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discriminative power of visual words, thus improving pre-
cision; on the other hand, the introduction of multiple code-
books corrects quantization artifacts, thus improving recall. 
Extensive experiments on two benchmark datasets demon-
strate that tensor index significantly improves the baseline 
approach. Moreover, when incorporating methods such 
as Hamming embedding, we achieve competitive perfor-
mances compared to the state-of-the-art ones.

Keywords  Tensor index · Image retrieval · Bag-of-words 
model

1  Introduction

This paper considers the task of large-scale partial duplicate 
image retrieval. Given a query image, our goal is to retrieve 
images which contain the same object or scene from a large 
database. A successful search engine must return the most rel-
evant images (effective) to the user in a short amount of time 
(efficient). In this paper, we aim at designing effective meth-
ods at the price of affordable memory or time cost (Fig. 1).

The past decade has witnessed a great progress in the 
community of bag-of-words (BoW) based image retrieval 
[21, 23, 28]. Motivated by the pipeline of text retrieval, 
the image retrieval process detects local invariant features 
[20] and quantizes them to visual words using a pre-trained 
codebook. Therefore, each image is converted into an 
orderless bag of visual words, analogous to words in the 
textual documents. These visual words are weighted by 
tf-idf scheme or its variants [10, 46]. To improve retrieval 
efficiency and deal with large-scale data, the inverted index 
data structure is employed.

Essentially, the visual words play a vital role in the BoW 
model: two local descriptors are considered as a match if 

Abstract  Recently, the bag-of-words representation is 
widely applied in the image retrieval applications. In this 
model, visual word is a core component. However, com-
pared with text retrieval, one major problem associated with 
image retrieval consists in the visual word ambiguity, i.e., 
a trade-off between precision and recall of visual match-
ing. To address this problem, this paper proposes a tensor 
index structure to improve precision and recall simultane-
ously. Essentially, the tensor index is a multi-dimensional 
index structure. It combines the strengths of two state-of-
the-art indexing strategies, i.e., the inverted multi-index 
[Babenko and Lempitsky (Computer vision and pattern 
recognition (CVPR), 2012 IEEE Conference, 3069–3076, 
2012)] as well as the joint inverted index [Xia et al. (ICCV, 
2013)] which are initially designed for approximate near-
est neighbor search problems. This paper, instead, exploits 
their usage in the scenario of image retrieval and pro-
vides insights into how to combine them effectively. We 
show that on the one hand, the multi-index enhances the 

Communicated by F. Wu.

L. Zheng · S. Wang (*) · P. Guo · H. Liang 
Department of Electronic Engineering, Tsinghua University, 
Beijing 100084, China
e-mail: wgsgj@tsinghua.edu.cn

L. Zheng 
e-mail: zheng-l06@mails.tsinghua.edu.cn

P. Guo 
e-mail: gpz0617@126.com

H. Liang 
e-mail: mslianghy@sina.com

Q. Tian (*) 
University of Texas, San Antonio, TX 78249, USA
e-mail: qitian@cs.utsa.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/s00530-014-0415-8&domain=pdf


570 L. Zheng et al.

1 3

they are quantized to the same visual word. However, this 
process is impaired by visual word ambiguity [7]. On the 
one hand, features which are visually dissimilar maybe 
located in the same voronoi cell, leading to low precision. 
On the other hand, features which are visually similar 
may be quantized to different visual words, leading to low 
recall. Generally speaking, precision and recall are compet-
ing forces that often counteract each other. It is often the 
case that a high precision tends to be accompanied by a low 
recall, and vice versa. Consequently, sustained precision 
gains should often be counter-balanced by improved recall 
if possible.

To tackle this problem, this paper proposes the ten-
sor index data structure to improve precision and recall 
of visual matching simultaneously. In a nutshell, tensor 
index is composed of two stages (see Fig. 2). First, a two-
dimensional multi-index [2] (also called order-2 tensor 
index) is constructed, with each dimension corresponding 

to a distinct codebook. As a result, a keypoint in the image 
is quantized to two complementary visual words instead 
of only one in the BoW baseline. This scheme serves to 
enhance the discriminative power of each keypoint, so the 
precision of visual matching is improved. In the second 
stage, for each dimension, multiple codebooks are gener-
ated using the joint inverted index method proposed in [36]. 
Therefore, several two-dimensional inverted indexes are 
produced, i.e., order-3 tensor index. With multiple code-
books trained for each dimension of the multi-index, the 
retrieval process merges the candidate images from multi-
ple order-2 tensor indexes. Through this manner, the recall 
is improved as well. If not specified, we refer to order-3 
tensor index throughout this paper when “tensor index” is 
mentioned.

In the first stage, we provide two alternative strategies 
to build a order-2 tensor index. The first strategy is similar 
to the one proposed in [2], where a 128-D SIFT descriptor 

Fig. 1   Two examples of partial-duplicate images from (top) Ukbench [21] and (bottom) Holidays [10] datasets

(a) (b) (c)

Fig. 2   The construction of the tensor index. a Order-1 tensor index 
(the classic inverted index). b Order-2 tensor index (inverted multi-
index). c Order-3 tensor index. Stage 1 converts a, b and stage 2 

transforms b, c. Two features used are denoted as F1 and F2. For 
each feature, multiple codebooks are trained
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is decomposed into two 64-D segments. Then, two code-
books are trained for each segment, respectively. The sec-
ond strategy consists in a feature fusion scheme. Each key-
point is described by a color feature and a SIFT feature, 
respectively, from which two codebooks are generated, 
respectively.

Experiments on two benchmark datasets confirm that 
tensor index is capable of improving the baseline per-
formance dramatically. If we further incorporate other 
complementary methods, the proposed method achieves 
competitive results compared with the state-of-the-art 
systems. Moreover, large-scale experiments indicate that 
tensor index consumes similar query time to the baseline 
approach.

The remainder of this paper is organized as follows: In 
Sect. 2, we briefly review several closely related aspects in 
BoW based image retrieval. Then, our method is described 
in Sect. 2.1. After a detailed presentation and discussion 
of the experimental results in Sect. 3, we draw our conclu-
sions in Sect. 4.

2 � Related work

Visual word is the core component of the BoW model. 
Therefore, the trade-off between precision and recall of vis-
ual matching has always been a focus of recent researches.

In order to improve matching precision, one strategy 
is to design better quantization algorithms. Methods such 
as sparse coding [32, 38], constrained quantization [6], 
and soft quantization [24] try to reduce quantization error 
by assigning confidence coefficients to quantized visual 
words. To accelerate quantization, raw features can be first 
converted into binary features, on which schemes such as 
scalar quantization [48], nested quantization [4] depends. 
Another strategy involves augmenting visual words with 
complementary information, e.g., spatial constraints [27, 
37, 44], contextual description [16, 18, 22, 30], multiple 
features [29, 31, 34, 39], and social and behavioral cues 
[17]. For example, RANSAC verification [23] estimates a 
global affine transformation as a post-processing step, at a 
cost of expensive computational complexity. Meanwhile, 
visual elements of higher orders, such as visual phrases 
[43], visual phraselets [44], provide pairwise constraints to 
eliminate false matches. Nevertheless, a typical drawback 
of these methods is the corresponding impact on efficiency 
due to their complex nature.

On the other hand, many methods are proposed to 
improve recall. Typically, a large codebook (1 M) means a 
fine partition of the feature space, corresponding to a low 
recall, while a small codebook (20 K) [10] guarantees a 
high recall. However, with a small codebook, the lists in 
the inverted index can be very long, thus demanding much 

longer query time. Other solutions involve multiple assign-
ment (MA) [10], or image-level feature fusion techniques 
[41, 42]. In [41], relevant images are retrieved by different 
features, and a graph fusion is undertaken to refine the rank 
results. In [42], the inverted index is expanded according 
to the consistency in global feature spaces, which in turn 
improves recall. Moreover, using multiple codebooks or 
inverted indexes [3, 5, 9, 47] is also beneficial since it cor-
rects quantization artifacts to some extent and covers more 
area in the feature space.

This paper focuses on improving precision and recall 
from the view of indexing strategies. The inverted index 
greatly promotes the efficiency of BoW based image 
retrieval. Each entry of the inverted index contains a list of 
indexed features or postings. For a document-level inverted 
index [23], each posting stores the image ID (imgID) and 
the term frequency (tf); for a word-level inverted index 
[10], each posting stores the imgID and other informa-
tion associated with this word. In the field of ANN search, 
two state-of-the-art inverted index organizations include 
the inverted multi-index [2] and the joint inverted index 
[36]. The former strategy is a 2-D inverted index aiming at 
improving precision, while the latter involves constructing 
multiple one-dimensional inverted index, aiming at improv-
ing recall. This paper first evaluates the two methods in the 
scenario of image retrieval which differs from ANN search 
in that a query feature does not necessarily have a true 
nearest neighbor in image retrieval. Second, we proposes to 
couple the two methods into an order-3 tensor index, which 
achieves even better performance.

2.1 � Our approach

As shown in Fig. 2, the proposed method consists of two 
stages: the construction of the multi-index in Sect. 2.2, 
and the construction of the tensor index in Sect. 2.3. We 
describe the query process in Sect. 2.4.

2.2 � Constructing inverted multi-index

This paper considers the two-dimensional multi-index, 
also called second-2 tensor index in this paper. In order 
to exploit the usage of multi-index in image retrieval, we 
propose two variants. The first is similar to [2]: the two 
dimensions correspond to two 64-D segments of the SIFT 
descriptor. For the second variant, the two dimensions cor-
respond to the SIFT and color features, respectively. We 
denote the two variants as MIS−S and MIS−C, respectively.

2.2.1 � SIFT-SIFT multi-index

For MIS−S, we essentially follow the same procedure as 
[2]. Each SIFT descriptor is split into two 64-D segments 
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with product quantization (PQ) [13]. With PQ, two code-
books are trained for each segment. In terms of Fig. 2b, the 
two segments correspond to F1 and F2, and the two code-
books correspond to “codebook 1 of F1” and “codebook 1 
of F2”, respectively.

During the offline indexing procedure, each SIFT 
descriptor is first split into halves and then quantized to 
a visual word pair (u, v), where u and v are visual words 
defined in codebooks U and V , respectively. Then, the entry 
(u, v) in the multi-index is identified, in which the imgID 
and other meta data of the input descriptor is stored.

2.2.2 � SIFT-color multi-index

The SIFT descriptor captures the gradient distribution of 
a local region. To enhance the discriminative power of the 
SIFT descriptor, this paper further extracts a color descrip-
tor at each keypoint in the image. Specifically, we use the 
Color Names (CN) descriptor [26], which calculates a 
11-D feature vector for each pixel. Each entry of the CN 
descriptor encodes one of the eleven basic colors: black, 
blue, brown, grey, green, orange, pink, purple, red, white, 
and yellow. For each detected keypoint, a 128-D SIFT 
descriptor and a 11-D CN descriptor are computed. Then, 
two codebooks are trained for the SIFT and CN features, 
respectively.

The procedure of constructing the MIS−C structure 
is in essence similar to that described in Sect. 2.2.1. For 
a detected keypoint, after extracting the SIFT and CN 

descriptors, a visual word pair is also generated, each cor-
responding to the nearest visual word in the SIFT and CN 
codebooks, respectively. Then, the two-dimensional multi-
index is padded with the input features.

The impact of MIS−C on visual matching is illustrated 
in Fig. 3. In this example, the codebook sizes for SIFT 
and CN descriptors are 20 K and 200, respectively, and we 
exert a Multiple Assignment of 30 during CN quantization. 
We can see that the baseline method produces many false 
matches, most of which can be eliminated when MIS−C 
is applied. For the relevant image pair in the first row, the 
rank promotes from 177 to 2; for the irrelevant image pair, 
the rank drops from 4 to 43. As a consequence, Fig. 3 indi-
cates that the MIS−C method greatly enhances the discrimi-
native ability of visual matching.

2.2.3 � Discussion

As can be seen from Sects. 2.2.1 and 2.2.2 as well as Fig. 
4, the common property of the two methods concerns that a 
keypoint is described by a visual word pair (u, v), instead of 
one single visual word in the baseline. With this representa-
tion, two keypoints are matched iff they are quantized to 
an identical visual word pair. As a result, the discriminative 
ability (precision) is enhanced.

On the other hand, the difference between MIS−S and 
MIS−C is that the former creates a finer partition of the 
SIFT feature space, while the latter is a feature fusion 
scheme. For MIS−S, two SIFT descriptors are viewed as a 

Fig. 3   An example of visual matching using the baseline (left) and 
MIS−C (right) methods. For each image pair, the left one is the query 
image. Images in the first row are partial-duplicates, while the sec-
ond row contains irrelevant ones. Also shown are the ranks of the 
candidate images. We can see that the combination of SIFT and color 

descriptors effectively removes false matches. Specifically, a non-triv-
ial fraction of matches remains for the relevant image pair, while only 
few features are preserved for the irrelevant images. The rank of the 
candidate images are refined correspondingly
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match if they are similar in both the first and the second 
halves. For MIS−C, however, a local region is co-described 
by SIFT and color features, both of which have to be simi-
lar to generate a valid match.

2.2.4 � Injecting binary signatures

To further enhance the discriminative ability of visual 
word pairs, we embed binary signatures [10] into the 
multi-indexes.

For MIS−S method, the binary signature is generated in 
a similar manner to [10]. The binarization threshold is cal-
culated using training data (128-D SIFT) which fall into the 
corresponding entry of MIS−S. We produce 64-bit binary 
signatures. During online query, the Hamming distance db 
between two binary signatures is computed. If db is smaller 
than a pre-defined threshold κ, then a weight in the form of 
exp(−

d2b
σ 2 ) is added to the scoring function, i.e.,

As with the MIS−C method, we calculate two binary signa-
tures, each for the SIFT and CN descriptors, respectively. 
For the SIFT descriptor, we use the method described 
above to produce a 64-bit signature. For the 11-D CN 
descriptor represented as (f1, f2, . . . , f11)T, a 22-bit binary 
feature b can be produced as follows:

where bi(i = 1, 2, ..., 11) is the ith entry of the resulting 
binary feature b. Thresholds ˆth1 = g5, ˆth2 = g2, where 
(g1, g2, ..., g11)

T is the sorted vector of (f1, f2, ..., f11)T in 
descending order. Given a query feature, we calculate the 
Hamming distances and corresponding weights (similar 

(1)w(db) =

{

exp(−
d2b
σ 2 ), if db < κ ,

0, otherwise.

(2)(bi, bi+11) =











(1, 1), if fi > ˆth1,

(1, 0), if ˆth2 < fi ≤ ˆth1,

(0, 0), if fi ≤ ˆth2,

to MIS−S) of the SIFT and CN signatures, respectively, 
and use the multiplication as the final weight for visual 
matching.

2.3 � Constructing tensor index

In essence, the tensor index is a multiple multi-index struc-
ture (see Fig. 2c). Via stage 2 in Fig. 2, one order-2 tensor 
index is expanded to order-3 tensor index.

Basically, starting from the order-2 tensor index shown 
in Fig. 2b, for features F1 and F2 each, multiple codebooks 
are trained using Approximate K-means (AKM) [23]. For 
each feature, however, if the multiple codebooks are trained 
independently, we may encounter the problem described 
in [9, 36], i.e., the correlation among them may be large, 
which counteracts the benefits of multi-codebook merging. 
To avoid the problem of codebook correlation, the code-
books are trained using the method proposed in [36], i.e., 
the joint inverted index.

Specifically, for each feature (or dimension) of the 
multi-index, assume that the desired number of codebooks 
is K, and the codebook size is S. Following [36], instead 
of training K codebooks of size S independently, we actu-
ally train one codebook of size K · S. Then, the K · S cluster 
centers are assigned to K codebooks after a grouping oper-
ation using balanced clustering algorithms. Nevertheless, 
we find in our experiment that a random assignment yields 
similar results. This is probably due to the low value of K 
and large value of S. Therefore, in the visual word optimi-
zation step, visual words are assigned randomly, generating 
K codebooks of size S. In Sect. 3, we will provide a brief 
comparison between generating codebooks jointly and gen-
erating them independently.

After the codebooks for each feature are jointly 
trained, the order-3 tensor index can be assembled. 
Assume that we want to construct K order-2 tensor index. 
Then, for each of the K multi-indexes to be generated, 
we randomly pick one codebook from each of the two 

(a) (b)

Fig. 4   Feature extraction and quantization for a MIS−C and b 
MIS−S . In a, a keypoint in the image is co-described by SIFT and CN 
descriptors, and subsequently quantized to a visual word pair using 

two codebooks. In b, the 128-D SIFT descriptor is split into two seg-
ments, again producing a visual word pair
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features. Through this manner, we are capable of build-
ing the order-3 tensor index which consists of K two 
dimensional multi-indexes.

2.4 � Querying tensor index

Given an query image q, invariant keypoints are first 
detected. Then, as shown in Fig. 4, each keypoint is quan-
tized to a visual word pair (u, v), using two codebooks of 
features F1 and F2, respectively. Then, the entries (u, v) in 
each of the K multi-indexes are located, from which K lists 
of postings or candidate images are identified. With these K 
lists, we simply concatenate them and these postings con-
tribute to the final score of the corresponding images.

In the tensor index framework, basic elements in the 
classic BoW model such as the tf-idf weights, the L2 nor-
malization can be readily adopted. Specifically, for each 
visual word pair (entry) in the multi-index (MIS−S or 
MIS−C), its idf value is calculated as,

where N is the total number of images in the database, and 
nuv encodes the number of images containing the visual 
word pair (u, v). Moreover, the L2 norm of a database image 
can be computed as ,

where hu,v is the term-frequency (tf) of visual word pair 
(u, v) in image I. The L2 normalization is exerted on the 
image scores, so as to penalize images with more visual 
words, and vice versa.

Since the MIS−S and MIS−C typically achieve high pre-
cision due to the two-dimension nature, we employ multi-
ple assignment (MA) [10] to improve recall. We apply MA 
only on the query image, and in consideration for the illu-
mination changes, we set a relatively large MA value for 
CN quantization. The tuning of parameter MA is fully dis-
cussed in Sect. 3. Note, however, that the MA strategy may 
have an influence on the effectiveness of normalization 
scheme in Eq. 4. Specifically, we find in the experiments 
that Eq. 4 works well for MIS−S which can be viewed as a 
symmetrical structure. On the other hand, for MIS−C, the 
baseline L2 norm for the SIFT feature works better, prob-
ably due to the large MA value for CN.

To sum up, the tensor index is a composite inverted 
index structure that takes advantage of both the inverted 
multi-index and the joint inverted index. During query 
time, the query requests are processed independently in 
each of the K multi-indexes, before the scores are merged 
to yield the final results.

(3)idf(u, v) = log

(

N

nuv

)

,

(4)�I�2 =

(

∑

u

∑

v

h2u,v

)
1
2

,

3 � Experiments

In this section, experimental results on two public available 
datasets are summarized and discussed.

3.1 � Datasets

Holidays [10] This dataset consists of 1,491 images from 
personal holiday photo collections. 500 images are selected 
as query images. Most queries have 1–2 ground truth 
images. The mean average precision (mAP) is employed 
for accuracy measurement.

Ukbench [21] This dataset contains 10,200 images of 
2,550 groups. Each group has four images containing the 
same object, but taken under different views or illumi-
nations. Each of the 10,200 images is taken as the query 
image in turn. The number of relevant images in the top-4 
ranked images is averaged over the 10,200 queries, denoted 
as N-S score (maximum 4).

MIR Flickr 1M [8] This is a distractor dataset, with one 
million images randomly retrieved from Flickr. We add this 
dataset to test the scalability of our method.

3.2 � Baseline

This paper adopts the baseline approach proposed in 
[10, 23]. For each image, we employ the Hessian-Affine 
detector and the SIFT descriptor. Moreover, RootSIFT 
[1] is used at every point in the system using l1-normali-
zation followed by a square root operation, as it yields 
good performance under Euclidean distance. In [1], it is 
shown that RootSIFT consistently brings about improve-
ment of +0.02 to +0.03 in mAP. Our preliminary 
experiments also confirmed this performance gain. For 
MIS−S, RootSIFT is applied on the two segments sepa-
rately. We also employ the average IDF proposed in [46] 
to produce a higher baseline. For clustering, the AKM 
algorithm [23] is implemented. With a 20 K codebook 
trained on independent data, the baseline results for Holi-
days and Ukbench are 49.23% in mAP and 3.02 in N-S 
score, respectively. Both baselines are higher than those 
reported in [10, 12].

3.3 � Parameter selection

Hamming embedding There are two main parameters in 
HE: the Hamming threshold κ and the weighting parameter 
σ. For the SIFT codebooks, we follow the settings in [10] 
and set κ = 22, σ = 16. On the other hand, for a CN code-
book of size 200 in MIS−C, we set κ = 7, σ = 4, which 
yields satisfying performance in our experiments.

Multiple assignment For MIS−S and MIS−C, MA is 
applied to the query image. In order for MA to work well, 
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we use HE in the experiments, which is also suggested in 
[10]. Table 1 presents the impact of MA on MIS−S. When 
MA = 3, MIS−S obtains an mAP of 74.36 %, so we set MA 
to 3 in MIS−S. The influence of MA on MIS−C is demon-
strated in Fig. 5. From Fig. 5, we can see that when MA for 
color feature increases, mAP first rises and then remains 
stable. Since a smaller MA leads to less the query time, we 
set MAc to 50%. In addition, MAs is set to 5 for MIS−C.

3.4 � Evaluation

Impact of codebooks The codebooks may have an influence 
on retrieval performance. For the color codebook, we set 

its size to 200, because this size produces superior perfor-
mance in the preliminary experiments. Meanwhile, SIFT 
codebooks of various sizes are generated, and the results 
are presented in Fig. 6, from which three major conclusions 
can be drawn.

First, we can see that results vary with codebook sizes. 
Specifically, for Holidays dataset, the superior codebook 
size is 20 K and 1 K for MIS−C and MIS−S, respectively. 
For Ukbench, however, we observe a better performance of 
10 K and 1 K for MIS−C and MIS−S, respectively. Never-
theless, the performance gap is not big, so in the following 
experiments, we use 20 K and 1 K codebooks for the two 
structures, respectively.

Second, as the number of multi-indexes (the parameter 
K in Sect. 2.3) increases, we typically obtain a better per-
formance. For example, with a 20 K codebook, the mAP 
is improved from 83.19 to 84.06 % when K increase from 
1 to 2 on Holidays; with the same settings, the N-S score 
rises from 3.63 to 3.67 on Ukbench. However, we note 
that using three multi-indexes brings about little, if any, 
improvement. This is because the extra information intro-
duced by merging the third codebook is very limited. Our 
observation is very similar to [9].

Third, we compare our method with generating code-
books independently (denoted as “Indep” in Fig. 6). The 
results indicate that when K = 1, independently trained 
codebook has a similar performance to jointly trained 
codebook. But when K is increased to 2 or 3, joint train-
ing has a clear advantage. According to [36], jointly trained 
codebooks have lower correlation among each other, so the 
merging action brings more benefits.

Comparison between MIS−S and MIS−C The perfor-
mance of the two tensor index variants can be observed in 
Fig. 6 and Table 2. These results demonstrate that MIS−C 
has a superior performance over MIS−S. The primary rea-
son is that MIS−C employs complementary information 
(color feature) to provide additional discriminative power. 
On Ukbench and Holidays datasets, the color feature is a 
good discriminator [35, 41, 45]. But when the illumina-
tion changes dramatically, it might be the case that MIS−S 
works better. Furthermore, we also find some problems 
associated with the multi-index scheme in image retrieval. 
In MIS−S with two 1K codebooks, the total number of vis-
ual word pairs equals 1M. But we find in our experiments 
that a majority of the entries in the multi-index are empty, 
i.e., many entries have been wasted. Therefore, the perfor-
mance of MIS−S can be further promoted if this problem is 
addressed. In Fig. 7, we present some sample query results 
of the 20  K baseline, tensorS−S and TensorS−C, respec-
tively. Different working mechanism can be observed from 
these results.

Large-scale experiments To test the scalability of the 
proposed method, we populate the Holidays dataset with 

Table 1   The impact of MA on the performance of MIS−S for holi-
days dataset

MA 1 2 3 4 5

Holidays, mAP (%) 69.51 73.33 74.36 73.28 72.58

Table 2   The performance of various methods on Holidays and 
Ukbench datasets

Methods Holidays Ukbench

mAP (%) N-S mAP (%)

MIS−S 54.41 3.15 79.21

MIS−S + HE + MA 74.36 3.38 87.16

TensorS−S 77.34 3.49 90.75

MIS−C 57.65 3.21 81.92

MIS−C + HE + MA 83.19 3.63 92.69

TensorS−C 84.06 3.68 93.82

Fig. 5   Impact of MA for MIS−C on Holidays dataset. The codebook 
sizes for SIFT and CN features are 20 K and 200, respectively. We set 
MAc to 200× 50% = 100, and MAs to 5
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various fractions of the MIR Flickr 1M dataset. Specifi-
cally, we set K = 2 for both tensorS−S and TensorS−C. Two 
1K codebooks are used for MIS−S; one SIFT codebook of 
size 20 K and one CN codebook of size 200 are used for 
MIS−C. For comparison, we plot curves obtained by com-
binations of different techniques. Note that we do not set 
a baseline for TensorS−S since there is not a suitable code-
book size of a baseline to be compared with.

Figure 8 demonstrates the performance on Holidays 
dataset of tensorS−S and tensorS−C. We can observe that 
the proposed tensor index method has consistently supe-
rior results under each database size. Specifically, on 
the Holidays + 1M dataset, we obtain mAP results of 

61.35 and 73.26  % for tensorS−S and tensorS−C, respec-
tively. Although the MA component has similar effects 
on improving recall, we still find improvements of tensor 
index over MI + HE + MA. This result proves the effec-
tiveness of joint indexing strategy towards a higher recall.

We also present the average query time for the Holidays 
+ 1M dataset in Table 3. The experiments are performed 
on a server with 3.46 GHz CPU and 64 GB memory. The 
baseline approach with a 20 K codebook consumes 2.28 s 
to perform a query. On the other hand, it takes 1.65 s and 
2.01 s for tensorS−S and tensorS−C, respectively. Note that 
in this case, we do not apply MA, since it dramatically 
increases the query time.

(a) (b)

(c) (d)

Fig. 6   Results of TensorS−S (a, c) and TensorS−C (b, d) on Holidays 
and Ukbench datasets. SIFT codebooks of different sizes are com-
pared. The CN codebook size is set to 200. We merge different num-
bers (K) of multi-indexes jointly trained to derive the results of the 

tensor index. The bar denoted by “indep” shows the results obtained 
by training codebooks independently, not jointly a Holidays with 
tensorS−S, b Holidays with tensorS−C, c Ukbench with TensorS−S, d 
Ukbench with TensorS−C
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Furthermore, Table 4 provides a summary of the mem-
ory usage of different methods. In the baseline, 4 bytes are 
consumed to store image ID for each indexed feature. For 
order-2 tensorS−S (also called MIS−S), another 8 bytes are 
allocated for the 64-bit Hamming signature, while order-3 
tensorS−S (simplified as TensorS−S in the text) doubles the 

memory cost. When integrating color feature, 2.75 more 
bytes are introduced for order-2 tensorS−C, and 5.5 bytes 
for order-3 tensorS−C. As a consequence, Fig. 8, Tables 3 
and 4 demonstrate that our method has relatively low query 
time and demands acceptable memory cost.

3.5 � Comparison with state-of-the-arts

In this section, we compare our method against some state-
of-the-art systems in the literature. The results are shown 
in Table 5. Note that the listed results are obtained with-
out post-processing steps. Table 5 indicates that the pro-
posed method compares favorably to the state-of-the-arts. 
Notably, our final result is mAP = 84.1  % for Holidays, 
and N-S score = 3.68 for Ukbench. Our result exceeds [14] 
by 0.07 in N-S score on Ukbench, and 0.2 % in mAP on 
Holidays. These comparisons confirm the effectiveness of 
our method. We point out that techniques such as bursti-
ness weighting [11], spatial constraints [10], etc, may also 
contribute to our framework. On the other hand, various 
post processing steps, such as the graph fusion [19, 41], 
RANSAC verification [23] and query expansion [1], can be 
directly applied on top of our method.

Fig. 7   Sample retrieval results of query 366 and 448 on Holidays dataset. The query is on the left. For each query, the three rows correspond to 
results of the 20 K baseline, tensorS−S and tensorS−C, respectively

Table 3   The average query time (s) of tensorS−S and tensorS−C for 
Holidays + 1M dataset

Method 20 K baseline TensorS−S TensorS−C

Query time (s) 2.28 1.65 2.01

Table 4   Memory cost for different approaches, i.e., baseline with 20 
K codebook, tensorS−S, and tensorS−C 

Methods Methods TensorS−S TensorS−C

Order-2 Order-3 Order-2 Order-3

Per feature (bytes) 4 12 24 14.75 29.5

1M dataset (GB) 1.7 5.0 10.1 6.1 12.2

Table 5   Performance comparison with state-of-the-art methods without post-processing

Note that order-2 tensorS−S and order-2 tensorS−C are referred to as MIS−S and MIS−C in the text, while order-3 tensorS−S and order-3 tensorS−C 
are simplified as tensorS−S and tensorS−C in the text, respectively

Methods Tensor [33] [14] [27] [42] [35] [12] [25] [11]

Ukbench, N-S score 3.68 3.56 3.61 3.52 3.60 3.50 3.42 – 3.54

Holidays, mAP (%) 84.1 78.0 – 76.2 80.9 78.9 81.3 82.1 83.9
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4 � Conclusions

In this paper, we propose the tensor index data struc-
ture, which integrates both the inverted multi-index [2] 
and the joint inverted index [36]. With the multi-index 
component, we are capable of improving the precision of 
visual matching. On the other hand, with the joint index 
method, codebooks with less correlation are generated, 
which serves to improve recall. Since the inverted index 
and the joint index are initially proposed in the scenario 
of ANN search, we exploit their usage in image retrieval 
by constructing two tensor index variants, i.e., the SIFT-
SIFT tensor index (tensorS−S) and SIFT-color tensor 
index (tensorS−C). To further enhance the discriminative 
power, we inject binary signatures. Extensive experi-
ments on Holidays and Ukbench datasets show that ten-
sor index is both effective and efficient. Moreover, our 
method compares favorably with the state-of-the-art 
results.

In future study, we plan to further investigate the fea-
sibility of multiple kinds of features in image retrieval, 
especially using the deep learning architectures [15, 40] 
which has shown superior performance in various fields.
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