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Abstract
Though attractive as a model for elastic on-demand service, cloud
computing solutions based on existing hypervisors cannot guaran-
tee that the provider will service a user’s requests correctly, and
will not leak sensitive information to unauthorized parties. We in-
troduce CertiKOS (Certified Kit Operating System), a hypervi-
sor architecture that leverages formal certification to ensure cor-
rectness and counter information leakage in cloud computing. Cer-
tiKOS isolates guest applications not only from each other but from
provider-controlled resource management mechanisms. The ker-
nel’s API gives untrusted, provider-supplied management software
control over allocation and delegation of resources such as memory
and I/O devices, but prohibits management code from accessing a
guest’s memory or other resources while in use, or from interfering
with a guest’s execution except through clean resource revocation.
CertiKOS represents an effort to apply recent advances in certified
software design to a ground-up design of a modular and evolvable
certified kernel. Through machine-checkable proof certificates and
runtime monitoring, CertiKOS aims to offer users the assurance of
correct and leak-free execution of their cloud services.

Categories and Subject Descriptors D.4.6 [Operating Systems]:
Security and Protection; D.2.4 [Software Engineering]: Soft-
ware/Program Verification

General Terms Design, Security, Verification

1. Introduction
Cloud computing offers a popular model for providers to deploy
computing infrastructure and applications on-demand. Running
sensitive applications or storing private information in the cloud
also poses serious security concerns, however [6]. The risk of infor-
mation leakage hampers adoption of the cloud model. In addition
to external threats such as attacks from other customers on a multi-
tenant platform [19], cloud servers also face internal attackers. A
malicious operator with access to the provider’s management soft-
ware, or malware targeting hypervisor vulnerabilities [26, 7], can
take control of the hypervisor to inspect or manipulate hosted guest
computations. Thus, current cloud architectures require users to
place high and perhaps unwarranted levels of trust in the operators
and hypervisor software responsible for hosting their services.
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We propose a proof-of-concept certified kernel, CertiKOS, as a new
trusted foundation for cloud computing. CertiKOS isolates guest
services not only from each other, but also from the provider’s re-
source management facilities. In current hypervisor architectures,
the management facility is a trusted operating system controlled
by the provider—e.g., Xen’s Dom0—which has complete access
to the private information of any guest. Thus a compromised or a
malicious provider can violate both the correctness and privacy of
a guest computation. CertiKOS treats the provider’s resource man-
agement facility as just another client, however. The management
facility has the special privileges necessary to set resource man-
agement policies and delegate resources, but not to access those
delegated resources while in use by clients. To guarantee that Cer-
tiKOS correctly implements this isolation, CertiKOS itself will be
certified using modern formal tools to satisfy both correctness and
information security properties. By using a machine-checkable for-
mal proof to certify a kernel’s correctness, together with standard
TPM hardware attesting that the provider’s system is actually run-
ning a formally certified version of CertiKOS, the provider’s clients
can gain high confidence of the correctness and security of their
computations and information in the cloud.

CertiKOS represents a minimalistic design driven by the resource
requirements of applications in a cloud environment. The current
version of CertiKOS handles the delegation only of CPU cores,
RAM, disk, and network I/O. CertiKOS offers privacy guarantees
for each of these types of delegated resources. Through hardware-
based virtualization [3, 1], CertiKOS also supports transparent iso-
lation and resource management, supporting legacy OSes as clients.

The CertiKOS design leverages recent advances in certified soft-
ware [23]. We organize CertiKOS as a set of certified modules,
applying domain-specific logics and OCAP [10] to link separately
certified modules into a complete certified kernel. As CertiKOS
handles only resource delegation and isolation, it can be made small
and thus feasible for certification. CertiKOS is composed of basic
modules such as process management, memory management, net-
work and disk I/O, and isolation and delegation components.

This paper makes the following contributions. First, we present
a new architecture for countering information leakage in a cloud
computing environment, particularly for defending against mali-
cious service providers. Second, by separating resource delegation
from resource management, CertiKOS treats the resource manage-
ment facility as an untrusted client applications, preventing man-
agement software from accessing client spaces. Third, CertiKOS
handles the main types of resources present in cloud environments,
and can be easily extended to support flexible resource usage po-
lices and provider business models. Fourth, CertiKOS introduces
the first kernel architecture designed from the ground up for mod-
ular certification, Most importantly, CertiKOS enables end users to
share the benefits of cloud computing while gaining confidence that
their information will not be leaked or tampered with.



2. Motivation and Related Work
Companies are increasingly turning toward cloud providers, such
as Amazon EC2, Salesforce CRM, and Rackspace, to host their in-
formation, applications, and IT services. In the current architecture,
cloud service providers and their data center operators have full
control over the machines hosting customers’ information and ap-
plications, and can access customers’ transactions and data at will.
Service providers offer informal assurances that they will protect
the integrity and privacy of customers’ information and computa-
tions, but customers have limited means of ensuring that providers
actually offer the claimed levels of security. Even assuming the
provider and data center operators are normally trustworthy, ex-
ternal attackers may mount attacks from other hosted computa-
tions [19]. Worse, internal attackers or malware targeting hypervi-
sor vulnerabilities [26, 7] can take advantage of the provider’s man-
agement facility to access client information or tamper with guest
computations. The cloud computing model would clearly benefit
from a mechanism to protect clients’ information and computations
both from each other and from the management facility, while pre-
serving the advantages of elastic, on-demand resource provisioning
that make cloud environments attractive.

Related Work The security of hypervisors and virtual machine
monitors is a well-researched topic [21, 25, 4], but traditional hy-
pervisors cannot protect clients from cloud service providers. A
hardware-based Trusted Platform Module (TPM) [24] can attest
that a machine is running a particular trusted cloud kernel or hyper-
visor [12, 22], but the size and complexity of modern hypervisors
makes it difficult to guarantee and verify their correctness.

Exokernel [9] supports user-level management of physical re-
sources, but is not concerned with information security, and leaks
extensive resource management/allocation information to all user
space code. NoHype [14] extends the CPU architecture, removing
the hypervisor layer to protect a guest OS, but is not applicable to
current commodity processors.

Information Flow Control (IFC) enables the explicit labeling of
information and controls its propagation. Asbestos [8] and HiS-
tar [28] are operating systems employing IFC to enforce precise
information security policies. These kernels are not formally cer-
tified, however, and must simply be trusted to enforce information
flow control correctly. Additionally, these operating systems do not
address threats such as timing side-channels, which represent in-
creasing risks in cloud environments [19].

Singularity [13] implements its base kernel in a typesafe lan-
guage, but its semantic correctness remains merely an assumption.
The seL4 project [15] demonstrated that it is possible to verify a
nontrivially-sized microkernel. However, the kernel’s certification
is limited: e.g., the virtual memory manager is left uncertified. With
recent advances in certified software [23, 10], it has become practi-
cal to develop a fully-certified OS kernel. CertiKOS is designed to
leverage and showcase these certification techniques.

3. The Kernel Design
Figure 1 illustrates the architecture of CertiKOS. The design cur-
rently handles only the most common types of resources in cloud
environments: CPU cores for computation, RAM and disk storage,
and network controllers for communication. CertiKOS implements
a low-level layer of abstraction over physical resources. Both the
provider’s resource management facilities and cloud customers’
software execute atop this kernel, which protects guests from each
other and from the provider’s management software. The rest of
this section highlights relevant design details and rationale.
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Figure 1. Overview of CertiKOS

3.1 Trust Model

We leave physical attacks out of scope, assuming that hardware is
trusted and physically well-protected, a reasonable assumption in
data centers designed for security. End users establish trust in Cer-
tiKOS via two mechanisms: by verifying the static correctness of
the CertiKOS kernel, and by verifying its correct deployment at
runtime. We will apply recent advances in certified software to pro-
duce a formal, machine-checkable proof of the correctness of the
kernel’s resource delegation and isolation properties. By distribut-
ing these formal proofs with CertiKOS, end users can confirm its
security without trusting the kernel developer. The user relies on a
standard hardware-based root of trust, such as a TPM [24], to at-
test that the cloud hardware is running the formally certified kernel.
We assume that the provider’s management software and all guest
software are untrusted, and may be compromised or malicious.

3.2 Design Goals and Rationale

The main design principle underlying CertiKOS is to separate high-
level resource management software from low-level resource del-
egation and protection mechanisms. CertiKOS separates the tradi-
tional resource management mechanisms implemented by existing
hypervisors, such as Xen’s Dom0, into two trust levels: a certi-
fied low-level layer implementing only minimal resource delega-
tion and protection mechanisms, and a higher-level resource man-
agement layer, which is trusted in conventional hypervisors but un-
trusted in CertiKOS. The certified kernel’s sole purpose is to im-
plement the resource delegation policies specified by the untrusted,
server-provided resource management software, while protecting
the computation integrity and information security of cloud guests
from each other and from the provider’s management software.

Since management and guest software are equally untrusted by the
kernel, the kernel implements isolation mechanisms ensuring that
each untrusted domain has access only to its own resources. To im-
plement this isolation, CertiKOS maintains ownership records for
all hardware resources. When an end user requests cloud resources,
the provider’s management software allocates the resources re-
quested by the client, then uses CertiKOS’s resource management
interface to delegate the resources to the client’s execution. This
resource management interface, accessible only by the provider-
controlled management software, allows the provider to update the
CertiKOS’s resource ownership records by reassigning ownership
of specific resources to the client. For example, when the manage-
ment software starts a hosted client, it might use the CertiKOS man-
agement interface to assign a particular set of CPU cores, a particu-
lar physical memory range, a particular disk partition, and a partic-
ular network interface controller (NIC) to the client. This manage-
ment interface is designed—and certified—to prevent information
leaks. The provider’s management software can later revoke mem-
ory or disk storage it assigned the client, for example, but the kernel



guarantees that the reassigned storage is appropriately “scrubbed”
before being returned to provider control.

3.3 Resource Abstraction and Delegation

Cloud users primarily require three types of resources: computa-
tion, storage (RAM and disk), and networking. CertiKOS provides
interfaces to the provider’s resource management layer to assign
and delegate access to these resources, but once assigned, the ker-
nel exposes the assigned resources directly to the current owner,
with minimal virtualization or abstraction in the kernel.

The CertiKOS kernel implements no dynamic resource scheduling,
such as multiplexing a single CPU core among multiple guests, as
current VMs often do. Instead, it relies on the provider’s untrusted
resource management code to perform any necessary resource al-
location and scheduling at relatively coarse granularity. This de-
sign principle relies on the fact that modern server hardware usu-
ally provides the relevant resources—memory, CPU cores, and real
or hardware-virtualized NICs—in sufficient number to make spa-
tial partitioning feasible. We expect CertiKOS’s focus on spatial
rather than temporal partitioning also to increase the architecture’s
resistance to side-channel attacks in the cloud [19].

CPU Cores: CertiKOS allocates CPU resources spatially, at core
granularity. In the current design, CertiKOS simply assigns one
guest to each core, though future extensions could allocate CPUs
more flexibly. CertiKOS provides interfaces for management soft-
ware to allocate CPU cores to clients and revoke them.

RAM and Disks: CertiKOS abstracts both RAM and disks as
memory space for untrusted management software and guests. The
kernel includes no file system, leaving this functionality to un-
trusted guest software. CertiKOS exposes only interfaces support-
ing delegation of and protected access to memory and disk storage.

Networking: CertiKOS exposes interfaces allowing a provider’s
management software to give clients access to the provider’s shared
network infrastructure. The current design assumes that server
hardware provides either enough physical NICs, and/or hardware-
virtualized NICs, to dedicate at least one NIC to each client without
software multiplexing. CertiKOS may be enhanced in the future to
provide its own dynamic multiplexing of network interfaces, but
this is not a high priority since hardware-based NIC virtualization
is becoming increasingly common and inexpensive.

3.4 Resource Isolation

The provider’s management software uses the trusted kernel’s del-
egation interfaces to allocate and revoke resources according to the
provider’s policy. The trusted kernel in turn updates its ownership
records to restrict each untrusted domain’s resource access appro-
priately using standard protection and virtualization techniques. At
runtime, CertiKOS uses its ownership records to check the per-
mission on all explicit access requests, and to configure hardware-
based protection mechanisms such as MMU and IOMMU hard-
ware. In this way CertiKOS enforces resource isolation among ap-
plications and prevents information leakage.

Figure 2 illustrates the conceptual isolation model. A client’s re-
sources must be allocated in advance (step 1), otherwise the ker-
nel denies the client’s access request at runtime (step 5). When
the client attempts to access its own resource, it invokes the kernel
(step 2), which intercepts the request and checks the appropriate
ownership record (step 3). If the client is the current owner of the
requested resource, the kernel services the access request (step 4).

The kernel imposes access permission checks even on access re-
quests by the provider’s management software (step 6). Although
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Figure 2. Permission check for access requests
1. Resource allocation/revocation; 2. Access request from a client; 3. Query
the ownership record; 4. Authorize the request; 5. Deny the unauthorized
request and return a fault message; 6. Access request from the management
software.

the management software can allocate and revoke cloud hardware
resources, it is not allowed to access resources owned by clients.

CertiKOS intercepts access requests based on resource types. In the
current version of CertiKOS, CPU cores are handled by the kernel’s
minimal CPU multiplexer, and are allocated at a granularity of
entire cores. Clients may choose to implement their own finer-
grained scheduling atop CPU cores they own.

CertiKOS employs memory management hardware to partition and
isolate guests’ access to physical memory. In the current version,
CertiKOS uses the AMD Secure Virtual Machine [3] facilities, set-
ting up hardware page tables to represent memory ownership and
relying on the hardware to translate guest virtual addresses to host
physical addresses. Guests manage and access their assigned phys-
ical memory in the same way as on a physical platform, enabling
clients to run traditional guest operating systems. CertiKOS uses
IOMMU (Input/Output Memory Management Unit) hardware to
protect DMA-based access requests from guests via physical or
hardware-virtualized I/O devices such as NICs.

3.5 Resource Management and Usage

CertiKOS isolates management and guest software into strongly
isolated runtime environments. The kernel gives the provider’s
management software the special privileges required to allocate
and revoke resources, in order to implement the provider’s high-
level business model. Clients in turn manage their own assigned
resources using their own mechanisms, such as those in a conven-
tional guest OS. The current CertiKOS design focuses on managing
and protecting a single multicore machine, although we expect to
extend it in the future to offer secure clustering across data center
networks.

A client may request and be assigned resources in several ways:

• Explicitly, using IPC to contact the management software and
requesting resources. It is up to the client and the management to
agree on the structure of the message. The kernel is not involved,
and does not offer privacy guarantees to inter-domain messages.
A client might request additional memory this way, for example.

• Explicitly, by including the resources in its initial loading in-
structions. When the management software loads the client, the
client’s object format (which is up to the provider and the client
to agree on) may specify resources that the process requires. The
management then checks that the specified resources observe its
policy, and instructs the kernel to allow the client access to them.

• Implicitly. The client program may try to access a resource,
initially causing a fault caught by the kernel. The kernel notifies
the management program of the fault event, scrubbed of any



private client data. The management interprets the fault, assigns
the requested resources to the client if appropriate by asking the
kernel to update the ownership records, then restarts the client
with the additional resources.

Resource Revocation Given unrestricted ability to revoke arbi-
trary subsets of a client’s resources at any time, compromised man-
agement software might attempt to interfere with a client’s cor-
rect execution, and/or attempt to learn information about a guest
through side-channel attacks. Management software might selec-
tively revoke assigned resources at a provider-chosen moment in
time, for example, and monitor how this revocation affects visible
guest behavior in an attempt to “probe” what a guest is doing based
on its resource usage.

To guard against such side-channel attacks, CertiKOS gives un-
trusted management software only one non-consensual means of
revoking guest resources: by destroying the entire guest and revok-
ing all its resources at once, in “all-or-nothing” fashion. Such an
event essentially represents a provider-induced virtual node failure,
which the kernel guarantees will operate in a fail-stop fashion with-
out leaking any information about the former guest’s operation.

If the provider wishes to revoke resources from guests at finer
granularity, it can communicate explicitly with its guests to request
that they give up certain resources gracefully. The guest saves any
state the resources may have held (for memory or disk), and notifies
the kernel when it is ready to relinquish the resources, which in turn
passes resource ownership back to the provider. If the guest fails to
respond in a reasonable time, according to a policy agreed between
provider and client, the provider can always escalate to an “all-or-
nothing” revocation without the guest’s consent.

4. Certifying the Kernel
To verify CertiKOS, we will take advantage of its minimalistic
design and several recent advances in software certification [23].

First, we will not certify what we do not have to. Much of the
complexity in cloud virtualization lies in resource management
algorithms. CertiKOS delegates this functionality to the untrusted
management layer, implementing only permission checking in the
kernel. Thus, we can omit sophisticated policy management and
scheduling tasks from the kernel without sacrificing functionality,
leaving less kernel code to certify formally.

Second, we are designing the kernel ground-up for certification, in-
stead of trying to certify existing software. Instead of disentangling
complex existing kernels, therefore, we are developing a kernel
specifically to be easy to reason about. In particular, the kernel is
designed to be highly modular, with strong and readily formalizable
invariants defining module boundaries. Although conventional wis-
dom may suggest that such strong modularity risks incurring high
performance overhead, our formal layering and modular reasoning
techniques are capable of expressing modules whose formal bound-
aries do not actually impose additional code at each layer or inter-
face, which may mitigate this performance risk. Further, even if the
resulting certifying kernel achieves far from optimal performance,
CertiKOS’s focus on leveraging hardware protection and virtualiza-
tion mechanisms, and spacial rather than temporal resource assign-
ment, leaves the certified kernel responsible mostly for occasional
setup, teardown, and guest fault handling, with hardware handling
most of the performance-critical resource access paths.

We will employ domain-specific logics to certify different Cer-
tiKOS modules through the use of OCAP [10], a framework de-
signed for this purpose. This approach allows us to integrate sev-
eral frameworks that have proven effective for certifying programs

involving dynamically allocated memory [27], interrupts [11], non-
interfering concurrent threads [11], and self-modifying code [5].

Another technique we will employ allows certified linking of com-
ponents verified at different abstraction levels. Since only the boot-
loader loads code dynamically, for example, we need use a self-
modifying code framework only for bootloader verification. The
rest of the kernel can use a fixed code heap abstraction. We can
then link these modules together across their different levels of ab-
straction, such that the entire resulting code is certified.

We are developing an approach for merging Decentralized In-
formation Flow Control (DIFC) [17] with ideas from Separation
Logic [18]. We will develop a logic in which we can specify and
prove the correctness of information flow policies. We will apply
this logic to CertiKOS to prove that the kernel properly enforces
isolation. This guarantees that our kernel cannot, for example, ac-
cidentally leak data from one client’s memory to another’s.

We will use a Flume-like label model [16] to track the origin of
all data. In this model, memory locations are “tainted” with tags
representing clients. If the kernel reads data from client A, that
data is tainted with tag A. If the kernel then attempts to write this
data into client B’s memory, which is tainted with tag B, our logic
catches this bug, causing certification to fail. Of course, there are
situations in which data must be passed across domains, such as
IPC between client and provider software. As in any useful DIFC
system, our logic will allow controlled declassification of data in
appropriate situations to handle such cases explicitly. Our logic will
make all declassification explicit, allowing for formal certification
of high-level declassification policies. For example, we might prove
that the kernel never leaks data from one client to another, except
for IPC messages. It then becomes the client’s responsibility to
avoid leaking information via IPC. For more discussion of the role
and necessity of declassification in DIFC, see [20].

5. Implementation
The CertiKOS design presented here is just a first step in a larger
project to develop a fully-certified, practical OS kernel. As the first
stage of this project, we wished to implement a lightweight and
modular kernel with minimal functionality to facilitate certifica-
tion. Our minimal kernel design reflects the goal of separating out
and surgically confronting critical cloud security problems.

We are now building a prototype based on PIOS[2], by further
modularizing the kernel and minimizing global interdependencies.
Figure 3 illustrates this conceptual simplification by comparing the
dependency graphs of the old and new kernels.
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Figure 3. Invariant dependencies of PIOS vs. our prototype

We believe that a massive redesign of core code of the kernel will
be crucial for verification and reasoning about isolation properties.

Our prototype allows us to manage the client’s use of CPU cores,
limit its use of memory, and guarantee that management and client
code cannot access each other’s memory. Continuing development
is leading in two main directions. First, we will improve and gener-
alize the features of our kernel. Our permission system is currently



ad hoc, and does not readily extend to new resources. Second, we
will more rigorously separate the kernel components, facilitating
the formal specification and verification of each component.

Atop the kernel, we are building an untrusted management applica-
tion as an example. This application serves as a demo showing how
a cloud provider might use our kernel. Our aim for this demo is to
illustrate the kernel’s ability to allow the management application
to safely run the clients’ applications, and manage their access to
resources, while formally guaranteeing security and isolation.

6. Conclusion
This paper presents CertiKOS, a certified kernel for secure cloud
computing. CertiKOS handles resource delegation and isolation,
and protects clients from each other and from the provider. The
current version targets a single platform; we will later investigate
cross-machine clustering and migration.
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