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Same, popular apps run on 
nearby devices

Example: landmark recognition
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More Examples: smart home
scenarios



Can we eliminate this redundancy?



Can we eliminate this redundancy?

Reuse previous computation results



Traditional computation reuse

𝑅𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒(							)

Cache
Key Value

“Sterling Library”

=
“Sterling Library”



Traditional computation reuse

𝑅𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒(							)

Cache
Key Value

“Sterling Library”

𝑅𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒(							)

=

≠

“Sterling Library”

No reusable data



Ideal computation reuse
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Approximate
Computation Reuse



Our goals
• Algorithms for approximate computation reuse

• A system to eliminate redundancy across devices
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The rest of the talk…
• Algorithms for approximate computation reuse 

• A-LSH – fast lookup

• H-kNN – reuse with accuracy guarantee

• FoggyCache system for cross-device reuse



…
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Handwritten digits from MNIST dataset



A-LSH: strawman
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Locality sensitive Hashing (LSH)



A-LSH: strawman

h2
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h3
…

…

More similar data stay in the same bucket
with higher probability

Locality sensitive Hashing (LSH)
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LSH is not enough
h2

h1

h2

h1

Dense data
Increase lookup time

Sparse data
Miss actually similar records

LSH configuration
is static

Data distribution
is dynamic

Fixed
bucket size “4”

“4”
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Adaptive-LSH
adapt the bucket size to data distribution



Adaptive-LSH

Proper bucket setting

adapt the bucket size to data distribution



Adaptive-LSH

Step 1: Use the ratio c=R2/R1 to
characterize input data distribution

R1

R2

adapt the bucket size to data distribution



Adaptive-LSH

Step 2: Adapt bucket size
according to c and the lookup time target

R1

R2
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H-kNN: strawman

“9”

Take the result label of the largest
cluster as the reuse outcome

Basic idea
k Nearest Neighbor

Query input

“4”
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kNN not enough

“4” “9”

Label of the largest cluster is not always the
desirable reuse result

Border



kNN not enough

kNN does not give us control over the trade-off

Need high accuracy Prefer less computation

Pill recognition Google Lens
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Need to gauge dominance level of clusters

“4” “9”
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Why dominance level matters?

A more dominant cluster  
è more confidence of accurate reuse

“4” “9”

“4”
“9”

“6”“7”



kNN: what is needed?

Need to gauge dominance level of clusters

“4” “9”

Can then customize reuse trade-off
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Homogeneity factor

A high 𝜽 ⇒ a large dominant cluster label (i.e., “4”)
⇒ a high confidence of correct reuse.

kNN Clusters

<“6”, 1 >

<“9”, 1 >

<“4”, 3 >

Homogeneity factor 𝜽

3

1 1
𝛼

“6”
“9”

“4”
𝜽 = cos	(𝛼)



Homogemized-kNN (H-kNN)

Calculate homogeneity factor 𝜽

𝜽 > 𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅	𝜽𝟎 ?
Yes No

Reuse Compute



Approximate computation reuse
• Algorithms for approximate computation reuse 

• A-LSH – fast lookup

• H-kNN – reuse with accuracy guarantee

• FoggyCache system for cross-device reuse



FoggyCache architecture
• FoggyCache intercepts at library level

Applications

Native Processing Library

FoggyCache

Reuse result



FoggyCache architecture
• FoggyCache intercepts at library level

Applications

Native Processing Library

FoggyCache

Computation result

Not reusable, 
Compute



FoggyCache architecture
• Cache is deployed at both edge server and client

Cache

CacheCache



System optimizations

Cache

CacheCache

Details in the paper



Performance



General setup

Linux desktop Google Nexus 9

Audio workloads & datasets
• Speaker identification: TIMIT acoustic dataset

Devices

Visual workloads & datasets
• Plant recognition: ImageNet subset
• Landmark recognition: Oxford Buildings, video feeds
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End-to-end performance

Application Latency (ms) Energy (mJ) Accuracy
loss (%)w/o w/ w/o w/

Speaker
Identification 13.1 4.2 30.4 9.8 3.2

Landmark
Recognition 102.4 27.9 1315 110.7 5.0

Plant
Recognition 269.6 99.8 3132 901.4 4.7
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Conclusion
• FoggyCache: cross-device approximate 

computation reuse

• Effectively eliminates fuzzy redundancy

• Approximate computation reuse

• Promising new direction for optimizations

• Algorithms are applicable to other scenarios



Thank you


