is an e�ective software architec-
ture for managing common computer tasks; its simple organizational storage system
(the stream) and powerful operators provide a uni�ed framework that subsumes many
separate desktop applications to accomplish and handle the most common personal

1

Chapter 1. Introduction 2

communication, reminding, and storage and retrieval tasks.1

1.1 Problems with Current Software Systems

Today computer users predominantly use software systems based on the \desktop
metaphor," which attempts to simplify common �le operations by presenting them
in the familiar language of the paper-based world (paper documents as �les, folders as
directories, the trashcan for deletion). While this metaphor has been successful to a
point (granted one usually has to explain to a new user how the computer desktop is
like a real desktop), as we shall see, the paper-based model is a rather poor basis for
managing electronic information.

Previous work has considered the ways people use information and electronic sys-
tems and identi�ed a number of problems [Mal83, Lan88b, Car82, Coo95, DL83, JD83,
Col82, MSW92, Nel90, BN95, Eri96, WS96, Pem96, Kay90]. Users have trouble �ling,
�nding and organizing information; incorporating \reminding" into their electronic en-
vironment; archiving and making use of archived information; obtaining \overviews"
or summaries of information; managing many separate, incompatible applications and
data formats needed to achieve common, everyday tasks. These problems point out
where desktop systems fall short of user's needs and suggest directions for improving
them. Let's examine each point.

1.1.1 Finding and Filing

Lansdale [Lan88b] has studied the processes of recall, recognition and categorization in
an attempt to propose software frameworks that have a basis in psychological theory.
He describes information categorization as the problem that lies in \deciding which
categorizations to use, and in remembering later exactly what label was assigned to
a categorization." Much of Lansdale's work builds on Tom Malone's seminal study of
the way people use information: How Do People Organize Their Desks? Implications
for the Design of O�ce Information Systems [Mal83]. In his study Malone aimed to
obtain a \systematic understanding of how people actually use their desks and how they
organize their personal information environments" in an attempt to improve electronic
systems. Malone's work suggested that categorizing information is perhaps the most
di�cult information management task people encounter.

What makes categorizing information so hard and why is information so hard to
�nd after it is categorized? Lansdale found that \quite simply, information does not
fall into neat categorizations that can be implemented on a system by using simple
labels." The work of Dumais and Landauer [DL83] identi�ed two speci�c reasons: (1)
information falls into overlapping and fuzzy categories and (2) it is impossible for users
to generate categories that remain unambiguous over time. Both of these reasons are

1The Thesis.

Chapter 1. Introduction 3

problematic for electronic �le and folder systems because they cannot represent the
true relationships between the information they store. Hierarchies organize documents
into strict relationships, but most documents are related to other documents in
uid,
multi-dimensional ways. The following examples are suggestive (from [Lan88b]):

\My boss wants to see all the project reviews I have carried out over the
last six months. The trouble is, they are �led under each of the individual
projects. It will take me ages to work through and dig them all out."

\Yes I remember that paper. It came at the same time as the product
audit. I can't remember what happened to it, though."

Whittaker and Sidner [WS96] give more examples from user interviews:

\I don't know where to put it. And.. by making the wrong decision, I could
really forget about it."

\I wish I viewed creating a category as a lightweight activity. And for some
reason I don't ... it seems like, you know the more of them I create, the
harder it is to �nd any of them that are there."

\any piece of information longer than �ve lines has at least several axes
along which you might want to look it up and it really depends on how
you're coming at it and what you're thinking about at the time. [Filing]
isn't reliable."

These examples suggest that users often �le information in a manner that is unhelpful
when it needs to be retrieved. The problem occurs because, over time, the way we
use information changes. We often want to retrieve information in a context that is
di�erent from the one in which it was created.

Retrieving information within a traditional �le system amounts to remembering the
context of use at the time of creation2. This approach scales badly. Once the number
of �les within a personal �le space approaches on the order of a few hundred, the user
can no longer remember �le locations and is forced to use a \�nd" application (if one
exists) to search for information. Whittaker and Sidner provide another good example
from a user interview:

\So what happened was that size of chunks associated with the categories
got large. So now one key stroke would get me to a hundred things. So I
really was no better o� (�ling information)."

2This approach has been called \location-based �nding" since it involves remembering the \place"
in the desktop �le system where the information was stored [BN95].

Chapter 1. Introduction 4

The di�culty of maintaining information over time has bad consequences: users of-
ten throw away old information as a coping strategy or, as Lansdale observed, spend
little time �ling information because there is no immediate pay-back. In either case,
information is either \lost" because it was thrown away or di�cult to �nd in an unor-
ganized clutter. On the whole there is a \negative feedback loop:" users have di�culty
categorizing information which, in turn, defeats retrieval. Likewise, electronic desktop
systems do not aid in retrieval so users are not likely to maintain disciplined �ling.

Users are also forced to categorize information in another subtle way: by means
of �lenames. Lansdale's work has shown that names are an ine�ective means of cat-
egorizing information. While names act as a mnemonic device, over time their value
decays. Carroll [Car82] has studied the use of naming and found that within a small
period of time, people's use of �le names results in inconsistent patterns which lead to
retrieval di�culties.

The di�culty of categorizing information and the lack of rewards for doing so
typically leads users (as Malone discovered) not to �le information at all3 in order to
overcome \the di�culty of making a decision between a number of evils, and avoid
the consequences of having made it."4 Lansdale also points out (based on empirical
evidence) that \humans are not good at categorizing information" and that requiring
users to do so is a \
awed psychological process." Whittaker and Sidner found that
\folders may be of little use for retrieval." Cole [Col82] found that \users prefer to
spend as little time as possible actually �ling" and concludes that \the less time spent
�ling the better."

1.1.2 Reminding

Electronic \reminding" is the use of the computer to aid a user in remembering tasks
or events. In the real world we use a variety of artifacts | calendars, PostItTM notes,
day planners | help us remember. In 1983 Malone pointed out the importance of
reminding in our paper-based o�ce systems and suggests their inclusion in computer-
based systems [Mal83]. Yet desktop systems still provide little support for reminding;
while a number of time management, scheduling, and \todo" list applications have
come to market, they don't represent a general solution to provide users with this
basic capability.

In more recent work, Barreau and Nardi [BN95] observed that desktop computer
users often use a �le's location on the desktop as a critical reminding function. For
instance, at the end of the day a Macintosh user may leave �les on his desktop as a
reminder of work to be done the next morning. Other users leave electronic mail mes-
sages in their in-boxes [WS96]. Lansdale found this behavior \largely idiosyncratic"; we
�nd the use of location-based storage unsatisfying and an easily undermined method of

3Rather than categorizing and �ling the information they often prefer to place all �les into a \top-
level" directory, maintain them within mail applications or to delete them.

4This is Lansdale's paraphrase [Lan88b] of Malone.

Chapter 1. Introduction 5

creating reminders. The desktop metaphor has no semantic notion of reminding; such
use by users amounts to a coping strategy for lack of anything better. Location-based
reminding is an ad hoc user convention and its problems are obvious: there is no way to
insure that a reminder actually reminds you. Whittaker and Sidner also suggest that
the need for reminding is another deterrent to �ling, as \�ling information means it is
less available to remind users about that topic" (their emphasis). Malone suggested in
1983 that electronic systems should help in reminding and improve over physical-world
systems: \Failing to support [reminding] may seriously impair the usefulness of elec-
tronic o�ce systems and explicitly facilitating it may provide an important advantage
for automated o�ce systems over their non-automated predecessors."

1.1.3 Archiving

Old information is generally less valuable than new, but regularly situations occur in
which old information is essential. Everyone can recall times when he needed infor-
mation he threw away a month ago. Unfortunately current software systems do not
make it easy to archive personal information. They give the users no good means of
storing old information and no convenient method for retrieving information. As a
result, users are left to invent their own schemes or use third-party applications, both
of which still fall short with respect to retrieval. Whittaker and Sidner [WS96] quote
one user describing his di�culties:

\I'm reluctant to archive junk ... I know that the consequence of archiving
junk is to make it that much harder to �nd good stu� ...

The problem is that it is di�cult to decide what the \good stu�" is a priori. The
underlying problem with current software systems is that location-based storage and
archiving are con
icting goals. Location-based storage assumes a small information
collection (basically what the user can remember) and does not scale to large collec-
tions of information, as Jones and Dumais [JD83] found in their study of the spatial
metaphor. They concluded that a \strictly spatially-based information retrieval system
will be particularly vulnerable to increases in the size of database." In fact, they found
that subject recall over time was especially poor and indicated that the location-based
approach \is simply more vulnerable to general factors of decay associated with the
passage of time" than other symbolic means of retrieval. Location-based storage is
particularly ill-suited to retrieval because (as we have discussed) information is not
always needed in the same way it was originally.

As we have seen, in the end most users remove old information rather than be forced
to deal with the implications of storing it or inventing archiving schemes [Eri91, BN95].
In a study of the practices of several groups of \information users," Erickson found
that users often \discarded all but the most important information; space constraints,
as well as the di�culty of deciding which �le folder was most appropriate, deterred

Chapter 1. Introduction 6

them from saving more." He also found that there was a general feeling among users
that the \fewer items saved, the easier it was to relocate them." This is unfortunate
because users throw away information that may prove useful (or even critical [Coo95])
because of
aws in software technology | when memory capacity of storage devices
is growing. Weiser [Wei91] has suggested that over the next decade the growth of
storage technology will make \deleting old �les virtually unnecessary" and should allow
\radically di�erent strategies of information management."

1.1.4 Summarizing Information

Summarizing is a vital information processing task. Summaries function as an ab-
breviated form of a document or collection of documents and reduce the amount of
information a user must process [KM96]. They allow users to \gain access to and
control the
ood of information" and in the end \summaries save time" [Hut95].

Summarizing information is nothing new | yet today there are few electronic sys-
tems that support automatic summarization. Current desktop systems provide no gen-
eral purpose support for summaries; they leave the job to special purpose applications.
We believe this lack of support has occurred, in part, because of the current, narrow
application-centric view of desktop computing|work has focused on developing tools
within applications rather than on \globally" improving users access to information at
a systems level.

Summaries are available to users through special purpose products such as Intuit's
Quicken, which allows the creation of overviews for �nancial information. But users
need summaries for more routine purposes too. Pemberton, as the chairman of a
recent ACM workshop on the future of electronic mail [Pem96], cited the need for
summarization in electronic mail systems.

In order to manage large collections of personal information, users need quick and
simple methods of distilling them into summaries or overviews. Summarizing is im-
portant in many contexts and is central to all communication [Hut95]. Building a
\
exible summarizing capability into our systems for these purposes will enhance their
performance" [Ove95].

1.1.5 Incompatible and Disparate Applications

Computer users must deal with a far greater quantity and range of electronic objects
in their work and personal lives than ever before. Doing so requires an ever increasing
number of separate applications, even for the most common computer tasks. Nelson
[Nel90] has called this task of making combinations of programs �t together \hopelessly
arcane" and says that it results in users \having too many separate, unrelated things
to know and understand."

Consider a user who manages his email, schedule, contact list and daily writings on
a computer. He may have to use four separate applications as well as the underlying

Chapter 1. Introduction 7

desktop �le and folder system. Products such as Claris Works and Microsoft O�ce
aim to improve the situation, however, on closer examination, these products do little
to unify the user's electronic environment because they simply bundle (typically four)
applications into a common package. While the user can usually cut and paste be-
tween applications, these packages still rely on the underlying �le system and do not
provide true integration. Systems such as the Newton are a step in the right direction,
providing a common store and thus improved \compatibility" among applications, yet
the resident applications are still remnants of the desktop systems (see Chapter 8).

1.2 Typical Users and Common Tasks

Before suggesting new directions for software systems it is important to know for whom
these systems are intended and what kinds of tasks these users undertake. Thus far we
have loosely used the terms \typical users" and \common tasks." What do they mean?

Ed Hilpert, in a recent IBM Personal Systems article [Hil95], has suggested that be-
fore computers can become a \ubiquitous consumer-level product," they must be made
\easier for the broad range of consumers" who use them. According to Hilpert, this
group includes a large group of users who have no computer training, who are possibly
afraid of computers and who are not inclined to read manuals or attend training classes.
For the purposes of this dissertation, we de�ne \typical" or \common" computer users
the same way as Hilpert; in general, we believe this class of users includes people who
have little or no technical computer training and yet use a computer regularly. Today
this segment represents the majority of computer users, yet software systems fail to
provide them e�ective information environments. Lifestreams is designed to address
the needs of these users. We also believe the utility of Lifestreams extends further
than this particular class of users. Our long-term goal is to improve \computing" and
information management for nearly all users, trained or untrained.

By \common tasks" we are referring to the everyday activities of the typical user.
To amass a broad collection of common tasks we turned to three sources: previous work
in the information management community that has classi�ed tasks and information
usage patterns [WS96, Eri96, Eri91, Mal83, Lan88b, Col82, BN95, Pem96, Hal], related
systems that target the same class of users (many are described in Chapter 8), and our
experience and that of our colleagues. While this latter source of tasks is somewhat
biased given that we are advanced computer users (not representative of the norm),
we broaden the scope of study by including it. Let us brie
y look at these three.

First, the information management community has analyzed and produced classi-
�cations for the tasks that typical users perform and the types of information users
process. These classi�cations are helpful because they condense \information manage-
ment" into a few primary functions and \information" into a few primary types. We
will cover these classi�cations in depth in Chapter 7. However, to summarize brie
y:
Users by and large perform the following tasks: \working tasks," which include �ling

Chapter 1. Introduction 8

and �nding, task management (such as todo lists) and reminding; \personal archiving,"
which includes organization and categorization of long-term information; and \com-
munication," which includes interaction between users over space and time and may be
\one-shot" or an ongoing conversational thread. In addition, users spend a great deal
of time processing documents | creating new documents that are stored in a work
area, creating documents based on existing documents, or creating documents based
on multiple sources of information (as in Lansdale's multi-project example).

Second, we take into account the tasks provided by related systems. For instance,
Microsoft's \Bob" was created with the intention of making computing \easy" [Aza95]
and includes seven common functions|a letter writer, a calendar, an email application,
an alarm clock, and address book, a checkbook and a game.5 Moreover, we incorporate
the many tasks provided by systems covered in Chapter 8 such as personal todo-list
managers, contact managers, personal digital assistants (such as the Newton), hotlist
managers, and calendar applications. We also include the tasks suggested by prototypes
such as Apple's \Knowledge Navigator," which presents a software prototype that
supports a \natural style" of computing.

Last, we include tasks from our local computing environment. We perform many
of the same tasks as typical users. We will point out some of the di�erences between
our use and that of novice users and present anecdotes from our local system use in
Chapter 5.

Now that we have a basis for the users and tasks we wish to support we proceed to
suggest new directions for software systems.

1.3 New Directions for Software Systems

Many of the problems highlighted in Section 1.1 point to areas where desktop systems
don't match the
exibility of paper-based systems (naming). Others suggest areas
where our software systems can do better (reminding). In either case, we need new
systems that improve the user's information handling methods. Our proposal is to
leave the paper-based models behind and invent new ones. We are not the �rst to
suggest this approach. Early on, Cole [Col82] suggested that \we must not simply
automate existing o�ce practices | in some cases this will perpetuate an existing
mess." Lansdale has made a more intriguing argument | although the objectives of
two systems may be identical (e.g., information storage and retrieval), the strategies
used within one technology aren't necessarily appropriate for a di�erent technology.
Jones and Dumais applied this philosophy to desktop systems suggesting that the
electronic systems of tomorrow should not be \bound by the same constraints we face
in retrieving the tangible objects in our world." In any case, these studies in personal
information management provide insight into the ways people manage their electronic

5Since games have little to do with personal information management we ignore its inclusion in
Bob.

Chapter 1. Introduction 9

environments and information, and clues as to what people are good and bad at.
Our goal with Lifestreams is to reduce the time users spend managing information

while increasing their ability to �nd and make use of their documents and electronic
events. We hope to create a software environment that more naturally supports the
ways people work with electronic information and simpli�es their electronic interac-
tions.

Based on the results of the studies we have visited in this chapter, we have concluded
that the following are essential:

� Storage should be transparent.

\Naming" a �le as it is created and choosing a location are unnecessary overhead.
When someone starts writing on a piece of paper he doesn't have to give it a name
and choose a folder to store it in. Filenames are sometimes pointless and over
time often become useless for retrieval purposes; names should only be required
when a user explicitly wants one. Likewise, storage locations (in the sense of
folders) are e�ective only as long as the user remembers them; the details of
storage should be handled automatically by the system.

Transparent storage also applies to the network; data should be accessible ev-
erywhere, regardless of the viewing device. Users should be able to access their
personal information from any available platform|from a Unix machine at work,
a Mac or PC at home, a PDA on the road, even a set-top box via cable.

� Conventional directories are inadequate as an organizing device, information
should be organized on demand.

Common �le systems are too faithful to the paper-based world; paper can't be
in more than one place, but electronic documents can (or can behave that way).
Desktop systems force users to store new information in �xed categories (namely,
directories). But information should be organized as needed, not once and for all
when created. Directories should be created on demand, and documents should
belong to as many of them as seems reasonable, or to none. Directories should
be created based on the \semantic" information in the document. This semantic
information provides a richer space for users to explore than is provided by the
2D (or 3D) space in most desktop systems, especially over time [Dum96].

� Computers should make \reminding" convenient and e�ective.

Studies con�rms that reminding is a critical function of computer-based systems,
yet desktop systems supply little or no support for it. Users are forced either
to use location on their graphical desktops as reminding cues or to use add-on
applications such as calendar managers. We have argued that the former is a
mere coping strategy (for lack of a better method), while the latter could clearly
be improved if software systems provided built-in natural support for reminding.

Chapter 1. Introduction 10

� \Archiving" should be automatic.

Often, users throw out old data rather than undertaking the task of archiving it.
In the process they throw out potentially valuable information. Software systems
should \automate" archiving, moving old data out of the foreground as it ages,
yet keeping it readily available for retrieval.

� Software systems should be able to summarize a set of documents, yielding a
concise overview quickly.

With the rapid growth in online electronic data we must all deal with a greater
amount of information every day, yet people can't read or process information
any faster than they could before [Hut95]. The \full text revolution6" implies a
\pressing need for automatic summarizing" [Jon], yet conventional user systems
do not support a general mechanism for summaries. It is vital that software sys-
tems allow users to summarize or compress a large group of related documents
into a concise overview quickly; software systems should provide a general pur-
pose facility for summarizing documents, giving users better control over their
information collections.

� Software systems should simplify the user's computer interactions, not complicate
them.

Performing common computer tasks requires too many separate applications and
format translations. Systems should provide an integrated environment for per-
sonal data that simpli�es and subsumes many applications and the need for
explicit importing, exporting or format translation of data.

We add one additional characteristic based on previous work in computer science
\systems" research:

� Software systems should provide the capability for users to customize and create
their own extensions.

While there is a long tradition of providing extensible systems in the computer
science community (UNIX tools, emacs, etc.), human-computer interaction re-
searchers such as Erickson [Eri96] have also discussed the need for
exible envi-
ronments that can be customized and extended to meet the user's needs.

1.4 Outline

The remainder of this dissertation proceeds as follows: in Chapter 2 we provide a for-
mal description of Lifestreams, which acts as a foundation for the development of our

6The phrase \full text revolution" is used by the text summarization community to describe the
trend from maintaining only abstracts and keywords (typically in information retrieval systems) of
documents online to storing the entire text of the document.

Chapter 1. Introduction 11

research prototype. The research prototype is described over two chapters: Chapter 3
describes the Lifestreams infrastructure and server, including a discussion of the prag-
matic issues involved in adapting our model for \real-world" use; Chapter 4 describes
three user interfaces to the Lifestreams system including an X Windows based UNIX
workstation client, a command-line interface and an interface that runs on a Newton
personal digital assistant. Chapter 5 presents Lifestreams in context, describing how
common tasks are accomplished and then demonstrating how Lifestreams is easily ex-
tended to support new behaviors. We then present the evaluation of our prototype in
Chapter 6. In Chapter 7 we revisit the work of Malone, Lansdale and others from the
information management community and examine Lifestreams in the context of their
work. Chapter 8 surveys the landscape of related systems and applications, compar-
ing and contrasting each with Lifestreams. Finally chapter 9 presents conclusions and
suggests directions for future work.

Chapter 2

The Model

In this section we present the Lifestreams model. We begin with a conceptual descrip-
tion and then describe the model informally in light of the operational characteristics
that we determined necessary for such systems in Chapter 1. We then provide a formal
description of Lifestreams. The reader may skip the formal section without loss of
continuity, but it is recommended for readers who care about implementation details.

2.1 The Concept

Lifestreams have their beginnings in the \chronical streams" of Gelernter in [Gel91]
and were �rst described as a structure for managing personal electronic information
in [Gel94]. This dissertation is the �rst e�ort to de�ne Lifestreams in concrete terms
and to demonstrate its usefulness via a working prototype. In the spirit of the initial
writings about Lifestreams, let us �rst examine Lifestreams as it might look in 1999
(adapted from [CFFG96]):

Here's your compute-environment circa 1999: every document you've ever
created or received stretches before you in a time-ordered stream, reaching
from right now backwards to the date you were born. You can sit back
and watch new documents arrive: they're plunked down at the head of the
stream. You browse the stream by running your cursor down it|touch a
document in the display and it pops out far enough for you to glance at its
contents. You can go back in time, or go to the future and see what you're
supposed to be doing next week or next decade.

Every chunk of information (every document, email message, application
transcript, rolodex card, appointment-calendar item...) is stored in a single
time-ordered stream. When you tune in, you see a stream of documents
receding into the distance; farther away in imaginary space means farther
back in time. To create a new document, you can press the \new" button

12

Chapter 2. The Model 13

and get an empty box ready to �ll, or clone an old document and get a new
copy to alter as you choose. You don't need to name documents (although
you can); documents are located by attribute and chronology. When you
want to create a new document, you spend zero time deciding where to put
it and what to name it.

You might be in danger of being overwhelmed by all the documents on
your screen|but you use \substreaming" by pressing \�nd" and describing
the documents you want, and everything else (temporarily) disappears.
A substream persists until you kill it. A newly-arriving document gets
dumped in the main stream and also appears on every substream where it
�ts.

When you press the \squish" button you get a summary of a substream.
The type of summary depends on the type of information in the substream|
textual for plain documents, graphs or pictures or animations for the appro-
priate more-specialized types. The \squish" button automatically invokes
an appropriate squish for this substream (or o�ers you a choice of reason-
able squishers). In some cases, highly complex and sophisticated squishers
will be desirable. The lifestream system's contribution isn't to say how
these squishers should be built|rather to suggest that they be built, and
to provide a uniform framework in which they can be installed.

The stream has a future as well as a past. Appointments and calendar items
are stored in the future, and become visible when their creation-times roll
around or when you go to the future on purpose to look around.

Documents in the \present" are writable. Farther back, in the \past," they
have frozen into history and become read-only. Each user decides when
the present ends and the past begins|at what point, in other words, doc-
uments freeze. One possibility (and the system default) is to freeze today's
documents at the start of tomorrow. In that case you can work on a doc-
ument all day, but to continue the next day you need to use \clone" to
create a new copy on the streamhead. Or a user might postpone freezing
for a week, or forever. The far-tail of the stream|for example, documents
that are more than two years old|may disappear at the implementation's
discretion into archival storage. The user speci�es where the \far tail" be-
gins, but the Lifestreams-provider will presumably set charges that depend
on a user's willingness to have old material dumped into data warehouses.

Agents can troll down lifestreams; an agent can cruise to the head of a
stream for example and go to sleep after posting instructions that it be
awakened whenever a document arrives. Agents are important to many
aspects of the system; custom agents are the main ways in which the system
is designed to accommodate extensions and re�nements.

Chapter 2. The Model 14

Now that we have presented the concept of Lifestreams \in the large," we present
the model more concretely. We do so in terms of its storage paradigm and its basic
operations. In the process we suggest how Lifestreams provides transparent storage,
organization through on-demand directories, and the ability to create overviews. We
then examine the underlying time-based storage model and, in the process, show how
Lifestreams accomplishes archiving and reminding in a natural way.

We should be clear at the onset that the prototype implements the ideas needed to
prove the thesis. It is not a complete embodiment of the ideas.

2.1.1 What is a lifestream?

A lifestream is a time-ordered stream of documents that functions as a diary of your
electronic life; every document you create or other people send you is stored in your
lifestream. The tail of your stream contains documents from the past (starting with
your electronic birth certi�cate, perhaps). Moving away from the tail and toward the
present, your stream contains more recent documents | papers in progress or new
electronic mail; other documents (pictures, correspondence, bills, movies, voice mail,
software) are stored in between. Moving beyond the present and into the future, the
stream contains documents you will need: reminders, calendar items, to-do lists.

Users interact with Lifestreams via �ve operations: new, clone, transfer, find
and summarize depicted in Figure 2.1. We will examine each operation.

2.1.2 Document Creation and Storage

Users create documents by means of new and clone. New creates a new, empty docu-
ment (ready for editing) and adds it to your stream; the user may be given the choice
between a selection of document types and/or templates (depending on the document
model). The user does not explicitly manage the document's storage (in terms of its
location) | documents are always added to the head of the stream and don't require
names unless the user so desires. Each document comes with a number of attributes
(such as its creation date and time), most of which are inferred by the system. Other
attributes (such as a document's content type) can be changed by the user if need be.

The clone operation creates a duplicate of an existing document, ready for editing,
and adds it to the head of your stream. As with new, storage is implicit because the
duplicate is added to a default \location" (the head of the stream) and naming is
not necessary. The document's attributes are inherited from the original document.
In many systems, the information in one document often becomes the basis for the
creation of another [Hal]. The clone operation provides a means of creating a new
editable version of an existing frozen document in Lifestreams.

The transfer operation creates a copy of an existing document on another lifestream.
The document is added to the head of the stream (by default) in a frozen state (to

Chapter 2. The Model 15

NEW CLONE

TRANSFER

FIND SUMMARIZE

Figure 2.1: The Basic Lifestreams Operations.

Chapter 2. The Model 16

preserve the method in which the document was created) and updated to re
ect the
sender and receiver of the document.

2.1.3 \On Demand" Organization

Lifestreams are organized on demand with the find operation. Find prompts for a
search query, such as \all documents that mention Toaster Ovens," \all letters to
Schwartz," \my web bookmarks," applies the query to the user's stream and builds a
substream that contains only the documents that match the search query.

Substreams, like virtual directories [GJSO91, MW93], present the user with a
\view" of a document collection. The view contains all documents that are relevant to
the search query. Substreams di�er from conventional directory systems in that, rather
than placing documents into �xed, rigid directory structures, they create virtual groups
of documents. Documents aren't physically stored in them; a substream is a tempo-
rary collection of documents that already exist on the main stream. Substreams may
overlap and can be created and destroyed on the
y without a�ecting the main stream
or other substreams.

Substreams are dynamic. If you allow one to persist, it will collect new documents
that match your search criteria as they arrive from the outside or as you create them.
The result is a natural way of monitoring information| the substream acts not only
as an organizational device, but as a �lter for incoming information. For example,
a substream created with the query \�nd email" would subsume your mailbox (both
your inbox and outbox) and automatically collect mail as it arrives.

2.1.4 Overviews

The last operation, summarize, compresses a substream into an overview document
that is added to the user's stream. The content of the overview document depends on
the type of documents in the substream. For instance, if the substream contains the
daily closing prices of all the stocks and mutual funds in your investment portfolio,
the overview document may be a chart displaying the historical performance of your
securities and your net worth. If the substream contains a list of tasks you need to
complete, the overview document might display a prioritized \to-do" list. No matter
how many documents fall into a given category Lifestreams will summarize them into a
single document. Summaries are meant to be a
exible part of the Lifestreams system
that can be extended by advanced users to create their own summary types and share
with other users.

2.1.5 Agents

Agents are also an integral part of the system. Agents can be attached to documents,
streams or the user interface to automate tasks or extend the behavior of Lifestreams.
These agents act as \embedded computations" that are executed on various events,

Chapter 2. The Model 17

such as the arrival of a new document on a stream. A number of agents come with any
Lifestreams system; agents can also be created by advanced users.

2.1.6 Chronology as a Storage Model

We use chronology as a storage model for one reason: time is a natural guide to ex-
perience. It is the attribute that comes closest to a universal \road map" for stored
experience. Previous studies support this view. Malone suggested the utility of time-
based organization in his early studies. Lansdale conducted experiments which showed
that \people remember chronological information about information" and that chronol-
ogy is a powerful memory cue for information retrieval. Erickson [Eri91] found that
users often remember the approximate dates of information.

The chronological stream adds historical context to a document collection; all doc-
uments eventually become read-only (frozen in the past, set in stone for history), and
the stream preserves the order and method (e.g., who created the document, if it was
transferred to the stream) of their creation. Freezing a document (that is, making it
read-only) can be done manually by the user or automatically by the system (e.g., the
system freezes all documents at 3:00 am every night or all documents that haven't
been changed in two weeks). Like a diary, a stream records work, correspondence
and transactions. Allen [All83] observed that in some applications (such as medical
records) the \course of events becomes a critical part of the data." A historical record
can also be crucial in organizational settings. Cook [Coo95] has studied the long term
\institutional memories" within organizations and found that many of the assumptions
inherent in our paper-based systems (e.g, when a user leaves a job his \�les" are not
likely to leave with him) have not been translated to our electronic systems. Electronic
documents, for instance, are easily deleted or misplaced. When an employee leaves the
job, his entire data collection may disappear. This problem has proved to be critical in
a number of environments. Cook states that the key to maintaining critical electronic
information \lies in being able to determine, sometimes long after the fact, not only the
content but also the context of a record in question." In essence, this amounts to not
only having the data at hand but knowing the lifetime of a piece of data, the \when,
by whom, where, how ... over time" of the data.

Chronology also provides a powerful and natural method of adding \reminding" to
electronic systems. In reminding, the user relies on some future event to remind him
of some task. The future of the stream can be used to store reminders | by placing a
document in the future part of the stream, the system can alert the user at the precise
\time" of the reminder. We will see in Chapters 4 and 5 some uses of this capability.

2.2 The Formal Model

We now present our formal description of Lifestreams. We do so in an incremental fash-
ion, �rst supplying a model that supports a general document collection with dynamic

Chapter 2. The Model 18

�lters. We then re�ne the model to provide the complete semantics of Lifestreams;
namely a system that supports time-based ordering, dynamic incremental �lters, and
an extendable communication system via agents. Throughout the description we make
use of the Linda coordination language [CG89] as a means of providing a \concurrency
semantics" for Lifestreams.

2.2.1 The Linda Coordination Language

Linda is a coordination language developed by Nicholas Carriero and David Gelernter
[CG89] that compliments \traditional" languages for computation (C, Fortran, Ada,
etc.). Merging Linda with these computation languages produces dialects that can be
used to write parallel and distributed programs. Linda is also useful in the speci�cation
of distributed systems as it provides an underlying coordination semantics.

Linda's coordination model is a simple one: a small number of operations are used
to read, write and erase a (logically) shared, synchronizing, associative memory. This
memory, called a tuple space, stores tuples that are simply lists of typed �elds (where
the types come from the base language). Linda's operations fall into two groups, those
that generate new information to be put into tuple space (eval and out) and those
that extract data from tuple space (in and rd).

More speci�cally, out converts its argument list into a tuple and puts that tuple
into tuple space. Eval spawns a separate thread of control to evaluate each argument.
When all threads complete, this \live" tuple resolves into a normal tuple. The in
operation converts its argument list into a template and then searches tuple space for
a matching tuple. If one or more matching tuples exists then in removes and returns
the �rst tuple found. Otherwise in blocks until a matching tuple is added to the tuple
space. The rd operation works like in, except that it does not remove the matching
tuple, rather it returns a copy of it.

The matching rules for tuples and templates are fairly intuitive:

1. The tuple and template must have the same number of �elds.

2. Corresponding �elds of the tuple and template must have the same type.

3. Corresponding �elds that contain data must be equal.

4. Two corresponding �elds cannot both be place holders.

We will now de�ne the Lifestreams model using a tuple space to store both streams
and documents. In more detail, we represent each document with a tuple and each
stream by three types of tuples: one tuple that maintains a count of the number of
documents in the stream, a tuple for each document in the stream (that is a reference
to a document tuple), and a tuple for each substream.

Chapter 2. The Model 19

2.2.2 Documents and Attributes

A document is the primitive data type in the Lifestreams model. While an implemen-
tation of Lifestreams may assume a speci�c document model, the Lifestreams model
treats the data making up a document as a �nite array of bits. This array of bits may
represent a text document, an image, a movie, a fax, an application, or anything else
that is representable by bits. Note that we could have de�ned the most primitive data
type with a smaller granularity than a document (such as a section or paragraph) but
that would have implied a more speci�c document model and introduced additional
complexity (though such re�nement could be added to our model if needed).

Each document is represented as a collection of descriptive adjectives in the form
of attributes/value pairs. Each pair describes some aspect of the document | the
created attribute describes the date and time a document was created, the creator

attribute describes the user who created a document, and the type attribute describes
a document's content type. The array of bits making up the content of the document
is stored in an attribute called data. The model does not fully specify a set of such
attributes for every Lifestreams implementation because di�erent attribute sets may
be appropriate for di�erent domains. Take for example the medical domain, which
may need a set of specialized attributes for keeping track of patient records. However,
a minimum set of attributes are necessary in all instantiations of the model as they
are crucial to the primitive operations. Two examples are the state attribute, which
describes whether or not a document is mutable, and a created attribute, which is
used in the ordering of documents as previously described. In general, the values of
many attributes can be inferred automatically by Lifestreams, although some values
can be user speci�ed. For instance, the user may want to provide a list of keywords
that may help identify a document more readily in the future. Throughout the chapter
we make use of the attributes in Table 2.1, which are listed along with their type and
functionality in the model. We will discuss the attributes used in our implementation
in Chapter 3.

We formally de�ne a document as a tuple of the form

("document", docid, DS)

where docid is an integer that uniquely identi�es the document and DS is a document
structure in the form of a record with one �eld per attribute. We de�ne two procedures
that act on document tuples: extract and replace. Given a document the extract
(replace) procedure is used to access (alter) the values of its attributes.

More formally, the procedure extract (Figure 2.2) takes a document identi�er,
docid, and an attribute descriptor, attr, and returns the value of the attribute. To
obtain the value, extract �rst reads the "document" tuple that matches docid from
tuple space and binds DS to its document record. The procedure ds extract is then

Chapter 2. The Model 20

Attribute Type Function

created time Date and time of creation
state boolean True if document is writable
data array Content of document
type string Content type of document

Table 2.1: The document attributes along with their type and function.

used to extract the attribute, attr, from the document record.1 The procedure replace
(Figure 2.3) takes a docid, an attribute descriptor, attr, and a value, val (replace
is a polymorphic procedure accepting vals of di�erent types), and alters the value of
the respective attribute in DS. This is accomplished by ining the document tuple from
tuple space, replacing the attribute attr in the document record with the value val

and then outing the tuple back into tuple space.

proc extract(int docid, char attr)
begin

document DS;

rd ("document", docid, ? DS);
return ds extract(DS, attr);

end

Figure 2.2: The de�nition of extract.

Other procedures can be implemented on top of these basic operations, for instance,
the freeze procedure (Figure 2.4) can be used to make a document read only. Freeze
takes a document identi�er and calls replace to set the value of its state attribute to
false (read-only).

The documents of all streams (we will de�ne streams in the next section) are main-
tained in the same tuple space. Document identi�ers in this space range from zero (the
�rst document created) to n � 1, where n is the number of documents in tuple space.
The value of the next available document identi�er is maintained in a tuple of the form

("documenthead", count)

1The procedure ds extract (ds replace) is a simple macro that extracts an attribute from a docu-
ment record (replaces the value of an attribute in the document record).

Chapter 2. The Model 21

proc replace(int docid, char attr, poly val)
begin

document DS;

in ("document", docid, ? DS);
ds replace (DS, attr, val);
out ("document", docid, DS);

end

Figure 2.3: The de�nition of replace.

proc freeze(int docid)
begin

replace(docid, state, false);
end

Figure 2.4: The de�nition of freeze.

where count is an integer value that is incremented each time a document is added to
a stream.

2.2.3 Streams and Substreams

A stream is a chronologically ordered collection of documents that acts as the underlying
storage framework for Lifestreams. We de�ne a stream as a collection of tuples along
with �ve procedures append, read, write, retrieve, and �lter. Conceptually, append adds
a new document D to the head of the stream, read returns a copy of a document from
a stream, write replaces a document D with a new version D0, retrieve retrieves the list
of documents in a stream or substream, and �lter creates a new grouping of documents
(a substream) based on a search query.

Formally, a stream consists of a collection of three types of tuples:

("stream", sid, dochead, subhead)

("streamdoc", sid, docindex, docid)

("substream", sid, subid, query)

One "stream" tuple exists for each stream. This tuple contains an integer stream
identi�er, sid, and maintains two integer values: dochead and subhead. Dochead

is used to maintain the number of documents within the stream. Subhead is used

Chapter 2. The Model 22

to maintain the number of substreams in the stream. One "streamdoc" tuple exists
for each document in the stream. This tuple type contains a stream identi�er, sid, a
document index, docindex (a unique value between 0 and n�1, where n is the number
of documents in the stream), and the docid of the "document" tuple that contains the
document. The "substream" tuple maintains the search queries of substreams. One
tuple exists for each substream. The substream tuple contains a stream identi�er, an
integer substream id, and a search query in the form of a character string.

An example tuple space is shown in Figure 2.5; this tuple space contains two life-
streams (with identi�ers 0 and 1). Lifestream 0 has three documents with document
indexes of 0, 1 and 2, which correspond to the "document" tuples 1, 3 and 4. Lifestream
0 also has one substream with a search query of \toasters and 1930". Note that the
"stream" tuple for lifestream 0 contains a count of the number of documents and the
number of substreams. Likewise, lifestream 1 has two documents that are maintained
in "document" tuples 0 and 2 and two substreams.

Append (Figure 2.6) takes a stream identi�er and a document record DS, which con-
tains the attributes of the document to be appended. To append a document, append
must create a "document" tuple that contains the document and a "streamdoc" tu-
ple that designates the document as belonging to the stream and \points" to the
"document" tuple. Before creating the "document" tuple, append �rst ins the doc-
ument head tuple, binding docid to its second �eld (which will be used as the new
document's id). Append then returns the tuple to tuple space, incrementing the doc-
ument count. Next append ins the "stream" tuple that matches the stream identi�er
sid. The value of the stream head is bound to docindex and will be used as the
document's index within the stream. Append then returns the "stream" tuple to tuple
space with the stream head incremented by one.

Now append can create the "document and "streamdoc" tuples; append �rst outs
a "document" tuple containing docid and the structure DS. Append then outs a
"streamdoc" tuple that contains the stream id, the document index, and a \pointer"
(in the form of docid) to the "document" tuple. Last, append returns the value of the
document index.

The read primitive (Figure 2.7) takes a stream id, sid, a document index, docindex,
and a document record, DS, and returns the document's attributes via the document
record. Read �rst rds a "streamdoc" tuple (that matches sid and docindex) to
retrieve the value of its corresponding docid. Read then rds the "document" tuple
matching docid and binds its document record to DS. The document structure DS is
then returned.

The write primitive (Figure 2.8) (like read) takes a stream id, a document index
and a document record and writes the document record back to tuple space (in e�ect,
replacing a document with a new one). Like the read primitive, write �rst reads
a "streamdoc" tuple to retrieve the value of its corresponding docid. Write then
extracts the value of the document's state attribute to ensure that it is a writable
document. If so, then write ins the "document" tuple matching docid and then outs

C
h
a
p
ter

2
.
T
h
e
M
o
d
el

23

("streamdoc", 1, 1, 2)

("stream", 1, 2, 2)

("substream", 1, 0, "from schwartz")

("documenthead", N)

("substream", 1, 1, "meetings")

("document", 3, DS3)

("document", 2, DS2)

("document", 0, DS0)

("document", 4, DS4)

DS0.created = "5/7/94"

DS0.state = "true"

DS0.data = "Now is the..."

("document", 1, DS1)

("streamdoc", 1, 0, 0)

DS0.type = "text"

Lifestreams Tuple Space

Document Tuples

("stream", 0, 3, 1)

("streamdoc", 0, 0, 1)

("streamdoc", 0, 1, 3)

("streamdoc", 0, 2, 4)

("substream", 0, 0, "toaster and 1930")

Lifestream 0 Tuples Lifestream 1 Tuples

F
ig
u
re

2.5:
L
ifestream

s
T
u
p
le
S
p
ace.

Chapter 2. The Model 24

proc append(int sid, document DS)
begin

int docid, docindex;

in("documenthead", ? docid);
out("documenthead", docid + 1);
in("stream", sid, ? docindex, ? subhead);
out("stream", sid, docindex + 1, subhead);
out("document", docid, DS);
out("streamdoc", sid, docindex, docid);
return docindex;

end

Figure 2.6: The de�nition of append.

proc read(int sid, int docindex, document DS)
begin

int docid;

rd("streamdoc", sid, docindex, ? docid);
rd("document", docid, ? DS);
return DS;

end

Figure 2.7: The de�nition of read.

the same tuple, replacing the old document structure with DS.
The �lter primitive (Figure 2.9) takes a stream id, sid, and a character string

search query, query, and creates a substream. Filter �rst ins the "stream" tuple to
obtain the value of the substream head (bound here to subnum). The tuple is then
returned to tuple space with the value of the substream head incremented by one.
Filter then outs a new "substream" tuple containing the stream id, a substream id,
and the search query. This tuple associates the new substream with the stream. Last,
filter returns the substream identi�er of the newly created substream. The reader will
note that we do nothing to actually generate the substream in the �lter primitive, we
merely stash away the search query itself for later use. We will see how search queries
are applied shortly.

The retrieve primitive in Figure 2.10, takes a stream id, sid, and a substream id,

Chapter 2. The Model 25

proc write(int sid, int docindex, document DS)
begin

document oldDS;

int valid;

rd("streamdoc", sid, docindex, ? docid);
valid := (extract(sid, docid, "state") = writable)
if (valid) then

begin
in("document", docid, ? oldDS);
out("document", docid, DS);

end;
end

Figure 2.8: The de�nition of write.

subid, and returns a list of documents (the substream). To create this list, retrieve
�rst rds the "substream" tuple and retrieves the query. Retrieve then reads the
"stream" tuple (of the substream) to obtain the document count (bound to docnum)
of the entire stream. Next, retrieve creates a list of the document ids in the stream
by calling iota2 with the number of documents in the stream. Retrieve then steps
through each document in the list and calls match with its stream id, document id
and the query. If the document is a \match" then it is cons'd onto the substream list.
Last, retrieve sorts the resulting list by the creation of the documents and returns the
list. We leave both sort and match unde�ned3.

As we mentioned our model generates substreams from queries when retrieve is
called rather than when the substream is created. For the purposes of our model this
gives us a clean way of expressing the dynamic nature of substreams. Substreams
are dynamic in the sense that they continue to collect documents as new documents
are added to the stream collection. A substream created from a query that matches
\all documents about X" will continue to collect documents referring to X as they are
added to the stream after the substream's creation (because the query is applied each
time a substream is retrieved).

While this provides a clean model we will see that in implementing Lifestreams
we need to take an incremental approach to creating substreams. This approach is
consistent with our semantics, yet still satis�es our real-world need for e�ciency. We

2Given an integer n, iota generates a list (0, 1, 2, ..., n� 1).
3Various document and retrieval models will call for di�erent de�nitions, but the intended use

should be obvious.

Chapter 2. The Model 26

proc filter(int sid, char query)
begin

int docnum, subnum;

in("stream", sid, ? docnum, ? subnum);
out("stream", sid, docnum, subnum + 1);
out("substream", sid, subnum, query);
return subnum;

end

Figure 2.9: The de�nition of �lter.

will return to this point in the next chapter.

2.2.4 Lifestreams Re�nement

We have now de�ned a general document model that de�nes the basic functionality
needed for Lifestreams, namely the ability to append documents to a stream, read and
mutate documents, and to create substreams through �lters. We are still missing a
means of creating a chronologically-ordered default stream, the ability to incrementally
create substreams, and the ability to extend the system via agents. We now further
re�ne the model to include these capabilities.

Incremental Substreams

Substreaming (through filter and retrieve) can only be applied to the stream itself;
that is, substreams are generated by �ltering the entire collection of documents in a
stream and cannot be created by �ltering another substream. It would be convenient
and useful to be able to apply queries to substreams. This allows for an incremental
approach to creating substreams: for instance, one might create a substream to �lter
all documents about \investments" and then create another substream from the in-
vestment substream that �lters out documents about \mutal funds." This approach
has some nice properties with respect to the implementation as we will see in chap-
ter 3. It also allows for the organization of substreams into hierarchies of sorts (note
however that this is not a true hierarchy|substreams can contain overlapping sets of
documents).

We now extend our de�nition of �lter, retrieve and the "substream" tuple type
to support incremental substreams. The transformation is straightforward: to filter
(Figure 2.11) we �rst add an extra parameter: the \parent" substream id, pid, of the
source substream. We then alter the out on the "substream" tuple so that it also

Chapter 2. The Model 27

proc retrieve(int sid, int subid)
begin

string query;
int docnum, subnum, doc;
list docs, substream := ();

rd("substream", sid, subid, ? query);
rd("stream", sid, ? docnum, ? subnum);
docs := iota(docnum);
foreach doc in docs

if (match(sid, doc, query))
substream := cons (doc, substream);

return sort(sid, substream, "created");
end

Figure 2.10: The de�nition of retrieve.

contains an additional �eld (the parent substream id).
To retrieve (Figure 2.12) we �rst update the initial rd to match on the extra pid

�eld in the "substream" tuple. We then alter the manner in which we create the list of
documents for match to iterate through | if the parent substream of this substream
is 0 then we iterate through all documents in the lifestream as before by using iota
to enumerate all documents between 0 and docnum - 1. Otherwise we recursively call
retrieve to create the list by retrieving the parent substream. In this way a substream
is generated by �rst applying the query of the \parent" substream (and any queries it
relies on) and then applying the current query.

proc filter(int sid, int pid, char query)
begin

int docnum, subnum;
in("stream", sid, ? docnum, ? subnum);
out("stream", sid, docnum, subnum + 1);
out("substream", sid, subnum, pid, query);
return subnum;

end

Figure 2.11: The de�nition of incremental �lter.

Chapter 2. The Model 28

proc retrieve(int sid, int subid)
begin

char query;
int docnum, subnum, doc, pid;
list docs, substream := ();

rd("substream", sid, subid, ? pid, ? query);
rd("stream", sid, ? docnum, ? subnum);
if (pid == 0)
docs := iota(docnum);

else
docs := retrieve(sid, pid);

foreach doc in docs

if (match(sid, doc, query))
substream := cons (substream, doc);

return sort(sid, substream, "created");
end

Figure 2.12: The de�nition of incremental retrieve.

The Default Chronological Stream

Our model now gives us a general framework for describing a collection of documents
and an arbitrary number of chronologically-ordered subsets of those documents (they
are chronological because we always sort them by their creation date). In Lifestreams
we would like to further re�ne the model to include a default substream (the lifestream)
that contains all documents within the document collection. We specify the default
substream (for the sid = 0) as:

lifestreams := filter(0, 0, "*");

where "*" is a wildcard that matches any document in the collection. We will describe
our speci�c �ltering mechanism in Chapter 3.

Handling Time Correctly

When retrieve is called, it orders the resulting substream based on its created at-
tribute. The append primitive does not set the value of the created attribute when it
adds a new document to a stream (the user may have wanted the document to have
a future time); in other words append \trusts" that the value has been set correctly
by the creator of the document. The implication of these two observations is that the

Chapter 2. The Model 29

creator of the document is in control of where in the default substream the document
is placed. Before we further explore this topic, let's �rst discuss the intended role of
time, and the created attribute in Lifestreams.

Lifestreams treats documents di�erently depending on their creation time: docu-
ments in the past are considered \frozen" and (like history) unchangeable. Documents
in the present and future are mutable and can be altered. The same is true of docu-
ment creation: it is forbidden in the past (to allow this would undermine the historical
context of the stream as the past could always be altered) and allowed in the present
and future. The state of a document | that is, whether it is read-only or writable |
is a related issue. Each document in a stream is either writable or read-only as de�ned
by its state. We make no speci�c rules in the model to enforce this behavior, but we
assume that all instantiations of the model will adopt some policy such that over time
all documents eventually become read-only (or rather, move from the present to the
past).

Given these semantics two alterations are needed to correctly support time: one
to append and one to write. In the case of append (Figure 2.13) we now only append
a document if its creation date is greater than or equal to now4. We de�ne now to be
the current clock time5, and do not further specify how this value is obtained in the
model. In the case of write (Figure 2.14) we have to ensure that the created attribute
is not changed after the document is created. We do this by copying the created

attribute from the most recent version of the document oldDS to the new version of
the document DS before \writing" to back to tuple space.

Embedded Processes: Agents

We now incorporate arbitrary processes into the model that can be used to expand its
functionality. We use the term \agent" to describe these processes. We envision three
agent types in Lifestreams: stream agents, document agents and personal agents.

Stream agents live on streams and become active when certain events occur (such
as the arrival of a new document). Document agents are \attached" to documents
via an agent attribute and also become active when particular events occur (such as
the user reading the document for the �rst time). Personal agents typically execute
as part of the user's Lifestreams interface and automate user tasks or assist the user.
Personal agents are important and we will discuss them in coming chapters, however in
this section we will concern ourselves with extending the Lifestreams model to support
stream and document agents.

To add agents we build on the work of Borenstein and Rose [BR93]. They developed
a model called enabled mailed on top of MIME that allows segments of executable
content to be added to standard mail messages (via the multipart and executable

4In practice if a document has a creation date and time earlier than now we update the date and
time to now.

5In practice we make some allowance for clock drift.

Chapter 2. The Model 30

proc append(int sid, document DS)
begin

int docid, docindex, filterindex, valid;

valid := (extract(sid, docid, "created") >= now)
if (valid) then

begin
in("documenthead", ? docid);
out("documenthead", docid + 1);
in("stream", sid, ? docindex, ? subhead);
out("stream", sid, docindex + 1, subhead);
out("document", docid, DS);
out("streamdoc", sid, docindex, docid);
return docindex;

end
end

Figure 2.13: The (time-aware) de�nition of append.

content types). Each segment is typed with an event type and, when that event type
occurs, the segment is executed. Event types are based on several key states that occur
as mail is in transit to a recipient (e.g., the mail arrives at the mail server, the mail is
delivered to the mailbox, the mail is read by the recipient).

Similarly we now de�ne several events in the Lifestreams system. While there are
an arbitrary number of such events that could be de�ned, for the purposes of this
dissertation we discuss only the following events as they are all that is necessary to
demonstrate some interesting system extensions. The STREAM APPEND event occurs
any time a document is appended to a stream and all stream agents receive the event
along with the document id that was appended. The event DOCUMENT READ occurs
whenever a document is read. If the document is being read for the �rst time then the
DOCUMENT OPEN event also occurs.

To support stream agents we add an agent head �eld to the "stream" tuple, an
additional primitive, Add agent, a new "agent" tuple type and make changes to the
append primitive. Add agent (Figure 2.15) is a simple primitive that when passed a
stream identi�er and an agent (code in character string form) adds an "agent" tuple
to the stream.

The append primitive (Figure 2.16) now takes the value of the agent head (bound
to agentnum) and steps through each agent by ining its "agent" tuple (to extract the
agent's code) and then applying the agent (through eval) to the new document.

Chapter 2. The Model 31

proc write(int sid, int docid, document DS)
begin

document oldDS;
int created;

rd("streamdoc", sid, docindex, ? docid);
in("document", docid, ? oldDS);
created := ds extract(oldDS, "created");

ds replace(DS, "created", created);
out("document", docid, ? DS);

end

Figure 2.14: The (time-aware) de�nition of write.

proc add agent(int sid, char agent)
begin

int dochead, subhead, agentid;
in("stream", sid, ? dochead, ? subhead, ? agentid);
out("stream", sid, dochead, subhead, agentid + 1);
out("agent", sid, agentid, agent);
return agentid;

end

Figure 2.15: The de�nition of add agent.

To support document agents we need to make additions to the document data
structure and to the read primitive. To the data structure we add four attributes:
stream append agent, document open agent, document read agent, and lastread.
The �rst three are attributes for holding the executable content of the agents themselves|
one for each event type. The last attribute, lastread, holds the access time of the last
time the document was read. This allows us to know when the DOCUMENT OPEN event
occurs by comparing the value of lastread against the value of created. Note that
no \add document agent" procedure is needed because an agent can be added through
the replace procedure.6

Now we only need to make a few additions to the read primitive. We will present

6The agent can be added via replace(docid, document open agent, agentcode).

Chapter 2. The Model 32

proc append(int sid, document DS)
begin

int docid, docindex, filterindex, valid;
int agentnum, i;
char agentcode;

valid := (extract(sid, docid, "created") >= now)
if (valid) then

begin
in("documenthead", ? docid);
out("documenthead", docid + 1);
in("stream", sid, ? docindex, ? subhead, ? agentnum);
out("stream", sid, docindex + 1, subhead, agentnum);
out("document", docid, DS);
out("streamdoc", sid, docindex, docid);
for(i := 0; i < agentnum; i++)

begin
rd("agent", i, ? agentcode);
eval(agentcode(sid, docindex));

end
return docindex;

end
end

Figure 2.16: The de�nition of append with agents.

these changes in the next section when we create a \user interface" to our Lifestreams
model.

2.2.5 Constructing a \User Interface"

In this section we show how the stream and document primitives can be used to imple-
ment a \user interface" of sorts for the Lifestreams model. For the reader's convenience
we reproduce the Lifestreams primitives in Appendix A.

As we mentioned earlier in this chapter, a user's view of Lifestreams can be de�ned
by the operations New, Clone, Transfer, Find, and Summarize. To review, New creates
a new writable document on the stream. Clone takes an existing document and creates
a copy on the stream. Transfer copies an existing document from one stream to another.
Find takes a �lter and returns a substream based on the �lter. Summarize takes a
substream and a function, and compresses the substream into a summary document

Chapter 2. The Model 33

and appends the document to the stream. In addition, implicit in the model is the
ability to read and write documents; this functionality already exists in our primitives
read and write, although read still needs to be extended to handle document agents.
We now present each operation and its de�nition (Figure 2.17).

New takes one argument, a stream id, sid. New �rst creates a new document record,
DS, and then replaces its created attribute with now and its lastread attribute with
now �1. Setting lastread in this matter ensures that the last access time is less that
the creation time (for the purposes of detecting the DOCUMENT OPEN event); although
we don't specify the details, New also sets any other default attributes that may need
to be initialized. Last, New appends the document record to the stream sid and
returns its document index. Clone operates similarly. Clone takes a stream sid and a
document index docindex and uses read to retrieve the document record. Clone then
alters the document record to make it writable, updates both of its time attributes and
then appends it to the stream sid. Last, it returns the document index. Transfer

takes two stream ids, a source stream, sid, and a target stream, sid2, and a document
index, docindex. Transfer reads the document from the source stream, updates its
time attributes, and then appends the document record to the target stream.

Find takes a stream identi�er, sid, and a substream identi�er, pid, (the \parent"
substream that the �nd is performed on) and a query. Find �rst calls �lter to create
a substream. It then returns the list of documents belonging to that substream by
calling retrieve.

Summarize takes a stream id, sid, and substream, subid, along with a summary
function f. Summarize �rst calls retrieve to obtain the substream and then applies
f to the stream id, the substream, and a document record. The intent is for f to
\squish" the substream into one document and store it in the document record. Last
Summarize appends the document record to the stream and returns the newly created
document's index. As an example consider a simple summary that counts the number
of documents with document open agents on a substream. We de�ne such a summary
in Figure 2.19.

Last we de�ne the user interface versions of write and read. Write can be written
by using the write procedure that we have already de�ned. In the case of Read we still
need to add the code to enable document agents.

First Read grabs the document and tests to see if the condition of the DOCUMENT OPEN

event holds (that is, whether the created time is greater than the lastread time),
if so the valid
ag is set. We update the lastread attribute to disable future
DOCUMENT OPEN events. The document is then returned to tuple space. Next if the
valid
ag is set then the document open agent is extracted and applied to the docu-
ment. Next, the document read agent is extracted and applied to the document (since
it is applied any time the document is read)7.

7We de�ne an \empty agent" �eld to be �sd:d.

Chapter 2. The Model 34

proc New(int sid)
begin

document DS;

ds replace(DS, "created", now)
ds replace(DS, "lastread", now�1)
.

. /* fill in default attributes */

.

return append(sid, DS);
end

proc Clone(int sid, int docindex)
begin

document DS;

read(sid, docindex, DS);
ds replace(DS, "created", now);
ds replace(DS, "lastread", now�1);
ds replace(DS, "state", true);
return append(sid, DS);

end

proc Transfer(int sid, int sid2, int docindex)
begin

document DS;

read(sid, docindex, DS);
ds replace(DS, "created", now);
ds replace(DS, "lastread", now�1);
append(sid2, DS);

end

proc Find(int sid, int pid, char query)
begin

int subid;
subid := filter(sid, pid, query);
return retrieve(sid, subid);

end

Figure 2.17: Expression of Lifestreams user interface in terms of the primitives.

Chapter 2. The Model 35

proc Summarize(int sid, int subid, func f)
begin

list substream;
document DS;

substream := retrieve(sid, subid);
f(sid, substream, DS);
return append(sid, DS);

end

proc Write(int sid, int docid, document DS)
begin

write(sid, docid, DS);
end

proc Read(int sid, int docindex, document DS)
begin

int docid, valid;

rd("streamdoc", sid, docindex, ? docid);
in("document", docid, ? DS);
if (ds extract(DS, "created") > ds extract(DS, "lastread"))
valid := true;

ds replace(DS, "lastread", now);
out("document", docid, DS);
if (valid)
eval(ds extract(DS, document open agent)(sid, docindex));

eval(ds extract(DS, document read agent)(sid, docindex));
end

Figure 2.18: Expression of Lifestreams user interface in terms of the primitives (cont).

Chapter 2. The Model 36

proc agent summary(int sid, list substream, document DS)
begin

int count := 0, doc, docid;
foreach doc in substream

begin
rd ("streamdoc", doc, ? docid);
if(extract(sid, docid, "document open agent") 6= "")
count := count + 1;

end
ds replace (DS, "data",

"There are " + count + "documents with open agents");
end

Figure 2.19: The simple summary.

Extending the User Interface

We now develop several procedures using the document and stream primitives as well as
the \user interface" procedures. We start with the apply procedure in 2.20, which takes
a stream id, sid, a substream id, subid, and a function f, and applies the function
successively to each document in the substream. Apply does this by �rst generating the
substream (by calling retrieve) and then applying f to each document in the substream.

proc apply(int sid, int subid, func f)
begin

list substream;
int docid;

substream := retrieve(sid, subid);
foreach docid in substream

f (sid, docid);
end

Figure 2.20: The de�nition of apply.

Combining the apply procedure with Transfer we can de�ne substream copy (Fig-
ure 2.21), which copies all the documents in one substream to another stream. Sub-
stream copy takes three parameters | a source stream identi�er, sid, a target stream
identi�er, sid2, and a substream identi�er, subid | and creates a function, f, that

Chapter 2. The Model 37

takes a stream id, s, and a document, d, as parameters and copies the document via
Transfer from the source stream to the target stream. Next, substream copy calls apply
with sid (the source stream), the substream subid, and the newly created f, which
results in each document in the substream subid being copied to sid2.

proc substream copy(int sid, int sid2, int subid)
begin

func f := �s d:Transfer(s, sid2, d);
apply(sid, subid, f);

end

Figure 2.21: The de�nition of substream copy.

Extending Lifestreams

We have proposed that agents can be used to extend the functionality of Lifestreams;
in this section we show how this can be done by developing several simple agents in
terms of the Lifestream primitives. In Chapter 5 we will show actual agents that extend
the functionality of our prototype system.

Return Receipt. A term \return receipt," an idea borrowed from the postal system,
is a mechanism that enables the sender of a message to receive a return piece of mail
that speci�es the time a piece of mail was received by the recipient. In the context of
Lifestreams we de�ne \received" to be the time the recipient reads the message at the
\user interface" not the time it is appended to his stream. Several commercial electronic
mail systems provide this functionality. Here we demonstrate how this behavior is easily
added to Lifestreams by means of a document agent. Note that we are using several
attributes that we have not previously de�ned, such as from. These attributes are all
borrowed from mail systems and their meanings are obvious (e.g., the from attribute
holds the sender of a message, the to attribute holds the recipient, and so on.).

Our document agent, of event type DOCUMENT OPEN, is given in Figure 2.22. When
the DOCUMENT OPEN event occurs (as the recipient reads the document) the agent is
applied to the document and its stream. The receipt agent �rst creates a new docu-
ment called receipt, and then extracts the from and to attributes of the document.
The agent then creates a message (a character array) that includes the text \Message
read on (date and time) by (recipient)," using the to �eld to obtain the recipient. The
data portion of the document receipt is then changed to be the character array mes-
sage. Finally, the agent appends the new document onto the stream of the message's
originator (contained in the from �eld).

Chapter 2. The Model 38

proc receipt agent(int sid, int docid)
begin

document message, receipt;
string body;
int from, to;

read(sid, docid, message);
from := ds extract(message, from);
to := ds extract(message, to);
body := \Message read at" + now + \ by " + to;

ds replace(receipt, data, body);
ds replace(receipt, created, now);
ds replace(receipt, lastread, now - 1);
ds replace(receipt, state, false);

append(from, receipt);
end

Figure 2.22: The de�nition of a receipt agent.

Subscriptions As an example of a stream-based agent we implement a \subscription
agent." A subscription agent sits on a stream and copies every new document to another
stream. This could be used, for example, to automate an electronic subscription service
for an online newsletter or magazine.

We implement subscriptions by reusing the function f that we de�ned in sub-
stream copy:

func f := �s d:Transfer(s, sid2, d);

As you will recall, f takes a stream and a document index a copies the document to
sid2. Here we de�ne a simple procedure substream me that takes a source stream
identi�er (the stream we want to subscribe to) and a target stream identi�er (where
we want to receive the subscription) and installs a stream agent.

When this procedure is invoked, a stream agent is added to the stream source;
each time an append occurs the agent is evaluated and the new document is passed to
the subscriber (the target stream).

Chapter 2. The Model 39

proc subscribe me(int source, int target)
begin

func f := �s d:Transfer(s, target, d);
add agent(source, f);

end

Figure 2.23: The de�nition of a subscription agent.

2.3 Summary

We have now speci�ed a model for Lifestreams that is capable of supporting a document
collection that is chronologically ordered along with dynamic �lters that partition the
documents into virtual collections. We have presented this model in terms of an \ab-
stract data type" (speci�ed using the Linda coordination language) and implemented
a \user interface" on top of the model. In addition, we have provided a means of
extending and automating tasks in the model through agents.

In the next chapter we use this model as a starting point for a research prototype.
In the process we will take the model from a formal description to a real system that
satis�es many of our real-world needs, such as e�ciency and compatibility with existing
tools.

Chapter 3

The Implementation

Our model in Chapter 2 provides a semantic foundation on which to build a Lifestreams
prototype, but it leaves many \systems" issues unde�ned. Consider for example our
de�nition of substreaming. While it provides a clean semantics that describes the
information retrieval and �ltering aspects of the substream construct, the de�nition
doesn't address the question of how substreams can be implemented e�ciently.

Over the next two chapters we will discuss these issues and describe our e�orts
designing and implementing a \proof of concept" for the Lifestreams model. Our e�orts
have proceeded on many fronts, including user interface design, system integration,
indexing and retrieval, multi-platform support, agent technologies, universal access,
security and performance. The result is a system that is robust enough to see daily use
for the last year; nevertheless the system is not a commercial-grade application. We
believe it is a good starting point for further research and development (such directions
are suggested in Chapter 9).

In this chapter we describe the \behind the scenes" infrastructure that is needed to
support Lifestreams. We begin by describing the general architecture and then move
on to the various modules in the system. In the next chapter we describe the system
from the perspective of the user interface.

3.1 General Architecture

Lifestreams is a network-based system that allows access to a lifestream from any
available network-connected client. As such, the Lifestreams architecture is split into
client and server parts.

The Lifestreams server is primarily a \storage system" that maintains the streams,
substreams and documents of one or more users. This storage system can be conceptu-
ally divided into three components: the document collection, a document content index,
and the substreams. Our implementation mirrors these components. The server is a
single-threaded system that is capable of supporting a number of simultaneous clients

40

Chapter 3. The Implementation 41

that communicate through a remote procedure call interface (ONR RPC) written on
top of TCP/IP. Data is exchanged and stored in a machine-independent format based
on the external data representation (XDR) developed by Sun Microsystems [Ste91].
This has allowed us to support servers and clients on several platforms (Solaris, Sun
OS, and AIX).

Lifestreams clients include user interfaces, agents and daemons processes that in-
teract with the server. The interfaces provide a way for users to interact with a stream.
Agents often interact with a stream to automate tasks. Daemon clients perform mon-
itoring and gateway functions within Lifestreams; for instance a daemon may provide
a gateway to and from the Internet mail system. We cover interfaces in detail in the
next chapter and we will brie
y return to daemons later in this chapter.

3.2 Server Infrastructure

We now describe the server's three storage systems: the basic \document collection"
module that maintains and provides access to the documents, the indexing system that
supports e�cient content-based search, and the substreams mechanism.

3.2.1 Document Collection Subsystem

The document collection is the simplest subsystem within the server; it maintains
an addressable set of documents and implements document access functions. Each
document's attributes are grouped into a record with one �eld per attribute (recall
that documents are represented by attribute/value pairs). These records are stored
in a dynamic array that we call the \skeleton" (Figure 3.1). Each �eld stores the
value of its attribute (e.g., the state �eld records a boolean value) with one exception.
The data attribute, which represents the actual content of the document, stores a
\pointer" to its value rather than the value itself. Given that the document content
may be quite large (possibly megabytes), swapping the skeleton in and out of main
memory is prohibitive if it contains the contents of all documents. Instead we store the
document content on disk and its �le path in the data attribute and swap the contents
in only when needed. The skeleton itself is also swapped in and out of core according
to the server's needs. We currently swap the entire stream in toto; in order to support
large lifestreams (hundreds of thousands of documents) the server will need to employ
a paging scheme.

The document subsystem provides three points of access to the documents: dc read,
dc write and dc append. These functions provide the functionality described in Chap-
ter 2: dc read retrieves a speci�c document by its index in the skeleton, dc write re-
places a document in the skeleton (assuming it is writable), and dc append adds a new
document to the skeleton by dynamically extending the array by one and adding the
document to the end slot. We will see how the chronological stream and substreams
interact with the skeleton shortly.

Chapter 3. The Implementation 42

State:
Creator:
Created:

Lastread:
Content-type:
Permissions:

To:
From:

Cc:
Bcc:

.

.

.
Size:
Data:

0
gelernter
838135580
838135601
test/plain
644
efreeman
gelernter
nick

.

.

.
1048
/scratch/lifestreams/Defreeman/LSDOC.14901

State:
Creator:
Created:

Lastread:
Content-type:
Permissions:

To:
From:

Cc:
Bcc:

.

.

.
Size:
Data:

0
gelernter
838135580
838135601
test/plain
644
efreeman
gelernter
nick

.

.

.
1048
/scratch/lifestreams/Defreeman/LSDOC.14901

State:
Creator:
Created:

Lastread:
Content-type:
Permissions:

To:
From:

Cc:
Bcc:

.

.

.
Size:
Data:

0
gelernter
838135580
838135601
test/plain
644
efreeman
gelernter
nick

.

.

.
1048
/scratch/lifestreams/Defreeman/LSDOC.14901

State:
Creator:
Created:

Lastread:
Content-type:
Permissions:

To:
From:

Cc:
Bcc:

.

.

.
Size:
Data:

0
gelernter
838135580
838135601
test/plain
644
efreeman
gelernter
nick

.

.

.
1048
/scratch/lifestreams/Defreeman/LSDOC.14901

State:
Creator:
Created:

Lastread:
Content-type:
Permissions:

To:
From:

Cc:
Bcc:

.

.

.
Size:
Data:

0
gelernter
838135580
838135601
test/plain
644
efreeman
gelernter
nick

.

.

.
1048
/scratch/lifestreams/Defreeman/LSDOC.14901

State:
Creator:
Created:

Lastread:
Content-type:
Permissions:

To:
From:

Cc:
Bcc:

.

.

.
Size:
Data:

0
gelernter
838135580
838135601
test/plain
644
efreeman
gelernter
nick

.

.

.
1048
/scratch/lifestreams/Defreeman/LSDOC.14901

State:
Creator:
Created:

Lastread:
Content-type:
Permissions:

To:
From:

Cc:
Bcc:

.

.

.
Size:
Data:

0
gelernter
838135580
838135601
test/plain
644
efreeman
gelernter
nick

.

.

.
1048
/scratch/lifestreams/Defreeman/LSDOC.14901

State:
Creator:
Created:

Lastread:
Content-type:
Permissions:

To:
From:

Cc:
Bcc:

.

.

.
Size:
Data:

0
gelernter
838135580
838135601
test/plain
644
efreeman
gelernter
nick

.

.

.
1048
/scratch/lifestreams/Defreeman/LSDOC.14901

State:
Creator:
Created:

Lastread:
Content-type:
Permissions:

To:
From:

Cc:
Bcc:

.

.

.
Size:
Data:

0
gelernter
838135580
838135601
test/plain
644
efreeman
gelernter
nick

.

.

.
1048
/scratch/lifestreams/Defreeman/LSDOC.14901

State:
Creator:
Created:

Lastread:
Content-type:
Permissions:

To:
From:

Cc:
Bcc:

.

.

.
Size:
Data:

0
gelernter
838135580
838135601
test/plain
644
efreeman
gelernter
nick

.

.

.
1048
/scratch/lifestreams/Defreeman/LSDOC.14901

State:
Creator:
Created:

Lastread:
Content-type:
Permissions:

To:
From:

Cc:
Bcc:

.

.

.
Size:
Data:

0
gelernter
838135580
838135601
test/plain
644
efreeman
gelernter
nick

.

.

.
1048
/scratch/lifestreams/Defreeman/LSDOC.14901

State:
Creator:
Created:

Lastread:
Content-type:
Permissions:

To:
From:

Cc:
Bcc:

.

.

.
Size:
Data:

0
gelernter
838135580
838135601
test/plain
644
efreeman
gelernter
nick

.

.

.
1048
/scratch/lifestreams/Defreeman/LSDOC.14901

State:
Creator:
Created:

Lastread:
Content-type:
Permissions:

To:
From:

Cc:
Bcc:

.

.

.
Size:
Data:

0
gelernter
838135580
838135601
test/plain
644
efreeman
gelernter
nick

.

.

.
1048
/scratch/lifestreams/Defreeman/LSDOC.14901

State:
Creator:
Created:

Lastread:
Content-type:
Permissions:

To:
From:

Cc:
Bcc:

.

.

.
Size:
Data:

0
gelernter
838135580
838135601
test/plain
644
efreeman
gelernter
nick

.

.

.
1048
/scratch/lifestreams/Defreeman/LSDOC.14901

State:
Creator:
Created:

Lastread:
Content-type:
Permissions:

To:
From:

Cc:
Bcc:

.

.

.
Size:
Data:

0
gelernter
838135580
838135601
test/plain
644
efreeman
gelernter
nick

.

.

.
1048
/scratch/lifestreams/Defreeman/LSDOC.14901

State:
Creator:
Created:

Lastread:
Content-type:
Permissions:

To:
From:

Cc:
Bcc:

.

.

.
Size:
Data:

0
gelernter
838135580
838135601
test/plain
644
efreeman
gelernter
nick

.

.

.
1048
/scratch/lifestreams/Defreeman/LSDOC.14901

State:
Creator:
Created:

Lastread:
Content-type:
Permissions:

To:
From:

Cc:
Bcc:

.

.

.
Size:
Data:

0
gelernter
838135580
838135601
test/plain
644
efreeman
gelernter
nick

.

.

.
1048
/scratch/lifestreams/Defreeman/LSDOC.14901

State:
Creator:
Created:

Lastread:
Content-type:
Permissions:

To:
From:

Cc:
Bcc:

.

.

.
Size:
Data:

0
gelernter
838135580
838135601
test/plain
644
efreeman
gelernter
nick

.

.

.
1048
/scratch/lifestreams/Defreeman/LSDOC.14901

State:
Creator:
Created:

Lastread:
Content-type:
Permissions:

To:
From:

Cc:
Bcc:

.

.

.
Size:
Data:

0
gelernter
838135580
838135601
test/plain
644
efreeman
gelernter
nick

.

.

.
1048
/scratch/lifestreams/Defreeman/LSDOC.14901

State:
Creator:
Created:

Lastread:
Content-type:
Permissions:

To:
From:

Cc:
Bcc:

.

.

.
Size:
Data:

0
gelernter
838135580
838135601
test/plain
644
efreeman
gelernter
nick

.

.

.
1048
/scratch/lifestreams/Defreeman/LSDOC.14901

State:
Creator:
Created:

Lastread:
Content-type:
Permissions:

To:
From:

Cc:
Bcc:

.

.

.
Size:
Data:

0
gelernter
838135580
838135601
test/plain
644
efreeman
gelernter
nick

.

.

.
1048
/scratch/lifestreams/Defreeman/LSDOC.14901

State:
Creator:
Created:

Lastread:
Content-type:
Permissions:

To:
From:

Cc:
Bcc:

.

.

.
Size:
Data:

0
gelernter
838135580
838135601
test/plain
644
efreeman
gelernter
nick

.

.

.
1048
/scratch/lifestreams/Defreeman/LSDOC.14901

State:
Creator:
Created:

Lastread:
Content-type:
Permissions:

To:
From:

Cc:
Bcc:

.

.

.
Size:
Data:

0
gelernter
838135580
838135601
test/plain
644
efreeman
gelernter
nick

.

.

.
1048
/scratch/lifestreams/Defreeman/LSDOC.14901

State:
Creator:
Created:

Lastread:
Content-type:
Permissions:

To:
From:

Cc:
Bcc:

.

.

.
Size:
Data:

0
gelernter
838135580
838135601
test/plain
644
efreeman
gelernter
nick

.

.

.
1048
/scratch/lifestreams/Defreeman/LSDOC.14901

State:
Creator:
Created:

Lastread:
Content-type:
Permissions:

To:
From:

Cc:
Bcc:

.

.

.
Size:
Data:

0
gelernter
838135580
838135601
test/plain
644
efreeman
gelernter
nick

.

.

.
1048
/scratch/lifestreams/Defreeman/LSDOC.14901

State:
Creator:
Created:

Lastread:
Content-type:
Permissions:

To:
From:

Cc:
Bcc:

.

.

.
Size:
Data:

0
gelernter
838135580
838135601
test/plain
644
efreeman
gelernter
nick

.

.

.
1048
/scratch/lifestreams/Defreeman/LSDOC.14901

State:
Creator:
Created:

Lastread:
Content-type:
Permissions:

To:
From:

Cc:
Bcc:

.

.

.
Size:
Data:

0
gelernter
838135580
838135601
test/plain
644
efreeman
gelernter
nick

.

.

.
1048
/scratch/lifestreams/Defreeman/LSDOC.14901

State:
Creator:
Created:

Lastread:
Content-type:
Permissions:

To:
From:

Cc:
Bcc:

.

.

.
Size:
Data:

0
gelernter
838135580
838135601
test/plain
644
efreeman
gelernter
nick

.

.

.
1048
/scratch/lifestreams/Defreeman/LSDOC.14901

.

.

.

The Skeleton

State:
Creator:
Created:

Lastread:
Content-type:
Permissions:

To:
From:

Cc:
Bcc:

.

.

.
Id:

Data:

0
gelernter
838135580
838135601
test/plain
644
efreeman
gelernter
nick

.

.

.
14901
/scratch/lifestreams/Defreeman/LSDOC.14901

A Document Record

Disk Storage

T
im

e

Figure 3.1: The Document Storage Subsystem.

Each of these functions requires a security check. Our current security model is
loosely based on the UNIX security mechanism. Each document record contains a
�eld called permissions that is represented by a bit�eld and describes who may read
and write the document. As in UNIX, the granularity of control is owner, group, and
world. Each Lifestreams request is accompanied by a \credential" that describes the
requester; this is compared against the values in the bit�eld before access is allowed.

3.2.2 Indexing Subsystem

E�cient and accurate computation of substreams is crucial to the success of Life-
streams. We have already argued that naming and static directories are sub-optimal
means of organizing information. We can derive a more e�ective means of retrieval
from the information already inherent and readily available in a document collection
(as shown in [GJSO91]), namely the document's content.

How do we achieve content-based retrieval with reasonable performance? Brute
force sequential search is not su�cient given the time it requires. For example, a one-
keyword search over text documents on a Sun Sparc 10 takes on the order of one second
per megabyte. Given a lifestream of forty megabytes (arguably a small stream) a find

operation would keep the user waiting forty seconds. This is for one keyword; we often
want to search for more complex queries (e.g., \david and lifestreams and (not scott)").
Such a query could take minutes using brute force methods.

Information retrieval strategies for large static document collections have been un-
der development for the last decade or so. In general these systems have traded space

Chapter 3. The Implementation 43

and storage time for faster performance at retrieval time. Most modern systems use
some form of inverse index [FE92]. Inverse indices or inverse �les map from search
terms to documents. For example, in the inverse index depicted below, each word
maps to a set of document identi�ers.

apple 1 10 19 27 55 61

fertig 17 99 114210

computer 40 95

yoyo 3 7 10 17 51 87

.

.

.

...

...

Keyword lookups are performed by retrieving the list of documents that match the
keyword via the inverted �le. By maintaining an inverted �le of a document collec-
tion we can perform content-based retrieval in time proportional to the number of the
keywords in the query1. Finding the keyword entry in the inverted �le is usually ac-
complished through a hash table or B-tree [FE92]. Complex queries, such as boolean
expressions, are accomplished by taking the intersection, union and di�erence between
document lists retrieved from the inverted �le.

Inverse Index
Indexing

Lexer

Sort

Stemmer

StopList/Dups

ID

Figure 3.2: The Indexing Subsystem.

The Lifestreams' server maintains an inverted �le for each lifestream and indexes
a document through the in index procedure. Figure 3.2 shows a conceptual picture
of the indexing system. New documents are parsed and their contents are added to

1With the implementation techniques discussed later in this section, query computation has an
expected running time of O(N) per boolean operation, where N is the number of documents in the
collection.

Chapter 3. The Implementation 44

the inverted �le (we will describe the process shortly). The current prototype indexes
English ASCII text �les. For non-text documents we still index \header" information
and user supplied attributes. Other work in the �eld of information retrieval is ex-
ploring multi-lingual and image-based indexing methods [Flu, BFJ+95]. Our indexing
methods are currently of the most basic sort, but we believe that if Lifestreams is use-
ful, even using limited techniques, it can only prove more useful with more powerful
indexing technologies. Moreover, given that we have designed Lifestreams as three
\modular" subsystems, more advanced indexing technologies can easily be added. We
now describe our indexing procedure in detail.

Lexing, Stopwords and Stemming

Parsing a text �le for inclusion in the inverted �le is a multi-step process. To create the
inverse index of a text document we �rst break the text into tokens. In the Lifestreams
server we do this by treating all punctuation and whitespace characters as delimiters.
Any delimited piece of text is treated as a token.

We then convert tokens into canonical form by applying the Porter algorithm
[Por80] for su�x stripping. This algorithm is one of a class of algorithms for strip-
ping the su�xes (and possibly pre�xes) from a word, leaving a stem. For instance,
stemming the words \runner," \running," and \run" all result in a stem of \run."
There are two bene�ts to stemming words: �rst, the overall size of the index can be
decreased substantially (on the order of 30% [FE92]). Second, retrieval can be more
e�ective as documents that contain words with common stems will satisfy the same
search query. The disadvantages are that retrieval is not as precise (although, in some
respects this is bene�cial, as noted above) and indexing in general is not easily amenable
to more
exible \wildcard" searching | such as using regular expressions as keywords
or allowing for misspellings. Ongoing work (in the information retrieval community)
is however making progress in these areas by combining fast (Boyer-Moore) searching
with course-grained indexing [WM94, MW93].

We then sort the list of tokens and remove any duplicate tokens. Duplicates may
occur in the document or may result from the stemming process (where words with
di�erent su�xes may result in the same word after stemming).

The next step in the indexing process is to remove noise. Text contains a large
proportion of words that occur too frequently to be of use for retrieval purposes. Be-
cause the words appear in a large percentage of documents, their use as search terms
is non-discriminating. Removing these words before indexing signi�cantly reduces the
total amount of words that need to be indexed and the overall space requirements for
the disk index [FE92]. Examples of stopwords are:

a although become co enough four

about always been could etc from

above amongst before couldn't even further

Chapter 3. The Implementation 45

according an beforehand d ever g

across another begin did every h

actually any behind didn't everyone had

adj anyone below do everything hasn't

after anything beside does everywhere have

afterwards anywhere between doesn't except haven't

again are beyond down f he

against aren't billion during few hence

all around both e fifty her

almost as but each first here

alone at by eight five hereafter

along b c either for hereby

already be can else formerly herein

also became cannot elsewhere forty herself

at because caption ending found him ...

These words are mainly common verbs, pronouns and prepositions. Lifestreams main-
tains a system-de�ned \negative dictionary" or \stoplist" of these words (our stoplist
was taken from the words in the WAIS stoplist [Kah91]) and in the lexing process com-
pares each token against the stopwords. This stoplist resides in a hashtable (i.e., each
stopword is a hashtable key) and a lookup is performed on each token. If the token is
found in the hashtable then it is discarded. Otherwise it is added to the inverse index
(as described below). One system-wide stoplist is currently maintained by the server
and so the same negative dictionary is applied to all users. Future systems should be
able to employ custom dictionaries for each user.

Last, our indexing system allows keywords to be tagged. For instance, a keyword
appearing in the title of a document would be tagged as a \title" keyword. This tag
can then be used in search queries to identify documents with a speci�c keyword in
their title. Lifestreams automatically performs tagging based on several attributes,
such as the content type (image, text, audio, etc.) and mail-related attributes (to,
from, subject).

Processing Documents

To summarize; to index a document id we:

1. Lex the document into a list T of tokens.

2. Stem all t 2 T .

3. Sort T and remove any duplicates.

4. Given a stoplist S, we let T = T � S.

5. Add id to the document list of each t 2 T in the inverted index.

Chapter 3. The Implementation 46

Computing Search Queries

When a find operation is initiated by a Lifestreams user, the server performs a search.
We now brie
y describe the general task of computing a list of documents from a
search query. Lifestreams currently supports general keyword searches and searches via
boolean queries (keywords composed with and, or and not). There are other models
for providing a search capability in Lifestreams, such as database query languages (too
complex and cumbersome for the average user) and Shneiderman's dynamic queries
[Shn94]. Shneiderman's work suggests an interesting method of searching over a stream
via slider bars, but the idea still needs work to scale beyond small databases (currently
on the order of 1000 records or less).

Ids from Set

Parse Tree

Set Merge

Create Sets
INVERSE INDEX

3, 24, 907, 2002, ...

DOCUMENT IDS

from:gelernter and lifestreams

Figure 3.3: In search: computing a substream.

Lifestreams' index subsystem provides computation of search queries through the
function in search, which takes a boolean search query and a stream and returns
a set of documents that satisfy the query (Figure 3.3). The in search function is
implemented as follows: First, each query is parsed into a parse tree. For each leaf
node (keyword) a set data structure is created2. Sets are implemented with hashtables
(a common technique in information retrieval systems). For each set a hashtable is
created and is \keyed" with every document identi�er contained in the inverse �le
for the corresponding keyword. By \keyed" we mean that each document identi�er
is added as a key to the hashtable. Hashtables as an implementation strategy have
the advantage that they are more e�cient in their use of space than other approaches

2This could also be accomplished (perhaps more e�ciently) by searching through the document
directory.

Chapter 3. The Implementation 47

(such as bit-vectors), do not limit the maximum size of the document collection and
have good expected running time characteristics (see [FE92]).

Once we have created a set for each keyword in the search query, the operators
are applied depth-�rst: and is accomplished by taking the intersection of two sets , or
by the union, and not by subtracting the set from a set that contains all documents
in the collection. The result is one set which contains the documents that satisfy the
search criteria3. A similar technique is used when �ltering documents into existing
substreams (discussed below).

We will present data on search times in Chapter 6.

3.2.3 Substreams Storage Subsystem

The substream subsystem manages the substreams of a stream, providing support for
the creation of virtual document collections and continual information �ltering via
persistent substreams. Here we follow the model in Chapter 2 by treating the main
stream (all documents in the lifestream) as just another substream. Note that the
skeleton is not a good candidate for the main chronologically-ordered stream because
it is ordered by each documents \real" creation time, not its time within the Lifestreams
system. In Lifestreams we can reset the time of the system to the future and create
documents there. The skeleton orders documents by physical creation time; we need a
data structure for the chronological stream that orders documents by virtual time.

For this data structure we use a dynamic array of indices that point back to the
document skeleton. The substream data structure holds this array, a copy of the search
query and a parent substream identi�er (we will see how the search query and parent
identi�er are used in the next section). In Figure 3.4 we show three substreams: the
main substream (substream 0) has a parent identi�er of 0, a search query of "*" (recall
the F0 substream from Chapter 2) and an array that contains a document index for
every document in the collection. The other two substreams are represented in a similar
manner, although they may contain only a subset of the documents in the collection.
Note that substream 1 has a parent identi�er of 0 (the main stream), while substream
2 has a parent identi�er of 1 (as it was created incrementally from substream 1). All
the document indices in each substream are sorted by the \virtual" creation time of
each document in the skeleton.

A substream is created by calling in search with the search query. The (possibly
empty) list of documents returned from in search is then installed (sorted by creation
time) as a new substream along with the search query and parent identi�er.

3Later in this chapter we will see that in search, in order to achieve incremental substreaming,
also takes a parent substream id and ANDs the results with the parent substream before returning the
set of documents.

Chapter 3. The Implementation 48

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

17291

.

.

.

“*”

Pid: 0

2010

2154

5091

7861

9540

10380

14581

16751

“gelernter and
lifestreams”

Pid: 0

14581

16751

“defense”

Pid: 1

Substream 0 Substream 1 Substream 2

Figure 3.4: The Substream Data Structure.

Chapter 3. The Implementation 49

Filtering New Documents

When a new document arrives or is created, it is added to the document collection
via dc append. Next, in index is called and the document is properly indexed. Last
ss process substreams is called and, for each substream, the corresponding search
query is applied to the new document. If the document passes the search query, then
it is added to the end of the substream.

Boolean from Set

Parse Tree

Boolean Merge

Create Sets
INVERSE INDEX

True
BOOLEAN VALUE

“from:gelernter and lifestreams”, 127

Figure 3.5: In match: computing a documents membership in a substream.

To apply a search query to a document (rather than a document collection) we call
in match (see Figure 3.5). This function operates analogously to in search: First,
each query is parsed into a parse tree. For each leaf node (keyword) we retrieve the
document list. If our new document exists in that document list, we replace the leaf
node with a boolean true, otherwise with a false. The boolean operations on the
interior nodes are then processed, resulting in a boolean value. If the resulting value
is true, the new document is added to the substream.

3.2.4 Putting it All Together

We now present the server as a whole by describing how the subsystems work together.
We do so by supplying the implementation details for the stream primitives (read, write,
append, retrieve and �lter) that we developed in Chapter 2. Each of these procedures
are implemented as remote procedure calls that can be invoked from a client.

Chapter 3. The Implementation 50

struct document *Read(int sid, int docid) {

return dc_read(sid, docid);

}

void Write(int sid, int docid, struct document *doc) {

dc_write(sid, docid, doc);

}

Figure 3.6: De�nition of the Server Read and Write Routines.

Read/Write

Read (Figure 3.6) is implemented directly through the document storage subsystem.
Read takes a stream identi�er and a document identi�er and calls dc read, returning
its result. Similarly, Write (also Figure 3.6) takes a stream identi�er, a document
identi�er and a document record and calls dc write.

Append

Our de�nition of append in Chapter 2 adds a document to a stream.4 In our proto-
type, append (Figure 3.7) takes a stream identi�er and a document record and calls
dc append. Recall that dc append extends the skeleton (the document collection, not
the main stream) by one and adds the document record. The data �eld of the document
is swapped out to disk in the process (to reduce core memory usage). Append must
also take care of substream and inverse index housekeeping: append calls in index,
which adds the document contents to the inverse index. Append then iterates over the
all existing substreams and calls in match for each one. For the calls of in match that
return true, the document id is added to the appropriate substream. Note that the
one exception is substream 0 (the main stream), which always passes the conditional.
Last, append returns the document id.

Filter

Filter takes a stream identi�er, a parent substream identi�er and a search query and
creates a new substream. Filter (Figure 3.8) �rst creates a structure and an array
to hold the new substream. The structure holds the array, the search query and the
parent substream identi�er. Filter then calls in search with the search query and
adds all document returned to the substream's array. Last, it returns a new identi�er
for the substream. If the reader returns to the de�nition of append above it should
become apparent how the substream is built over time as new documents arrive.

4It also supports stream agents, which our research prototype does not directly support.

Chapter 3. The Implementation 51

int Append(int sid, struct document *doc) {

int docid, len, i;

docid = dc_append(sid, doc);

in_index(docid, doc);

for(i=0;i< skeleton[sid].subnums; i++) {

if (i == 0 || in_match(sid, docid, i)) {

/* dynamically extends by one document */

len = skeleton[sid].substream[0].len++;

skeleton[sid].substream[i].docs =

realloc(skeleton[sid].substream[i].docs,

len * sizeof(int));

skeleton[sid].substream[i].docs[len-1] = docid;

}

}

return docid;

}

Figure 3.7: De�nition of the Server Append Routine.

Chapter 3. The Implementation 52

int Filter(int sid, int pid, char *sq) {

int subid, len, *docs;

len = in_search(sid, pid, sq, docs);

subid = skeleton[sid].subnums++;

skeleton[sid].substream =

realloc(skeleton[sid].substream,

subid*sizeof(struct substream));

skeleton[sid].substream[subid].len = len;

skeleton[sid].substream[subid-1].sq = strdup(sq);

skeleton[sid].substream[subid-1].pid = pid;

skeleton[sid].substream[subid-1].docs =

malloc(sizeof(int) * len);

for(i=0;i<len;i++) {

skeleton[sid].substream[subid].docs[i] = docs[i];

}

return subid;

}

Figure 3.8: De�nition of the Server Filter Routine.

Chapter 3. The Implementation 53

int *Retrieve(int sid, int subid) {

int len, i;

int *docs;

len = skeleton[sid].substream[subid].len;

docs = (int *) malloc(len * sizeof(int));

for(i=0;i<len;i++) {

docs[i] = skeleton[sid].substream[subid].docs[i];

}

return docs;

}

Figure 3.9: De�nition of the Server Retrieve Routine.

Retrieve

Retrieve (Figure 3.8) is a simple procedure: it takes a stream identi�er and a sub-
stream id (returned from the call to �lter) and returns the document identi�ers
pointed to by the array of the corresponding substream.

We spent a good deal of time in Chapter 2 describing how substreams can be
incrementally created from other substreams. The reader may ask how this works in
our research prototype. It is implemented as follows: the substream data structure
maintains a list of substreams and their \parent" substreams. When in search and
in match are called, they AND the result with the parent substream. The result is
incremental substreaming.

3.2.5 Reality Check

The e�ciency of our indexing code is important to the success of our prototype and
we would like to be in the \ballpark" when compared to existing commercial indexing
systems. Here we provide a comparison with the WAIS indexing system [Kah91] (now
called Isearch) which has been widely used for commercial and academic information
retrieval. Although it is a more advanced indexing system, WAIS is similar to our
system.

For our tests we indexed a 21.8 megabyte collection of newsgroup articles from the
soc newsgroup hierarchy using WAIS and the Lifestreams server. The results (gathered
on an unloaded Sun Sparc 10) are provided in Table 3.1. We see that while Lifestreams
was roughly 25% faster indexing the collection it used about 60% more space. This is
to be expected given some of the di�erences between the two systems. With respect to
indexing time, WAIS collects more information while indexing (word adjacency, number
of occurrences per document, etc.), which increases the time to parse and index the

Chapter 3. The Implementation 54

Lifestreams WAIS

Indexing Time (seconds) 1562 2025

Indexing Speed (MB/min) .836 .645

Index Size 17.1MB 10MB

% of Collection 78.5% 46.3%

Table 3.1: Comparison of WAIS and Lifestreams indexing.

documents. With respect to index size, WAIS and Lifestreams operate in two di�erent
manners. WAIS operates in a batch-like mode and precomputes the entire index to
use space e�ciently, while Lifestreams incrementally builds up its index as documents
are added and must set aside extra space for future use. In any case, Lifestreams'
indexing time is slightly faster than WAIS (although the index times would be closer if
we added some of WAIS's more advanced parsing) and its use of space (about 80% of
the collection) is well within the norm for information retrieval systems (which range
from 50% to 300% of the information collection [FE92]).

3.3 Client Infrastructure

Our client architecture relies on a speci�c document model, method of transferring
documents and \embedded computation" technology. In this section we �rst introduce
our document model. We then describe how the Lifestreams client implements the
transfer operation. Next we present our current agent model and describe how embed-
ded computations are accomplished. Last, we describe the \plug-in" architecture of
the summarize operation (also an embedded computation).

3.3.1 Our Document Model

Early on, we implemented a Lifestreams system that relied on the Andrew Toolkit's
built-in editor and multimedia document standard (ATK) [Bor]. While the ATK
provided an interesting initial environment in which to explore Lifestreams, it made
user migration to the system di�cult. Users relied on speci�c document types (text,
PostScript, DVI, GIF, etc.) and they found it inconvenient to create these documents
using the Andrew Toolkit's builtin editor rather than with conventional applications.

Our current system is based on the \hypertool model" [Ous94] and MIME types
[BF92]. The hypertool model is a method for building complex systems out of smaller
reusable applications. We use existing editor and viewer tools in concert with the Life-
streams system so that users can continue to use the applications they are accustomed
to. MIME is a document typing standard that grew out of work on Multipurpose

Chapter 3. The Implementation 55

Internet Mail Extensions (MIME) [BF92]. The MIME standard describes extensions
to conventional mail systems that allow message content other than 7-bit ASCII to be
transmitted through mail messages. This is accomplished by adding a content-type
header �eld to mail messages along with an encoding standard that represents arbi-
trary binary �les as 7-bit ASCII. In addition, MIME provides conventions for adding
new types. A MIME type is speci�ed as a content type and subtype; some of the more
common MIME-types are plain text (text/plain), GIF images (image/gif), and Quick-
time video (video/quicktime). We make use of MIME to support multiple document
types within Lifestreams by adding a content-type attribute to each document. The
mapping from types to applications is user de�ned. We will describe this mapping and
other details of the hypertools model in the next chapter.

3.3.2 Communication

The transfer operation provides a means of sending a document from one stream
to another. This includes the capability of transferring non-ASCII content (images,
sounds, movies), attached document agents, and \future" documents. To be useful
as a general communications tool, transfer must also be able to interoperate with the
non-Lifestreams world and be capable of sending documents as conventional electronic
mail messages.

The implementation of transfer has evolved over the course of system development.
Initially, transfer was implemented by calling append on the target stream. There
are three problems with this approach: �rst, it doesn't satisfy our interoperability re-
quirements (because it doesn't work with conventional electronic mail); second, the
system did not implement a true \store and forward" communications system5 so the
client expected the target server to always be available (something we cannot guar-
antee with the current system and something few software systems and networks can
guarantee). The third problem was technological and sociological: users were forced
to maintain two name spaces, one for Lifestreams and one for conventional mail (for
example the author's email address is freeman-eric@cs.yale.edu while his Lifestreams'
address is efreeman@pythagoras.cs.yale.edu); that is, the user had to remember which
addresses designate conventional mail addresses and which addresses designate Life-
streams addresses and specify transfer operations accordingly. This causes a related
problem: when the user of a conventional mail system replies to all the senders of a
message containing a Lifestreams address, his mailer won't have the necessary proto-
col to talk directly with a Lifestreams address. In a future Lifestreams utopia such
problems might not arise, but in accommodating our local users it had to be solved.

Our second (and �nal) implementation uses conventional mail protocols to trans-
port both Lifestreams documents and Internet-bound mail. This approach solves our
interoperability requirements, uni�es the email/Lifestreams namespace and provides a

5It has been argued that no mail system is usable in the real world without a store and forward
capability.

Chapter 3. The Implementation 56

robust store and forward communications infrastructure. Let us see how it is imple-
mented.

Communications Implementation

When a transfer operation is executed the client �rst converts the Lifestreams document
(the attribute/value record) into a form that can be shipped within the SMTP mail
protocol. This is accomplished by creating a serialization of the document (complete
with its data �eld) into XDR form. Once the document is serialized we can convert
it into a base-64 representation that contains only ASCII characters and thus can be
shipped over conventional SMTP channels. The base-64 representation entails a 33%
increase in the space requirements for the document.

The client then creates a mail message bu�er that is typed as a mixed and multipart
MIME message. This type tells a MIME reader that the message contains multiple
parts that are of di�erent types. If possible, the client �rst provides a readable form of
the message for non-Lifestreams readers.6 The client then adds the base-64 representa-
tion and types it application/x-lifestreams and the �le is handed to sendmail for
delivery. Figure 3.10 displays one such message. This message contains a text/plain

MIME type, the contents of which can be seen in the �rst part of the message. This
document was created \in the future" and so needed to be encoded so that it is placed
in the future of the recipient's stream. The base-64 encoded version is seen in the
second part of the MIME message.

We also need one additional piece of software: a standalone piece of code that
intercepts a user's Internet mail, converts it to a Lifestreams document and forwards it
to his lifestream. The conversion program works as follows: when the program receives
a mail message, if it contains a \applications/x-lifestreams" part, then that part is
unpacked and forwarded to the appropriate Lifestreams server through append. In
this way we still rely on append to place the document on the target lifestream,
however we \piggy back" on top of the Internet mail system to actually deliver the
document. If the document does not contain a \applications/x-lifestreams" part then
we add it to the stream as a text document (parsing it �rst to extract attributes). To
the Lifestreams user the entire process is invisible.

The advantage of this approach is that we can use a long-tested, robust delivery
system for transferring Lifestream documents. In addition, communication over these
channels is transparent (to the user) and the user only needs to manage one namespace.
The disadvantage is that our system is less integrated from the standpoint of software
design (the transfer capability is no longer implemented purely as a Lifestreams RPC
calls) and harder to maintain from the perspective of system administration (we have

6In the case where the message is purely text and there is no Lifestreams speci�c content (e.g.,
agents, the document is a future document, etc.) the encoding process is skipped and the mail is sent
out as a conventional ASCII mail message.

Chapter 3. The Implementation 57

to manage two additional pieces of software: sendmail and the software that unpacks
Lifestreams mail message).

3.4 Embedded Computation

Lifestreams uses \embedded computation" as an implementation strategy for several
parts of the system: document agents, personal agents and our summarize architecture.
While embedded computations could also be used for stream agents, our implemen-
tation doesn't yet support them (although we will suggest how it could later in this
section).

Embedded computations are (typically) small pieces of code that are loaded and ex-
ecuted within a running program. In the case of a document agent the code is extracted
from the appropriate document attribute and executed within the user interface. A
personal agent is loaded into the user interface at \startup" time and executed when
the user indicates he wants the agent to run (we will see speci�cally how this is done
in the next chapter). Finally, the summarize functionality, like the personal agents, is
loaded into the client at startup time.

In this section we �rst introduce our choice of a language for writing agents and
summarizers (from here on we will call this the \agent" language). We begin by
describing our requirements and the reasons for choosing an existing scripting language.
We then describe how embedded processes are supported in the Lifestreams client.

3.4.1 The Agent Language

Agents are generally described through a programming language, or through a user
interface that translates graphical descriptions into an underlying language. In Chap-
ter 2 we used an Algol variant to describe agents. While in theory any programming
language would do, there are a few real world requirements that we would like our
language to meet given that agents are executed in an embedded environment.

1. Heterogeneity: The agent language should be portable and e�ciently exe-
cutable on virtually computer system. This requirement is necessary so that
Lifestreams clients on di�erent platforms can send and receive agents.

2. Extensibility: The agent language should be extensible so that we can add
Lifestreams functions to the language.

3. Dynamic binding: The agent language should be able to dynamically bind
Lifestream functions so that an agent can be loaded in place and executed using
local versions of Lifestreams functions. This reduces the size of the agent itself
(it does not have to carry around Lifestreams libraries with it) and allows the
end user to use his own implementations of the Lifestreams functions.

Chapter 3. The Implementation 58

From freeman-elisabeth Mon Mar 25 12:26 EST 1996

Date: Mon, 25 Mar 1996 12:26:02 -0500 (EST)

From: freeman-elisabeth

Message-Id: <199603251726.MAA05490@TEDDY.SYSTEMSY.CS.YALE.EDU>

Subject: (Fwd) hotel

To: freeman-eric

X-Mailer: Lifestreams 1.1a1 (Yale)

Content-Type: multipart/mixed; boundary="-"

Content-Length: 1002

This message originated from a Lifestreams client, which has

taken care to provide a text readable version. Also included in

this message is a MIME-encoded version of the Lifestreams document. To

properly view it use your favorite Lifestreams' client.

Remember to check on hotels near Seattle airport for CHI trip

Content-Type: application/x-lifestreams

AAAAAG1iZXIAAAJYMWKScAAAAAAxYpJvAAAACnRleHQvcGxhaW4AAAAAAAEAAAAAAAAAPlJl

bWVtYmVyIHRvIGNoZWNrIG9uIGhvdGVscyBuZWFyIFNlYXR0bGUgYWlycG9ydCBmb3IgQ0hJ

IHRyaXAKAAAAAAAZZnJlZW1hbi1lcmljQGNzLnlhbGUuZWR1IAAAAAAAAAhiZnJlZW1hbgAA

AAAAAAAAAAAACyhGd2QpIGhvdGVsAAAAAAAAAAA/AAAAUgAAAGUAAABtAAAAZQAAAG0AAABi

AAAAZQAAAHIAAAAgAAAAdAAAAG8AAAAgAAAAYwAAAGgAAABlAAAAYwAAAGsAAAAgAAAAbwAA

AG4AAAAgAAAAaAAAAG8AAAB0AAAAZQAAAGwAAABzAAAAIAAAAG4AAABlAAAAYQAAAHIAAAAg

AAAAUwAAAGUAAABhAAAAdAAAAHQAAABsAAAAZQAAACAAAABhAAAAaQAAAHIAAABwAAAAbwAA

AHIAAAB0AAAAIAAAAGYAAABvAAAAcgAAACAAAABDAAAASAAAAEkAAAAgAAAAdAAAAHIAAABp

AAAAcAAAAAoAAAAA

Figure 3.10: An example MIME-encode Lifestreams document.

Chapter 3. The Implementation 59

4. Safety: Agents have been called \good viruses" [Way95]. As with any virus,
there is also potential for harm, especially when the creator of an agent is malev-
olent. We will not present a solution to safety per se in this dissertation, as there
are already a number of good solutions to this problem.

This list is not exhaustive; there are other issues to consider | methods of agent
veri�cation, performance, the development environment, and the type of native code
used in the underlying system. We have tried to choose the most important issues to
consider, at least within the scope of our prototype system.

A few years ago one might have created a special purpose agent language from
scratch, but today there are a number of existing and emerging languages that are
appropriate as agent languages and that meet our requirements: Sun's Java, variants
of Scheme, Telescript, and Tcl-Tk [Ous94] are some of the prominent examples. Each
has its own advantages and disadvantages; we have chosen Tcl-Tk as an initial agent
language for the following reasons:

1. Tcl is an ASCII-based, interpreted language that runs on most platforms.

2. Tcl is easily extended via the C programming language (used for the core Life-
streams communication routines).

3. Tcl can be loaded in place and dynamically bound.

4. Our user interface is coded in Tcl-Tk.

5. Tk provides a easy method of implementing user interfaces within a Tcl script.

6. Tcl provides a facility for embedding Tcl interpreters in C code.

7. Work has already been done on a \safe" version of Tcl for agents [Bor93b].

8. Tcl/Tk is freely available.

While Tcl meets our needs for the purposes of this prototype, there is nothing to
prevent an alternative agents language from being used in the future.

3.4.2 Implementing Embedded Processes

From an architecture perspective, embedding processes works as follows: referring to
Figure 3.11, the client interface relies on an underlying Lifestreams library that con-
tains a number of communication primitives as well as primitives for creating, altering,
and viewing documents. A Tcl-Tk interpreter, which runs in the client interface's ad-
dress space, is used to evaluate all agent scripts and, through the Lifestreams library,
has access to the communication and document speci�c primitives. Note that our client
is itself written in Tcl, so the agent can be evaluated directly within the user interface.

Chapter 3. The Implementation 60

Tcl-tk
Interpreter

Client Interface

Lifestreams Library

Figure 3.11: Embedded Process Architecture.

As we have mentioned, each document and personal agent is stored in a data
structure (e.g., in the attribute of a document, or attached to the user interface).
Document agents are evaluated when a speci�c event occurs, (Chapter 2). Personal
agents are attached to the user interface and evaluated whenever the user selects the
agent. These agents run within the client's address space.

Document agents can be attached to any document by supplying one or more
scripts in the appropriate attribute. When a document is �rst opened (when the value
of the lastread attribute is greater than the value of the created attribute), the
document open agent attribute is checked for scripts. If they exist they are executed
in an arbitrary sequential order. After the open scripts have been executed, or if the
document has been opened previously, the document read agent attribute is checked
for scripts. If they exist they are executed in the same manner as the open scripts.

Personal agents are attached to the user interface when the Lifestreams client starts
up. Currently a list of these agents is kept in a startup �le (although it could be moved
to the stream itself). For each agent a menu item is created under the Personal

Agents menu (see Chapter 4) and its code is loaded into the client for later execution.
Although we don't currently support server agents, it is useful to consider how

they will be supported in future versions. The server is written entirely in C code. To
run an agent it would need to create a Tcl interpreter and run the agent within the
interpreter. This has the added advantage of encapsulation; that is, if the agent halts
in some violent way, the server would be una�ected. Future versions of Lifestreams
will include multi-threaded servers that could run agents in lightweight processes.

3.5 The \Summarize" Architecture

Recall from Chapter 2 that the \summarize" operation allows users to distill informa-
tion from a large number of documents by compressing a substream into an overview
document. The content of the overview depends on the type of documents in the sub-

Chapter 3. The Implementation 61

stream. While we will provide some examples of preliminary summarizers (Chapter 5)
the techniques used to distill this information into something meaningful are beyond the
scope of this dissertation and belong to such �elds as natural language processing [Jon]
and data mining [HS94]. In this dissertation we provide a storage system and general
purpose \summarize" architecture that encourages the development of summarizers.

Each summarizer is a software module that is added to the client through a \plug-
in" architecture. Like agents, they are embedded computations. Unlike agents (specif-
ically personal agents) they provide a speci�c functionality: a boolean tester function
and a summarize function that returns a document to be added to the Lifestream. Sev-
eral summarizers come pre-installed in our software client, while new summarizers can
be added via the plugin architecture by advanced users. Each summarizer is written in
Tcl/Tk, loaded into the client at startup, and follows the conventions of the following
plugin API: Each summarizer consist of two procedures, test and summarize. The
test procedure takes a substream as an argument and returns a boolean value indicat-
ing whether or not the summarizer is appropriate for the substream. The API does not
specify what the contents of the test procedure must be, but it will usually contain
a heuristic for deciding if the summarizer is appropriate for the substream. The test
procedure should have a short running time (less than a second7), although no limit is
enforced in the current implementation. The summarize procedure takes a substream
as an argument and returns a (possibly empty) document.

Both procedures are installed into the client by InstallSubstreamSummary. This
call takes four arguments: a name and description of the summarizer, a test procedure
and a summarize procedure.

Given that one or more summarizer may be appropriate for a given substream, how
does the Lifestreams client decide which one is appropriate? We use a \delegation" pro-
cedure: when a user speci�es that he wants to summarize a substream (see Chapter 4),
the client iterates over the summarizers and calls each test procedure; for each test

that returns true, a pointer to its summarize procedure is added to an array8. After
completing this iteration, if the array is empty a default system summarizer is applied
to the substream. If the size of the array is one (meaning that exactly one summarizer
is appropriate), that summarizer is applied. If the size of the array is greater than one,
the user is asked to choose the summarizer he wants (via a list of descriptions). If the
document returned from the summarizer is non-empty then it is added to the stream
and displayed for the user.

7Future versions may ease this restriction by allowing summarizers to precompute their test in the
background.

8This information may be cached for future summarize operations on unmodi�ed substreams.

Chapter 3. The Implementation 62

3.6 Summary

Lifestreams is up and running on our local computing environment | a collection of
SunOS, Solaris, and AIX workstations. Our initial implementation e�orts have focused
on providing a \proof of concept" of the Lifestreams model. The server is limited in
that it is single-threaded (and thus has a single access point). While the server has
been reasonable for a small number of users, clearly a multi-server and multi-threaded
approach would be more scalable. To overcome any current scalability problems we
distribute our user's streams over several servers, placing two to three streams on each
server. In this con�guration there have been no major performance complaints from
users (see Chapter 6); over the last twelve months of the project the system has been
responsive and robust, being responsible for only three down intervals.

There is still work to be done to make Lifestreams scalable; results from the infor-
mation retrieval and database communities are encouraging. Lifestreams incorporates
ideas from both disciplines (like database management systems, Lifestreams manages a
database of records (documents), like information retrieval systems, Lifestreams allows
access to those records via content-based retrieval). We've seen no real performance
problems with respect to retrieval and, given the very large indices that are being
used in systems like Nexis/Lexis and Internet search engines, we believe our retrieval
scheme should scale to large document collections. These system typically contain tens
of millions of index documents and are able to compute user queries within seconds.

Both client and server store the records of the entire document collection when a
user views his Lifestream; we need to borrow database technology for large collections.
There are \human-computer interaction" problems to solve too. Since no user can look
at 10,000 documents at once and discern any usable information,9 it doesn't make sense
to give users an entire document collection at once. A more reasonable approach would
be to use \cursors" to allow the user to view segments of the document collection and
to load in more segments as needed. In this way the display of documents would be
demand-driven in that a query may only initially return a fraction of the documents
in a query, while allowing the user to request more as needed.

9Although recent work by Shneiderman [Shn94] suggests how one might, in principle, do so. But
his techniques still need work to scale beyond small databases.

Chapter 4

The Interface

In this chapter we explore three Lifestreams interfaces developed for the prototype. We
�rst describe our X Windows client1, which provides a rich interface to the Lifestreams
system. We then describe a command line interface that is suitable for the \lowest
common denominator" of computer displays: dumb terminals. Last we present an
interface for the Apple Newton PDA, which provides Lifestreams access via minimal
(possibly mobile) communication channels.

We begin this chapter by brie
y discussing the philosophy behind our interface
design and then move on to describe how each interface provides various Lifestreams
capabilities. In the next chapter we describe how the X Windows interface is used
to accomplish common user tasks. Last we explore directions for future interface
development.

4.1 Interface Design

Lifestreams clients may exist eventually on a wide range of computational devices from
high-end networked workstations to minimal personal digital assistants, TV set-top
boxes and cell phones. A state of the art Silicon Graphics workstation might provide
a rich three-dimensional interface to a lifestream, allowing the user to
y through a
document collection; a cell phone might provide a voice-activated interface. In this
dissertation we lay down no policy concerning the \look and feel" of a Lifestreams
client, but each interface should provide a means of using the basic operations. Over
time, incremental design and evaluation will result in the development of improved
interfaces.

This chapter concentrates on our X Windows client and our attempts to create an
e�ective and satisfying interface for users (see Chapter 6 for more on users' subjec-
tive reaction to the interface). While conventional graphical components (such as list

1We believe this platform to be representative (with respect to \windowed user interfaces") of
today's desktop systems such as the Macintosh and Microsoft Windows.

63

Chapter 4. The Interface 64

widgets and scrollbars) may have provided the basic functionality needed to access a
lifestream, we have tried to support a \receding stream" visual representation in the
spirit of Shneiderman's direct manipulation [Shn92] and Nelson's principle of virtuality
[Nel90].

Direct manipulation involves creating a visual representation of a \world of action."
Shneiderman describes direct manipulation as a primary interaction style that presents
task concepts visually. By using a visual representation of objects and allowing users
to carry out action by pointing and clicking, the user can carry out tasks quickly and
observe results immediately. Direct manipulation is good insofar as it is appealing
to novices and easy to remember for intermittent users, encourages exploration, and
permits high subjective satisfaction (users enjoy using it)[Shn92].

Nelson's concept of \virtuality" is opposed to the usual \metaphorics" [Nel90] ap-
proach. Metaphorics is a method of building software based on an implicit comparison
to objects or machines in the real world (e.g., the desktop metaphor). Metaphors are
useful to a point, but they constrain design in the sense that once the metaphor \has
been instituted," every related part of the system has to become part of the metaphor.
When designers are forced to add non-obvious functions to the metaphor (e.g., to
eject a disk, drag it into the trashcan) users get confused. Nelson argues that \slavish
adherence to a metaphor prevents the emergence of things that are genuinely new."

In contrast, virtuality is the construction of unifying ideas that can be embodied
in a rich graphic expression that is no mere metaphor for a some pre-existing physical
system, but rather, as Nelson argues, leads to new conceptual organizations that have
not previously existed. This has been our approach designing Lifestreams: to provide a
simple and uni�ed system that is easily grasped by users and not constrained by a real-
world metaphor. We now describe the X Windows client and highlight our attempts
to incorporate direct manipulation and virtuality into our interface.

4.2 The X Windows Interface

The X Window's Lifestreams interface presents the stream as a receding set of docu-
ments (Figure 4.1). Each document is shown as a rectangular region annotated with
several text �elds: the subject or topic of the document, the creator of the message, and
| if the message is a mail message | the sender of the message. Document annota-
tions allow the user to browse the stream and locate speci�c documents quickly. Future
interfaces can do better by presenting actual thumbnail depictions of each document
and its contents.

The user can slide the mouse pointer over the stream to \glance" at each document.
Figure 4.1 shows a highlighted document and its \glance view." The glance view dis-
plays a condensed summary of the document (not to be confused with the summarize
operation); in this example the glance view displays the date and time the document
was created along with its subject, any mail headers (from, cc), the �rst couple of lines

Chapter 4. The Interface 65

Figure 4.1: The X Windows Interface.

Chapter 4. The Interface 66

of the document's contents (this last feature is currently supported only for text doc-
uments), and an icon that signi�es a document agent if one is attached. Glance views
help the user browse a stream of documents or read short messages quickly without
actually \opening" any documents.

4.2.1 Navigating through Time

The interface displays a \slice" of the stream; on a conventional workstation monitor
this slice amounts to roughly forty documents. The creation dates of the documents
are displayed alongside the stream. Rather than displaying the creation date of each
document, we only display the dates for the �rst document created each day. This
substantially reduces the visual complexity of the display (in the spirit of Tufte [Tuf90])
and makes it easy to group documents into \days of creation." As we have seen previous
work has shown that chronological cues are a natural and powerful method of organizing
information [Mal83, Lan88b].

Users can navigate through the past via the horizontal scrollbar at the bottom
left-hand corner of the interface (enlarged in Figure 4.2). Along the bottom of the
scrollbar are the beginning and ending dates of the current stream. In this case the
stream includes documents from the end of July 1991 to the end of October 1996.
We can see from the display just above the scrollbar that this includes about 17,000
documents from efreeman's main stream (i.e., his lifestream, not a substream). Along
the top of the scrollbar we display the inclusive dates of the slice of documents visible
within the display. Clicking and dragging the scrollbar slider results in an update of
this interval, allowing the user to navigate to a precise time within the stream (we will
discuss navigating to the future shortly). The size of the slider is also important. Its size
within the scrollbar trough graphically represents the percentage of total documents
(within a stream or substream) that are visible.

Figure 4.2: Browsing Back in Time.

We now consider Figure 4.3. The stream is still efreeman's, but here we are focused
on the substream \andrew and lifestreams" that contains 102 documents. The scrollbar

Chapter 4. The Interface 67

date endpoints have changed; the slider now represents a greater percentage of the total
documents (forty of 102). We also see that the date and time stamps are grouped more
closely together because the substream contains only a few documents from any given
day.

4.2.2 Basic Operations

The basic Lifestreams operations | new, clone, transfer, find and summarize| are
provided through buttons and a text-entry box. Clicking on new adds a new document
to the stream. To clone a document, the user selects a document, and then presses
the clone button and a copy of the selected document is added to the stream. To
select a document, the user presses the second mouse button while the mouse pointer
is positioned over the document. Doing so highlights the document and makes the
clone and xfer buttons active. Pressing xfer causes a prompt for recipient addresses
(see �gure 4.4) and then transfers the selected document.

Pressing the summarize button applies an appropriate summary to the current
substream. As the user creates substreams and \visits" existing substreams the client
iterates through available summarizers and evaluates their test functions. If only
one summarizer can be applied to the stream then the summarize button is changed
to re
ect the available summarizers (we will see an example shortly). If more than
one summarizer is appropriate then the client prompts the user when he presses the
summarize button. Each summarizer results in a document being added to the main
stream (and any appropriate substreams). We give examples of summarizers in Chap-
ter 5.

The user can create a substream by typing a search query into the find text-entry
box and pressing return, as seen in Figure 4.5. The radio boxes below the text-entry
box allow the user to select between input methods: keywords and boolean queries.
In keyword mode the user enters search terms (such as \lifestreams david") and the
system treats them as a series of terms connected with boolean AND (\lifestreams david"
becomes \lifestreams AND david"). In boolean query mode the user is free to enter
arbitrary boolean expressions containing search terms along with AND, OR, and NOT.
When the user presses return the substream is computed and the current stream (or
substream) is quickly (on the order of one second) replaced by the documents that
match the search query.

At any time the user can refocus the display on the main stream or any existing
substream. Users can also create substreams in an incremental fashion by using the
find operation on substreams. A list of substreams and operations is maintained in
the Substreams menu (Figure 4.6). The �rst menu option Remove deletes a substream
and any of its children. Next, the Your Lifestream option focuses the interface back
on the entire document collection. Last, the menu contains a list of all substreams,
which are labeled with their search queries (keywords possibly connected with boolean
operations). Selecting a substream focuses the interface on that substream. Nested

Chapter 4. The Interface 68

Figure 4.3: Browsing Back in Time with a Substream.

Chapter 4. The Interface 69

Figure 4.4: Transferring a Document.

Figure 4.5: Using Find.

menu items represent substreams that were created incrementally. In this example, the
substream \fertig" was created from the substream \scenarios," which was created from
the substream \lifestreams and david," which was created from the entire lifestream.
It is important to note that these substreams represent not a hierarchy of information,
but a parent/child relationship among substreams. A child substream is a subset of its
parent stream, but sibling substreams can overlap in arbitrary ways.

4.2.3 Color and Animation

We use animation to show important events and provide a more convincing \world of
action" in Lifestreams. Documents appended to the stream| incoming Internet email,
reminders or documents added to a stream by another Lifestreams user|slide in from
the left. In the process, the stream is pushed backwards by one document into the
past. Newly created documents slide down from the top and assume the front-most
position on the stream. Transferred documents slide out to the left. Figure 4.7 shows
these actions. The interface allows users to add a sound to each action. Current users
use a \swoosh" sound to signify documents arriving on the stream.

Important document states are shown graphically: the borders of unread documents
are colored red, while the borders of writable documents are made thicker. Open
documents are o�set to the side to show that they are being viewed or edited.

Chapter 4. The Interface 70

Figure 4.6: Selecting a Substream.

4.2.4 Future Time

By default the Lifestreams interface presents the user with a view of the stream from
the present moment receding into the past. As we have discussed, a lifestream also has
a future, which (with the X Windows interface) is accessible but usually hidden. The
user accesses time-related features of Lifestreams through the clock in the upper right
hand corner of the interface. The clock typically displays the current time; it also acts
as a menu (Figure 4.8), which allows the interface time to be temporarily reset so the
user can observe the future part of the stream. The user can either choose to set the
time ahead some predetermined interval (a day, a week, two weeks, etc.) or to set the
time ahead in a precise way (via the Set Time to the Future or Pastmenu option)
with the calendar dialog box displayed in Figure 4.9. Specifying a future time, either by
the calendar of predetermined intervals \refocuses" the interface to include any future
documents that have creation dates before the speci�ed time. In Figure 4.10, time was
set to the future date of November 30th (one month ahead), and as a result nine new
documents appeared on the stream. The division between future and past is marked
by the now arrow. Also note that the summarize button has changed to re
ect the
fact that a future summarizer can be applied to the stream (we will explore the future
summarizer in Chapter 5).

While visiting the future users can deposit reminder notes or transfer documents
to other users (which become future documents on their streams) or can perform any

Chapter 4. The Interface 71

Figure 4.7: Use of Animation within X Windows Interface.

Chapter 4. The Interface 72

Figure 4.8: Specifying Time.

other operation that is allowed in the present. When the clock is reset to the present
these documents disappear, but they arrive on the stream at the appropriate time
(when their creation dates roll around).

The user can also specify a past time with the dialog box; this has the e�ect of
scrolling the stream back to that date.

4.2.5 Opening, Viewing and Editing Documents

To see a whole document or edit it the user must �rst open it. Users open documents
by clicking on them with the left mouse button. The document slides to one side to
show that it is being viewed or edited. The way in which documents are viewed or
edited is largely determined by the choice of a document model.

As we described in Chapter 3, our current system uses the \hypertool model":
rather than construct large monolithic applications we build systems out of many
small reusable components. This approach has several advantages for Lifestreams.
Most importantly, we did not have to reimplement the many existing editors, viewers
and other applications our users already accustomed to; they can continue to be used
within Lifestreams as helper applications. Helper applications are used as follows:
when a Lifestreams client is asked to open a document, it �nds an external application
that can view or edit the document type and spawns the application to do the job.
xv, for example, is a common application used to view images; when Lifestreams
encounters a document with type \image/jpeg," Lifestreams spawns xv to display the

Chapter 4. The Interface 73

Figure 4.9: The Calendar Dialog Box.

document. This model is used by many existing web browsers to provide a means of
viewing web-content that is not supported internally within the browser.

The mapping from types to applications is user-de�ned. Lifestreams keeps an inter-
nal list of user-de�ned applications that are derived from a \mailcap" �le. A mailcap
�le is a �le format standard that was developed for specifying locally-installed facilities
for multiple mail formats such as MIME [Bor93a]. Today, mailcap �les are used in
many multimedia applications, such as web browsers.2

Figure 4.11 shows a mailcap �le. Each entry speci�es a MIME content-type/subtype3,
or a content-type and a wildcard *" that speci�es all subtypes belonging to that type,
and then a helper application that can be used to process the MIME document.

Lifestreams as a Window Manager

Figure 4.12 shows a user opening several documents simultaneously in Lifestreams.
Each open document is o�set to the right4 as an indication that it is being handled
by a helper application. The user has opened documents of several di�erent types and
corresponding applications have been invoked to display them: a web url (netscape),
an image �le (xv), and an audio �le (audiotool). When the user closes the application,
the respective document slides back into position.

Lifestreams also acts as a window manager: clicking on an open document within
the interface causes the corresponding helper application to come to the foreground.
This allows the user to maintain a number of open documents and to �nd documents

2Applications on the Mac and PC often provide a user interface for editing the mailcap �le.
3These types are usually de�ned in a system-wide �le called .mime.types, which lists all available

MIME types.
4This o�set is user-de�ned and can be up, down, left or right.

Chapter 4. The Interface 74

Figure 4.10: Future Documents on Stream.

Chapter 4. The Interface 75

This is a simple example mailcap file.

Lines starting with '#' are comments.

#

This maps all types of audio data (audio/basic, audio/x-aiff,

etc.) to the viewer 'audiotool'. Note that '%s' means put the

datafile name here when the viewer is executed.

audio/*; audiotool %s

This maps all types of images (image/gif, image/jpeg, etc.)

to the viewer 'xv'.

image/*; xv %s

This maps MPEG video data to the viewer 'mpeg_play'.

video/mpeg; mpeg_play %s

This maps all types of video *other than MPEG* to the viewer

'xanim'.

video/*; xanim %s

This maps all postscript to ghostview and dvi files to xdvi

and all man pages to nroff

application/postscript; ghostview %s; needsterminal

application/x-dvi; xdvi %s

application/x-troff-man; nroff -man %s

This maps all PDF documents to acroread

application/pdf; acroread %s

This maps all tcl scripts to the shell (which will exec them in tclsh)

application/x-tcl; %s

Figure 4.11: An Example Mailcap File.

Chapter 4. The Interface 76

quickly. If a user creates a substream (or views an existing one) that contains an open
document the document will be o�set in the substream, and clicking on it will move
its helper application to the foreground.

In order to write back changes to the server, Lifestreams tracks open documents.
When the Lifestreams client spawns (via fork/exec) a helper application to edit a
document it adds its process identi�er to an internal process table along with the name
of a temporary �le that is passed to the helper application. When a child process of the
client dies (possibly as the result of a user that is �nished with the helper application),
the client receives a SIGCHLD signal and looks for a matching process in its internal
process table. If the match is found and the document is writable then the contents
of the temporary �le are written back to the server. While our current approach
is to perform one writeback per user session, the client can be extended to support
incremental writebacks by spawning an additional process that communicates with the
helper application and performs multiple writebacks directly to the server.

Attributes and Editing

Lifestreams allows users to edit document attributes. Figure 4.13 shows the document
attribute dialog box. This dialog box is opened when the user selects a document and
then clicks on the third (right-most) mouse button. Through the dialog box users can
edit common attributes such as the document's permissions. The user can also assign
additional keywords to a document for retrieval purposes. These keywords are added
to the document's index at the server.. We will explore their use further in Chapter 5.

Advanced users can also edit the document's MIME type and its attached agents.
Figure 4.14 shows the dialog box that is displayed when the user clicks on the Mime

Type button in the attribute dialog box. The MIME dialog box allows the user to set the
document's MIME type to any type de�ned in the user's .mime-types �le. Why would
users want to change a MIME type? Two examples: when a new document is created
the user may want change it to a particular type, or may want to switch between two
types when editing two types that have the same representation but di�erent display
methods. For instance the user may want to create an HTML document (or in general
any document that is speci�ed in a markup language) by editing a plain text document
and then changing the type to HTML to render the document. Such operations are
usually for advanced users (as is the attribute editing dialog box).

Advanced users may also access document agents through the Agent button. Click-
ing it yields the agent dialog box shown in Figure 4.15. The agent dialog box allows the
user to add new agents, to edit (view) the agents of writable (read-only) documents, to
read a description of the agent, and to remove agents from writable documents. Editing
an agent (by selecting an agent and clicking on the Edit button) brings up a editor for
that agent. The editor environment for agents is currently primitive but usable. In the
editing window the user edits four \�elds" of text: its name, its description, it type,
and �nally the source code for the agent. Using this editor the user can iteratively

Chapter 4. The Interface 77

Figure 4.12: The X Windows Interface Handles MIME-typed Documents.

Chapter 4. The Interface 78

Figure 4.13: Editing Document Attributes.

Chapter 4. The Interface 79

Figure 4.14: Choosing a Mime Type.

Figure 4.15: Editing an Agent.

Chapter 4. The Interface 80

write agent code and test it within the system (by opening the document which causes
the evaluation of the agent).

Chapter 4. The Interface 81

4.3 The Command-line Interface

Our work on the command-line client was driven by user demand. While the initial
user group was content using Lifestreams on workstations at the o�ce, we soon found
it frustrating not to be able to access our streams from home. There was additional
motivation to do so, as some users prefer a command line interface: witness the number
of users who use vi over graphical word processors, or who use command line mail
programs rather than graphical mail programs such as xmail. Many of us commonly
use the UC Berkeley mail interface and it seemed a good base for building a command
line interface (CLI) to Lifestreams.

The Lifestreams CLI (Figure 4.16) looks like the UCB mail application, however it
uses a \lifestream" as a basis for storage rather than a spool �le. Here, the user has
asked the CLI to display the last twenty documents in his stream. Each document is
listed by a document identi�er, which may be preceded by a number of one-character
descriptors (e.g., W = writable, N = new, U = unread, A = agent attached). Next, the
sender of the document is displayed, followed by the date and time the document was
created or added to the stream, and a subject (if one exists). Documents with a blank
sender �eld were created by the owner of the lifestream. Also note that while this slice
of the stream contains mostly electronic mail5, there is also a TR draft and a URL
created by an agent on the stream.

4.3.1 Viewing/Editing Documents

Like the X Windows client, the CLI supports helper applications6. If the CLI is being
used from an X Windows console then the appropriate helper application is launched
to view or edit a document. If, on the other hand, the CLI is running from an ASCII
terminal, an error is reported that the helper application can't be opened or, in some
cases, an alternative helper application is used. For example, when a document of type
application/x-url is opened, the CLI either executes an X Windows web browser
(usually Netscape), or, if the user is using an ASCII terminal, executes lynx, the
text-based web browser.

4.3.2 Substreams

Lsmail provides direct support for substreams through find and four additional com-
mands for navigation (as provided by menus in the graphical interface): substreams,
substream, remove, and up. The inc command (which, in UCB mail, includes new
documents that have arrived since the user last checked) has also been implemented in
the CLI to provide the same functionality.

5And if fact most streams do because we tend to generate more electronic mail documents than any
other type.

6The UCB mail program only supports text mail messages, which are commonly displayed with the
more program

Chapter 4. The Interface 82

Lifestreams (YALE) version 0.922 beta Type ? for help.

Eric_Freeman@pythagoras (your lifestream): 4507 documents 50 unread

& h $

4486 hupfer-susanne@cs Wed Apr 19 17:55 95 No Subject

4487 sullivan@fa.disne Wed Apr 19 19:22 95 weights, #1013

4488 sholden@cod.nosc. Thu Apr 20 07:39 95 Newton_User_Groups_v1.11

4489 fertig@cs.yale.ed Thu Apr 20 12:21 95 Size of key?

4490 fertig@cs.yale.ed Thu Apr 20 12:44 95 Public key on casper

4491 fertig@cs.yale.ed Thu Apr 20 12:54 95 Re: testing

4492 fertig@cs.yale.ed Thu Apr 20 12:54 95 Re: testing

4493 hupfer-susanne@cs Thu Apr 20 13:12 95 No Subject

4494 Netscape Agent Thu Apr 20 13:13 95 http://www.voyagerco.com

4495 eperry@SUNED.ZOO. Thu Apr 20 15:03 95 progress

4496 eperry@SUNED.ZOO. Thu Apr 20 15:46 95 Re: progress

W 4497 Thu Apr 20 16:02 95 TR draft

4498 eperry@SUNED.ZOO. Thu Apr 20 16:07 95 Re: progress

4499 eperry@SUNED.ZOO. Thu Apr 20 16:24 95 Re: progress

4500 eperry@SUNED.ZOO. Thu Apr 20 16:33 95 Re: progress

4501 Quote-O-matic Thu Apr 20 17:00 95 Portfolio for 4/20/95

4502 PIESYSOP@AppleLin Thu Apr 20 17:21 95 Re: Signature Register

4503 hupfer-susanne@cs Thu Apr 20 17:21 95 No Subject

4504 sullivan@fa.disne Thu Apr 20 19:07 95 weights, #1014

N 4505 fertig@cs.yale.ed Fri Apr 21 10:43 95 Re: PGP

N 4506 fertig@cs.yale.ed Fri Apr 21 10:53 95 No Subject

Figure 4.16: The Command-line Interface.

Chapter 4. The Interface 83

In Figure 4.17, we present a user session that includes these commands. The
transcript begins as a user is viewing his main stream (all 4500 documents). The user
then issues the command:

find lifestreams and dissertation

This results in the creation of a substream containing sixteen documents from the
entire stream. The user then lists the documents with the \h $" command. For all
practical purposes the user can treat the substream as if it were a general mail spool.
The user then issues the substreams command, which displays all existing substreams.
Incrementally created substreams are indicated through indentation and the current
stream is preceded with a *. The user then removes the substream with the remove

command. The remove command defaults to the current substream, but can also
be given an argument to explicitly remove another substream. After removing the
substream the remove command returns the user to the parent substream, in this case
the main stream. The user then issues the substream command, moving the user to
the \shneiderman" stream. Issuing the up command moves the user to the parent
substream without removing the child. Last, the user issues the inc command, which
checks the current stream or substream for new documents (in this case there was one
additional document appended to the stream).

4.3.3 Time

The command-line client time can be set via the settime command. This command
requests the time from the user. Users are allowed to enter dates via a
exible format
based on the getdate parser developed by Steven M. Bellovin. As an example, Fig-
ure 4.18 shows a user setting the time to next Tuesday at 8am. Note that the \h $"
command now displays a number of future documents.

The user can reset the time to the present with settime now.

4.3.4 New, Clone and Transfer

The command-line client supports new, clone and transfer. It also allows the user
to type mail along with a recipient list, which automates new and transfer for the
user. As with the X Windows interface all of these commands can be carried out in
future time.

4.3.5 Summaries and Personal Agents

The command-line client supports both summaries and personal agents, however more
work needs to be done to provide compatibility with the X Windows client. Porting
a summarizer or personal agent from the X version currently requires changes to the
client's source code (rather than just a change to a \defaults" �le as in the X version)

Chapter 4. The Interface 84

& find lifestreams and dissertation

Eric_Freeman@pythagoras (lifestreams and dissertation): 16 documents 1 unread

& h $

0 fertig Fri Nov 03 15:28 95 Re: Hiding documents in Life

1 Eric_Freeman Mon Nov 13 16:24 95 LS evaluation

2 David Kaminsky Tue Nov 14 09:14 95 lifestreams (LS)

3 Eric_Freeman Tue Nov 14 10:51 95 Re: lifestreams (LS)

4 David Kaminsky Tue Nov 14 12:28 95 lifestreams (LS)

5 Eric_Freeman Tue Nov 14 13:12 95 more from Kaminsky

6 ben@cs.UMD.EDU Wed Nov 15 10:40 95 Re: Committee

7 Eric_Freeman Wed Nov 15 10:54 95 from ben

8 ben@cs.UMD.EDU Wed Nov 15 11:05 95 Re: Committee

9 Eric_Freeman Sun Dec 03 16:29 95 draft of letter to Franklin

10 fertig Sun Dec 03 16:39 95 Re: draft of letter to Frank

11 Eric_Freeman Sun Dec 03 16:46 95 Re: SIGMOD

12 Eric_Freeman Sun Dec 03 16:53 95 Re: SIGMOD

13 franklin@cs.UMD.E Mon Dec 04 10:27 95 Re: SIGMOD

N 14 Eric_Freeman Mon Dec 04 10:30 95 Re: SIGMOD

15 Eric_Freeman Tue Dec 05 19:14 95 Re: Lifestreams evaluation

&

& substreams

0. All documents in your lifestream

1. franklin

2. shneiderman

3. ben

4. netscape and bookmark and hotlist

5. sigmod

6. franklin

7. hcil

8. stock and service and gvil

9. chi

10. paul

11. Gianattasio

12. ethan and lifestreams

13. Mikrotec

*14. lifestreams and dissertation

& remove

Eric_Freeman@pythagoras (your lifestream): 4509 documents 51 unread

& sub 2

Eric_Freeman@pythagoras (shneiderman): 27 documents 0 unread

& up

Eric_Freeman@pythagoras (your lifestream): 4509 documents 51 unread

& inc

Eric_Freeman@pythagoras (your lifestream): 4510 documents 52 unread

&

Figure 4.17: Substreams in the CLI.

Chapter 4. The Interface 85

& settime

Enter a time [? for help]: next tuesday 8am

Set time to Tue Jun 25 08:00:00 1996? y

Setting time to Tue Jun 25 08:00:00 1996.

efreeman@pythagoras (your lifestream): 13580 documents 28 unread

& h $

13559 Jon Bennett <jonb Thu Jun 13 16:34 96 Re: Eric Freeman's Home Pag

13560 support@devtools. Thu Jun 13 16:40 96 Re: Cafe Studio?

13561 efreeman Thu Jun 13 18:04 96 Re: Eric Freeman's Home Pag

13562 efreeman Thu Jun 13 18:06 96 Re: Cafe Studio?

13563 hupfer-susanne Thu Jun 13 20:11 96 raccoons

13564 PRICES <prices@Bo Thu Jun 13 20:18 96 Market Close 06/13/96

13565 The c|net newslet Thu Jun 13 23:00 96 c|net Digital Dispatch Vol.

N 13566 sullivan@huey.dis Fri Jun 14 00:18 96 weights, #1252

13567 freeman-elisabeth Fri Jun 14 09:20 96 msg

13568 freeman-eric Fri Jun 14 09:27 96 editor saved ``processmail'

N 13569 freeman-eric Fri Jun 14 09:27 96 editor saved ``/tmp/lstrMBA

13570 Fri Jun 14 09:44 96 Yale Club

13571 efreeman Fri Jun 14 09:50 96 Como

13572 efreeman Fri Jun 14 10:30 96 Re: Hello

F 13573 efreeman Fri Jun 14 14:00 96 Jones/McRae meeting

F 13574 efreeman Sun Jun 16 08:00 96 Father's Day

F 13575 efreeman Mon Jun 17 08:00 96 Dermatology Appointment

F 13576 bfreeman Mon Jun 17 09:28 96 Reminder: Saturn Car Clinic

F 13577 efreeman Mon Jun 17 19:00 96 Saturn New Car Clinic

F 13578 efreeman Sat Jun 22 13:00 96 Beth/Susanne talk at SCSU

F 13579 efreeman Mon Jun 24 08:00 96 Deposit refund due

& settime now

Setting time back to``now."

efreeman@pythagoras (your lifestream): 13573 documents 21 unread

&

Figure 4.18: Time in the CLI.

Chapter 4. The Interface 86

& remind

Enter a time for the reminder [? for help]: next wednesday 10am

Create reminder on Wed Jun 26 10:00:00 1996? y

Subject: meeting with David

Meet with David about the dissertation.

.

creating reminder on Wed Jun 26 10:00:00 1996...done.

Figure 4.19: Reminder personal agent in the command-line client.

and also to the agent if it makes use of the Tk graphics libraries (because we no
longer have a window display). One personal agent supported is the \reminder" agent
(Figure 4.19). Like the X version it �rst prompts for a date/time and then for a
message, which is then added to the future. The user can specify other recipients for
the reminder and a xfer is automatically done to their streams.

A couple of the summarizers are also supplied (the default summarizer and the
LATEX summarizer). These are accessed by typing "summarize" at the command line.

4.4 The PDA Client

We have also implemented Lifestreams on the Apple Newton [Com93]. This work was
�rst described in [Fre95]. The Newton presents an interesting set of constraints for
developing a client. It has a small (240x360) monochrome graphics display, limited
memory (160K of free heap and 2M of
ash card storage), limited communications
bandwidth (2400 baud), and pen-based input.7 Certainly we could not develop a full-
blown version of the X Windows client; however our initial thoughts were to develop
a scaled-down version. On closer examination, the Newton suggests intriguing im-
plementation strategies because of several similarities between the Newton operating
system and Lifestreams. Like Lifestreams, the Newton:

� Does not use a traditional hierarchy for managing information. Instead it uses a
simple folder-based scheme along with...

� A content-based FIND capability as its primary method of locating information.

� Replaces the traditional �lesystem with a persistent storage model.

Rather than attempting to integrate Lifestreams into the existing Newton framework|
that is, replacing the Newton's static folders with substreams, reworking the built in

7These are the speci�cations for Newton devices at the time of writing

Chapter 4. The Interface 87

notepad to load its notes from the Lifestreams server rather than the resident \notes
system soup," overriding the Newton FIND function to create true substreams, etc.|
we've developed the Lifestreams client as a standalone Newton application, while in
the process attempting to envision the look and feel of an integrated version. To that
end, we've taken some liberties and overridden some of the Newton's default behaviors.

4.4.1 Communication

We've developed a proxy application to sit in between the client and the server because
neither the RPC nor the TCP communication protocols are supported in the Newton
operating system. The proxy takes requests via ASCII commands from the Newton.
The proxy then performs these requests by making RPC calls to the server and re-
turning the results to the Newton in mixed ASCII and binary formats. The Newton
accesses the proxy by either dialing into a terminal server via modem or through a
tethered connection to a workstation. After connecting, the Newton then connects
(via telnet) to a speci�c port on a proxy host and begins communicating with the
proxy. This indirect scheme of telneting to a proxy host allows the user to access his
lifestream anywhere on the network, as long as he has access to a local machine that
supports TCP and the telnet protocol.

4.4.2 The Newton Interface

Figure 4.20 displays the Newton interface. The user is initially greeted with a con-
nection dialog that allows him to specify the name of his stream, the name of his
Lifestreams server (which in this case is actually the proxy, not the server), and the
connection method: modem, a direct tether connected to a UNIX workstation, or a
wireless connection (not currently supported). Like most Newton applications, Life-
streams contains a folder icon at the top of the interface. The folder normally contains
a set of prede�ned categories for �ling. We have overwritten this behavior and replaced
the standard folder name with the user's stream name. We will see how the folder func-
tions shortly. A clock in the form of a small circle at the bottom of the interface is also
a standard feature of Newton applications. Its default behavior is to display the date
and time when tapped on; we will see how it is used with Lifestreams shortly. Also
included in the interface is an information button (that displays information about
the application and its author) and the essential Lifestreams buttons: NEW, CLONE,
XFER and FIND8, followed by the application's \close" button (the button with an
X).

To access a lifestream the user taps on the Connect button and the Newton attempts
to connect. The application then uses a built-in con�guration script to attach to the
workstation or terminal server and issue a telnet command to connect to the proxy.

8Because the Newton interface was implemented early on in the Lifestreams work (and not main-
tained over the course of the project) the summarize function was not included.

Chapter 4. The Interface 88

Figure 4.20: The Newton Interface.

After successfully making contact with the proxy, the proxy retrieves an updated list
of stream documents and sends this list to the Newton. The client then interacts with
the server by issuing ASCII commands and receiving data back. The issuing of these
commands is usually user-driven: the user interacts with the interface, and behind the
scenes the application issues commands to the proxy to satisfy requests.

Figure 4.21 shows the interface just after the Newton has successfully connected to
a stream. As you can see, we display the list of stream documents in an \overview." On
the Newton an overview can be obtained by pressing the overview button (a part of the
Newton form factor, not visible in screenshots). The overview lists all the documents
within the current application. As with any Newton overview the user can scroll down
to see more documents (older ones, in this case) or tap a particular entry to retrieve
the corresponding document.

Figure 4.22 displays a document that has been retrieved from the Lifestreams server.
Once a document is displayed the user can scroll through it with the Newton's built-
in up and down arrows. If the document is writable the user can use the Newton's
hand recognition input to alter the document. Tapping the overview button redisplays
the list of documents in the stream. Our implementation falls short of true Newton

Chapter 4. The Interface 89

Figure 4.21: Documents in a stream are displayed as an overview.

functionality here, as the up and down arrows only scroll within the document. To be
consistent, the client should be able to scroll to the next or previous document as in
the built-in Newton notes application. Notes).

Also in Figure 4.22 we see how the folder button has been replaced by our own

avor of folders (substreams). Our folder button activates a popup list that contains
the name of the current stream and its associated substreams. Choosing a substream
loads the document list associated with the substream (usually a much shorter list of
documents than appear in the stream) and displays them in the overview. The label
of the folder button is also updated to display the name of the substream. By using
the \remove substream" option, the current substream can be removed at any time.

We have also changed the behavior of the clock button in the status bar (see Figure
4.23); when it is tapped a date/time picker opens instead of the normal time glance.
As in the X Windows interface, the client application maintains its own \system time"
and allows the user to alter this time by dialing to the future or the past (and back
to the present). In any case, the client sets its clock to the user speci�ed time. The
\system time" is then used when the client issues commands to the proxy/server.

The operation of NEW and CLONE is straightforward: NEW replaces the currently

Chapter 4. The Interface 90

Figure 4.22: Substreams are displayed in place of folders.

displayed document with a clean slate. CLONE duplicates the current document and
allows the user to begin editing the new copy. In either case, when the user �nishes
editing the document (e.g., when another document is retrieved or the user exits from
the CLI), Lifestreams �rst stashes away the latest changes by saving the document
back to the server. In this way, storage is transparently handled.

XFER displays a list of stream addresses from your current server (Figure 4.24).
By tapping on the name of a stream the current document is then transferred to that
stream.9

Similarly, FIND is supported in a simple form on the Newton. Tapping the FIND
button displays a dialog that prompts for a boolean query (Figure 4.25). Clicking
on Find issues a request to the server to create the substream. On the Newton the
substream is added to the list of substreams, the document list is loaded, and a new
overview is displayed.

While the Newton client is functional and useful, there is still much that can be

9The implementation of the Newton client at the time of writing lags behind the X Windows
implementation, which builds its transfer operation on top of SMTP. The Newton client still uses a
earlier intra-server communication protocol.

Chapter 4. The Interface 91

Figure 4.23: The clock glance has been replaced by a date/time editor.

done to improve it. We've already mentioned the lack of support for summaries and
the active update of live substreams. There are other aspects of Lifestreams that
are not supported in the Newton. For instance, the lack of support for MIME-typed
documents. The Newton client currently handles only one document type, that of plain
text, the most common type. There is no reason that the current Newton version could
not handle a variety of text, image, and audio types. By de�ning a MIME type for
the Newton's internal document type we could also store, search, and transfer Newton
notes, business cards, and schedules within Lifestreams.

One last aspect of Lifestreams not represented in the Newton is the use of agents.
Currently Tcl/Tk has not been ported to the Newton, and doing so would require
signi�cant resources. Given this lack of support there is no clear path to supporting
agents directly on the Newton in the near future, although it is possible the proxy
could be extended to help with agent functions.

With substantial e�ort it is conceivable that Lifestreams could be integrated into the
Newton in a practically seamless fashion. Changes to the Newton based on Lifestreams
would also be interesting and would unify many of the disparate aspects of Newton
applications. For instance, there were criticisms when the Newton was �rst released

Chapter 4. The Interface 92

Figure 4.24: The Transfer dialog.

Figure 4.25: The Find dialog.

that no hierarchical method of data storage was available. Adding substreams would
probably be a more satisfying approach. The adoption of our
exible time scheme
would also be interesting, as the multistep process of going to the dates application
on the Newton would disappear. For those who prefer the native Newton calendar
interface, there is no reason this can not be used as an alternate view of a stream.

4.5 Summary

We have presented three Lifestreams clients running on platforms with di�erent capa-
bilities. The Newton client is a proof of concept. The X and CLI clients have been well
used, maintained and have played a valuable part in the incremental design and eval-
uation of the prototype. We will present our evaluation of the interface in Chapter 6;
however we brie
y point out directions for future work here.

As we stated in the beginning of this chapter we consider our interface design the
�rst of a series of Lifestreams interfaces. Future interface work must explore improving

Chapter 4. The Interface 93

the information density of the interface, handling large document collections (more
than 50,000 documents), a better method for managing substreams, and continue to
explore alternative methods for displaying streams.

Information density can possibly be improved in several ways. One method may
be to foreshorten the display of the stream so that less screen space is taken up (and
wasted) by the stream display. It would also be useful to allow the display of more
many substreams at once. A zooming interface (such as Pad++ [BH94]) could also
allow the user to zoom in and out or even
y over the stream.

We have also suggested (in Chapter 3) handling large collections of documents
through techniques similar to database cursors. Other techniques such as Shneider-
man's star�eld display [Shn92] use \sliders" to narrow a large number of documents
down to a few.

Substreams can most likely be improved by displaying them graphically rather than
storing them in a menu. Since users typically remove all but a few substreams, a least-
recently-used policy may be used to automatically remove substreams. In addition, a
method has been suggested that would place a \calling card" for each substream on
the stream so that they are can be found via find [CFFG96].

We will explore a few calendar-like methods of displaying a stream in the next chap-
ter. Future work should continue to explore alternative views of the stream including
stream access through non-conventional devices such as telephones and TV displays.

Chapter 5

Common Tasks

We now examine Lifestreams in the context of its use and describe how common user
tasks are accomplished within the prototype. Our intention here is to survey the
landscape of tasks mentioned in Chapter 1 and convey a sense of how they are accom-
plished using Lifestreams. In the next chapter we will take a more analytical look at
the prototype and present qualitative and quantitative data from its actual use.

We begin by �rst examining the common �ling and �nding practices of Lifestreams
users. We then examine more speci�c tasks including contact management, calendar
applications, and web bookmark management. We take most of our examples from the
practices of actual users; however in a few examples we will suggest how Lifestreams
could conceivably be used in other contexts (such as in the �nancial domain where ex-
pecting users to use a prototype system for their �nances was unreasonable). Along the
way we will also describe task automation and system extensions that were developed
via agents.

5.1 Finding and Filing Practices

Rather than using �lenames and folders, Lifestreams users rely on attribute and content-
based \substreaming" to accomplish the tasks of organization and retrieval (or \�ling
and �nding" as it is called in the desktop world). Users tend to organize information
within Lifestreams in three di�erent ways that all entail the use of find and substreams.

The most common use of the �nd operation is to create a temporary document
collection that can be browsed for a piece of relevant information. A good example of
this is searching for a document on a particular topic, for instance the \last draft of the
Lifestreams SIGMOD paper." Such queries are typically accomplished by performing
a find SIGMOD and Lifestreams that results in a substream with small number of
documents1. These substreams can be visually browsed for the intended document

1Our user testing showed that over half of the �nd operations resulted in substreams with less than
25 documents (see Chapter 6).

94

Chapter 5. Common Tasks 95

or, if the number of documents is large, further searched to locate the document (the
user may also make use of chronology to locate the document, even if the substream
is large).

In this way Lifestreams allows browsing and searching to be intertwined: the user
�lters his (possibly large) information collection down into a narrow context in which
to search for speci�c documents. From there the user may further narrow the search
again by using �nd (and so on). Work by Gopal et al [GKM95] have noted that these
two paradigms (browsing and searching) have been supported separately by previous
information systems and have argued that by allowing access to the two capabilities all
the time, users are given a more powerful tool for �nding information. Substreaming
supports this combined paradigm naturally: the user can browse his current stream
or substream, search, browse again, further re�ne his search (through incremental
substreams), browse again, back up, search again, and so on.

When users create substreams in this manner they typically destroy them after
they've located (and possibly cloned or xfer'd) the document. Our evaluation in the
next chapter will examine this topic further.

Another way users commonly use substreams is to maintain persistent collections
of documents. For instance if the above SIGMOD draft was developed over the long-
term, the user might allow the \SIGMOD and Lifestreams" substream to persist (rather
than immediately removing it) so that it continues to collect new documents as they
are added to the stream. This style of organization directly mirrors what Barreau and
Nardi [BN95] call \working" information | information that is typically relevant to
an ongoing project or task and is important to the user over a time period of weeks
or months (we will explore these classi�cations further in Chapter 7). In this case the
substream of \working" information for the SIGMOD paper might include drafts of
the paper as well as email exchanges between the author and editors. Barreau and
Nardi found that users often prefer to keep working information in an easily accessi-
ble \location." Here Lifestreams shows a bit of the
avor of a location-based system,
but with a few di�erences: First, information in persistent substreams still remains
accessible to other substreams. Likewise, at any time the \SIGMOD and Lifestreams"
substream can be further re�ned by creating an incremental substream (say by find

"comments or feedback"). Last, substreams automatically capture new information
as it is added to the stream (so the user doesn't have to explicitly �le new documents as
they are created). These same techniques can be used to maintain an ongoing thread
of conversation. We will further explore this topic in the next section.

The last style of organization, which is seldom used but needed in some circum-
stances, is the creation of explicit substreams. These substreams are similar to di-
rectories because the user decides what goes into each one. Users create them by
assigning a unique keyword2 to each document in the substream (such as the keyword

2This is current done explicitly as described in Chapter 4 but could be implemented through a
\stamping" or drag-and-drop mechanism.

Chapter 5. Common Tasks 96

mydissertation) and then creating a substream based on that keyword. This form
of substreaming can be used to mirror an entire �le system. For example, if we want
to place the directory /etc in a lifestream we can tag all of its �les with the keyword
/etc, and so on recursively for the entire directory structure. A �nd on "/etc" would
then retrieve the �les in that directory. At the same time the �les in /etc remain
available to be found by other �nd operations.

5.2 Electronic Mail

Electronic mail is the most prevalent application used by computer users and �lls
a variety of roles beyond information transfer between individuals [WS96]. Sending
and receiving electronic mail in Lifestreams is similar to what the user is already
accustomed to: to send a document the user creates a new document and uses the
transfer operation. Similarly, existing documents are easily forwarded to other users,
and documents can be cloned and replied to. Incoming email is automatically appended
to the stream.

While users normally handle \one-shot" communication on the main stream (e.g., a
new message arrives and the user reads it and possibly responds), persistent substreams
can be used to monitor an ongoing thread of conversation and switch back and forth
between multiple conversational threads. One of our local users maintains an ongoing
conversational thread with her external thesis reader by creating a substream with
the search query "to:suresh or from:suresh" (to and from are tags as described
in Chapter 3). This query uniquely captures all her mail to and from the reader. She
often uses this substream as the basis for �nding more speci�c messages from their
conversation (such as find semantics or find visit).

All mail messages (incoming and outgoing) are intermixed with other documents in
the main stream; however the user can easily create a mailbox by substreaming. In our
prototype all transferred documents are automatically tagged as email, so the mailbox
can be created through find type:email. By incrementally substreaming from the
mailbox substream the user can create conventional mailbox \folders." These folders
might contain all mail from a particular user (or group of people), all mail about a
particular topic area, or the mail a user has not responded to. Because these folders
are substreams they also act as �lters and continue to collect new mail as it arrives.

The user can also \remove" email from a substream (or the main stream) by �nding
"not type:email". This will create a substream containing all the documents that
are not email. This also has the e�ect of �ltering out incoming email3. When the
user no longer needs email to be disabled, he can remove the incrementally created
substream and return to the original substream.

3As the prototype is currently implemented the user can't �lter out incoming email without also
�ltering out old email messages that belong to a substream. With the addition of time quali�ers on
searches (e.g., not :email after 3pm) this shortcoming can be alleviated.

Chapter 5. Common Tasks 97

We have already mentioned how users can dial to the future and deposit documents
that act as reminders. A user can also send mail that will arrive in the future if he
\dials" to the future before sending a message. When the message is transferred it
will appear in the future of the recipient's stream and (like a reminder) only be visible
to the recipient when he dials to the future or when its creation time arrives. We use
this ability to send mail to the future to post reminders to others about important
meetings, department talks, etc.

Last, a user can summarize a substream of email with the default summarizer as
seen in Figure 5.1. Here the user has summarized all the email from a particular
user. For each email message in the substream the default summarizer strips o� its
header, displays the subject along with the creator of the message and then the �rst
n characters of the message (here n = 80). While there is nothing computationally
\clever" about the default summarizer, the overviews it generates can nevertheless be
useful. This version of the summarizer only creates a text version of the summary.
Future versions could work in more of a hypertext manner, allowing the user to click
on a summary, which would open the document within Lifestreams.

5.3 Contact Management

There are a number of contact managers on the market that store electronic business
cards, the date and time of contacts, and time spent on tasks for billing purposes.

Lifestreams supports two MIME document types that can be used for contact
management: a business card and a phone call document. The business card (shown
in Figure 5.2) is a document that contains the information you would expect: name,
title, company, address, phone numbers and email address. The phone call record stores
information about a particular phone call (as most contact managers do): time of call,
whom was called, phone number, and notes about the call (as seen in Figure 5.3). Note
that the user could also just type contact information into text documents.

To add a new business card or a phone call document, one clicks on the New button
and then changes the type of the document to businesscard or phonecall (via the
attribute dialog box as shown in Chapter 4). In the case of a businesscard, users may
xfer cards to each other (rather than having to enter each card into their lifestream).
For phone call records, the user often needs to refer to a business card to obtain a phone
number. This can be achieved by substreaming on the name of the callee, selecting
their phone number and creating a new phone call record, pasting in the information
required. Since this requires a few \mouse clicks" we have automated much of the task
of creating a phone call record with a personal agent. This agent is included with our
standard Lifestreams system and is located in the \automated tasks" menu. When the
user wants to make a call they choose \Make Phonecall" from the menu and the agent
is spawned and displays the dialog box in Figure 5.4. While the agent was created
by an advanced user, the agent code size is roughly 150 lines, only 20 of which are

Chapter 5. Common Tasks 98

DOCUMENT SUMMARY

evaluation chapter <Benjamin B. Bederson>

Hi Eric, Good news. I read your chapter, and have no comments. I

am happy with the new version. I think the info from your logging

was really useful in supporting the results of QUIS, and I will

insist on logging for future

Re: WIRED/evaluation <Benjamin B. Bederson>

I got the new chapter, and will try and read it this week. I was

actually pretty happy with the CyberTimes article. Considering how

bad reporters usually do, I felt that he actually had some idea

about why Pad++ and Lifestreams are interesting. And, I thought

his criticisms were

Re: Thesis comments <Benjamin B. Bederson>

I would be happy to come, but unfortunately, I have just been

traveling (and missed too many classes) this semester. Go ahead

and hold the defense whenever is convenient, and I'll plan on

coming for a visit either over x-mas break or early during the

Spring semester. Will you still be around?

Thesis comments <Benjamin B. Bederson>

Eric, Well, I finally managed to make time to read your thesis. I

apologize for the delay and hope my comments can still help you.

It might be a good idea to show these comments to David - but I

couldn't find his email

Re: Questionnaire <Benjamin B. Bederson>

All sounds good. I don't think having short-term users will give

you much useful data. My recent experience with testing Pad++ was

that Pad++ novices didn't do that well, even after a specific

training period. It seems that it really takes people a while to

learn new systems - not too surprising...

dissertation <Benjamin B. Bederson>

I, unfortunately, am behind. I read the first two chapters and was

very happy with your organization, and motivation. I have some

small comments, but I was going to wait and collect them. I'll try

to read through the rest by early next week. We got the CHI papers

out, but now I have an ONR proposal due on Monday...

.

.

.

Figure 5.1: A Summary of Email.

Chapter 5. Common Tasks 99

Figure 5.2: A Businesscard Document.

Figure 5.3: A Phonecall Document.

Chapter 5. Common Tasks 100

Figure 5.4: The Phone Call Personal Agent.

Lifestreams-speci�c code.
Once the dialog box appears, the user types in the name of the callee. The agent

then searches the current stream for a business card with that name and, if found,
creates a new document (with a MIME type of a phone-call record) and �lls in the
appropriate entries (Figure 5.3). This functionality is similar to the use of the personal
assistant on the Newton platform. In the event that several records are found the user
is given a choice. Note that there is an advantage to the chronological order in this case
| as people update their business cards we can always get their most recent card by
its position in the stream (the most recent appears closest to the head of the stream).

Substreaming can be useful in other ways in this context. For instance a user can
browse though his \rolodex" by substreaming on find type:businesscard. Or he can
re�ne his rolodex by incrementally substreaming to look at, for example, all contacts
from "find ibm". The user can do the same with his phone calls, looking at a list of
all phone calls or selective phone calls.

The user can also summarize phone calls into a summary (shown in Figure 5.5).
Phone call information could also be used to generate billing information for consul-
tants (although we haven't yet developed a summarizer to do this). While a business
card summarizer doesn't exist, an electronic rolodex would be a suitable form for the
summary.

Lifestreams could also be extended to subsume the functionality of a time manager.
Time managers generally track the billable hours a professional spends on one or more
projects. In Lifestreams this is easily accomplished by creating a timecard that marks
the starting and ending time of each task (these timecards are just thrown onto the
stream as they are used). Then, before each billing period, the stream is summarized
by the timecards, resulting in a detailed billing statement for each contract.

Chapter 5. Common Tasks 101

WHO ON AT ABOUT

Ward Mullins Thu Oct 31 11:50 EDT 1996 415 224-1912 Tcl/Java discussion

Scott Fertig Wed Oct 30 12:05 EDT 1996 432-6433 Beth's Birthday

Susanne Hupfer Mon Oct 28 10:06 EDT 1996 203-433-1211 Java Book/Class

Lorraine Tue Sep 17 1:00 EDT 1996 488-1234 Crown Tower Deposit

Susanne Hupfer Mon Sep 02 14:23 EDT 1996 203-433-1211 Cat

.

.

.

Figure 5.5: A Summary of Phone Calls.

5.4 Managing Bookmarks

Many commercial tools have been created to help users manage web bookmarks. In our
local research group we have found it di�cult to keep track of our own web bookmarks
and inconvenient to pass interesting bookmarks to one another.

In Lifestreams we have developed a system similar to \warm lists" [KM95], whereby
a daemon watches the user's bookmark �le, and each time a new bookmark is added
the same bookmark is added to Lifestreams as a new \URL document." This URL
document contains two pieces of information: the URL needed to connect to the remote
site and the text of the page at the remote site. When a URL document is opened
in Lifestreams the web browser comes to the foreground and displays the page by
connecting to the URL.

Displaying a bookmarks list in Lifestreams is accomplished by substreaming on
documents of type URL. In this way we can use Lifestreams to create a bookmark
substream while at the same time making the data in the bookmarks readily available
to any other searches we might make on our stream. This has an advantage over
web browser bookmarks in that we can search over the text of each web page in our
Lifestreams bookmarks (although this functionality has recently become available in
commercial bookmark management applications). Moreover the bookmark substream
itself can be incrementally searched for various types of bookmarks.

Passing URLs around to other users is also improved. Before Lifestreams, we
usually traded URLs by copying an URL from a web browser to an email message,
which the recipient would copy from email back to their own browser and add as a
bookmark. With Lifestreams, passing URLs around is trivial. We xfer the URL
document to another user's stream (a one-step process) and the URL is automatically
included in their bookmarks substream.

We can recreate a bookmark \web page" by summarizing the bookmarks substream

Chapter 5. Common Tasks 102

(or any substream incrementally created from it) as shown in Figure 5.6. For each URL
document in the substream the summary contains its title as a hyperlink (the user can
click on the link and be connected to the page) as well as a description of the page
that is created by parsing the content of the page's HTML and displaying the �rst 80
characters.

5.5 Calendar Applications

Lifestreams provides a natural data structure for the construction of many todo lists,
calendar and scheduling applications. In the course of this dissertation we have only
scratched the surface of such use, but our work suggests future directions.

Users of the current system have devised several ways of managing todo list items
and calendaring,4 some of which involve extensions to the system via summarizers. We
begin with the simplest methods of managing todo lists. In all cases the users typically
store one todo item per document. In the simplest case the user adds todo items to the
stream on the date of its deadline. The user can then travel to the future and examine
the list. If the user is using plain text �les for todo items, then the word \todo" can
be added to the text if the user wants to substream while in the future to retrieve only
todo items (as opposed to scheduling information). When the deadline of the item
arrives the user is alerted and can deal with the task immediately or clone it \back to
the future" to put the task o� (several users have requested a more automated way to
\put o�" todo items).

The user can also summarize todo lists. While the default summarizer would do,
the author and another user worked together to create a summarizer for the future that
represents the future of the substream as a weekly or daily planner. The summarizer
decides which of the two is appropriate by the amount of time the user has traveled into
the future | if the user travels one day into the future then a day planner is displayed
(Figure 5.7), otherwise a week planner is displayed (Figure 5.8). Future work could
also include longer-term views such as weeks and months.

Another clever (if less elegant) method is to tag todo documents as they are created
or arrive from other users via xfer (or external email). For instance, one user tags todo
list documents with the explicit keyword todo. When the tasks are completed she then
tags then with the explicit keyword done. When she wants to examine her todo list she
creates a substream by "find todo and not done". While this method has some of
the
avor of a location-based system, it nevertheless maintains advantages over those
systems (e.g., these documents remain accessible by other searches, etc.).

Andrew Larratt-Smith, a Yale undergraduate, developed a complete calendar inter-
face (not as a summarizer but as an alternative interface) to Lifestreams for his senior
project [LS96]. The calendar is fully integrated into the X Windows interface and the

4These methods seem to be indicative of cognitive styles of using the system. We leave such analysis
for others to explore.

Chapter 5. Common Tasks 103

Figure 5.6: A Summary of Bookmarks.

Chapter 5. Common Tasks 104

Figure 5.7: Day at a Glance Summarizer.

user can switch between the two using the Display menu. His interface is shown in
Figure 5.9.

This interface is particularly useful when viewing the future portion of the stream
allowing appointments, reminders and scheduling items on the stream to be displayed
in a format that is familiar to users. Note that the interface, despite its departure from
the stream view, still contains the Lifestreams \dashboard," that is, all the Lifestreams
operations. The interface also provides some novel features. The user can select a day,
click the new button , and create a document in the future by specifying a time. The
user can also select a day in the past or future, double click and he is returned to the
stream view focused on the appropriate time within the stream.

We have already discussed in the previous section on electronic mail how com-
munication and future documents can be used to allow reminding of others. These
techniques can be combined with personal and document agents to implement a num-
ber of groupware applications on top of Lifestreams. As a demonstration we provide
one application here: a meeting maker.

To use the meeting maker the user �rst selects Schedule a meeting from the
automated tasks menu. This spawns a personal agent that prompts the user for the
names of the attendees (Figure 5.10). After entering the names the user is then provided
with an overview of the week (Figure 5.115) with con
icting meeting slots already
blocked out. These dates are determined by examining the streams of all the attendees.

Once the user selects a meeting time a document is sent to each potential attendee.
This document includes a document agent. When the user reads the message, the

5The interface code was originally written by Susanne Hupfer as a Turingware meeting maker
[Hup96] and modi�ed to work for Lifestreams.

Chapter 5. Common Tasks 105

Figure 5.8: Week at a Glance Summarizer.

Chapter 5. Common Tasks 106

Figure 5.9: The X Windows Calendar Interface.

Chapter 5. Common Tasks 107

Figure 5.10: Meeting Maker Requesting Recipients.

Figure 5.11: Meeting Maker Scheduler.

agent asks the user if he can attend or not (Figure 5.12) and a message is returned to
the initiator's stream.

The personal agent on the initiator's stream waits in the background until all re-
sponses are collected. If all users okay the meeting then a future document is placed
in each attendee's stream. Otherwise, a document is placed on the initiator's stream
to indicate the scheduling failed.

While there are many obvious enhancements we could make (automated retries of
failed meetings, �ner granularity of meeting times, etc.), we o�er the meeting maker
as an example of a straightforward extension of the system that automates a process
for the users and makes use of the time-ordered nature of the stream.

5.6 Personal Finances

We have just begun to explore using Lifestreams to manage personal �nances. While
we have experimented with using Lifestreams to track stock portfolios, providing other
�nancial services within Lifestreams would require us to simulate electronic banking
or to work closely with an existing service | both of which are beyond our current
resources. We will, however, suggest the ways Lifestreams can be used in personal

Chapter 5. Common Tasks 108

Figure 5.12: Meeting Maker Document Agent.

�nance.
Millions of typical users already track their checking accounts, savings, investments,

and budgets on their computers with applications such as Quicken. The types of
records and documents used in applications such as Quicken | electronic checks, de-
posits, securities transactions, reports | can be conveniently stored and generated by
Lifestreams. A user could easily migrate his checking account to Lifestreams so that
each check written creates a record on his stream. Some of these checks would be
electronic checks sent to companies with an online presence; others transcribed from
written checks (just as many people already do with Quicken). A substream would
recall all electronic transactions, all checks, or all bills. The user could then employ a
summarizer to help balance his checkbook. At year's end summarizers could be used to
help a user prepare his taxes (which could then be shipped electronically to the IRS).

Lifestreams could also help with budgeting, tracking expenditures, etc. Of course,
many of these capabilities are already available in products like Quicken; but it is
worth pointing out that Lifestreams contains everything a person deals with in his
electronic life. Rather than storing �nancial records in a monolithic �le, each could be
stored separately in Lifestreams and made use of by many possible applications (e.g.,
summarizers, agents, etc.)

For managing portfolios many services that forward daily closing values of securities
via electronic mail already exist. The body of an email message from one such service
is shown below (from Net Pro�t, Inc.):

DJIA: DOWN 5.55 to 5674.28 NYSE: DOWN 1.06 to 352.81

S&P500: DOWN 2.26 to 660.23 AMEX: DOWN 0.38 to 548.59

RUS2000: UP 0.33 to 324.74 NASDAQ: DOWN 4.39 to 1120.53

Shares Today's Today's Total Total

Symbol Owned Close Change Value Change

-------- ---------- ---------- --------- ------------- ----------

Chapter 5. Common Tasks 109

Figure 5.13: A Summary of Stock Performance.

GVIL 350.000 7.000 -0.125 2,450.00 -43.75

ODWA 400.000 18.750 -0.500 7,500.00 -200.00

SPLS 112.500 17.250 -0.125 1,940.62 -14.06

TSA 100.000 19.000 0.125 1,900.00 12.50

TSSW 600.000 3.000 0.000 1,800.00 0.00

------------- ----------

15,590.62 -245.31

Users can easily access all such records in their lifestreams via substreaming (in
this case "find from:netprofit" uniquely captures the stream). The user can then
browse over each day's records. To view the historical performance over time the user
can make use of summarize as shown in Figure 5.13. This summarizer collects the
history of the portfolio over time and provides a chart showing performance.

5.7 Summary

The domain-speci�c examples we have examined in this section illustrate the unifying
e�ect that Lifestreams has over data and applications. In Lifestreams the same opera-

Chapter 5. Common Tasks 110

tion that creates a generic document (new) also creates an email message, a reminder,
a business card and (indirectly) a web bookmark. Likewise, the same operation that
creates a \working directory" also creates an electronic mailbox, a \hotlist", and a
contact list. Browsing a \directory" in search of a �le, a mail box in search of a mail
message, a contact list in search of a contact, and an appointment schedule in search of
an appointment are all the same operation. Moreover, if you know how to use find to
locate a document, you also know how to set up an \agent" to �lter your email (via a
persistent substream). In every case, summarize gives you a synopsis | a summary of
�les, a summary of bookmarks, a list of contacts, a summary of mail, or your schedule
at a glance.

Chapter 6

Evaluation

Thus far we have motivated Lifestreams, presented a model for the system, described an
instantiation of the model (the research prototype), and looked at the prototype in the
context of common user tasks. In this chapter we evaluate the research prototype; our
goal in doing so is to support the thesis, to support or disprove any intuition we have
about the model, to shed light on the strengths and weaknesses of the current model
and system, and to drive the development of next generation Lifestreams systems.

6.1 Scope and Methodology

The creation of experimental computer systems is an incremental pursuit. While the
goal is to provide novel tools that improve the utility of the computer, the resulting
system is often the result of incrementally building prototypes, each based on what was
learned in the previous generation. Early computer systems were designed and used by
technical people. Today's systems have to be functional over a wide range of users (or
at least Lifestreams aims to be so). Shneiderman has claimed that the programmer's
intuition is no longer good enough, systems have to be validated through prototype,
usability and acceptance testing [Shn92].

In this dissertation we describe the �rst steps toward this evaluation. Our study of
Lifestreams is based on over 24 months of user feedback from six users (seven, including
the author). In the process three generations of user interfaces were incrementally built
and numerous changes were made to the semantics of the underlying system.

We are interested in evaluating two key aspects of the system: usability and utility.
Usability addresses the question \was the user interface (and in our case also the
\metaphor") acceptable to the user?" This acceptability can be evaluated by measuring
several aspects of the interface [Nie93]: How easy is it to learn? How easy is it to use?
Is it subjectively pleasing to the user? Utility is a measure of the overall e�ciency
and e�ectiveness of the system. While usability is typically a subjective measure and
utility a quantitative one, we will see that the two can be used together to obtain more

111

Chapter 6. Evaluation 112

meaningful analysis than using either measure alone.
In general, our e�orts can be described as a small-scale �eld study (involving no

control) with subjects who have used the system extensively. To this study we apply
the best available techniques for evaluating user satisfaction, and the usability and
utility of the system. To measure user satisfaction we rely on the Questionnaire for
User Satisfaction (QUIS), a standardized usability testing tool available for licensed
use from the University of Maryland. The QUIS tool was developed by Shneiderman
and Norman [Shn92] at the University of Maryland and attempts to capture the overall
subjective satisfaction with an electronic system. Subjective satisfaction is important
in that it is a crucial measure of an electronic system [HN93] | although a system
may be evaluated favorably on performance measures, it may not be used because of
user dissatisfaction. Using a standardized tool avoids many of the problems of self-
developed questionnaires (question bias, variability, reliability). QUIS is currently the
most thoroughly developed testing tool available, having been widely used in industry
and academia, and experimentally shown to have high reliability and low variability
when measuring subjective satisfaction [CDN88]. Beyond measuring user satisfaction,
QUIS can also be used to diagnose the strengths and weaknesses of a system and to
assess potential areas for system improvement (as we shall see) [Nor90].

Our second tool for evaluation is the use of program instrumentation to collect data
on the utility of the Lifestreams system. We do so using conventional, well-established
techniques for monitoring system usage [Per96]: keeping a time-stamped sequence of
user commands along with any important system variables (such as the keywords used
in a search query) in a log �le. The log �le can then be used to determine which parts
of the system were used and not used (unused features often turn out to be hard to
use or not useful), to examine di�ering usage patterns between users and to provide
data on system speed and accuracy.

We supplement both of these measures with a user survey consisting of speci�c
questions about various aspects of the Lifestreams. While data from QUIS and instru-
mentation logs can provide speci�c measures, in many cases they don't provide enough
speci�c information to determine why users responded as they did or how a utility
measure might have a�ected the user's experience with the prototype. For example,
we can determine the success rate of substreaming from the instrumentation data but
we have no way of knowing how that rate a�ects the user. Without the users feedback
we might �nd it hard to determine if a speci�c success rate (say 90%) was either accept-
able or frustrating to the user. We also use this survey to gain additional acceptability
data from the user. For example, we would like to know not only the overall satisfac-
tion (on which QUIS provides data) but also the user's reaction to speci�c aspects of
Lifestreams, such as chronology and on-demand organization.

Finally, we also make limited use of the feedback from one additional source: \ob-
servers" of the system. Over the course of the prototype development observers read
papers about the system (that included pictures of the interface), viewed an ACM
video that includes a demonstration of Lifestreams, and saw live demonstrations. Life-

Chapter 6. Evaluation 113

streams was �rst demonstrated to roughly 20 individuals at MIT in the fall of 1995.
Since then over two dozen people have viewed in-depth demonstrations of Lifestreams
at Yale mostly in a one-on-one setting. These people have come from many di�erent
disciplines: writers, entrepreneurs and computer scientists.

In summary, we will use data from three speci�c tools to evaluate Lifestreams:
QUIS, prototype instrumentation and a user response survey. Each tool provides a
piece of the complete evaluation; QUIS provides a reliable and repeatable measure of
subjective user satisfaction but o�ers little information about why the user was satis�ed
(or not). The quantitative data from instrumentation provides us with a sense of how
subjects actually used Lifestreams and data on the success rate of certain operations
(substreaming) but does not tell us if these rates were acceptable to users. Last,
the user response survey brings the two measures together by gathering more speci�c
information about the subject's reactions to the features, operations and functionality
of Lifestreams.

We now lay out the speci�cs of our study by describing our subjects and the pro-
cedures used to introduce them to the system and collect data. We then begin our
evaluation by using QUIS and the user survey to examine the users' subjective reac-
tions along several variables: the overall system, the \metaphor," its learning curve
and the interface. Next, we examine the users' subjective reactions to the system's
performance and capabilities (again through QUIS) and then move on to analyze the
instrumentation data, bringing in responses from the survey as needed.

Before moving on we wish to point out that, in general, the small subject size of our
study prohibits us from showing any type of \statistical signi�cance" but we believe
our methods provide more general utility than a larger study of more narrow scope.
Nevertheless, our work is limited and further analysis work remains.

6.2 Subjects

A total of six users participated in our study (seven including the author). This
group consisted of two Yale undergraduate students, two Yale computer science grad-
uate students, and two Yale sta� members. The sta� member's jobs were of a cleri-
cal/administrative nature. Two of the group members were female and four were male
(mean age = 34.3 years). Each member of the group used Lifestreams for a minimum
of one month (mean time = 8.2 months). Three of the users reported that they used
the system ten or more hours a week, two of the users reported they used the system
between four and ten hours a week and one user between one and four hours a week.
The two graduate students had advanced computer skills, the two undergraduates had
intermediate skills and the two sta� members were novice users.

Chapter 6. Evaluation 114

6.3 Procedure

6.3.1 Introduction and Training

Subjects were provided with the Lifestreams X Windows client running on their work-
station. For each user we \bootstrapped" their lifestream with old mail spools, the
�les in their directories and their web bookmarks (each subject was asked what spe-
ci�c mail messages, �les and bookmarks they wanted to put on their lifestream). Each
client included personal agents (reminder, freeze all, mark all read, phone call) and
summary types (default, bookmarks, LATEX, future). Subjects were shown the basics
of using the system (�ve to ten minutes of demonstration) and then left to explore it
on their own (although subjects were allowed to ask for help at any time). No subjects
(including the two sta� members) were given \out-of-band" time to use and explore
Lifestreams; rather they were asked to try to incorporate it into their daily activities.

6.3.2 Evaluation

In October of 1996 the subjects were given a questionnaire containing two parts: a set
of questions from the QUIS usability testing tool and the Lifestreams-speci�c survey.

The QUIS questionnaire contains a demographic set of questions (age, sex, etc.) and
a set of questions that measure overall system satisfaction. Each question measures the
users' overall satisfaction on a 9-point scale (1 to 9)1 that is anchored at the endpoints
with \semantic di�erentials" (di�cult versus easy, terrible versus wonderful, never
versus always). One is always the bad score and nine the good score. An example
question is

6.1 Learning to operate the system was

difficult easy

1 2 3 4 5 6 7 8 9 NA

Questions are grouped into categories, such as overall reaction, learning, and system
performance. The standard questionnaire contains 32 questions and administrators are
encouraged to tailor the questions to their needs (by possibly removing questions that
are not relevant). Our questionnaire contains 22 questions from four categories.

Attached to the questionnaire the users were given a survey with 24 questions to be
answered in essay form. Our intention was to gather more speci�c information about
their reactions to various aspects of Lifestreams. The questionnaire and survey can be
found in Appendix B.

For a thirty day period we also collected data from four users by instrumenting
the Lifestreams client to log system use. This data was collected near the end of

1A 1-10 scale introduces a bias when the questionnaire is administered electronically as typing \10"
requires two keystrokes. Likewise, zero is not used because it is used to encode N/A in the electronic
version.

Chapter 6. Evaluation 115

Overall User Reaction to System

Question Average Score

(terrible/wonderful) 8.5

(frustrating/satisfying) 8.3

(dull/stimulating) 8

(di�cult/easy) 8.5

(inadequate/powerful) 7.5

(rigid/
exible) 7.8

Table 6.1: Subjects' overall reactions to Lifestreams.

the dissertation work (between September and October 1996) when the system was
mature and most reliability problems had been addressed. The subject group for
these tests consisted of the two clerical workers and two graduate students2. The
two undergraduate students were no longer available for testing. Each operation the
subjects performed was recorded to a log �le. Logging was performed in a noninvasive
way and was invisible to the user. Users were told that their operations were being
logged but assured that they were not being \tested."

6.4 Overall Subjective Reaction

QUIS contains an initial set of six questions that attempt to measure the overall sub-
jective reaction of users to a computer system. When answering these questions (Ta-
ble 6.1) subjects reported a high overall subjective reaction to Lifestreams (the mean
score was 8.1 out of 9 over all six questions). Average scores were very positive on
the ratings of easy, satisfying and stimulating, while only slightly lower on power and

exibility (we will discuss user comments on power and
exibility in more detail later
in this chapter).

These �ndings are consistent with the reactions reported by users on the survey (as
characterized by this response):

The concept (of Lifestreams) appealed to me immediately on two levels.
First, because I know myself that I naturally order and recall events in
my life according to time cues, that \memories" become less important to
my daily activities the further in the past they recede (yet retain punch
and applicability at discrete moments when recalled because of similarity to

2One of the two graduate students left the study before the logging period. The author's logging
data was used in its place.

Chapter 6. Evaluation 116

current events), and that I �nd it so incredibly annoying not to be able to
recall something that might be applicable because the \index" to that memory
has been lost, or that a relevant document is no longer available because it
has been thrown away (just weeks before to remove \clutter" or save space).

These �ndings are also consistent with the reactions of observers (although we
can only \measure" the satisfaction of actual users) during the course of developing
the prototype. Observers typically had a strong reaction when viewing an in-depth
demonstration. It was also common for observers to send mail of the following nature
(in this case after seeing a demonstration the day before):

...the time I now spend on this system of mine has really changed. I hate
hunting through this \Tree". It is cumbersome at best and annoying at least.
I have seen a better way. I didn't realize how much time I spend searching
for documents.

Even without a demonstration most people reacted enthusiastically to the concept
after reading a description or viewing a video. The following email comment from an
observer characterizes these responses:

I have so much stu� coming in my \InBox" daily, whether it's incoming
e-mail, snailmail, phone messages, articles, or what-have-you; that there's
not really time to organize it all. Rather, as you quite convincingly point
out, I'd rather just STORE it all (since storage is cheap!) and access only
what I want when I want to access it.

Beyond the QUIS questions we were also interested in how people reacted to the
novel aspects of Lifestreams | did chronology make sense as method of storing data?
did they understand the \stream metaphor?" how did the system compare to their
previous environments? | and we asked many questions in the survey to determine
their reactions.

6.4.1 Reaction to chronology

Most users and observers immediately \got" the idea of the chronological storage sys-
tem. We found that at least one user was comfortable with the chronology-based
storage because he commented that the \way I �le everything in Unix is on the top
level." This combined with listing a directory by time (e.g., ls -t) gave him something
similar to Lifestreams storage.

Users also easily understood the \working" versus \archival" aspects of the stream:

The majority of my job is made up of constant little emergency items. This
depends not only on current messages, but issues that may have come up
as far back as when we came to this building (building repairs, furniture,
etc.) Up until now I've only had paper to depend on.

Chapter 6. Evaluation 117

Other comments from users about the time-based storage were less insightful but en-
couraging. One user simply responded \so far [chronology] has been great for me."
Only one user found the concept of time-based storage strange at �rst but responded
on the questionnaire that it was \hard to believe [chronology] is as easy to get used to
as it is."

Asked about the use of chronology as a storage scheme, users commented that
\chronology should de�nitely be the default." Another user commented that she would
like to be able to order documents by creator and type, however she would not \prefer it
over chronology but rather as an alternative view" (underline in original response). An-
other user suggested that Lifestreams have buttons that would let her \switch schemes
as you would a stove (broil, bake, preheat)."

Users also appeared to easily understand the use of the future portion of the stream.
One of the clerical workers was able to extrapolate and suggest its use within her
workgroup:

...my area, the Business O�ce, ... would greatly appreciate the \future"
email messages to themselves and others for countless deadlines that they
now must use calendars and daytimers for.

6.4.2 Understanding the \metaphor"

Five of the six subjects said that the \metaphor" made sense to them (the sixth wrote
that he didn't understand the question). Subjects were also asked if any aspect of
Lifestreams was confusing to them. Four subjects answered no. The �fth subject re-
ported that the only confusing thing (\at �rst glance") was the lack of directories. The
remaining subject reported that he found the distinction between frozen and unfrozen
documents confusing. This comment deserves future study as it may be that novice
users are not used to thinking of computer data as read-only or writable.

6.4.3 How does it compare to other systems/metaphors?

When asked in the survey to compare Lifestreams to their previous \computing envi-
ronments" users had a variety of comments:

Easy to use and intuitive

Easy to get (an) overview feel of information

The structure is dynamic and
uid | the data, not just the �lename, is on
the screen

Easy to �nd documents of di�erent types

Searching! It's great to be able to search over everything in my stream.

Chapter 6. Evaluation 118

Question Average Score

Learning to operate the system (di�cult/easy) 8.8

Getting started (di�cult/easy) 8.8

Learning advanced features (di�cult/easy) 8.2

Time to learn to use the system (slow/fast) 9

Table 6.2: Subjects' reactions to learning in Lifestreams.

In a related question, subjects were asked how Lifestreams might have changed the
way they think about using a computer or about managing information. Responses
included \a di�erent and easier way to �le", \it made me think of information in terms
of time rather than locations, as a
ow rather than distinct slots", \�les chronologically
close in time are more likely to be related; easy to gain a historical perspective on any
topic", \absolutely, (I) think, work with, and �nd my documents (i.e. content) without
regard to creating application or storage location", \I used to be very concerned with
storing/managing/trying to remember."

6.5 Learning

Learning received the highest user satisfaction rating of all the QUIS questionnaire
categories | with a mean score of 8.7 out of 9 over all four questions (Table 6.2).
Subjects responded with an average score of 8.8, 8.8 and 9 respectively on questions
of learning to operate the system (di�cult/easy), getting started (slow/fast) and the
amount of time it takes to learn the system (slow/fast). The written response of one
user is a good example of a user's subjective reaction to the Lifestreams' learning:

The time at which I started using Lifestreams was at the beginning of the
semester, my busiest time ... All this considered, I was still bowled over by
all of the ways it could, and did, make my job easier in a very short period
of time. (underline from original response)

The QUIS question on learning advanced features received the lowest score in the
group (an 8.2). This is consistent with questions that were asked by users over the
course of the study. Most of these involved how to clone or transfer future documents
or the speci�cs of how summarize worked. Many of these problems could probably
have been avoided if we'd set aside time for a training session rather than setting the
user up, explaining the basics and letting them explore on their own.

Chapter 6. Evaluation 119

Question Average Score

Were the screen layouts helpful? (never/always) 8.3

Amount of info that can be displayed on screen? (inadequate/adequate) 7.2

Arrangement of information on screen? (illogical/logical) 8.3

Table 6.3: Subjects' reactions to screen layout and design.

6.6 Interface Layout and Design

All six subjects responded positively in the survey that they quickly understood the
receding stream interface. In QUIS the subjects responded with an mean score of
8.3 on the usefulness of the screen layout and the arrangement of information on the
screen. On the survey subjects responded that the stream was an \obvious" aspect of
the system.

In QUIS subjects responded with a slightly lower score on the interface's infor-
mation density and this was re
ected by some responses in the survey. One student
commented that the information density of the display was \low" and that a way of
displaying more of each �le's contents would improve the interface. However, another
user thought that the \concept behind the screen layouts ... were excellent and made
great use of the screen." We tend to agree with the �rst student and believe the data
density of the interface can be improved.

Initially novice users did have one problem that was corrected before the testing
period | while the window manager capabilities of our client were useful for advanced
users they proved confusing for novice users. These users had trouble understanding
the model of external applications handling the editing of their documents that would
then be written back to the Lifestreams system. We believe this is because they did not
have a good mental model of the process. Novice users also disliked the multiple mouse
clicks needed to send mail messages or reply to existing messages (e.g., New-Edit-Save-
Xfer or Clone-Edit-Save-Xfer). Rather than teaching these users this \mental model"
we chose to make the system easier to use by supplying an editing window for text
documents that opens within the Lifestreams client rather than within the window
system (documents with other content-types still opened within helper applications).
Since the editor stays anchored in the client window, the novice user does not have the
problem of \losing" an editor window. This editing window is annotated with common
operations such as Reply. The e�ect of clicking on Reply is that the client automates
the task of cloning the document and transferring it. Novice users found these changes
satisfactory and advanced users liked the convenience of the mail-related automation.
In any case, both sets of users still had the underlying hypertools model for media
types other than text and this seemed to create a happy medium.

Chapter 6. Evaluation 120

6.7 System Capabilities and Performance

Nine of the QUIS questions addressed the capabilities and performance of the proto-
type. In addition we logged and recorded twenty variables of the system's use and
performance. Looking at the responses to the QUIS questions in Figure 6.4, we see
a range of answers from 6.6 to 8.6. High scores were given to the question about the
ability of novice users to accomplish tasks (one of the main goals of this work) and
to the dependability of the system operations (8.3). Slightly lower scores were given
to the system's speed (7.8), the response time of operations (7.3) and the reliability
of the system (7.4). While these are still highly positive numbers, it is important to
point out that two of the prototype users (the undergraduates) used the system before
the summer of 1996, before a number of performance improvements and bug �xes were
made. If we only consider the scores of the other four users the average scores over
these questions (speed, response time, reliability) are 9, 9 and 7 respectively. So while
we improved response time and system speed, we still had reliability problems. We
believe most of these problems are with the Solaris version of Lifestreams. When ex-
amining the data of the only subject who used the Solaris version we �nd that he gave
the question a score of 5. Given that all other users (including the developer) were
on a SunOS version of the system it is possible that the Solaris system received less
attention when it came to removing bugs and glitches caused by Solaris. This problem
shows up again in the QUIS question pertaining to system failures, which received the
lowest score (6.6) in the entire questionnaire. Here the Solaris user reported a score of
4. The average score of the remaining users was 8.5.

Finally the questionnaire asks users about suitability of the prototype for expe-
rienced users. When asked if the prototype addressed the needs of both novice and
experienced users the subjects responded with a mean score of 7.6. Given that the
previous question about novice use received a high score we will attribute most of the
de�ciencies here to the needs of experienced users. When asked if experts could use
features or shortcuts the subjects responded with a score of 7. On this point several
users responded with written comments:

[A] command key would be helpful in avoiding redundant steps, e.g., Ctrl-N
for new...

A few more shortcuts could be added using command keys.

So while the needs of novice users were accounted for, improvements can be made to
address the needs of advanced users.

6.7.1 Overview of System Use

During the logging period a total of 5558 Lifestreams operations were performed by
four users. In Table 6.5 we present each operation along with the number of times it

Chapter 6. Evaluation 121

Question Average Score

System speed (too slow/fast enough) 7.8

Response time for most operations (too slow/fast enough) 7.3

Rate information is displayed (too slow/fast enough) 8.3

How reliable is the system? (unreliable/reliable) 7.4

Operations are (undependable/dependable) 8.3

System failures occur (frequently/seldom) 6.6

Novices can accomplish tasks (with di�culty/easily) 8.6

Are the needs of both experienced
and inexperienced users taken into consideration? (never/always) 7.6

Experts can use features/shortcuts (with di�culty/easily) 7

Table 6.4: Subjects' reactions to system capabilities.

was used and the percentage of its use. These numbers are provided for each user and
for the group as a whole; here we include not only the primitive operations, but also
document reads3, \time travel" operations (going to the future, past or returning to the
present), substream operations (accessing existing substreams, removing substreams),
and also freeze and print operations.

As one might expect, reading/editing was the most common operation accounting
for 40% of all operations (because writes were not logged there is no way to distinguish
between read and edit operations). Document creation was the next most popular
operation occurring over 21% of the time. Of the 21%, new accounted for nearly 13%
and clone for 8%. The transfer operation occurred nearly 20% of the time. This was
also to be expected given the amount of time the average users spend handling email |
with 1084 transfers and 1159 document creations, many of the documents created were
eventually sent to another user (although \incoming" documents are often forwarded
through transfer without a corresponding creation operation). Operations used to
manage substreams accounted for 7.8% of the user's operations | these operations
occurred when subjects used the substream menus to recall an existing substream,
remove a substream, or return to the main stream from a substream. Time travel
operations accounted for nearly 5% of the user operations; the �nd operation occurred
slightly less often at 3.7%. When we consider the substream and �nd operations
together we obtain a measure of how often users \managed" information (by relying
on organizational structures they had already created or in creating new structures)
they account for 11.5% of the total operations. Summarize operations made up 1.4%
of the total. Of the summaries performed 57% were future summaries, 33% were

3A count was not logged for the write operation.

Chapter 6. Evaluation 122

G1 G2 C1 C2 Total

Read/Edit 757 (39.8%) 980 (37.4%) 358 (49.5%) 156 (50.5%) 2251 (40.5%)

Xfer 367 (19.3%) 561 (21.4%) 95 (13.1%) 61 (19.7%) 1084 (19.5%)

New 220 (11.6%) 338 (12.9%) 104 (14.4%) 44 (14.2%) 706 (12.7%)

Clone 178 (9.3%) 244 (9.3%) 19 (2.6%) 12 (3.9%) 453 (8.2%)

Substreaming 238 (12.5%) 285 (10.9%) 95 (12.9%) 22 (7.2%) 638 (11.5%)

Time 85 (4.5%) 146 (5.6%) 32 (4.4%) 3 (1.0%) 266 (4.8%)

Summarize 32 (1.7%) 31 (1.2%) 7 (1.0%) 10 (3.2%) 80 (1.4%)

Misc 27 (1.5%) 37 (1.4%) 15 (2.1%) 1 (0.3%) 80 (1.4%)

Total Ops 1904 2622 723 309 5558

Table 6.5: Use of Lifestreams operations.

LaTeX summaries and 10% were bookmark summaries. The use of summarize is a
little lower, but not really surprising given the small number of useful summarizers we
have developed (and users did request new types of summarizers to be added to the
system). Freeze and print each made up less than a percent of the total operations.

Overall, the subjects' use patterns were fairly uniform. Some notable exceptions are
that the clerical users tended to use clone a little less than the graduate students while
using the new operation slightly more often. While the reasons require further study,
graduate students may reuse and edit information more often than clerical workers
who handle more short term action items.

6.7.2 Use of Substreams

In Chapter 5 we discussed the various ways that substreams organize information. We
now look at the data collected from use of substreams. During the logging period 207
�nd operations were performed. Of the 207 operations, 150 (72%) of them were keyword
searches, while the remaining 57 (28%) where boolean queries. We further analyzed
these searches to determine how many actual queries were performed; that is, the user
may have used multiple �nd operations in an incremental fashion to satisfy one query.
We also determined whether or not a query was successful by the following heuristic:
after a �nd, if the user performed an operation on a document in the substream or on
the substream itself (before removing the substream or returning to the main stream)
then the query was considered a success. The valid operations included reading the
document, cloning it, printing it, transferring it or summarizing it (or the substream).
This heuristic may misclassify in at least two ways (both favorable and unfavorable).
In the �rst case, a �nd may be counted as a failure when in fact the subject used
the glance view capability of Lifestreams to obtain the information he needed. In the

Chapter 6. Evaluation 123

G1 G2 C1 C2 Mean

Number 63 95 23 6 46.75

Query Size 1.3 1.23 1.5 1.7 1.43

Query Depth 1.11 1.07 1.09 1.0 1.07

Success Rate 90.5% 94.7% 78.2% 83.3% 86.7%

Table 6.6: Query use over testing period.

5 0

4 0

3 0

2 0

1 0

0

1

2 - 4

5 - 8

9 - 1 6

17 -32

33 -64

65-128

129-256

257-512

513-1024

1025-2048

> 2048

Figure 6.1: Size of substreams returned from FINDs.

second case the user may have opened a document within the substream that turned
out to be the incorrect document. One other scenario is also not accounted for | a
user may use multiple incremental �nds in an attempt to locate information and then
return to the main stream and begin again using a slightly di�erent scheme for �nding
the same information. This can cause an inaccurate measure of the number of �nds
required to satisfy a query. For this last type of error we manually scanned the logs,
identi�ed obvious cases and then asked the user for con�rmation. As an example one
user performed a �nd on "book AND order" and then returned to his main stream and
performed another �nd on \Dover" (a publisher). The user con�rmed that these two
�nds were performed to locate the same information. While the heuristic would have
counted this as two searches (one failing and one succeeding) we adjusted the data to
show that a search consisting of two queries was performed and successful.

Chapter 6. Evaluation 124

Our analysis also accounts for incremental substreaming | if, instead of performing
an operation on a document in the substream, the user incrementally initiated another
�nd, the depth of the query was incremented and the result considered a success or
failure based on the result of the second �nd (and so on). We found that 20 (9.7%)
of the �nd operations were performed incrementally. Of the 187 (207 � 20) queries
performed, the average query depth was 1.07. 170 queries were counted as successes
resulting in a 90.9% success rate.

In Table 6.6 we present the data for all users. The number of substreams varied
among users from 6 to 95; this is partly a re
ection of the amount of time the users
spend at the computer. The two graduate students (G1 and G2) typically spend their
entire work day at the computer, while the two clerical workers spend only a fraction
of their time in front of the computer (especially in the case of C1, who only works
20 hours a week). Nevertheless, the results for query size (number of search terms in
a query), query depth (number of �nds required to locate a piece of information) and
success rate are fairly uniform. Looking at the mean over all users (counting each user's
results with equal weight), 1.43 keywords were used per search with a query depth of
1.07. While comparisons with the desktop model are di�cult4, we believe that in the
average case it requires more than 1.07 \operations" to locate a piece of information
within a desktop �le and folder system.

6.7.3 Substream Accuracy

One of the more crucial variables is the success rate of the substream operations. Rates
varied from 78.2% to 94.7% over the users (Table 6.6), and the advanced users had
higher success rates than the clerical workers. One possible explanation is that the
advanced users had used Lifestreams for a longer period of time before the testing
period (mean time of 12 versus 2 months).

Given that our measure may include error (as we pointed out in our heuristics for
determining success rates), we asked the users in the survey

Were you usually able to find what you were looking for?

If not, was the system frustrating in this respect?

Representative responses include:

Pretty much always able to �nd what I was looking for | and quickly.

(I) was able to �nd what I wanted.

Yes. (I) hardly ever (had trouble).

...substreams did not always contain exactly all the relevant information I
wanted. It was easy enough to �nd a simple document, but not a complete
collection.

4We've found no empirical data on \navigation" depth in desktops.

Chapter 6. Evaluation 125

Usually | concept and category-based searching would help though.

The responses indicate that while users could locate what they wanted to, neverthe-
less the prototype could be improved with more powerful search capabilities and with
improved ability to create substreams by instance.

6.7.4 Substream Size

We also logged the size of the resulting substreams. Of the 207 substreams created,
the minimum/median/mean/maximum substream sizes were 1/15/89/2824 (� = 3.8).
59% of the substreams were smaller than 25 documents, 71% were smaller than 50
documents, 86% were smaller than 100 documents and 92% were smaller than 200
documents. Only 11 (5%) exceeded 500 documents. Another way to view this data is in
the form of a bar chart (Figure 6.1). Here each bar represents the number of substreams
(from the 207 �nd operations) that have a size that falls into the corresponding interval.
Note that (with the exception of the �rst two bars) each successive bar has an interval
that is twice that of the previous bar.

One might argue that substream sizes will uniformly grow along with the stream
size. If so, the average stream size for these queries is roughly 7000 documents, which
means that 59% of the substreams contained a mean of roughly .015% of the doc-
uments in the main stream. If we extrapolate to a stream size of 100,000 docu-
ment then the mean substream would be 1500 documents in size. However if we
examine the median and mean sizes of the substreams across all users5 (Table 6.7)
compared to their lifestream's size we �nd that as we step up in stream size from
1400!3200!6900!16700 the mean substream size (as a percent of the main stream
size) goes from 2%!1.2%!.8%!.6% and the median size from .4%!.2%!.2%!.1%.
While this is encouraging, the fallo� in growth rate of the substreams is still too slow
to prevent a slow rise in the size of substreams.

There is, however, a compelling reason to think this will not be a problem in
the general case because we have chronology to rely on; that is, since the value of
information is likely to decrease over time the user is more likely to �nd the information
near the head of the substream or to scan back to the appropriate time in the past
(and we have seen from Lansdale's work that users are good at remembering when
information was created). Queries in future Lifestreams systems may also allow users
to constrain the queries to the last few years or months and e�ectively cut the stream
down to a reasonable number of documents.

6.7.5 Substream Response Time

In Chapter 4 we discussed Shneiderman's concept of direct manipulation and the im-
portance of allowing the user to carry out tasks quickly and observe results immediately.

5We are making the assumption that the average substream size (relative to stream size) is somewhat
uniform across users. Obviously, this may or may not be the case and requires further study.

Chapter 6. Evaluation 126

G2 G1 C1 C2

Stream Size 16700 16700 3200 1400

Minimum 1 1 1 1

Median 21 12 9 6

Mean 106 53 41 40

Max 2824 1550 529 138

Standard Deviation 7.0 5.9 8.1 15.2

Table 6.7: Size of Substreams.

Server substream computation

Screen update

Network transfer time

.06 .18 .8

1.04 seconds

Figure 6.2: Average time to compute and display a substream.

Using the timing results from all 207 �nd operations we found that it takes an average
of 1.04 seconds for Lifestreams to compute a substream and display it on the screen. Of
the 1.04 seconds (see Figure 6.2) it requires (on average) .06 seconds for the server to
compute the substream, .18 seconds to transfer data describing the substream to and
from the server, and .8 seconds to display the substream on the screen. One second
is twice as long as Shneiderman's \optimal" update time of 500 ms but given that
77% of the substream time is being consumed by screen update there is much room
for improvement (recall that our client is written in Tcl/Tk, a scripting language, not
a compiled language). In any case, the users were content with the response of the
system as indicated in the QUIS questionnaire and the survey.

6.7.6 Substream Management Styles

We have observed a variety of \styles" in which substreams are managed by users.
Some users maintain a small number (typically less than a dozen) of substreams which
they revisit from time to time.

Chapter 6. Evaluation 127

G1 G2 C1 C2

Substream accesses 78 21 4 6

Hits 66 19 3 4

Success Rate 85% 90% 75% 66%

Table 6.8: Locating information through persistent substreams.

Mostly I remove (substreams) except for the 2-4 I always keep around.

Users C2 and G1 fell into this category, both creating a handful of substreams that
they maintained. These subjects still used the �nd operation to locate \short-term"
information, but they quickly removed those substreams.

Other users tend to always use the �nd operation to locate information, even if they
already have an existing substream which was created with the same search query.
These users may allow a large number of substreams to build-up before removing
the whole lot. Before the logging period began user C1 was found to have over 100
substreams that he never reused. When asked in the survey if he kept substreams
around for future use he responded:

No I don't. I remove them when a lot have accumulated ... [the] user should
be able to set a default where substreams automatically \self erase" after a
day or a user speci�ed period of time.

These styles can be seen in Table 6.8 where we list the substream operations each
user performed. User G1 claimed to reuse substreams while user G2 claimed to almost
never reuse them; consistent with this user G1 revisited substreams nearly four times
the number of times G2 did and (referring back to Table 6.5) G2 used �nd 40% more
times than G1. Although there is sparse data from the clerical workers the same trend
seems to occur with C1 using existing substreams at a higher rate (comparing �nds)
than C2.

6.8 Summary

With two exceptions (with respect to the reliability of the prototype), our initial user
pool responded in a highly positive manner across all QUIS questions (mean over all
questions = 8.0/9). Learning had the highest subjective satisfaction score of all QUIS
categories indicating that Lifestreams has a short learning curve. Users also indicated
that they found the Lifestreams metaphor and interface an easy and intuitive way to

Chapter 6. Evaluation 128

manage online information. Data from instrumentation suggests that substreams were
a e�ective and e�cient mechanism for locating information.

We also learned that users felt they would bene�t from improved and more
exible
searching capabilities and the ability to supply time-intervals for substreams. Advanced
users also wanted shortcuts to minimize the number of steps required for an operation.
With respect to the interface, users felt the display could have been more information
rich and, from the response of novice users, we learned that a minimal interface is not
always better | often users want several repetitive commands wrapped up into one
button or function. By packaging operations (such as Clone-Edit-Xfer into a Reply
button) we reduce the number of steps required to perform a common operation.

Finally, in the survey we asked the subjects whether or not they would continue
to use Lifestreams if it were a robust and supported system. All users responded in a
positive manner. In fact �ve of the six subjects responded in a very positive manner6:

Yes!

Absolutely!

Yes!

Absolutely

De�nitely

6The sixth subject, responded \Yes, assuming it was faster and a little more re�ned." This user
worked with the system before the summer of 1996 (before some performance problems were �xed and
before interface improvements were made).

Chapter 7

Information Management

Revisited

We now return to the user studies of the information management community that
we introduced in Chapter 1 and examine them in more detail. In the process we
will explore the Lifestreams model in the context of these studies. First we examine
classi�cations of user information types developed by Cole and Barreau & Nardi. Next
we revisit the work of Malone and examine his speci�c recommendations for electronic
systems. We then examine user studies that resulted in speci�c task classi�cations.
Finally, we revisit Lansdale's work.

7.1 Information \Types"

The user studies of Cole [Col82] and Barreau & Nardi [BN95] examined the ways
users of desktop systems use, process and manage electronic information. Both studies
resulted in valuable classi�cation schemes for electronic information. Barreau and
Nardi found that users commonly deal with three types of information:

� Working information is usually relevant to long or medium term tasks that the
user is working on actively. Typically it has a \shelf life" (period of use) of
days, weeks or months and is important enough to be stored in its own folder or
location. Users worked with this information frequently enough to know exactly
where it was stored.

� Archived information has a shelf life of months or years, but is infrequently rele-
vant to the user's current working tasks.

� Ephemeral information has a \short shelf life" and is only used for a short amount
of time. On desktop systems users tend to place these items on the desktop
and later discard them. Ephemeral information may include todo list items,

129

Chapter 7. Information Management Revisited 130

reminders, or electronic mail. Note that this includes \reminding" types of in-
formation.

Cole found practically the same categories:

� Personal work �les refers to information that is categorized according to some
user-de�ned strategy and is relevant to the user's ongoing work activities.

� Archived storage refers to structured storage of no direct relevance to a user's
predicted work schedule.

� Action items consists of information that is immediately important or needs to
be dealt with in the near future.

We have already discussed in Chapter 1 the way in which current desktop systems
fail to support these types gracefully, but these categories make it easier to see why:
\working information," for example, requires that the user maintain disciplined �ling
practices, something which, according to previous work, users �nd di�cult, especially
over time. Current systems also force the job of maintaining organization on the
user rather than relying on the inherent content of the information. With respect
to \archived information" desktop systems provide little support for the archiving
or retrieval of older information. The burden of both are forced on the user, who
is expected to develop complex archiving schemes (here we mean archiving in the
conceptual sense | users don't have to worry about old information cluttering their
desktops or getting in the way) and remember them (for retrieval) over time. We
have seen the results: users often throw out information rather than be burdened with
its upkeep. \Ephemeral information" or \action items" quickly build up into piles of
information that have to be searched with brute force methods [Coo95]. This type
of information is often the source of \messy electronic desktops." A major portion of
ephemeral information includes items of a reminding nature, yet as we have argued
electronic systems provide no integrated support for convenient or e�ective reminding.

Let us now turn to Lifestreams and study the ways in which it accommodates these
classi�cations. A lifestream can be divided into three portions: past, present, and fu-
ture. The present portion normally occupies the head of a stream or substream. The
future portion is distinct and usually hidden from view (i.e., in our prototype), and the
past portion recedes into the distance as documents are added to the stream. These
stream segments closely mirror the information categories. The \present" portion of
the stream holds \working documents;" this is also typically where new documents are
created and where incoming documents are placed. Substreams are used as working
areas in a manner that is similar to folders. A substream can hold the documents rele-
vant to a particular working task, allowing the user to locate and �lter out extraneous
information quickly. As documents age and newer documents are added, older docu-
ments recede from the user's view and are \archived" in the process; if at some future

Chapter 7. Information Management Revisited 131

point they need the archived information, it can be located with find. Ephemeral in-
formation passes through the present and into the past, receding out of the users view
in the process|as in a quick response mail message (e.g., \lunch?") | yet it remains
available for for retrieval if needed.

\Future creation" provides a natural method of posting reminders and calendar
information by allowing the user to dial to the future and deposit a document there|
say, a meeting reminder. This facilitates reminding in two ways: the user can use the
stream as a todo list by dialing to the future at any time to see the reminding items
on his stream or he can use future documents as truly e�ective reminders|when the
creation date of a future document arrives, the reminder automatically appears in the
present and alerts the user (through the same mechanism that alerts of the user of a
new document on the stream, such an incoming email message).

7.2 Malone Revisited

While Malone [Mal83] did not develop task classi�cations in his work he did use the
results of his study to suggest avenues for the automation and simpli�cation of elec-
tronic systems. Malone chose two speci�c areas for these recommendations: �nding
and reminding.

7.2.1 Finding

Malone suggests that electronic systems can help with \�nding" in three areas: creating
classi�cations, classifying information and retrieving information. Creating classi�ca-
tions, Malone comments, is nontrivial and a \major barrier to keeping �le systems cur-
rent." To improve information classi�cation Malone recommends incorporating three
capabilities into computer systems:

� Multiple classi�cation allows a document to be easily put into several categories.

A Lifestreams document can be located in as many substreams as necessary, or
to none.

� Deferred classi�cation allows users to store information in the same physical
location without having to \title" the information explicitly.

Lifestreams uses chronology as a basic storage model, removing the need for
explicit storage or naming.

� Automatic classi�cation allows the computer to do as much classi�cation as pos-
sible based on �elds or attributes of the document. Malone notes that chronology
is one useful method of automatic classi�cation and suggests that users may want
to \rewind or fast-forward the (history of) their desktop to locate the last time
the desired document was on their desk."

Chapter 7. Information Management Revisited 132

Persistent substreams provide automatic classi�cation as new documents are
added to a lifestream. Lifestreams, of course, makes use of chronology as a
basic storage model.

Last, Malone notes that in retrieval, current systems only allow users to specify
one retrieval key (e.g., the name of a �le) at a time. He suggests that systems should
allow users to use more than one retrieval key at at time, such as the document's type,
time of creation and information about its content. While the situation has changed
somewhat since Malone's time, nevertheless desktop systems can still be improved.
Lifestreams allows retrieval on all these cues. Users can specify �le types, �le content
and browse through information based on chronology. With respect to chronology
Malone suggests that chronology actually be used as a search method (e.g., �nd a
document created last week). In Lifestreams, this aspect is used for browsing rather
than as an explicit search term, although future Lifestreams systems can easily and
naturally accommodate time-based values in searches.

7.2.2 Reminding

In the area of reminding Malone suggests that systems should make it easy for users
to \store certain information so that it will automatically appear, without being re-
quested." Lifestreams provides this in a natural way by allowing users to create doc-
uments in the future. In addition, our research prototype provides an e�ective means
of allowing the reminders to \automatically appear" at the time the user needs to be
reminded.

7.3 Task Analysis

We now look at work where users were observed and the tasks they typically perform
were categorized.

7.3.1 Whittaker and Sidner

We �rst examine a large-scale user study conducted by Whittaker and Sidner [WS96]; in
this study they examined how users make use of electronic mail to perform a variety of
activities beyond its initial role as a means of asynchronous communication. This study
is important not only because users spend a signi�cant portion of time using electronic
mail [Gat96, WS96] but because Whittaker and Sidner speci�cally studied the ways
in which users managed their electronic information with the goal of discovering how
email might fully support all the electronic tasks a user performs. They discovered
three main functions that users perform: task management, personal archiving, and
asynchronous communication. Whittaker and Sidner describe task management as
follows:

Chapter 7. Information Management Revisited 133

\Task management requires users to ensure that information relating to
current tasks is readily available. This both preserves task content and
allows users to determine the progress of ongoing tasks. Task management
also involves reminding oneself about when particular tasks or actions have
to be executed."

Personal archiving:

\Personal archiving or �ling addresses how people organize and categorize
longer term information, so that it can later be retrieved. Archives are not
of immediate relevance to current tasks, but are constructed for reference
or anticipated future use. Research shows that users experience major
problems in generating appropriate folder labels when �ling longer term
information for later retrieval, and in reconstructing these labels when they
engage in later retrieval."

Asynchronous communication:

\Asynchronous communication is concerned with the interaction in a per-
manent medium across space and time... Such interactions are seldom
one-shot, and workers often engage in multiple intermittent interactions
in order to complete a task. Workers are also usually engaged in several
independent, but concurrent ongoing conversations, with the requirements
of tracking separate conversational threads and switching contexts between
conversations."

Their primary �nding was that email was being used for purposes beyond asynchronous
communication (its original, intended purpose) because of a lack of support for task
management and personal archiving in their desktop systems.

Let us now consider these important tasks in the context of Lifestreams. Lifestreams
includes asynchronous communication as a basic functionality of its model (through
the transfer operation). We discuss this aspect of Lifestreams in detail in our focus
on email later in this chapter.

Whittaker and Sidner's \task management" requires that information be \readily
available." Lifestreams provides this by allowing the documents in a user's lifestream
to always remain available for search (whether or not it has already been organized in
other substreams). In this way substreaming provides a more
exible means of task
management than rigid directories. This is best demonstrated through examples like
Lansdale's multiple projects scenario presented in Chapter 1; while desktop systems
lock users into �le organizations, Lifestreams allows a
uid way of organizing informa-
tion that can change along with users' needs. Whittaker and Sidner's \task context" is
provided through persistent substreams, analogous to a directory that can maintain a
collection of documents over time. Because substreams actively capture new content,

Chapter 7. Information Management Revisited 134

the user can more readily \determine the progress of ongoing tasks." Moreover, sub-
streams can contain all the information related to ongoing tasks (reports, email, etc.);
we will return to this point in the next section. Whittaker and Sidner also explicitly
point out the importance of reminding to task management | we have already de-
scribed how Lifestreams supplies reminding in a natural manner (as we saw from user
comments in Chapter 6).

On the topic of personal archiving, Whittaker and Sidner point out that \users
experience major problems in generating appropriate folder labels when �ling longer
term information for later retrieval" and in \reconstructing these labels when they
engage in later retrieval." Lifestreams provides a solution to these problems in two
ways: (1) through the time-ordered stream model documents gradually recede from
the users \view" and are conceptually archived in the process (2) all documents in
Lifestreams remain available for retrieval via content. In this way users never have to
invent \folder labels" or remember them; they only have to remember the content of
the information or when it was created or some combination of the two (something
users are good at [Lan88b]).

7.3.2 Erickson

We now examine a second long-term study at Apple Computer by Thomas Erickson.
Erickson developed and analyzed his own use of a personal electronic notebook over
a three year period [Eri96]. The notebook, implemented in Hypercard on an Apple
Powerbook, was an attempt to develop a system that mirrored the everyday tasks of
Erickson (a casual user). During this work Erickson aimed to understand the features
and the modes of use that made his notebook useful. This work is particularly germane
because it studies a user in the context of a personal information system.

Erickson primarily used his notebook in a work setting to manage tasks, record
notes, compose and send electronic mail and as an archive for his information. He used
these various functions in an iterative manner. Usually at the beginning of the day he
checks and updates his ToDo list (task management) and then checks email and his
calendar (which may result in further alterations to his ToDo list). Throughout the
day he iterates through making notes, checking his ToDo list and using electronic mail.

Less often Erickson performs the following tasks: searching through his information
for a particular item, browsing the last month of activities and incorporating it into a
summary, or transcribing something written into his Powerbook. Erickson had origi-
nally envisioned that he would link and develop cross references between information
in his collection of documents, but he quickly abandoned this idea because it caused
disruptive context shifts. In a comparison with Erickson's old paper-based method of
organizing information, he found that his electronic notebook had the following e�ect:
he took more notes because, through the searching and browsing capability, he was
able to �nd old information more readily (and it was more legible than in handwritten
form).

Chapter 7. Information Management Revisited 135

In summary, Erickson uses his notebook primarily for managing his tasks and sched-
ule (ToDos and calendar), creating and managing notes, performing messaging through
electronic mail, and archiving and later searching for information.

How do these tasks of a typical user of a personal information management system
�t to Lifestreams? As we've seen Lifestreams accommodates task management by
allowing the user to create task contexts and also through managing reminders. In
previous chapter we presented several methods used in Lifestreams to manage Todo
lists. Lifestreams provides a natural \paper-like" system for creating notes where
neither names nor storage folders are needed, and, as in Erickson's system, where
notes can be searched for1.

Erickson makes an interesting point about the combination of messaging and note
making in his system:

\(My system) is useful because of the synergy between note making and
messaging. As noted, the messaging built into (my system) increases the
potential utility (and quality) of note making, and the note making in turn
provide grist for messages and other re-uses of content."

This is interesting because Erickson's system did not have a fully integrated com-
munications system. He moved text back and forth between HyperCard and mailer.
Lifestreams should make the synergy stronger with its built-in transfer operation that
allows any document to become a mail message.

Erickson's last task, archiving and retrieval, has been discussed at length with
respect to Lifestreams. Erickson does comment on some interesting aspects of searching
when the underlying system stores a user's entire information collection (that is, all
notes, ToDo lists, email, etc.):

\Browsing itself is made easier because the [information that is] normally
ephemeral, ... is captured { ToDo lists, email messages, notes { [and] pro-
vides more cues about what is being searched for."2

Two factors in the Lifestreams system help to preserve these cues: (1) all information
in your electronic life is stored in your lifestream (2) chronological storage groups
these items together in the manner they were created. This supports our argument in
Chapter 2 for chronological storage.

Erickson also points out that search is useful when \trying to put together a sum-
mary of what has happened on a project." Here is further evidence that users are in
need of a summarize capability (as we have in Lifestreams).

1Lifestreams improves on the technology of Erickson's system because we use an indexing system
(he relied on the internal, non-index search capability of HyperCard). In addition Erickson couldn't
use substreams to organize information.

2Although not chronologically-based, Erickson's system groups daily items within one page and
provides a table of contents.

Chapter 7. Information Management Revisited 136

Last, Erickson states that his system is \good at dealing with text, and the many
ways in which I re
ect, communicate and act are entwined in textual representation."
We believe the same is true of most users and we have shown how Lifestreams also
re
ects this style of work. Erickson concludes that \probably the most signi�cant im-
pact of (his system) is a sort of synergy among the activities of note making, reference,
and message." The parallel with Lifestreams should be clear as it is, in its core, a note
making, reference, message and reminding system.

7.3.3 Tasks from the Knowledge Navigator

Finally we take a look at tasks not from a user study, but from a prototype system.
In 1987 Apple Computer created the video \Knowledge Navigator," which presents
a futuristic prototype of a \conversational computer" [Com87]. While the video has
drawn much interest because of the conversational aspect of the system, the information
tasks the user is
uently carrying out are more enlightening. We present the dialog
from the �rst half of the video in Figure 7.1, where we join a professor as he \checks
in" with his computer.

Setting AI issues aside, we examine this interaction in the context of information
management. In 1 the computer begins by summarizing messages that have arrived
since the user last spoke with the computer | an operation that could (in theory) be
accomplished by a Lifetreams' summary of new messages. Then, in 2, the professor
immediately creates a reminder. Next, in 3, the computer summarizes the reminders
on the future of the professor's \stream." In 5, the professor asks the computer to �nd
information based on content and chronologically. The computer presents the results
and the professor, not happy, asks the computer to �nd all articles he has not yet read
| an attribute based search. The computer then asks for clari�cation and summarizes
the search results in 9. In 10-11 the professor performs messaging with the computer's
help. In 12 the professor performs another chronology and content-based �nd and the
computer responds with a summary.

The Knowledge Navigator provides an excellent example of a
uid software en-
vironment that mirrors the user's work habits. We note that the primary operations
performed in the video (summarize - remind - �nd - �nd - summarize - messaging - �nd
- summarize) directly correspond to the primitive operations of Lifestreams (leaving
aside new and clone).

7.4 Lansdale Revisited

Finally we revisit the examples of Lansdale in the context of Lifestreams. Our �rst
example illustrates a user who needs to retrieve information in a manner that is di�erent
than the way it was organized within a hierarchy.

Chapter 7. Information Management Revisited 137

Professor enters room

1. Computer: \You have three messages: your graduate research team in

Guatemala just checking in; Robert Jordan, a second semester junior, request-

ing a second extension on his term paper; and your mother reminding you about

your father..."

Professor interrupts

2. Professor: \surprise birthday party next sunday"

3. Computer: \Today you have a faculty lunch at 12:00, you need to take Kathy

to the airport by 2:00, you have a lecture at 4:15 on deforestation in the Amazon

Rain Forest."

4. Professor: \Right."

5. Professor: \Let me see the lecture notes from last semester."

Computer displays notes.

6. Professor: \ No that's not enough, I need to review the more recent literature.

Pull up all the articles I haven't read yet."

7. Computer: \Journal articles only?"

8. Professor: \Fine."

9. Computer: \Your friend, Jill Gilbert, has published an article about defor-

estation in the Amazon and it's e�ects on rainfall in the sub-Sahara."

Computer continues with summary of Jill's work.

10. Professor: \Contact Jill."

11. Computer: \I'm sorry she's not available right now. I left a message that

you had called."

12. Professor: \ Ok, let's see. There's an article about 5 years ago, Dr. Flempson

or something. He really disagreed with the direction of Jill's research."

13. Computer: \John Fleming, of UpSilla University."

Computer continues with summary of his work.

14.Professor: \Yes, that is it."

...

Figure 7.1: Dialog from Apple's \Knowledge Navigator".

Chapter 7. Information Management Revisited 138

\My boss wants to see all the project reviews I have carried out over the
last six months. The trouble is, they are �led under each of the individual
projects. It will take me ages to work through and dig them all out."

In Lifestreams the user can perform a �nd operation to retrieve all \project re-
views." The result of the �nd is a substream that acts as a temporary context for his
task. With the assumption that his Lifestreams system is equipped with a method of
summarizing text �les3, he could use the summary operation to condense the project
reviews into one document, from which he could prepare the report for his boss. Taking
this one step further, he could then transfer the report to his boss' stream in a third
operation.

Users often remember chronological information about documents (discussed in
Chapter 1) as seen in this example:

\Yes I remember that paper. It came at the same time as the product
audit. I can't remember what happened to it, though."

In Lifestreams the user �rst substreams to locate the product audit and notes
the time of its creation by looking at the glance view of the document. He then
returns to his mail stream, zooms back to that time in the past (in our interface
via the time-enhanced scroll bar) and browses for the document. If he happens to
remember something about the paper (it mentioned \Schwartz"), then he can �rst
create a substream based on that information and then zoom to the past. This reduces
the amount of information the user needs to peruse.

Often a user's memory of where things are �led breaks down. In this case users rely
on the mnemonics of �le names and directory names to locate information. Unfortu-
nately, as Dumais [DL83] pointed out, over time these categories overlap and become
ambiguous.

\The document I want is the French Finance Committee's minutes, but I've
tried looking under `French', and 'Committees' and it's not there. Perhaps
it's under `France'. I don't know I may as well search through the whole
lot."

Searching through the whole lot is obviously a pain in most desktop systems. Even
with a search over �le names it is not clear the user will �nd the information. However
with Lifetreams' content-based search the user can often locate the information in
one step (e.g., with a search for "(French or France) committee minutes"). Here
the burden of �nding the information is placed on the computer, which maintains in
data-structures the content information needed for retrieval. In desktop systems the
organization structure is maintained in the users head.

3Summary engines such as Apple's Vespa Linear lead us to believe this is not a big assumption.

Chapter 7. Information Management Revisited 139

7.5 Summary

The work of Malone, Lansdale and others suggest avenues for the simpli�cation and
improvement of electronic systems. Other work, such as Whittaker and Erickson's,
produced valuable classi�cations schemes for information types and tasks that can
be used to examine the capabilities of current desk systems and suggest how future
systems might better serve us.

In this chapter we have examined these �ndings and explored how Lifestreams as
a model incorporates many of these suggested avenues and handles user information
types and tasks in a more elegant way than current desktop systems. We now move
on to examine Lifestreams in the context of related software systems.

Chapter 8

Related Work

Lifestreams builds upon previous work in a number of diverse areas: personal computer
indexing systems, information retrieval and �ltering systems, corporate document and
archiving systems, personal information handlers, time and contact managers, work-

ow systems, �nancial managers, and scheduling systems. In this section we survey the
landscape, comparing and contrasting representative works from each area with Life-
streams. We conclude this section with a comparison of features from related systems
and Lifestreams.

While we do not claim the systems we visit in this chapter are all inclusive, we
do believe they are representative of the landscape of existing systems. For instance,
there are several \disk indexing" applications on the market and available as shareware,
however, we primarily cover On Technologies' product, as it has the same functionality
as other applications on the market.

8.1 Information Retrieval Systems

Historically, work in information retrieval (IR) has included both information retrieval
and information �ltering. Information retrieval concerns itself with the e�cient stor-
age and retrieval of documents, in most cases text-based documents. Filtering is a
variant of information retrieval that typically targets real-time streams. IR techniques
have traditionally been used on large centralized collections of documents, such as the
Nexis/Lexis database. More recent work addresses how such techniques might bene�t
everyday computer users with their own document collections. We present examples
of both information retrieval and �ltering here.

8.1.1 WAIS

TheWide Area Information Service (WAIS) is a commercial-grade information retrieval
system [Kah91] that provides access to an arbitrary number of network document col-

140

Chapter 8. Related Work 141

lections. WAIS users formulate search queries over any number of document collections
and can re�ne their searches using relevance feedback. Queries can be saved, and the
retrieval process automated (e.g., retrieval can be scheduled to occur at periodic inter-
vals), allowing WAIS to function as a rudimentary \clipping server." WAIS provides
a client/server architecture for accessing multiple document collections as well as the
use of relevance feedback to guide user searches.

In comparison to Lifestreams, WAIS is used to search centralized document collec-
tions rather than personal information. The ability to save and reschedule searches has
a tenuous relation to substreams but WAIS does not provide builtin communication or
summarizing capabilities.

8.1.2 Tapestry

Tapestry, a research system developed at Xerox PARC [GNOT92], was constructed to
manage a large number of incoming articles, such as netnews and electronic mailing
lists, for a workgroup. As new articles arrive in Tapestry they are collected and archived
within a global database|like Lifestreams, they are meant to be archived inde�nitely.
Rather then perusing the collection of documents directly, users supply content-based
�lters that are installed in the system and then iteratively applied to the database.
Successfully �ltered documents are then forwarded to each user's mailbox where an
\appraiser" may do additional �ltering (such as sorting the mail into folders) before
the user sees the list of new documents. Like Lifestreams, Tapestry also infers a
number of mail-related attributes for each document which can be used in �ltering.
One especially novel aspect of the system is its support for \collaborative �ltering"
whereby group members can recommend an article as worthy (or not) of being read by
others.

Like Lifestreams, Tapestry allows the user to construct �lters that continually �l-
ter incoming documents; this combined with an appraiser that categorizes documents
into folders gives us something that looks very much like a substream. It's not a sub-
stream though, because a substream creates a virtual collection of documents based
on a speci�c �lter, whereas Tapestry folders are the result of many �ltering operations
merged together. The main di�erence between Tapestry and Lifestreams is one of phi-
losophy; Tapestry is not a system for managing personal info chunks, it's more of a
global �ltering engine for all the information coming into a workgroup. While Tapestry
provides some Lifestreams type mechanisms, it directs them at objects incoming from
the outside world and not at the user's �lespace.

8.1.3 MIT Semantic File System

The MIT Semantic File System [GJSO91] provides associative access to a �le system
via virtual directories. Using native directory commands (such as ls and cd), virtual
directory names are interpreted as associative queries. The results of a query are

Chapter 8. Related Work 142

computed via an automatically indexed set of attributes (�eld/value pairs). This index
is generated by a number of transducers that map �les of speci�c types (e.g., C �les,
TEX�les, etc.) to a set of attributes.

The Semantic File System is novel in its ability to describe a desired view of the �le
system's contents. This description maps to no actual folder or directory of information
but to a virtual one computed on demand. Indexing is important because it guarantees
acceptable response time on queries (we established this in Chapter 3). Indexing also
enables searches on a �le's entire content.

The Semantic File System shows reasonable performance on a realistically sized �le
system with queries answered in the one to two second range. The results of the work
\suggest that semantic �le systems can be used to �nd information more quickly than
is possible using ordinary �le systems."

The connection with Lifestreams is clear: both provide virtual organization docu-
ments through search. Unlike Lifestreams, the Semantic File System does not provide
an integrated information management environment, just a search tool. However, the
semantic �le system suggests improvements that can be made to the Lifestreams system
via transducers. Today, Lifestreams only indexes text documents. With transducers,
other document types can be indexed and the overall method of indexing improved.

8.1.4 Glimpse

Glimpse is an indexing tool for Unix �les systems developed by Udi Manber and Sun
Wu at the University of Arizona that manages personal information and uses an in-
dexing approach that �ts in-between inverse indices and signature �les [MW93]. This
approach produces index �les of only 2% to 4% of the original text size (versus 50% to
300% for traditional techniques) while providing average search times on the order of
a few seconds; Manber and Wu argue that this is su�cient for personal information.
Glimpse achieves small indices by breaking text �les into blocks and adding one record
to the index per occurrence of each word in the block (as opposed to storing every
occurrence). Searching is a two phase process that uses agrep [WM94]. Agrep is a
generalized version of grep that allows the user to specify a number of errors which can
be insertions, deletions, or substitutions. This allows Glimpse to handle misspellings
and other common search mistakes. In Glimpse, agrep is �rst used to search the index
itself, and then agrep uses the output records to perform a search on the actual �les.

Glimpse is similar to Lifestreams in that it allows quick access to a users information
via a search mechanism. Using Glimpse however is a \one shot" process that does not
allow the creation of virtual directories. In short, Glimpse is primarily an extension of
search tools such as grep (albeit an important extension allowing fast access to a user's
total information store) and not an integrated work environment. Work on Glimpse
is encouraging however, and suggests an intriguing method of cataloging and search
large personal data collections.

Chapter 8. Related Work 143

8.1.5 Apple Find

The Apple \Find" application is often thought of as a last resort in locating �les on the
Macintosh. For many, who are not as organized as they would like to be, Find becomes
a way of life. Find presents a simple interface to the user that allows the entry of
keywords that are matched to �lenames on the user's hard drive. In the newest version
of the Macintosh operation system, System 7.5, Find has been extended to allow for
custom searches to be done on �le type and dates of creation, and so on.

The similarity with Lifestreams is in the mode of operations: using search rather
than using locale to �nd dated information. Find di�ers in many ways however, Find
searches all information at run time, it doesn't index disk information incrementally. It
also doesn't create virtual directories based on the search criteria (although the system
7.5 presents the information as if it is a virtual directory).

8.2 Database Management Systems

Lifestreams shares several ideas with the database management systems (DBMS). Life-
streams consist of a number of documents that can be described in a record-like manner.
Substreams are related to \views" in relational databases [Dat86]. Future documents
are related to \triggers" (in Lifestreams, the trigger occurs when the creation date of
the document slides into the past). There are also connections between Lifestreams
and temporal databases [Sno90], temporal logic [All83], and sequence database systems
[SLR84] where time and/or logical sequences play a crucial role in the system.

Lifestreams di�ers from previous work in the DBMS communities in several impor-
tant ways. Lifestreams is �rst and foremost a system for personal information manage-
ment, while DBM systems are used for centralized data collections. Lifestreams also
operates on a
exible data model that includes many types of media and is based on

exible indexing and retrieval techniques. Lifestreams' search is provided by a sim-
ple system of keywords and boolean operations that allows everyday users to create
queries. Database systems rely on query languages such as SQL, which are not acces-
sible to the typical computer user. Last, Lifestreams provides a novel user interface
to a database system, which has been called for by the leading researchers of the DB
community [SSU95].

8.3 Personal Information Managers

There are a number of personal information management (PIM) packages and platforms
on the market. Like Lifestreams these packages are suited towards managing personal
information such as contacts, ongoing tasks and schedules. In this section we �rst
cover the most common types of software packages, and then the Newton platform
which subsumes the functionality of most PIM devices. Last we cover an interesting

Chapter 8. Related Work 144

shareware application with a philosophy similar to that of Lifestreams.

8.3.1 ToDo List Managers

ToDo List managers, such as LandWare's ToDo List [War95], all provide the same
basic functionality, that of managing a simple list of personal tasks. ToDo List allows
the user to create a number of time-stamped documents (of type text or voice memo)
and displays them according to their date and an optional priority (priority items are
underlined). Additional information can be displayed along with each item, such as
the number of days the task is overdue. A click box is provided for the user to indicate
the task is �nished. ToDo List also allows the user to search for text within the ToDo
list text documents.

As we have already mentioned in Chapter 5, the todo list capabilities are a simple
\add on" to the Lifestreams system, as the stream provides a natural data structure
for todo list applications. The todo items are also made available along with the rest of
the user's documents. Moreover, the rest of Lifestreams' capabilities are not a simple
\add on" to todo list managers.

8.3.2 Contact Managers and Time Trackers

In their simplest form contact managers store and provide access to names, addresses,
phone numbers, and other information about a number of (typically business) con-
tacts. Taken to their logical conclusion, contact managers retrieve phone numbers,
dial phones, log calls, automate the sending of electronic mail, print envelopes and au-
tomate letter sending. Many contact managers also include \time tracking," the ability
to track \billable hours" by having the computer log and charge standard hourly rates
for the duration of some task. Reports and bills can usually be generated from these
logs.

As with the todo list, we mentioned in Chapter 5 that these capabilities are simple
\add ons" to the Lifestreams system.

8.3.3 The Newton

The Newton represents an \architectural" approach to implementing a personal infor-
mation manager as it includes both a novel hardware and software design. Since the
Newton includes many of the PIM features we have already discussed, we will present
only its novel features here.

We have introduced the the Newton in Chapter 4. Here we will touch on the more
interesting aspects of its software architecture. The most interesting aspect of the
Newton is its storage model. A Newton can have any number of stores; stores usually
represent physical storage such as RAM, a memory card, or a hard drive. Applications
access stores by creating, reading, and writing soups [Com93]. Soups are somewhat
analogous to �les; they are persistent storage structures that can be accessed by any

Chapter 8. Related Work 145

process. Soups are the primary organization scheme for the Newton, which contains no
hierarchical storage model. Users typically search for information rather than statically
organize it.

Each soup contains entries that are made up of typically homogeneous data struc-
tures, with zero or more indexed �elds. For each soup, applications can de�ne a search
interface that allows the Newton's personal assistant (a software functionality avail-
able to the user) to search for arbitrary information. For example, if the user tells the
personal assistant to �nd everything it knows about \Bob Schwartz" then an arbitrary
application can have its data included in the search.

Lifestreams and the Newton are similar in that they use a non-hierarchical storage
model (soups versus the time-ordered stream) and prefer searching to static organi-
zation. They also both include task automation (Lifestreams uses personal agents,
and Newton uses its personal assistant). They di�er in that the Newton doesn't allow
organization schemes, like substreams, to be created, nor does it provide a default or-
ganization scheme for all information. We have suggested in [Fre95] how the Newton
might be altered and bene�t from a Lifestreams like model.

8.3.4 Guy Friday

Guy Friday is a shareware application developed by former Yale undergraduate Matthew
Klein on the Macintosh platform. Guy Friday is an attempt to develop a personal in-
formation manager for unorganized people. Guy Friday was designed to work like
scraps of paper; the user simply jots down notes, phone numbers, etc. on electronic
notes (called \nuggets"). Notes are displayed in an arbitrary and overlapping manner
on the user's screen. To recall a note, the user enters keywords into a dialog box and
the relevant notes are displayed on the screen.

Guy Friday includes two other features, phone dialing and reminders. Phone dialing
works by searching the top-most (selected) note for a phone number and dialing it via
the computer. Reminders are added via a dialog box that ask for a text message, a
date and time, and whether the reminder should occur once, daily, weekly, monthly or
yearly. When the reminder expires, a dialog message is displayed with the text of the
reminder.

Guy Friday and Lifestreams both include a simply way of creating and �ltering
information as well as phone dialing and reminder functions. They di�er in that Guy
Friday contains no organizing framework other than quick searches. They also di�er
in that reminders in Guy Friday are a separate aspect of the system, discrete from the
notes. That is, a nugget can't be a reminder. Reminders can be created and listed,
but do not inhabit the same space as notes and can't be searched for.

Chapter 8. Related Work 146

8.4 Schedulers and Meeting Makers

There are a number of scheduling applications on the market (such as On Technologies'
Meeting Maker XP [Mee94]) that provide the same basic functionality: electronically
scheduling a meeting of n people. The meeting maker scenario is usually: (1) someone
proposes a meeting to the meeting maker along with a list of required participants (2)
the meeting maker (usually via integrated email) asks each participant to accept or
reject the proposed meeting, and (3) the meeting is then either scheduled or canceled
(or perhaps an alternative suggested and a second round begun). The sophistication
of these systems varies but almost all attempt to at least examine existing schedules to
avoid scheduling con
icts. Some systems include complex rule-based logic for proposing
meeting times/places and many systems provide electronic reminders that can be sent
out before a scheduled meeting.

The scheduler or \meeting-maker" is perhaps the canonical example of an impor-
tant functionality (typically implemented in a standalone application) that can be
incorporated into Lifestreams. Lifestreams' agents along with its time-based stream
and integrated email provide a natural setting for implementing schedulers.

8.5 Corporate Document Systems

Corporate document systems fall into the categories of document archive systems,
\groupware" systems, and work
ow technologies (the automation of conventional \paper-
trials" with electronic systems). Our previous discussion of information retrieval covers
the topic of document archive systems, although there are some corporate retrieval sys-
tems that include work
ow and other enhancements. In this section we �rst cover the
predominant groupware platform on the market, Lotus Notes, and then discuss work-

ow in general terms.

8.5.1 Document Systems: Lotus Notes

Lotus NotesTM is perhaps the most successful \workgroup" communications product
on the market. Notes acts both as a company document archive/database and also
facilitates \workgroup" communications among employees. There are several analo-
gies between Lifestreams and Lotus Notes: Notes maintains document collections in
databases and allows custom viewing and �ltering of a particular database via a \view"
(a view is a speci�cation for how to display the documents within a particular database).
Notes also incorporates electronic mail as an integral part of the system. On the surface
this sounds a lot like Lifestreams, however the domain for which Notes is used is quite
di�erent. Why does this matter? Notes is foremost a system for maintaining corporate
documents and information|the users don't generally maintain personal documents
within Notes. As such, Notes databases are statically con�gured and, for example,

Chapter 8. Related Work 147

database �lters aren't created by typical employees but rather by the system admin-
istrator. In contrast, Lifestreams was created to manage an individual's document
collection and allows custom �ltering by the user.

Notes provides several methods of creating collaborative structures. The primary
method of group collaboration is the \shared database." This amounts to a common
area where users can post messages and reply to previous messages. Lifestreams can
accommodate the same structure with shared streams (although we haven't explored
such use of Lifestreams). Notes also includes a work
ow model based on email chains;
that is, the originator of a document supplies a chain of people through which the doc-
ument should pass (possibly getting approval at each point along the way). Lifestreams
can be extended to support this work
ow model via agents. For instance, the path a
document follows can be dynamically supplied by an agent rather than statically sup-
plied by the originator of a message. Con�guring Notes for more advanced groupware
applications such as scheduling, although not impossible, is a far leap.

8.5.2 Work
ow Systems

Because there are a plethora of commercially available work
ow systems, with no clear
leaders in the market, we discuss work
ow systems without reference to a speci�c
product. Several academic systems include work
ow capabilities, namely [MGL+87,
BR93, Bor93b]. Work
ow systems automate information-based tasks within organiza-
tions [Bar95]. Work
ow falls into several categories: automating administrative tasks
(the path of a purchase order through an organization), task monitoring (e.g., how
long employee x takes to complete task y), and mediating less structured tasks (draft
review by a workgroup).

In Chapter 5, we have suggested how Lifestreams, through its agent support and
timed-based storage structure, can be used to support work
ow capabilities.

8.6 New Paradigms

A few systems defy categorization (like Lifestreams) and are best labeled new paradigms.

8.6.1 Memoirs

Memoirs is the system that is closest in philosophy to Lifestreams. Developed by
Lansdale [Lan88a], Memoirs uses chronology as an underlying storage scheme and
search to organize documents. Memoirs uses a \timebase" to display documents in a
collection. The timebase displays a sequence of time (the endpoints being determined
by the user) along with slots that are highlighted to indicate documents. The user can
apply a �lter to the timebase, which leaves only relevant slots highlighted, or perform a
general search that creates a native Macintosh window (like a folder window) with the
relevant documents. Documents are searched via a number of user de�nable attributes,

Chapter 8. Related Work 148

such as color (the Macintosh allows the user to label �les with color), user-added
keywords or assigned icon. Memoirs also includes a separate \diary" which allows the
user to move items in and out of the timebase and add reminders.

Lifestreams and Memoirs di�er in that Lifestreams fully integrates the ideas of
chronology into a single \metaphor," the stream, whereas Memoirs combines a diary
with a timebase. Lifestreams also recognizes the essential feature of content-based
searching. Without it we are still relying on users to remember categorizations (and
create them in the �rst place). Substreams are incorporated into the Lifestreams model
and are not external to the system. Likewise, substreams are \live" and continue to
collect documents as they are added to the system. Lifestreams also incorporates
communication and the ability to summarize.

8.6.2 Dynamic Queries

Shneiderman's dynamic queries [Shn94] combine direct manipulation and database
visualization to allow a user to rapidly �lter information through the use of visual
components such as sliders and buttons. Manipulation of these components results in
the user receiving feedback within 100ms (allowing him to quickly perceive patterns in
the data). Visual queries have been applied to a number of domains such as geographic
database systems and movie databases. Visual queries have also been implemented in
the form of a Unix directory browser [LOS93]. Shneiderman et al found that with
the browser user queries could be \answered more rapidly because users can �lter
out irrelevant information and visually scan the remaining information." The location-
based alternative (i.e., using the Unix from the command line)1 \requires more time
because users must visually scan a much larger set of information." The browser work is
a �rst step, and as Shneiderman et al point out, more work needs to be done integrating
visual queries into our day-to-day applications.

Dynamic queries are an intriguing alternative to boolean searches and with improve-
ments in performance could prove an interesting method of searching over Lifestreams
documents.

8.6.3 LifeLines

LifeLines [PMR+95] is a general technique for visualizing summaries of personal histo-
ries. LifeLines visualizes personal histories by depicting them on a graphical time scale.
LifeLines is particularly appropriate for handling biographical data such as medical or
legal records. For instance, medical conditions can be represented by timelines and
physician consultations can be represented by icons. Plaisant et al claim that the nat-
ural, time-based ordering \allows comparisons and relationships between the quantities
displayed."

1Barreau and Nardi describe DOS as a location-based system, we do the same (for comparison)
with the UNIX �le system.

Chapter 8. Related Work 149

LifeLines suggests an interesting alternative interface to the Lifestreams system;
likewise, LifeLines could use a lifestream as its underlying database.

8.7 Summary | Surveying the Landscape

We now provide a overview of all the systems we've visited in this chapter by compar-
ing them against the essential features we derived in Chapter 1 (transparent storage,
dynamic organization, etc.) along with some additional features that are important to
the performance and usability of the system; for example, it is not only important that
a system allow the user to organize information based on content-based search, but it
is also important that the system index the documents in the collection so that search
can be accomplished quickly.

Applicability to Personal Use. Is the system suitable for personal storage? Many
of the systems we have looked at are intended for group or corporate data, how-
ever, as we have seen, these technologies are now being applied to personal in-
formation systems.

Searchable Content. Can the data in the system be searched based on its content?
As we have seen, systems like the Apple \Find" application allow search, but only
by �le attributes such as �lename, modi�cation dates, and size. In contrast, more

exible systems like the MIT Semantic File System allow searches on document
content.

Indexed Content. Given that the system provides searchable content, does the sys-
tem index the content to improve response time? Previous work has shown that
response time is a crucial factor in search-based systems [Shn94]. Indexing con-
tent (or similar techniques) is mandatory for search in systems that contain more
than one thousand �les or document with today's technology (as we discussed in
Chapter 3).

Transparent Storage. Does the system support transparent storage? The Newton
provides a persistent store and avoids the overhead of naming and explicit storage
while the Macintosh uses a conventional �le and folder metaphor, which requires
naming, the creation of static categories, and explicitly choosing a storage lo-
cation for every document. So what? Providing transparent storage suggests
potential gains for the user, for example, as we discussed in Chapter 1 Mal-
one [Mal83] has shown that the most di�cult aspect of managing information is
choosing a storage location.

Default Data View. If the system does support transparent storage, does it provide
a default way of viewing a set of documents? Our time-ordered stream and Lotus

Chapter 8. Related Work 150

Notes provide default views, while the Newton only provides default views of sub-
sets of its data store via applications (for instance the Newton notes application
provides a default view of \notes" data objects), while WAIS provides no default
view at all. A default view is important. It provides a storage structure that
users can always fall back on and that can help to prevent the \lost document
problem"2 in search-based systems. The default view typically also provides a
convenient way for users to browse new information.

Virtual Directories. Does the system allow virtual collections of information to be
created? Organizational constructs like virtual directories allow users to organize
data in the way it is needed rather than the way it was created.

Persistent Filtering. If virtual collections of data are allowed, do these collection
continue to collect (�lter) new information as it is added to the system? Doing
so allows users to monitor and categorize incoming information automatically.
For instance, Lifestreams allows search results (substreams) to persist, while the
Apple Find application does not.

Data Integration. Does the system support its own internal data model or does it
also integrate external document types? This point may need further illustration.
Guy Friday for instance, uses its own document type, the \nugget." Nuggets
can not be exported (without the user explicitly copying its data to another
document) nor can Guy Friday incorporate other document types (such as a
Microsoft Word document). The Semantic File System, on the other hand, uses
transducers to provide an extensible method of handling a variety of document
types.

Communication Integration. Is communication integrated into the system? That
is, is there a convenient method of exchanging data or documents with others?
For instance Lifestreams includes a transfer operation while Guy Friday has no
built in method of communication.

Reminders. Does the system allow for the creation of reminders and scheduling
information? Barreau and Nardi [BN95] have shown that reminding plays a
critical role in typical computer use.

First-class Reminders. If the system has a notion of a reminder, are the reminders
�rst class? That is, can we operate on the reminder like any other document in
the system? Are reminders searchable? Can we send reminders to other users?
Lifestreams provides all these capabilities while systems like Guy Friday provide
reminding that is separate from the data model of the system (e.g., reminders
are not nuggets).

2The problem of having a document in the system that can't be easily found.

Chapter 8. Related Work 151

Task Automation. Can tasks be automated by the user? Does the system include
an internal scripting language or some other means of automating tasks?

Extrapolation. Can the system be extended to include new functionalities beyond
its core capabilities?

Summaries. Does the system have the ability to provide a summary or overview of
a data collection? This capability often allows users to quickly assimilate data,
draw trends from time-dependent data, or generate overview documents such as
monthly reports or billing data.

We now present a feature comparison over the landscape of the systems we have
surveyed in Table 8.1. This table is particularly interesting because when analyzing it
for common patterns we �nd the software world in a rather random state. One might
expect that the table would neatly partition itself into a small set of similar classes.
Instead we �nd that each system incorporates some aspect of the total landscape of
features, but that on a case by case basis, the assignment of features to systems are
somewhat random. We believe this makes a strong case for the search for a uni�ed
framework that naturally accommodates all features. We note that Lifestreams ful�lls
this role.

Chapter 8. Related Work 152

S
y
st
e
m

P
er

so
na

lU
se

Se
ar

ch
ab

le
C
on

te
nt

In
de

xe
d

C
on

te
nt

T
ra

ns
pa

re
nt

St
or

ag
e

D
ef
au

lt
D
at

a
V
ie
w

V
ir
tu

al
D
ir
ec

to
ri
es

P
er

si
st
en

t
F
ilt

er
in

g

D
at

a
In

te
gr

at
io
n

C
om

m
un

ic
at

io
n

In
te

gr
at

io
n

R
em

in
de

rs

F
ir
st
-c
la
ss

R
em

in
de

rs

T
as

k
A
ut

om
at

io
n

E
xt

ra
po

la
ti
on

Su
m

m
ar

ie
s

A
p
p
le
F
in
d

�

�

�

�

C
on
ta
ct
M
an
ag
er

�

�

�

�

�

�

D
y
n
am
ic
Q
u
er
ie
s

�

�

�

�

E
m
ac
s

�

�

�

�

�

�

�

�

E
n
ab
le
d
M
ai
l

�

�

�

�

�

�

�

F
G
P

�

�

�

�

�

G
li
m
p
se

�

�

�

�

�

�

�

�

G
u
y
F
ri
d
ay

�

�

�

�

�

�

In
fo
L
en
s

�

�

�

�

�

�

�

�

�

M
em
oi
rs

�

�

�

�

�

�

�

M
IT
S
F
S

�

�

�

�

�

�

L
if
eL
in
es

�

�

�

�

L
ot
u
s
N
ot
es

�

�

�

�

�

�

�

�

�

�

N
ew
to
n

�

�

�

�

�

�

�

�

M
ee
ti
n
g
M
ak
er

�

�

�

�

T
ap
es
tr
y

�

�

�

�

�

�

�

�

T
oD
o
L
is
t

�

�

�

�

�

�

�

W
A
IS

�

�

�

�

�

�

�

W
or
k

ow

�

�

�

�

�

L
if
es
tr
ea
m
s

�

�

�

�

�

�

�

�

�

�

�

�

�

�

T
ab
le
8.
1:
C
o
m
p
a
ri
so
n
fe
a
tu
re
s
o
v
e
r
la
n
d
sc
a
p
e
o
f
sy
st
e
m
s.
�
in
d
ic
at
es
th
e
p
re
se
n
ce
o
f
th
e
ca
p
a
b
il
it
y,
�
in
d
ic
a
te
s

th
at
th
e
ca
p
ab
il
it
y
is
su
p
p
or
te
d
in
a
li
m
it
ed
w
ay
,
or
th
at
th
e
ca
p
ab
il
it
y
ca
n
,
in
p
ri
n
ci
p
le
,
b
e
su
p
p
o
rt
ed
.
A
n
em
p
ty
�
el
d

in
th
e
ta
b
le
si
gn
i�
es
th
e
la
ck
of
th
at
fe
at
u
re
in
th
e
sy
st
em
,
or
a
fe
at
u
re
th
at
is
n
ot
a
p
p
li
ca
b
le
to
th
e
sy
st
em
.

Chapter 9

Conclusions

We have shown Lifestreams to be an intriguing and novel system for managing elec-
tronic information and events. By providing a common time-based storage structure
organized on demand, Lifestreams uni�es existing applications and can be extrapolated
to new valuable behaviors. Moreover, we have developed a research prototype that has
surpassed being a simple \proof of concept" and is now thought of as an indispensable
tool by the handful of local research group members that use it. In summary, we have
shown that Lifestreams holds the following advantages over current software systems:

� Lifestreams transparently stores information, allowing users to concentrate on
the task at hand rather than the name, folder, disk, machine, or network of a
particular data item.

� Lifestreams stores information at the time it is created and organizes information
in the context it is needed. This reduces the overhead of creating information,
improves recall, and facilitates retrieval.

� Lifestreams is the �rst general system to treat reminders as �rst-class entities
and to provide a metaphor that naturally accommodates reminding.

� Lifestreams solves the conceptual \data archiving problem" inherent in desktop
systems by moving data out of view as it is no longer needed, yet maintaining it
for future retrieval.

� Lifestreams provides new opportunity for users to exploit relationships and global
patterns that exist in document collections by providing architectural framework
for creating executive summaries and overviews.

We believe Lifestreams has a promising future, however the utility of Lifestreams
can only be determined through long term study, use, and user acceptance. On this
path, there are many avenues for future work. We plan to continue Lifestreams work

153

Chapter 9. Conclusions 154

at Yale and there has been signi�cant interest from both the research and commercial
communities. Already Lifestreams has served as a foundation for three undergraduate
projects at Yale. While this dissertation motivated the architecture and demonstrated
its usefulness, future work remains in many areas including, but not limited to, im-
proved information retrieval and expert database techniques, scalability, availability,
security, user interface design, as well as further study of utility and usability.

Bibliography

[All83] James F. Allen. Maintaining knowledge about temporal intervals. Com-
munications of the ACM, 26(11):832{843, 1983.

[Aza95] Beth Azar. Meet `bob': psychology's answer to easy computing. APA
Monitor, April 1995.

[Bar95] Doug Bartholomew. A better way to work. Information Week, pages 32{40,
September 1995.

[BF92] N. Borenstein and N. Freed. MIME (Multipurpose Internet Mail Exten-
sions) part one: Mechanisms for specifying and describing the format of
internet message bodies, June 1992.

[BFJ+95] Martin G. Brown, Jonathan T. Foote, Gareth J. F. Jones, Karen Sparck
Jones, and Steve J. Young. Automatic content-based retrieval of broadcast
news. In ACM Multimedia 95 - Electronic Proceedings, San Francisco, CA.,
1995.

[BH94] B. Bederson and J. Hollan. Pad++: A zooming graphical interface for
exploring alternate interface physics. In ACM UIST, 1994.

[BN95] Deborah Barreau and Bonnie A. Nardi. Finding and reminding: File orga-
nization from the desktop. In SIGCHI Bulletin. SIGCHI, July 1995.

[Bor] N.S. Borenstein. Multimedia Applications development with the Andrew
Tool Kit.

[Bor93a] N. Borenstein. A user agent con�guration mechanism for multimedia mail
format information, March 1993.

[Bor93b] Nathaniel S. Borenstein. Email with a mind of its own: The safe-tcl lan-
guage for enabled mail, Nov 1993.

[BR93] Nathaniel Borenstein and Marshall T. Rose. MIME extensions for mail-
enabled applications: application/Safe-Tcl and multipart/enabled-mail,
Nov 1993.

155

BIBLIOGRAPHY 156

[Car82] J. M. Carroll. Learning, using and designing �lenames and command
paradigms. Behaviour & Info Tech, 1(4):327{346, 1982.

[CDN88] John P. Chin, Virginia A Diehl, and Kent L. Norman. Development of a
tool measuring user satisfaction of the human-computer interface. Technical
report, Department of Psychology, University of Maryland, College Park,
MD 20742, 1988.

[CFFG96] Nicholas Carriero, Scott Fertig, Eric Freeman, and David Gelernter. Life-
streams: Bigger than Elvis. Technical Report 1098, Yale University De-
partment of Computer Science, March 1996.

[CG89] Nicholas Carriero and David Gelernter. Linda in context. Communications
of the ACM, April 1989.

[Col82] I. Cole. Human aspects of o�ce �ling: Implications for the electronic of-
�ce. In Proceedings of the HUMAN FACTORS SOCIETY|26th ANNUAL
MEETING, 1982.

[Com87] Apple Computer. The knowledge navigator, 1987.

[Com93] Apple Computer. The Newton Programmer's Guide. Apple Computer,
1993.

[Coo95] Terry Cook. Do you know where your data are? In Technology Review.
MIT, January 1995.

[Cor96] Diba Corporation. Vision white paper, 1996.

[Dat86] C. J. Date. Database Systems. Addison-Wesley, 1986.

[DL83] S.T. Dumais and T.K. Landauer. Using examples to describe categorizes.
CHI'83, 1983.

[Dum96] Susan T. Dumais. Personal communication, Jan 1996.

[Eri91] Thomas Erickson. Designing a desktop information system: Observations
and issues. ACM CHI'91, 1991.

[Eri96] Thomas Erickson. The design and long-term use of a personal electronic
notebook: A re
ective analysis. CHI'96, 1996.

[FE92] William B. Frakes and Ricardo Baeza-Yates (Editors). Information Re-
trieval: Data Structures and Algorithms. Prentice-Hall, 1992.

[Flu] Christian Fluhr. Multilingual information retrieval. In Survey of the State
of the Art in Human Language Technology, Varile and Zampolli (Eds.),
National Science Foundation and the European Commission.

BIBLIOGRAPHY 157

[Fre95] Eric Freeman. Lifestreams for the Newton. PDA Developer, 3(4):42{45,
July/August 1995.

[Gat96] Bill Gates. Keynote address, electronic mail association, Jan 1996.

[Gel91] David Gelernter. Mirror Worlds. Oxford University Press, 1991.

[Gel94] David Gelernter. The cyber-road not taken. The Washington Post, April
1994.

[GJSO91] David K. Gi�ord, Pierre Jouvelot, Mark Sheldon, and James O'Toole. Se-
mantic �le systems. In 13th ACM Symposium on Operating Systems Prin-
ciples, October 1991.

[GKM95] Burra Gopal, Paul Klark, and Udi Manber. Combining browsing and
searching. Technical report, Department of Computer Science, University
of Arizona, October 1995.

[GNOT92] David Goldberg, David Nicols, Brian M. Oki, and Douglas Terry. Using
collaborative �ltering to weave an information tapestry. Communications
of the ACM, 35(12):61{70, 1992.

[Hal] Per-Kristian Halvorsen. Document retrieval: Overview. In Survey of
the State of the Art in Human Language Technology, Varile and Zampolli
(Eds.), National Science Foundation and the European Commission.

[Hil95] Ed Hilpert. Human-computer interaction overview. IBM Personal Systems,
September 1995.

[HN93] B. D. Harper and L. K. Norman. Improving user satisfaction: The ques-
tionnaire for user interaction satisfaction version 5.5. In Proceedings of the
1st Annual Mid-Atlantic Human Factors Conference, pages 224{228, 1993.

[HS94] M. Holsheimer and A.P.J.M. Sibes. Data mining: The search for knowledge
in databases. Technical Report 9406, Cenrum voor Wiskunde en Informat-
ica, Amsterdam, The Netherlands, 1994.

[Hup96] Susanne Christine Hupfer. Turingware: An Integrated Approach to Collab-
orative Computing. PhD thesis, Yale University, New Haven, Connecticut,
1996.

[Hut95] John Hutchins. Introduction to text summarization. In Dagstuhl Seminar
Report, IBFI, Dagstuhl, 1995, 1995.

[JD83] William P. Jones and S.T. Dumais. The spatial metaphor: Experimental
tests of reference by location versus name. ACM Transactions on O�ce
Information Systems, 4(1):43{63, 1983.

BIBLIOGRAPHY 158

[Jon] Karen Sparck Jones. Document retrieval: Summarization. In Survey of
the State of the Art in Human Language Technology, Varile and Zampolli
(Eds.), National Science Foundation and the European Commission.

[Kah91] Brewster Kahle. An information system for corporate users: Wide area in-
formation servers. Technical report, Thinking Machines Coporation, April
1991.

[Kap91] Mitchell Kapor. A software design manifesto. Dr. Dobbs Journal, 1991.

[Kay90] Alan Kay. User interface: A personal view. In The Art of Human-Computer
Interface Design (Ed.) Brenda Laurel, 1990.

[KM95] Paul Klark and Udi Manber. Developing a personal internet assistant. In
ED-MEDIA '95 World conference on educational multimedia and hyperme-
dia, June 1995.

[KM96] Judith L. Klavans and Kathleen McKeown. Domain independent summa-
rization: Project description, 1996.

[Lan88a] M. Lansdale. Memoirs: A personal multimedia information system. Per-
sonal Information Systems: Business Applications, P.J. Thomas (Ed.),
1988.

[Lan88b] M. Lansdale. The psychology of personal information management. Applied
Ergonomics, March 1988.

[LOS93] H. Liao, M. Osada, and Ben Shneiderman. Browsing Unix directories with
dynamic queries: An analytical and experimental evaluation. Proc. Ninth
Japanese Symp. Human Interface, pages 95{98, 1993.

[LS96] Andrew Larratt-Smith. A calendar interface for lifestreams. Technical
report, Senior Project, Department of Computer Science, Yale University,
May 1996.

[Mal83] Thomas W. Malone. How do people organize their desks? Implications
for the design of o�ce information systems. ACM Transactions on O�ce
Systems, 1(1):99{112, January 1983.

[Mee94] On Technology, Corp., Cambridge, MA. Meeting Maker XP Version 2.0
User's Guide, 1990-1994.

[MGL+87] Thomas W. Malone, Kenneth R. Grant, Kum-Yew Lai, Ramana Rao,
and David Rosenblitt. Semistructured messages are surprisingly useful for
computer-supported coordination. ACM Transactions on O�ce Informa-
tion Systems, 5(2):115{131, April 1987.

BIBLIOGRAPHY 159

[MH92] J.T. Mayes and N.V. Hammond. Why is it so hard to learn to use comput-
ers? DTI \Usability Now" Report, 1992.

[MSW92] Richard Mander, Gitta Salomon, and Yin Yin Wong. The `Pile' metaphor
for supporting casual organization of information. ACM CHI'92 Proceed-
ings, pages 627{634, May 1992.

[MW93] Udi Manber and Sun Wu. Glimpse: A tool to search through entire �le
systems. Technical Report 093-34, Department of Computer Science, The
University of Arizona, October 1993.

[Nel90] Theodor Nelson. The right way to think about software design. In The Art
of Human-Computer Interface Design (Ed.) Brenda Laurel, 1990.

[Nie93] J. Nielsen. Usability Engineering. Academic Press, 1993.

[Nor90] Kent L. Norman. Questionnaire for user interaction satisfaction. Maryland
Imagination, October 1990.

[Ous94] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[Ove95] Overview. Summarizing text for intelligent communication. In Dagstuhl
Seminar Report, IBFI, Dagstuhl, 1995, 1995.

[Pem96] Steven Pemberton. Email workshop. In CHI'96, Vancouver, BC, 1996.

[Per96] Gary Perlman. Practical Usability Evaluation, Tutorial Notes. Conference
on Human Factors in Computing Systems, Vancouver, BC, 1996.

[PMR+95] Catherine Plaisant, Brett Milash, Anne Rose, Seth Wido�, and Ben
Shneiderman. Lifelines: Visualizing personal histories. Technical Report
787, Human-Computer Interaction Laboratory, Center for Automation Re-
search, Department of Computer Science, University of Maryland, Septem-
ber 1995.

[Por80] M.F. Porter. An algorithm for su�x stripping. Program, 14(34):130{137,
Jul 1980.

[Shn92] Ben Shneiderman. Designing the User Interface: Strategies for E�ective
Human-Computer Interaction. Addison-Wesley Publishing Company, 1992.

[Shn94] Ben Shneiderman. Dynamic queries for visual information seeking. IEEE
Software, pages 70{77, November 1994.

[SLR84] Praveen Seshadr, Miron Livny, and Raghu Ramakrishnan. Sequence query
processing. In ACM SIGMOD Conference on Data Management, 1984.

BIBLIOGRAPHY 160

[Sno90] Richard T. Snodgrass. Temporal databases - status and research directions.
SIGMOD Record, 19(4):83{89, 1990.

[SSU95] Avi Silberschatz, Mike Stonebraker, and Je� Ullman. Database research:
Achievements and opportunities into the 21st century. Technical report,
Report of an NSF Workshop on the Future of Database Systems Research,
May 1995.

[Ste91] Richard Stevens. Distributed Programming. Addison Wesley, 1991.

[Tuf90] Edward Tufte. Envisioning Information. Graphics Press, 1990.

[War95] Blake Ward. ToDo List: A To Do List Manager. LandWare, Software for
Terra Firma., Budd Lake, NJ, 1995.

[Way95] Peter Wayner. Agents Unleashed: A public domain look at agent technology.
AP Professional, 1995.

[Wei91] Mark Weiser. The computer for the twenty-�rst century. Scienti�c Amer-
ican, September 1991.

[WM94] Sun Wu and Udi Manber. A fast algorithm for multi-pattern searching.
Technical report, Department of Computer Science, The University of Ari-
zona, May 1994.

[WS96] Steve Whittaker and Candace Sidner. Email overload: exploring personal
information management of email. CHI'96, 1996.

Appendix A

Lifestreams Primitives

.

func extract(int docid, char attr)
begin

document DS;

rd ("document", docid, ? DS);
return ds extract(DS, attr);

end

proc replace(int docid, char attr, poly val)
begin

document DS;

in ("document", docid, ? DS);
ds replace (DS, attr, val);
out ("document", docid, DS);

end

Figure A.1: The complete stream primitives.

161

Appendix A. Lifestreams Primitives 162

.

proc read(int sid, int docindex, document DS)
begin

int docid;

rd("streamdoc", sid, docindex, ? docid);
rd("document", docid, ? DS);
return DS;

end

proc write(int sid, int docindex, document DS)
begin

document oldDS;
int created;

rd("streamdoc", sid, docindex, ? docid);
in("document", docid, ? oldDS);
created := ds extract(oldDS, "created");

ds replace(DS, "created", created);
out("document", docid, ? DS);

end

proc append(int sid, document DS)
begin

int docid, docindex, filterindex, valid;
int agentnum, i;
char agentcode;

valid := (extract(sid, docid, "created") >= now)
if (valid) then

begin
in("documenthead", ? docid);
out("documenthead", docid + 1);
in("stream", sid, ? docindex, ? subhead, ? agentnum);
out("stream", sid, docindex + 1, subhead, agentnum);
out("document", docid, DS);
out("streamdoc", sid, docindex, docid);
for(i := 0; i < agentnum; i++)

begin
rd("agent", i, ? agentcode);
eval(agentcode(sid, docindex));

end
return docindex;

end
end

Figure A.2: The complete stream primitives (cont).

Appendix A. Lifestreams Primitives 163

.

proc filter(int sid, int pid, char query)
begin

int docnum, subnum;
in("stream", sid, ? docnum, ? subnum);
out("stream", sid, docnum, subnum + 1);
out("substream", sid, subnum, pid, query);
return subnum;

end

proc retrieve(int sid, int subid)
begin

char query;
int docnum, subnum, doc, pid;
list docs, substream := ();

rd("substream", sid, subid, ? pid, ? query);
rd("stream", sid, ? docnum, ? subnum);
if (pid == 0)
docs := iota(docnum);

else

docs := retrieve(sid, pid);
foreach doc in docs

if (match(sid, doc, query))
substream := cons (substream, doc);

return sort(sid, substream, "created");
end

proc add agent(int sid, char agent)
begin

int dochead, subhead, agentid;
in("stream", sid, ? dochead, ? subhead, ? agentid);
out("stream", sid, dochead, subhead, agentid + 1);
out("agent", sid, agentid, agent);
return agentid;

lifestreams := filter(sid, 0, "*");

Figure A.3: The complete stream primitives (cont).

Appendix B

User Questionnaire

Lifestreams User Questionnaire

Name of hardware: Unix version

Name of software: Lifestreams

Identification number: _______________________

Age: ______

Sex: __ male __ female

PART 1: Type of System to be Rated

1.1 How long have you worked on this system?

__ less than 1 hour __ 6 months to less than 1 year

__ 1 hour to less than 1 day __ 1 year to less than 2 years

__ 1 day to less than 1 week __ 2 years to less than 3 years

__ 1 week to less than 1 month __ 3 years or more

__ 1 month to less than 6 months

1.2 On the average, how much time do you spend per week on this system?

__ less than one hour __ 4 to less than 10 hours

__ one to less than 4 hours __ over 10 hours

PART 2: Past Experience

2.1 How many different types of computer systems (e. g., main frames and

personal computers) have you worked with?

164

Appendix B. User Questionnaire 165

__ none __ 3-4

__ 1 __ 5-6

__ 2 __ more than 6

PART 3: Overall User Reactions

Please circle the numbers which most appropriately reflect your impressions

about using this computer system. Not Applicable = NA.

3.1 Overall reactions to the system:

terrible wonderful

1 2 3 4 5 6 7 8 9 NA

3.2 frustrating satisfying

1 2 3 4 5 6 7 8 9 NA

3.3

dull stimulating

1 2 3 4 5 6 7 8 9 NA

3.4

difficult easy

1 2 3 4 5 6 7 8 9 NA

3.5

inadequate power adequate power

1 2 3 4 5 6 7 8 9 NA

3.6 rigid flexible

1 2 3 4 5 6 7 8 9 NA

PART 4: Screen

4.3 Were the screen layouts helpful?

never always

1 2 3 4 5 6 7 8 9 NA

4.3.1 Amount of information that can be displayed on screen

inadequate adequate

1 2 3 4 5 6 7 8 9 NA

4.3.2 Arrangement of information on screen

illogical logical

Appendix B. User Questionnaire 166

1 2 3 4 5 6 7 8 9 NA

Please leave any comments that you have about the screens here:

PART 6: Learning

6.1 Learning to operate the system

difficult easy

1 2 3 4 5 6 7 8 9 NA

6.1.1 Getting started

difficult easy

1 2 3 4 5 6 7 8 9 NA

6.1.2 Learning advanced features

difficult easy

1 2 3 4 5 6 7 8 9 NA

6.1.3 Time to learn to use the system

slow fast

1 2 3 4 5 6 7 8 9 NA

Please leave any comments that you have about learning the system here:

PART 7: System Capabilities

7.1 System speed

too slow fast enough

Appendix B. User Questionnaire 167

1 2 3 4 5 6 7 8 9 NA

7.1.1 Response time for most operations

too slow fast enough

1 2 3 4 5 6 7 8 9 NA

7.1.2 Rate information is displayed

too slow fast enough

1 2 3 4 5 6 7 8 9 NA

7.2 How reliable is the system?

unreliable reliable

1 2 3 4 5 6 7 8 9 NA

7.2.1 Operations are

undependable dependable

1 2 3 4 5 6 7 8 9 NA

7.2.2 System failures occur

frequently seldom

1 2 3 4 5 6 7 8 9 NA

7.5 Are the needs of both experienced and inexperienced users taken

into consideration?

never always

1 2 3 4 5 6 7 8 9 NA

7.5.1 Novices can accomplish tasks knowing only a few commands

with difficulty easily

1 2 3 4 5 6 7 8 9 NA

7.5.2 Experts can use features/shortcuts

with difficulty easily

1 2 3 4 5 6 7 8 9 NA

Please leave any comments that you have about the system capabilities here:

Appendix B. User Questionnaire 168

Part 8: General Questions

What was your initial reaction to Lifestreams upon hearing the concept,

seeing the system or first using the system?

What features of Lifestreams do you find most useful when compared with

your previous computing environment(s)?

What features of your previous computing environment do you miss when

using Lifestreams?

Do you find any aspect of Lifestreams difficult or confusing?

Appendix B. User Questionnaire 169

Does Lifestreams make any aspect of managing information less (or more)

confusing (say, as compared to the way you normally do things)?

Does Lifestreams in any way change the way you thought about using your

computer or managing your information? If so, how?

Did you quickly understand the "receding stream" user interface? Does it

make sense to you?

[a] Was it an effective interface to your stream of documents? That is,

does it allow you to carry out the operations you needed to?

[b] Do the animations help you to understand the effect of the various

operations? For instance creating a new document, the arrival of

a new document, sending out a document, creating a substream?

Appendix B. User Questionnaire 170

Do you like the fact that all your documents (email, TeX documents,

pictures, bookmarks, etc.) were stored in the same stream? Or do you

find it easier to maintain them separately in your file system, email

application, etc.?

Do you find chronology (the time-based stream) a useful method of storing and

managing information?

[a] Does chronology allow you to concentrate on current information

while older information was moved to the background? Or would you

prefer some other default organization?

[b] Does chronology help you locate older information (say, because you

remember the approximate time when that document was created)?

Appendix B. User Questionnaire 171

[c] Do you want a delete button in your lifestream? If so,

why?

Do you like that fact that you don't have to file and name new documents?

Or do you prefer to name them and store them in a directory?

Do you find substreams useful for locating information?

[a] What about for maintaining collections of information over time?

[b] Were you usually able to find what you were looking for?

If not, was the system frustrating in this respect?

Appendix B. User Questionnaire 172

[c] Do you typically keep substreams around for future use, or do you

remove them soon after they are created? Or do you do a bit of both?

Do you make use of the reminding functionality of the future part of the

stream?

[a] Does this "metaphor" for reminding make sense to you?

__

Do you use any "squishes"? Which ones? How do they help you?

Appendix B. User Questionnaire 173

What features or changes would you like to see in Lifestreams?

If Lifestreams were a robust and supported piece of software would you

continue using it?
