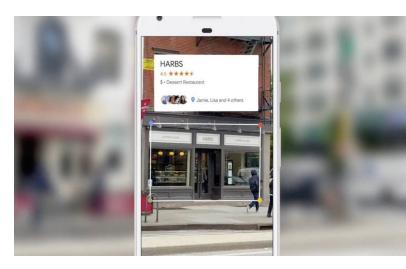
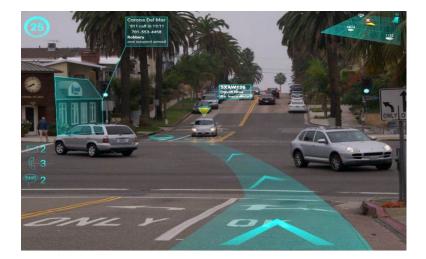
FoggyCache: Cross-Device Approximate Computation Reuse

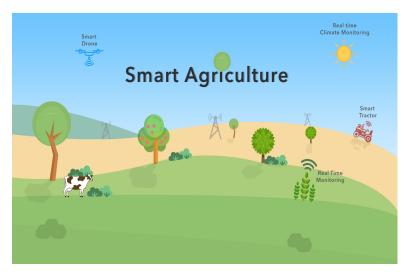
Peizhen Guo, Bo Hu, Rui Li, Wenjun Hu

Yale University

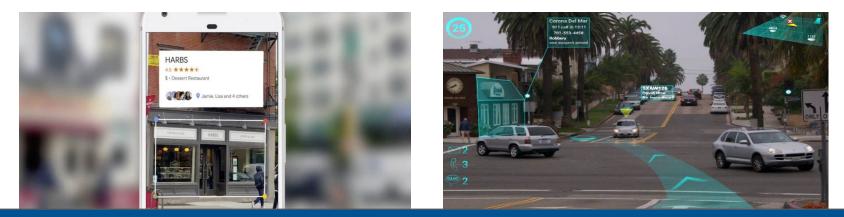
Emerging trend



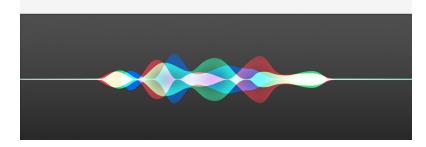




Emerging trend

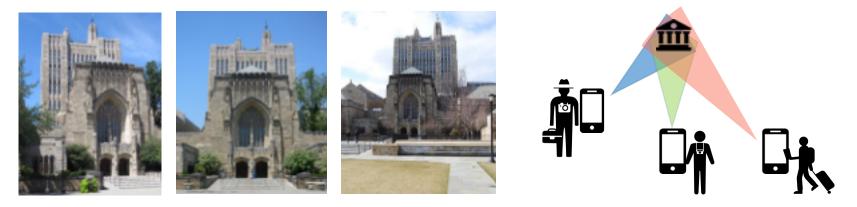


Computation intensive: incurring offloading latency, draining battery



Smart Agriculture

Same, popular apps run on nearby devices



Example: landmark recognition

Redundancy across nearby devices

"Sterling Library"

Example: landmark recognition

Redundancy across nearby devices

"Sterling Library"

Example: landmark recognition

Up to 82% input generate the same result

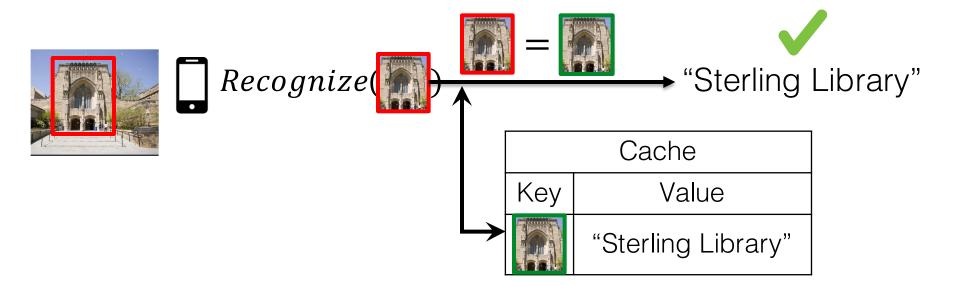
More Examples: smart home scenarios

Can we eliminate this redundancy?

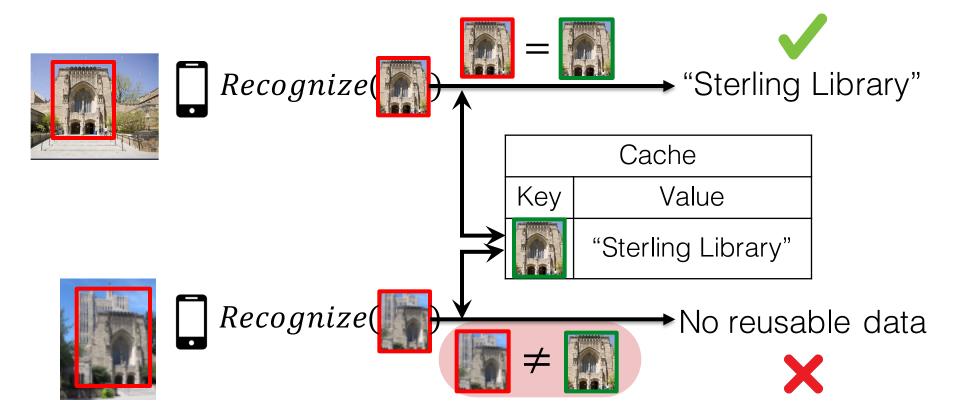
Can we eliminate this redundancy?

Reuse previous computation results

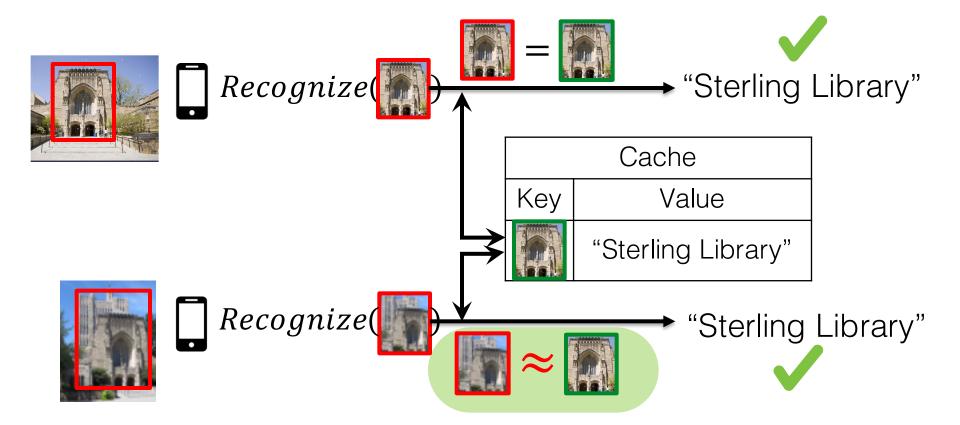
Traditional computation reuse



Traditional computation reuse



Ideal computation reuse

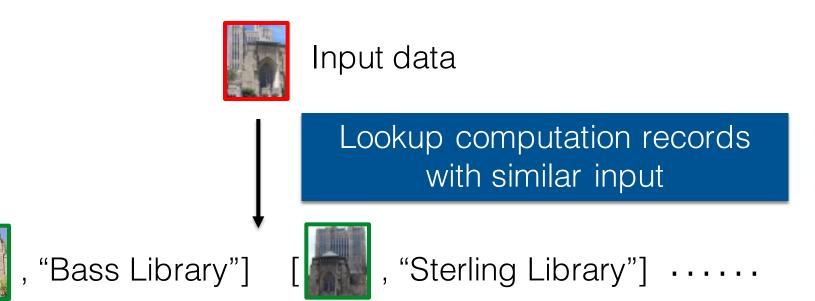


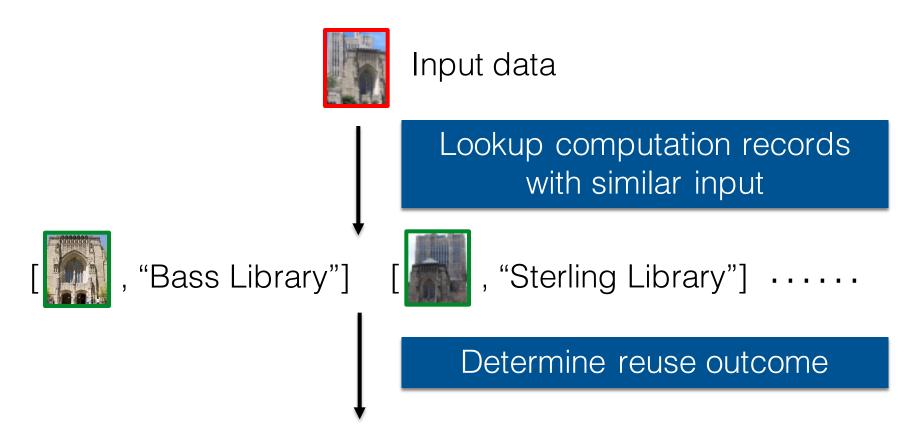
Approximate Computation Reuse

Our goals

• Algorithms for *approximate computation reuse*

• A system to eliminate redundancy across devices

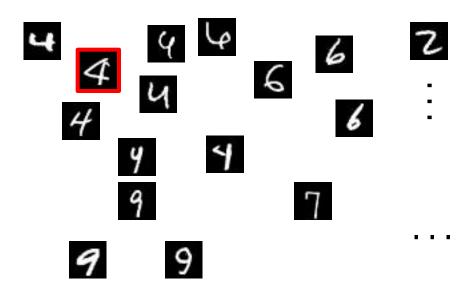




Not reusable or "Bass Library" or "Sterling Library"

The rest of the talk...

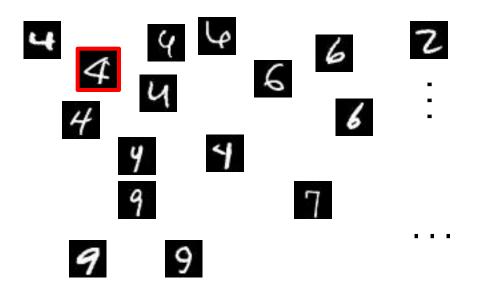
- Algorithms for *approximate computation reuse*
 - A-LSH fast lookup
 - *H-kNN* reuse with accuracy guarantee
- FoggyCache system for cross-device reuse



Handwritten digits from MNIST dataset

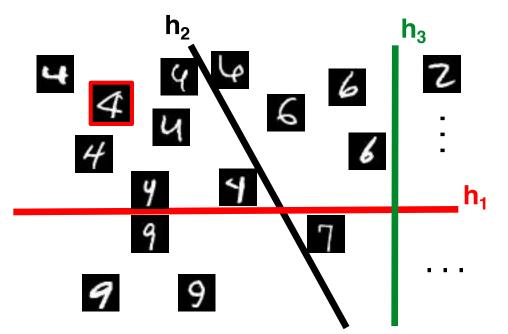
A-LSH: strawman

Locality sensitive Hashing (LSH)

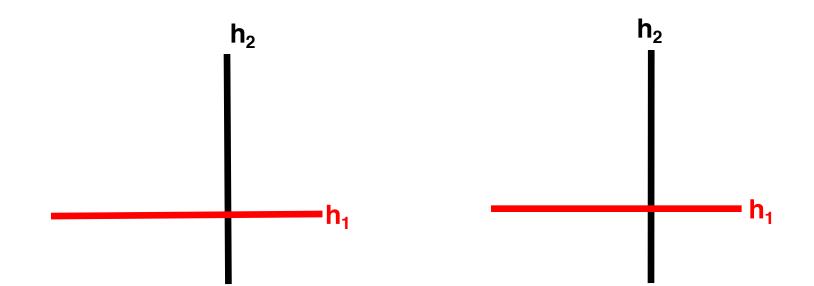


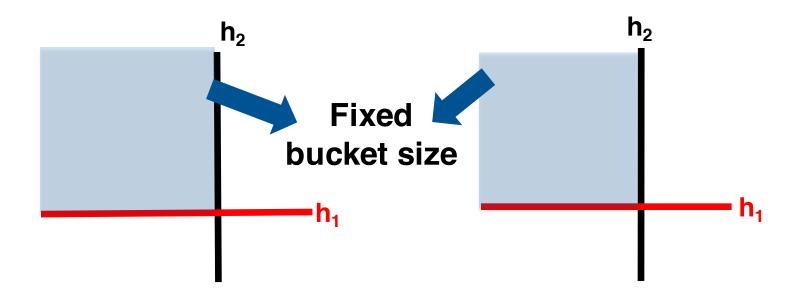
A-LSH: strawman

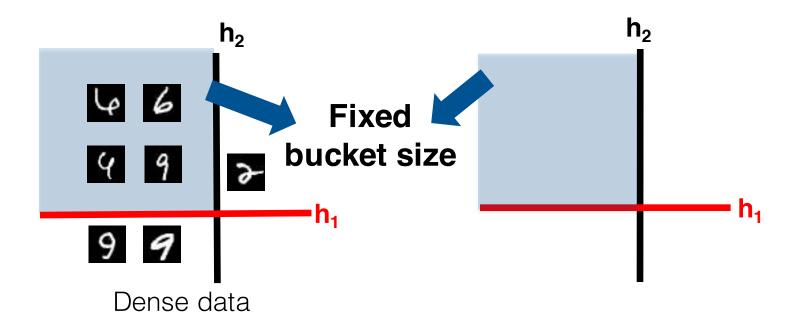
Locality sensitive Hashing (LSH)

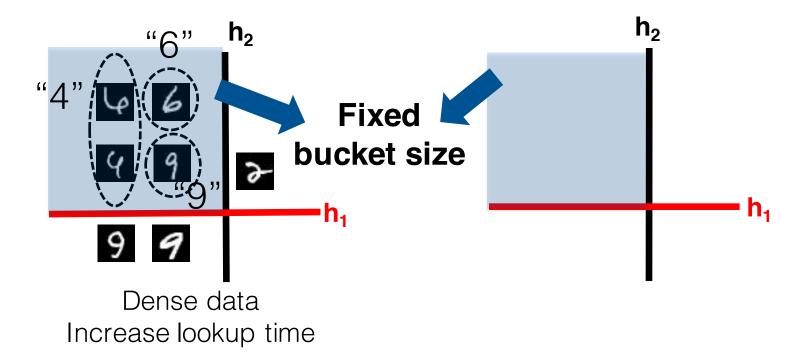


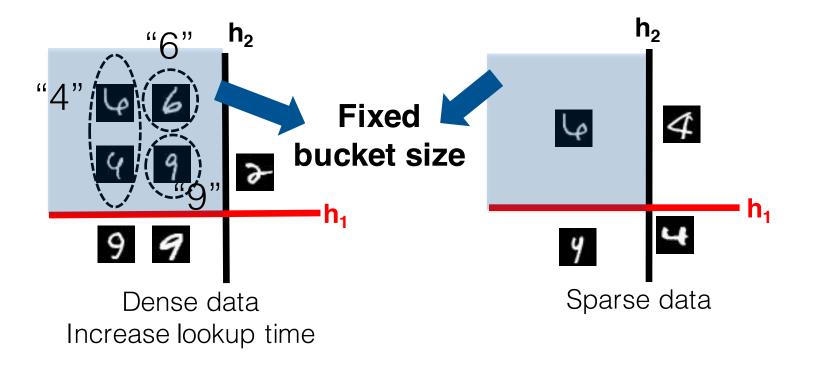
More similar data stay in the same bucket with higher probability

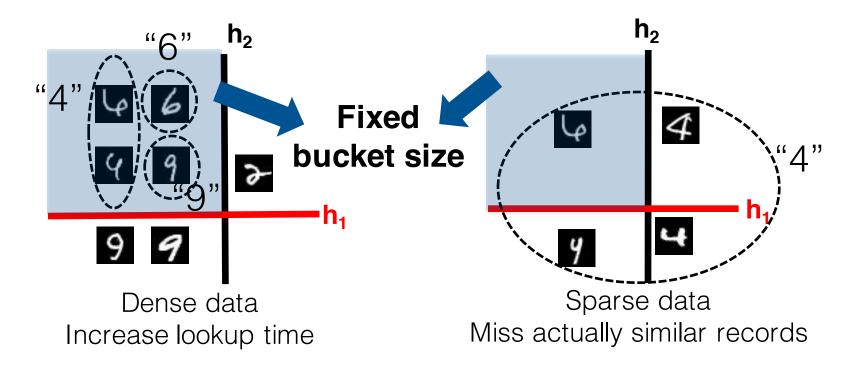


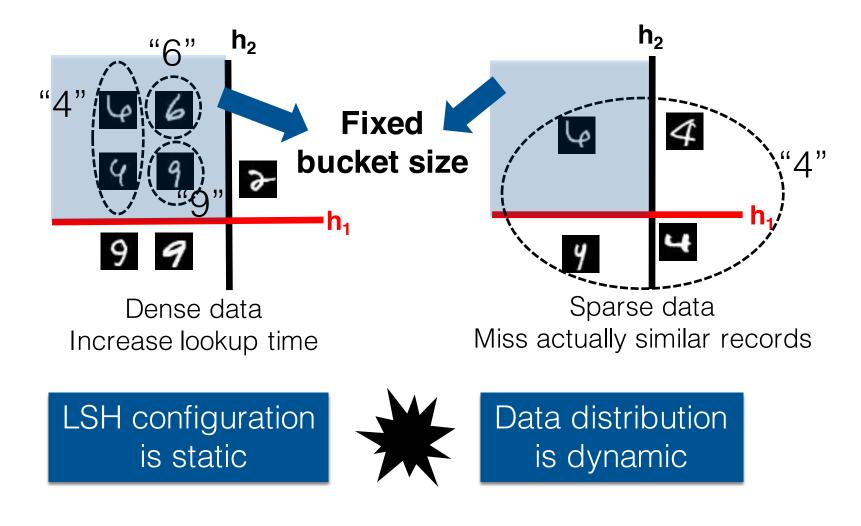








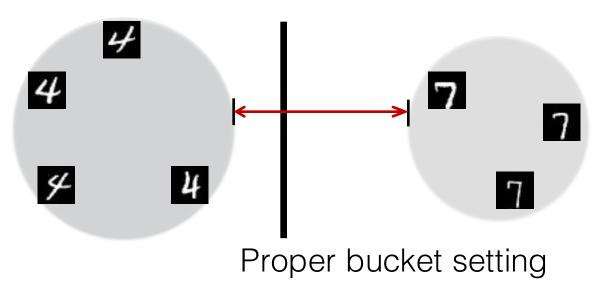




adapt the bucket size to data distribution

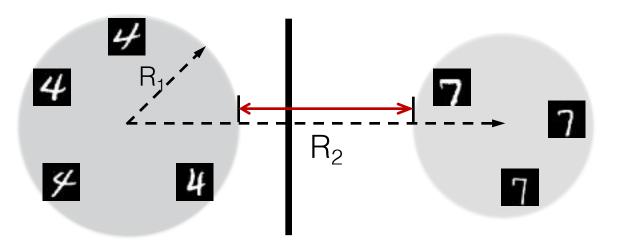
Adaptive-LSH

adapt the bucket size to data distribution



Adaptive-LSH

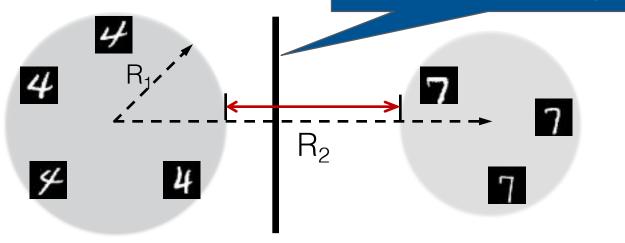
adapt the bucket size to data distribution



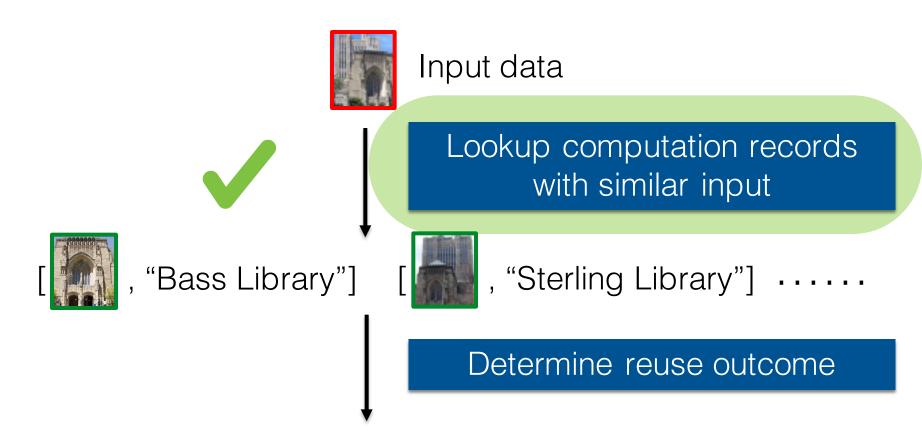
Step 1: Use the ratio *c=R2/R1* to characterize input data distribution

Adaptive-LSH

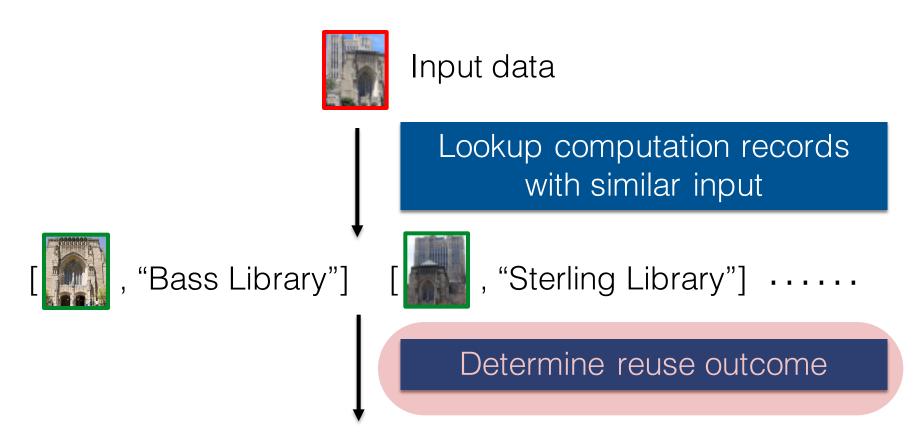
Recall: the bucket size also affects lookup time



Step 2: Adapt bucket size according to *c* and the lookup time target



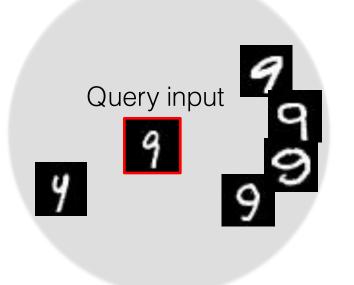
Not reusable or "Bass Library" or "Sterling Library"



Not reusable or "Bass Library" or "Sterling Library"

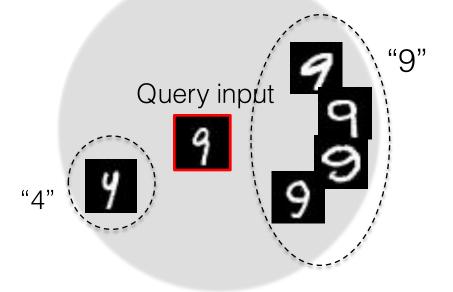
H-kNN: strawman

Basic idea *k Nearest Neighbor*



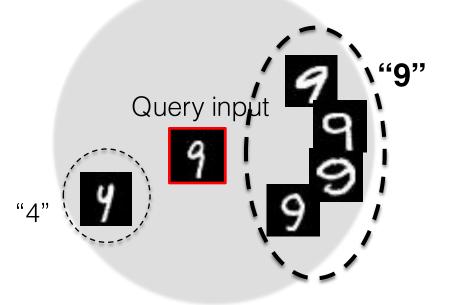
H-kNN: strawman

Basic idea *k Nearest Neighbor*



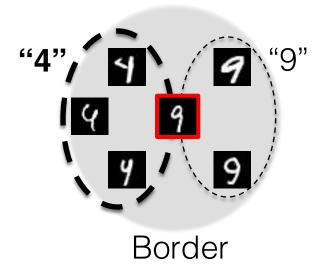
H-kNN: strawman

Basic idea *k Nearest Neighbor*



Take the result label of the largest cluster as the reuse outcome

Label of the largest cluster is not always the desirable reuse result



Label of the largest cluster is not always the desirable reuse result

Need high accuracy 💵 🛑 10:20 AM ~ I inap Pill next pills to take: 08:00_{AM} ASPIRIN/ Pill recognition

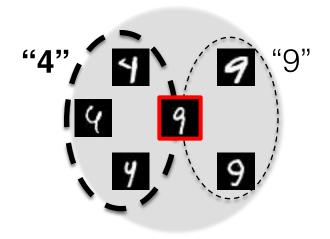
Prefer less computation

Google Lens

kNN does not give us control over the trade-off

kNN: what is needed?

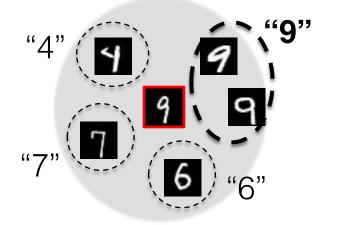
kNN: what is needed?

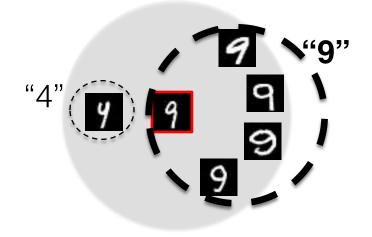


Need to gauge dominance level of clusters

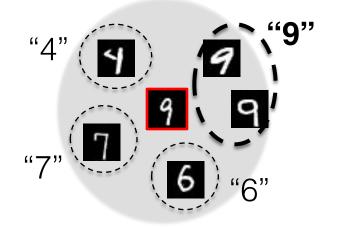
Why dominance level matters?

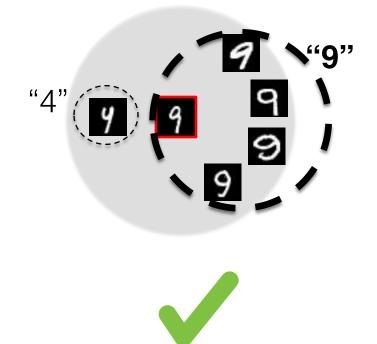
Why dominance level matters?





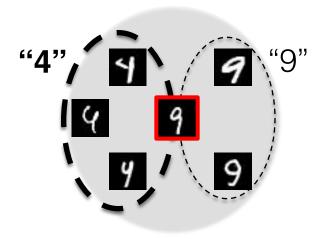
Why dominance level matters?





A more dominant cluster→ more confidence of accurate reuse

kNN: what is needed?

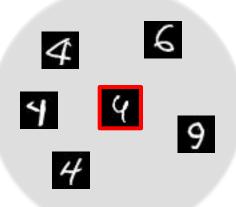


Need to gauge dominance level of clusters

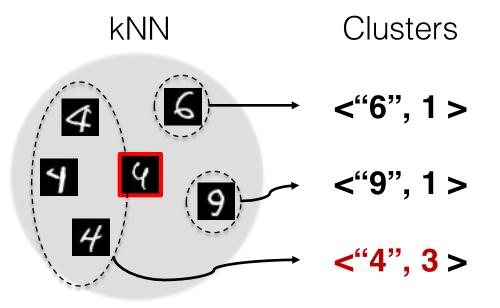
Can then customize reuse trade-off

Homogeneity factor

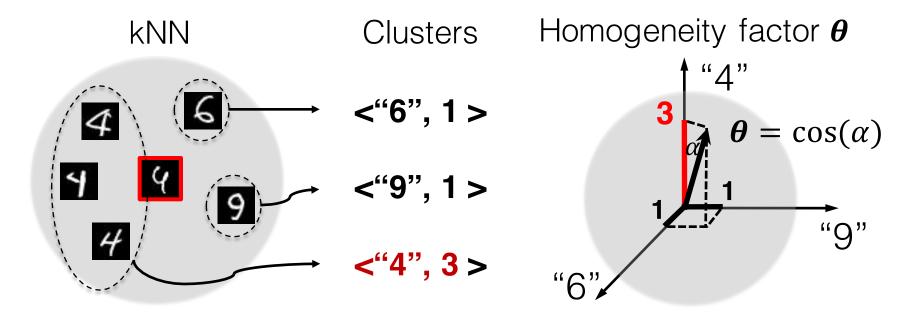
kNN



Homogeneity factor

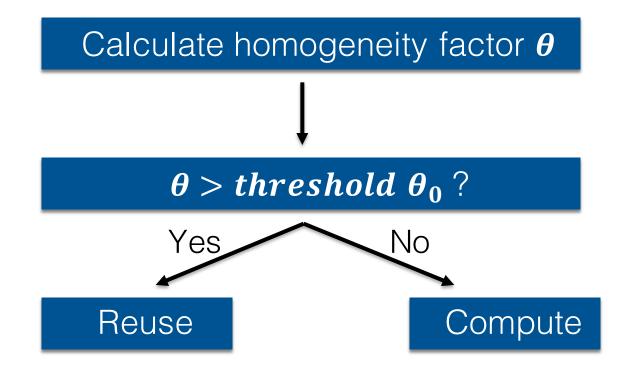


Homogeneity factor



A high $\theta \Rightarrow$ a large dominant cluster label (i.e., "4") \Rightarrow a high confidence of correct reuse.

Homogemized-kNN (H-kNN)

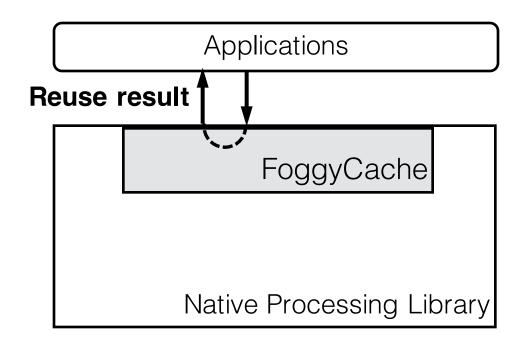


Approximate computation reuse

- Algorithms for *approximate computation reuse*
 - A-LSH fast lookup
 - *H-kNN* reuse with accuracy guarantee
- FoggyCache system for cross-device reuse

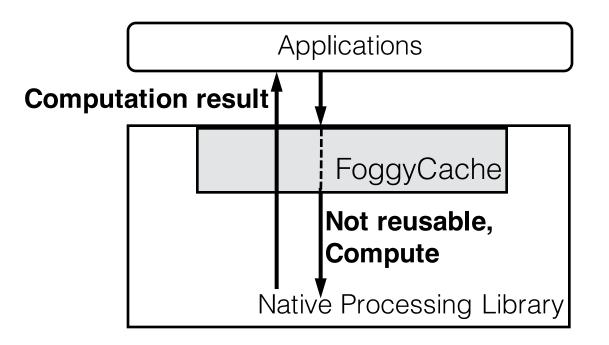
FoggyCache architecture

• FoggyCache intercepts at library level



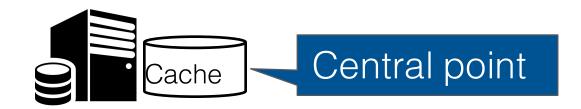
FoggyCache architecture

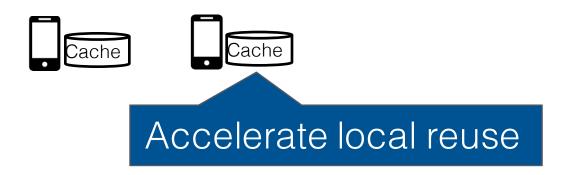
• FoggyCache intercepts at library level



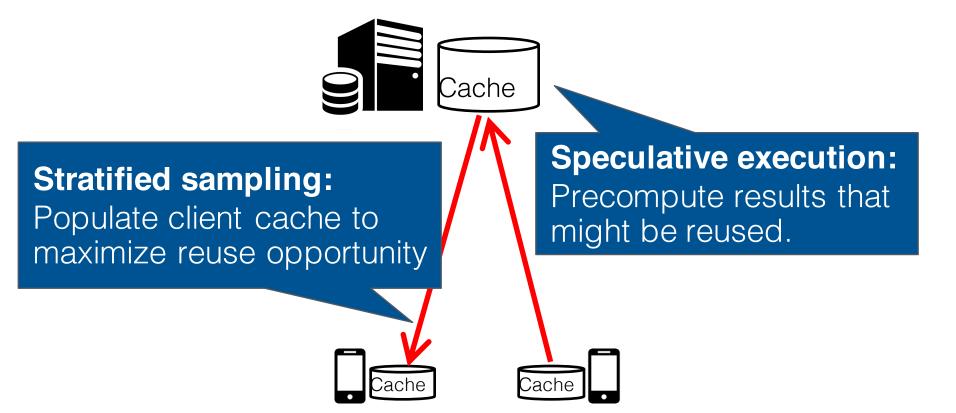
FoggyCache architecture

• Cache is deployed at both edge server and client





System optimizations



Details in the paper

Performance

General setup

Visual workloads & datasets

- Plant recognition: ImageNet subset
- Landmark recognition: Oxford Buildings, video feeds

Audio workloads & datasets

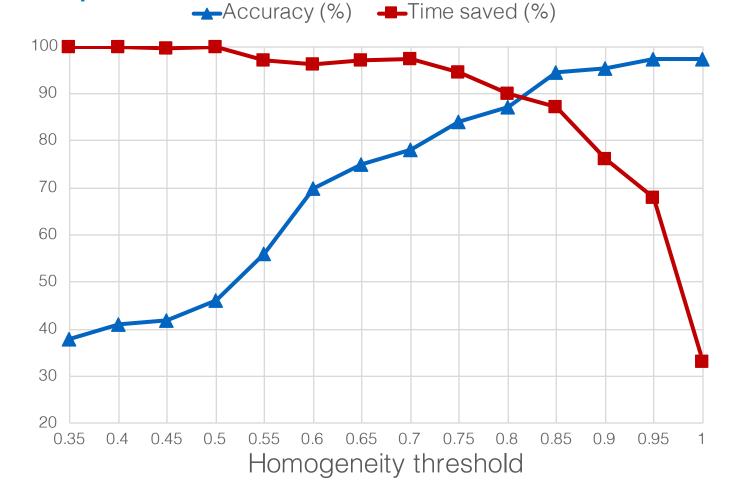
• Speaker identification: TIMIT acoustic dataset

Reuse accuracy vs saving computation

100 90 80 70 60 50 40 30 20 0.45 0.55 0.65 0.7 0.75 0.8 0.35 0.4 0.5 0.6 0.85 0.9 0.95 1 Homogeneity threshold

Time saved (%)

Reuse accuracy vs saving computation



Application	Latency (ms)		Energy (mJ)		Accuracy
	w/o	w/	w/o	w/	loss (%)
Speaker Identification	13.1	4.2	30.4	9.8	3.2
Landmark Recognition	102.4	27.9	1315	110.7	5.0
Plant Recognition	269.6	99.8	3132	901.4	4.7

Application	Latency (ms)		Energy (mJ)		Accuracy	
	w/o	w/	w/o	w/	loss (%)	
Speaker Identification	13.1	4.2	30.4	9.8	3.2	
Landmark Recognition	102.4	27.9	Over 3x latency reduction			
Plant Recognition	269.6	99.8	3132	901.4	4.7	

Application	Latency (ms)		Energy (mJ)		Accuracy
Application	w/o	w/	w/o	w/	loss (%)
Speaker	40.4	10	30.4	9.8	3.2
Up to 10x battery usage			30.4	9.0	0.2
reduction			1315	110.7	5.0
Recognition	102.4	21.3	1010	110.7	5.0
Plant Recognition	269.6	99.8	3132	901.4	4.7

Application	Latency (ms)		Energy (mJ)		Accuracy
	w/o	w/	w/o	w/	loss (%)
Speaker Identificat Le	ss than	5% acc	curacy	loss	3.2
Landmark Recognition	I	27.9			5.0
Plant Recognition	269.6	99.8	3132	901.4	4.7

Conclusion

- FoggyCache: cross-device approximate computation reuse
 - Effectively eliminates fuzzy redundancy
- Approximate computation reuse
 - Promising new direction for optimizations
 - Algorithms are applicable to other scenarios

Thank you