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We study the problem of automatically analyzing the worst-case resource usage of procedures with several
arguments. Existing automatic analyses based on amortization, or sized types bound the resource usage or
result size of such a procedure by a sum of unary functions of the sizes of the arguments.

In this paper we generalize this to arbitrary multivariate polynomial functions thus allowing bounds of
the form mn which had to be grossly overestimated by m? + n? before. Our framework even encompasses
bounds like Zi, J<n AT where the m; are the sizes of the entries of a list of length n.

This allows us for the first time to derive useful resource bounds for operations on matrices that are
represented as lists of lists and to considerably improve bounds on other super-linear operations on lists
such as longest common subsequence and removal of duplicates from lists of lists. Furthermore, resource
bounds are now closed under composition which improves accuracy of the analysis of composed programs
when some or all of the components exhibit super-linear resource or size behavior.

The analysis is based on a novel multivariate amortized resource analysis. We present it in form of a
type system for a simple first-order functional language with lists and trees, prove soundness, and describe
automatic type inference based on linear programming.

We have experimentally validated the automatic analysis on a wide range of examples from functional
programming with lists and trees. The obtained bounds were compared with actual resource consumption.
All bounds were asymptotically tight, and the constants were close or even identical to the optimal ones.

Categories and Subject Descriptors: F.3.2 [Logics And Meanings Of Programs]: Semantics of Program-
ming Languages—Program Analysis; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs; D.3.3 [Programming Languages]: Language Constructs and Features
General Terms: Performance, Languages, Theory, Reliability

Additional Key Words and Phrases: Amortized analysis, functional programming, quantitative analysis,
resource consumption, static analysis

ACM Reference Format:

Hoffmann, J., Aehlig, K., and Hofmann, M. 2011. Multivariate Amortized Resource Analysis. ACM Trans.
Program. Lang. Syst. V, N, Article A (YYYY), 62 pages.

DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

A primary feature of a computer program is its quantitative performance character-
istics: the amount of resources like time, memory and power the program needs to
perform its task.

Ideally, it should be possible for an experienced programmer to extrapolate from the
source code of a well-written program to its asymptotic worst-case behavior. But it is
often insufficient to determine the asymptotic behavior of programs only. A conserva-
tive estimation of the resource consumption for a specific input or a comparison of two
programs with the same asymptotic behavior require instead concrete upper bounds
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for specific hardware. That is to say, closed functions in the sizes of the program’s in-
puts that bound the number of clock cycles or memory cells used by the program for
inputs of these sizes on a given system.

Concrete worst-case bounds are particularly useful in the development of embedded
systems and hard real-time systems. In the former, one wants to use hardware that is
Just good enough to accomplish a task in order to produce a large number of units at
lowest possible cost. In the latter, one needs to guarantee specific worst-case running
times to ensure the safety of the system.

The manual determination of such bounds is very cumbersome. Cf., e.g., the careful
analyses carried out by Knuth in The Art of Computer Programming where he pays
close attention to the concrete and best possible values of constants for the MIX archi-
tecture. Not everyone commands the mathematical ease of Knuth and even he would
run out of steam if he had to do these calculations over and over again while going
through the debugging loops of program development. In short, derivation of precise
bounds by hand appears to be unfeasible in practice in all but the simplest cases.

As a result, automatic methods for static resource analysis are highly desirable and
have been the subject of extensive research. On the one hand, there is the large field
of WCET (worst-case execution time) analysis [Wilhelm et al. 2008] that is focused
on (yet not limited to) the run-time analysis of sequential code without loops taking
into account low-level features like hardware caches and instruction pipelines. On the
other hand, there is an active research community that employs type systems and
abstract interpretation to deal with the analysis of loops, recursion and data structures
[Gulwani et al. 2009; Albert et al. 2009; Jost et al. 2010].1

In this article we continue our work [Hoffmann and Hofmann 2010b; 2010a] on the
resource analysis of programs with recursion and inductive data structures. A previous
version of this work appeared at a conference [Hoffmann et al. 2011]. Our approach is
as follows.

(1) We consider Resource Aware ML (RAML), a first-order fragment of OCAML that
features integers, lists, binary trees, and recursion.

(2) We define a big-step operational semantics that formalizes the actual resource
consumptions of programs. It is parametrized with a resource metric that can be di-
rectly related to the compiled assembly code for a specific system architecture [Jost
et al. 2009].? To formalize diverging computations, we use a partial big-step opera-
tional semantics that we introduced earlier [Hoffmann and Hofmann 2010al].

(3) We describe an elaborated resource-parametric type system whose type judg-
ments establish concrete worst-case bounds in terms of closed, easily understood for-
mulas. The type system allows for an efficient and completely automatic inference
algorithm that is based on linear programming.

(4) We prove the non-trivial soundness of the derived resource bounds with re-
spect to the big-step operational semantics. The partial operational semantics en-
ables a strong and concise soundness result: if the type analysis has established a
resource bound for an expression then the resource consumption of its (possibly non-
terminating) evaluation does not exceed the bound.

(5) We verify the practicability of our approach with a publically available imple-
mentation and a reproducible experimental evaluation.

Following [Hofmann and Jost 2003], our type system relies on the potential method of
amortized analysis to take into account the interactions between different parts of a
computation. This technique has been successfully applied to the type-based resource

1See Section 10 for a detailed overview of the state of the art.
2To obtain clock-cycle bounds for atomic steps one has to employ WCET tools [Jost et al. 2009].
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analysis of object-oriented programs [Hofmann and Jost 2006; Hofmann and Rodriguez
2009], polymorphic and higher-order programs [Jost et al. 2010], Java-like bytecode by
means of separation logic [Atkey 2010], and to generic resource metrics [Jost et al.
2009; Campbell 2009]. The main limitation shared by these analysis systems is their
restriction to linear resource bounds which can be efficiently reduced to solving linear
constraints.

A recently discovered technique [Hoffmann and Hofmann 2010b; 2010a] yields an
automatic amortized analysis for polynomial bounds while still relying on linear con-
straint solving only. The resulting extension of the linear system [Hofmann and Jost
2003; Jost et al. 2009] efficiently computes resource bounds for first-order functional
programs that are sums ) p;(n;) of univariate polynomials p,. For instance, it automat-
ically infers evaluation-step bounds for the sorting algorithms quick sort and insertion
sort that exactly match the measured worst-case behavior of the functions [Hoffmann
and Hofmann 2010a]. The computation of these bounds takes less than a second.

This analysis system for polynomial bounds has, however, two drawbacks that ham-
per the automatic computation of bounds for larger programs. First, many functions
with multiple arguments that appear in practice have multivariate cost characteris-
tics like m - n. Secondly, if data from different sources is interlinked in a program then
multivariate bounds like (m +n)? arise even if all functions have a univariate resource
behavior. In these cases the analysis fails, or the bounds are hugely over-approximated
by 3m? + 3n2.

To overcome these drawbacks, this paper presents an automatic type-based amor-
tized analysis for multivariate polynomial resource bounds. We faced three main chal-
lenges in the development of the analysis.

(1) The identification of multivariate polynomials that accurately describe the re-
source cost of typical examples. It is necessary that they are closed under natural
operations to be suitable for local typing rules. Moreover, they must handle an un-
bounded number of arguments to tightly cope with nested data structures.

(2) The automatic relation of sizes of data structures in function arguments and
results, even if data that is scattered over different locations (like n; + no < n in the
partitioning of quick sort).

(3) The smooth integration of the inference of size relations and resource bounds to
deal with the interactions of different functions while keeping the analysis technically
feasible in practice.

To address challenge one we define multivariate resource polynomials that are a gen-
eralization of the resource polynomials that we used earlier [Hoffmann and Hofmann
2010b]. To address challenges two and three we introduce a multivariate potential-
based amortized analysis (Section 5 and Section 6). The local typing rules emit only
simple linear constraints and are remarkably modest considering the variety of rela-
tions between different parts of the data that are taken into account.

Our experiments with a prototype implementation® (see Section 8) show that our
system automatically infers tight multivariate bounds for complex programs that in-
volve nested data structures such as trees of lists. Additionally, it can deal with the
same wide range of linear and univariate programs as the previous systems.

As representative examples we present in Section 8 the analyses of the dynamic
programming algorithm for the length of the longest common subsequence of two lists
and an implementation of insertion sort that lexicographically sorts a list of lists. Note
that the latter example exhibits a worst-case running time of the form O(n?m) where
n is the length of the outer list and m is the maximal length of the inner lists. The

3See http://raml.tcs.ifi.1lmu.de for a web interface, example programs, and the source code.
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reason is that each of the O(n?) comparisons performed by insertion sort needs time
linear in m.

Furthermore, we describe two slightly more involved programs that demonstrate in-
teresting capabilities of the analysis. The first program shows that our multivariate
resource polynomials are particularly advantageous for composed functions. It parti-
tions a list into arbitrary many sublists and then sorts each sublist with quick sort. If
n is the length of the input list then there can be n sublists and each sublist can have
up to n elements after the partitioning. The worst-case time complexity of quick sort
is O(n?). Our analysis recognizes that the number of sublists and the lengths of the
sublists are related and computes a quadratic resource bound for the program.

The second example program demonstrates the benefits of the amortized method.
We first implement matrix multiplication for lists of lists. We then consider a binary
tree of matrices with possibly different (but fitting) dimensions and multiply the matri-
ces in breadth-first order. The breadth-first-traversal relies on a functional queue that
is implemented with two lists. The prototype implementation computes an asymptoti-
cally tight polynomial bound of degree four.

The main contributions we make in this paper are as follows.

(1) The definition of multivariate resource polynomials that generalize univariate re-
source polynomials [Hoffmann and Hofmann 2010b]. (in Section 4)

(2) The introduction of type annotation that correspond to global polynomial potential
functions for amortized analysis which depend on the sizes of several parts of the
input. (in Section 5)

(3) The presentation of local typing rules that modify type annotations for global po-
tential functions. (in Section 6)

(4) The implementation of an efficient type inference algorithm that relies on linear
constraint solving only.

This journal version of the article extends and improves the conference version [Hoff-
mann et al. 2011]. The main enhancements are the following.

— Full proofs of the theorems.

— An improved soundness theorem that states that bounds hold for terminating and
non-terminating computations.

— A detailed description of the inference algorithm.

— A more in-depth discussion of related work.

— Additional example programs.

The article is organized as follows.

1. Introduction
2. Background and Informal Presentation
3. Resource Aware ML

4. Resource Polynomials

5. Annotated Types

6. Typing Rules

7. Type Inference

8. [Experimental Evaluation

9. Theoretical and Practical Limitations
10. Related Work

11. Conclusion and Directions for Future Work
12. Appendix (Soundness Proof)

TTTTVTTTTTTTT
%)
©

Some parts of this article are part of the first author’s PhD thesis [Hoffmann 2011].
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2. BACKGROUND AND INFORMAL PRESENTATION

Amortized analysis with the potential method has been introduced [Tarjan 1985] to
manually analyze the efficiency of data structures. The key idea is to incorporate a
non-negative potential into the analysis that can be used to pay (costly) operations.

To apply the potential method to statically analyze a program, one has to determine
a mapping from machine states to potentials for every program point. Then one has
to show that for every possible evaluation, the potential at a program point suffices
to cover the cost of the next transition and the potential at the succeeding program
point. The initial potential is then an upper bound on the resource consumption of the
program.

2.1. Linear Potential

One way to achieve such an analysis is to use linear potential functions [Hofmann and
Jost 2003]. Inductive data structures are statically annotated with a positive rational
numbers ¢ to define non-negative potentials ®(n) = ¢-n as a function of the size n of the
data. Then a sound albeit incomplete type-based analysis of the program text statically
verifies that the potential is sufficient to pay for all operations that are performed on
this data structure during any possible evaluation of the program.

The analysis is best explained by example. Consider the function filter of type
(int, L(int)) — L(int) that removes the multiples of a given integer from a list of inte-
gers.

filter(a,l) = match 1 with | nil -> nil
| (x::x8) -> let xs’ = filter(a,xs) in
if x mod a == 0 then xs’ else x::xs’

Assume that we need two memory cells to create a new list cell. Then the heap-space

usage of an evaluation of filter(a,/) is at most 2|¢|. To infer an upper bound on the heap-

space usage we enrich the type of filter with a priori unknown potential annotations*
+

q(0,i), i € Qg .

filter:((int, L(int)), (q(0,0), 9(0,1))) — (L(int), (po,p1))

The intuitive meaning of the resulting type is as follows: to evaluate filter(a,/) one
needs ¢(,;) memory cells per element in the list / and ¢ ) additional memory cells.
After the evaluation there are py memory cells and p; cells per element of the returned
list left. We say that the pair (a,£) has potential ®((a, ), (¢(0,0),9(0,1))) = 90,0) +4(0,1) " |¢|
and that ¢ = filter(a,¢) has potential ®(¢', (po,p1)) = po + p1 - |€’|. A valid potential
annotation would be for instance ¢ = po = p1 = 0 and q(,1) = 2. Another valid
annotation would be ¢(0) = po = 0, p1 = 2, and q(p,;) = 4. It can be used to type the
inner call of filter in an expression like ﬁlter(a filter(b,¢)). The resources left after the
inner call to filter, are consumed by the outer one.

To infer the potential annotations one can use a standard type inference in which
simple linear constraints are collected as each typing rule is applied. For the heap-
space consumption of filter the constraints would state that ¢,0) > po and gq,1) >
2+ p1.

2.2. Univariate Polynomials
An automatic amortized analysis can be also used to derive potential functions of
the form Zf:o Qi (’;‘) with ¢; > 0 while still relying on solving linear inequalities

4We use the naming scheme of the unknowns that arises from the more general method introduced in this
paper.
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only [Hoffmann and Hofmann 2010b]. These potential functions are attached to in-
ductive data structures via type annotations of the form ¢ = (o, ..., q) with ¢; € Q.
For instance, the typing ¢:(L(int), (4,3,2,1)), defines the potential ®(¢,(4,3,2,1)) =
4+ 3]0 + 2(‘2'1) +1(%).

The use of the f)inomial coefficients rather than powers of variables has sev-
eral advantages. In particular, the identity >, (") = Yoo s1¢i1(}) +
dio,. ki () gives rise to a local typing rule for list match which allows to type nat-
urally both, recursive calls and other calls to subordinate functions in branches of a
pattern match.

This identity forms the mathematical basis of the additive shift <1 of a type annota-
tion which is defined by <1(qo,-..,q%x) = (g0 + ¢1,---,qk—1 + gk, qx). For example, it ap-
pears in the typing tail:(L(int), §) — (L(int), <(q)) of the function tail that removes the
first element from a list. The potential resulting from the contraction xs:(L(int), <(q))
of a list (x::xs):(L(int), ¢), usually in a pattern match, suffices to pay for three common
purposes: (i) to pay the constant costs ¢; after and before the recursive calls, (ii) to
fund, by (g, ..., qx), calls to auxiliary functions, and (iii) to pay, by (qo, - - ., qx), for the
recursive calls.

To see how the polynomial potential annotations are used, consider the function
eratos:L(int)— L(int) that implements the sieve of Eratosthenes. It successively calls
the function filter to delete multiples of the first element from the input list. If eratos
is called with a list of the form [2,3,...,n] then it computes the list of primes p with
2<p<n.

eratos 1 = match 1 with | nil -> nil
| (x::xs8) -> x::eratos(filter(x,xs))

Note that it is possible in our system to implement the function filter with a destructive
pattern match (just replace match with matchD). That would result in a filter function
that does not consume heap-cells and in a linear heap-space consumption of eratos. But
to illustrate the use of quadratic potential we use the filter function with linear heap-
space consumption from the first example.’ In an evaluation of eratos(/) the function
filter is called once for every sublist of the input list £ in the worst case. Then the calls
to filter cause a worst-case heap-space consumption of 2(‘9). This is for example the
case if £ is a list of pairwise distinct primes. Additionally, there is the creation of a new
list element for every recursive call of eratos. Thus, the total worst-case heap-space
consumption of the function is 2n + 2(72’) if n is the size of the input list.

To bound the heap-space consumption of eratos, our analysis system automatically
computes the following type.

eratos:(L(int), (0,2,2)) — (L(int), (0,0,0))

Since the typing assigns the initial potential 2n + 2(3) to a function argument of size
n, the analysis computes a tight heap-space bound for eratos. In the pattern match,
the additive shift assigns the type (L(int), (2,4, 2)) to the variable xs of size n — 1. The
constant potential 2 is then used to pay for the cons operation (i). The non-constant
potential xs:(L(int), (0,4, 2)) used for two purposes. The potential xs:(L(int), (0,2,0)) is
used to pay the cost of filter(xs) (ii) and the potential xs:(L(int)(0,2,2) is passed on to
the result of filter(xs) to pay for the recursive call of eratos (iii). To this end, we use
filter with the following type.

filter:((int, L(int)), (0,4, 2)) — (L(int), (0,2, 2))

51t is just more convenient to argue about heap space than to argue about evaluation steps.
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It expresses the fact that filter can pass unused potential to its result since the re-
turned list is at most as long as the input list.

To infer the typing, we start with an unknown potential annotation as in the linear
case.

eratos:(L(int), (qo,q1,q2)) — (L(int), (po, p1,p2))

The syntax-directed type analysis then computes linear inequalities which state that
qo > po, ¢1 > 2+ p1, and gz > 2+ pa.

This analysis method works for many functions that admit a worst-case resource
consumption that can be expressed by sums of univariate polynomials like n? + m?.
However, it often fails to compute types for functions whose resource consumption is
bounded by a mixed term like n? - m. The reason is that the potential is attached to a
single data structure and does not take into account relations between different data
structures.

2.3. Multivariate Bounds

This paper extends type-based amortized analysis to compute mixed resource bounds
like 2n - (}). To this end, we introduce a global polynomial potential annotation that
can express a variety of relations between different parts of the input. To give a flavor
of the basic ideas we informally introduce this global potential in this section for pairs
of integer lists.

The potential of a single integer list can be expressed as a vector (qo, ¢1,- - ., gx) that
defines a potential-function of the form Zf:o Qi (7;) To represent mixed terms of degree
< k for a pair of integer lists we use a triangular matrix Q = (¢ j))o<i+j<x- Then Q
defines a potential-function of the form Y, .\ ¢:i.;) () (T) where m and n are the
lengths of the two lists.

This definition has the same advantages as the univariate version of the sys-
tem. Particularly, we can still use the additive shift to assign potential to sub-
lists. To generalize the additive shift of the univariate system, we use the identity
20<itj<h a6, ("TY) (T) = Do<itj<h—1d6+1.9) (7) (?) + D o<iri<k 46 (7) (T) It is re-
flected by two additive shifts <1(Q) = (qq,;) + 9i+1.5))o<i+j<r and <2(Q) = (g ;) +
q(i,j+1))o<it+j<k Where g jy: =0if i + j > k. The shift operations can be used like in
the univariate case. For example, we derive the typing taill: ((L(int), L(int)),Q) —
((L(int), L(int)), <11 (Q)) for the function taill(xs,ys)=(tail xs,ys).

To see how the mixed potential is used, consider the function dyad that computes
the dyadic product of two lists.

mult(x,1) = match 1 with | nil -> nil
| (y::ys) -> x*xy::mult(x,ys)

dyad(l,ys) = match 1 with | nil -> nil
| (x::xs) -> (mult(x,ys))::dyad(xs,ys)

Similar to previous examples, mult consumes 2n heap cells if n is the length of input.
We do not have to assign any potential to the output since it is not processed further
in this example. This exact bound is represented by the typing

mult: ((int, L(int)), (0,2,0)) — (L(int), (0,0,0))

that states that the potential is 0 + 2n + O(Z) before and 0 after the evaluation of
mult(x,/) if ¢ is a list of length n.
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The function dyad consumes 2n + 2nm heap cells if n is the length of first argument
and m is the length of the second argument. This is why the following typing represents
a tight heap-space bound for the function.

oo

dyad: ((L(int), L(int)), ( (2] O) ) — (L(int, int), 0)

To verify this typing of dyad, the additive shift <; is used in the pattern matching.
This results in the potential

220
(xs,ys): ((L(int), L(int)), (2 2 ) )
0

that is used as in the function eratos: the constant potential 2 is used to pay for the cons
operation (i), the linear potential ys:(L(int), (0,2,0)) is used to pay the cost of mult(ys)
(i1), the rest of the potential is used to pay for the recursive call (iii).

Multivariate potential is also needed to assign a super-linear potential to the re-
sult of a function like append. This is, for example, needed to type an expression like
eratos(append(/1,(>)). Here, append would have the type

022
append: ((L(int), L(int)), (4 2 ) ) — (L(int), (0,2, 2)).
2
The correctness of the bound follows from the convolution formula ("J;m) = (Z) +

(") + nm and from the fact that append consumes 2n resources if n is the length

of the first argument. The respective initial potential 4n + 2m + 2((3) + ('3) + mn)
furnishes a tight bound on the worst-case heap-space consumption of the evaluation of
eratos(append((1,(5)), where |{1| = n, |l3] = m.

3. RESOURCE AWARE ML

RAML (Resource Aware ML) is a first-order functional language with ML-style syntax,
booleans, integers, pairs, lists, binary trees, recursion and pattern match. In the im-
plementation of RAML we already included a destructive pattern match that we could
handle using the methods described here.

3.1. Syntax
To simplify typing rules and semantics, we define the following expressions of RAML
to be in let normal form. In the implementation we transform unrestricted expressions
into a let normal form with explicit sharing before the type analysis. The explicit shar-
ing accounts for multiple occurrences of variables and simplifies the type inference.
See Section 7 for details.
e = ()| True| False | n | x | z1 binop zo | f(z1,...,2x)

| let x = eq in ey | if x then e, else ey

| (x1,x2) | nil | cons(xy, z;) | leaf | node(xg, 1, x2)

| match x with (x1,z2) — e

| match « with | nil — ey | cons(zp,xt) — e

| match « with | leaf — e; | node(xzg, z1,x2) — e

binop =+ | — | * | mod | div | and | or

We skip the standard definitions of integer constants n € Z and variable identifiers
x € VID. For the resource analysis it is unimportant which ground operations are used
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in the definition of binop. In fact, one can use here every function that has a constant
worst-case resource consumption. In our system we assume that we have integers of a
fixed length, say 32 bits, to ensure this property of the integer operations.

3.2. Simple Types

We define the well-typed expressions of RAML by assigning a simple type, a usual ML
type without resource annotations, to well-typed expressions. Simple types are data
types and first-order types as given by the grammars below.

A ::=unit | bool | int | L(A) | T(A) | (A, A) F:=A— A

To each simple type A we assign a set of semantic values [A] in the obvious way.
For example [T'(int, int)] is the set of finite binary trees whose nodes are labeled with
pairs of integers. It is convenient to identify tuples like (A4;, A, A3, A4) with the pair
type (Alv (A27 (A?n A4)))

A typing context T is a partial, finite mapping from variable identifiers to data types.
A signature ¥ is a finite, partial mapping of function identifiers to first-order types.
The typing judgment I" 5 e : A states that the expression e has type A under the
signature ¥ in the context I'. The typing rules that define the typing judgment are
standard and a subset of the resource-annotated typing rules from Section 5 if the
resource annotations are omitted.

3.3. Programs

Each RAML program consists of a signature ¥ and a family (ey, ) fedom(s) of expres-
sions with a distinguished variable identifier such that ys:A tx ef:Bif ¥(f) = A — B.

We write f(y1,...,yx) = €; as an abbreviation for %(f) = (A1, (A2, (..., 4x) ) = B
and y1:A1, ...,y A by e’f:B. In this case, f is defined by e; = match y; with (y1, y}) —
match y; with (y2,y7) ... e} Of course, one can use such function definitions also in the
implementation.

3.4. Big-Step Operational Semantics

To prove the correctness of our analysis, we define a big-step operational semantics
that measures the quantitative resource consumption of programs. It is parametric
in the resource of interest and can measure every quantity whose usage in a single
evaluation step can be bounded by a constant. The actual constants for a step on a
specific system architecture can be derived by analyzing the translation of the step in
the compiler implementation for that architecture [Jost et al. 2009].

The semantics is formulated with respect to a stack and a heap as usual: Let Loc be
an infinite set of locations modeling memory addresses on a heap. The set of RAML
values Val is given by

vu=£¢|b|n|NULL| (v,v)
A value v € Val is either a location ¢ € Loc, a boolean constant b, an integer n, a null
value NULL or a pair of values (v, v2). We identify the tuple (vy,...,v,) with the pair
(v1, (Vg -+ )-+).

A heap is a finite partial mapping H : Loc — Val that maps locations to values. A
stack is a finite partial mapping V : VID — Val from variable identifiers to values.

Since we also consider resources like memory that can become available during an
evaluation, we have to track the watermark of the resource usage, i.e., the maximal
number of resource units that are simultaneously used during an evaluation. In order
to derive a watermark of a sequence of evaluations from the watermarks of the sub
evaluations one has also to take into account the number of resource units that are
available after each sub evaluation.
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z € dom(V)

var (E:CoNsTU)
VHEz~V(x),H| K

(E:VAR)

V,HF ()~ NULL, H | K™

V(z)=v [yr = v, HEer~v',H | (g,q) (E-APP) nez
VHE f(z)~ o, H | KPP (q,q) - K57 ' VHEn~nH | K™

(E:CoNsTI)

z1, 2 € dom()) v=op(V(z1), V(z2)) b € {True, False}

E:BINO (E:CONSTB)
V2 HF a1 op s~ o, H| K7 (EBINOP)Y ) o b b, H | K™

V(z) = True V,HEFe~v,H |(q,q)
V,H F ifz then e; else ey ~ v, H' | K (q,¢) K™

(E:CONDT)

V(z) = False V,HbFes~v,H |(q,q)

(E:CONDF)
V,H F ifz then e, else ef ~ v, H' | K{™-(q,q)-K$™F

V,Ht e~ ’1)1,7'[1 | (qaql) V[l' — U1]7H1 Fes~ U27H2 | (p7pl)

(E:LET)
V,Ht letx = e inex ~> vo, Ha | Kt (q,¢") - Kkt (p,p') - Kt

V(z) = (v1,v2) Vizy = vi, 22 = v2], HFe~v,H | (¢,q)
V,H + match x with (z1,22) — e ~ v, "' | KM . (¢,¢) - K3*F

(E:MATP)

z1, 22 € dom(V) v = V(x1),V(x2))

- (E:PAIR)
V,H & (21, 22) ~ v, H | KP*"

(E:N1L)

V,H F nil~ NULL, H | K™

Zp, z¢ € dom()) v=V(zn),V(zr)) ¢ ¢ dom(H)
V,H I cons(zp, x¢) ~ LHE — v] | KO

(E:CONS)

V(z) =NULL V,HFei~v,H |(¢,q)

(E:MATNIL)
V, H \ match x with | nil — e1 | cons(zp,x:) — e ~» v, H' | KN (q,q) - KN

V()=  HE)=(vn,vs) V]xp—vh, ze—=ve], H - e2 ~ v, H' | (q,q")
V, M b match x with | nil — e, | cons(zp, z:) — ea ~ v, H' | KP*C . (¢,¢) - K3*C

(E:MATCONS)

(E:LEAF)

V,H + leaf~ NULL, H | K'*

Zo,x1, 2 € dom()V) v = (V(z0), V(z1), V(z2)) £ ¢ dom(H)
V,H t node(zo, x1,x2) ~> £, H[l > v] | Knode

(E:NODE)

V(z) =NULL V,HFei~v,H |(g,q)

match x with | leaf — e; /| j-matTL / matTL
|node(xo,x1,x2)—>eg ~ v, H ‘Kl '(Q7Q)'K2

(E:MATLEAF)

V,HF

V(l’):f H(Z):(Uo,vhvz) V[xo'—)’Uo,l’p—HJl,xzi—)’Ug],H e~ U,Hl | (q, q')
match x with | leaf — e1
V7H a ‘ node(mo,xl, Iz) — €2

(E:MATNODE)
~ U,HI | KinatTN . (q7 q/) . K;natTN

Fig. 1. Evaluation rules of the big-step operational semantics.
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The operational evaluation rules define an evaluation judgment of the form
VHEe~v,H' | (g,q)

expressing the following. If the stack V and the initial heap H are given then the
expression ¢ evaluates to the value v and the new heap 7’. To evaluate e one needs
at least ¢ € Q7 resource units and after the evaluation there are ¢ € Q7 resource
units available. The actual resource consumption is then § = q — ¢’. The quantity ¢ is
negative if resources become available during the execution of e.

Figure 1 shows the evaluation rules of the big-step semantics. There is at most one
pair (¢,q') such that V,H F e ~ v,H' | (¢,¢’) for a given expression e, a heap H and
a stack V. The non-negative number ¢ is the (high) watermark of resources that are
used simultaneously during the evaluation.

It is handy to view the pairs (¢q,¢’) in the evaluation judgments as elements of a
monoid Q = (QF x QF,-). The neutral element is (0,0) which means that resources are
neither needed before the evaluation nor restituted after the evaluation. The operation
(¢,4") - (p,p’) defines how to account for an evaluation consisting of evaluations whose
resource consumptions are defined by (¢,q’) and (p, p’), respectively. We define

/ n_Jla+tp—d, p)ifgd <p
((I7q) (pvp)_ { (q7 p/+q/_p) ifq/>p
If resources are never restituted (as with time) then we can restrict to elements of the
form (¢, 0) and (¢,0) - (p,0) is just (¢ + p,0).

We identify a rational number ¢ with an element of Q as follows: ¢ > 0 denotes (¢, 0)
and ¢ < 0 denotes (0, —¢). This notation avoids case distinctions in the evaluation rules
since the constants K that appear in the rules might be negative.

The following facts are often used in proofs.

PROPOSITION 3.1. Let (q,¢') = (r,7') - (s,8').

(I)g>rand g—¢ =r—1' +s—5
@) If (p,p’) = (7,7") - (s,8') and 7 > r then p > g and p' = ¢
3 If (p,p') = (r,r") - (5,8') and 5> sthenp > gand p' < ¢

@) (r,r)-((s,8") - (,)) = ((r,7") - (s,8)) - (1,1)

The evaluation rules are standard apart from the resource information that mea-
sure the resource consumption. These annotation are very similar in each rule and we
explain them exemplary for the rules E:VAR and E:CONDT.

Assume that the resource cost for looking up the value of a variable on the stack
and copying it to some register is KV?* > 0. The rule E:VAR then states that the re-
source consumption of the evaluation of a variable is (KV?*,0). So the watermark of
the resource consumption is K¥?' and there are no resources left after the evaluation.
If K@ < 0 then E:VAR states that the resource consumption of the evaluation of a
variable is (0, K@), So the watermark is zero and after the evaluation there are K&*
resources available.

Now consider the rule E:CONDT. Assume that the resource cost of looking up the
value of the variable 2 and jumping to the source code of ¢; is KT > 0. Assume
furthermore that jump to the code after the conditional costs K$°"T > 0 resources. The
rule E:CONDT states that the cost for the evaluation is (KT 0) - (¢,¢') - (K$°T,0)
if the watermark for the evaluation of e; is ¢ and if there are ¢’ resources left after
the evaluation. There are two cases. If ¢/ > KgonT then the overall watermark of the
evaluation is ¢+ KT and there are ¢’ — KT resources available after the evaluation.
If ¢ < KT then the overall watermark of the evaluation is ¢ + K$°°T 4 K$°"T — ¢/ and
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A:12 J. Hoffmann et al.

v € {True, False} o 0 oon) veN (V:INT) v=NULL G
H E v+ v:bool ' HEv+—wv:int HEv— ():unit
v = (v1,v2) HEv —ar: A HE vy — az: Az
V:P
HE v (a1,a2): (A1, A2) (V-PAIR)
v=NULL AcA (VNIL) v=NUuLL AcA (V:LEAF)
HEv—[]:L(A) ' HE v leaf : T(A) '
v € Loc
Hw)=(vi,v2) H =H\v HEv—~a:A HEv[a,. .. a]:L(A) (V:Cons)
HEvw— [a1,...,a,]: L(A)
v € Loc H(v) = (vo,v1,v2)
H=Hw HEFEw—aA HEw—t:TA) HEva—t2:T(A) (V:NODE)

HE v tree(a,ti, t2) : T(A)
Fig. 2. Relating heap cells to semantic values.

there are zero resources available after the evaluation. The statement is similar for
negative constants KT,

The values of the constants K7 € Q in the rules depend on the resource, the imple-
mentation and the system architecture. In fact, the value of a constant can also be a
function of the type of a subexpression. For instance, the size of a cons cell depends on
the size of the value that is stored in the cell in our implementation. Since the types of
all subexpressions are available at compile time, this is a straightforward extension.

Actual constants for stack-space, heap-space and clock-cycle consumption were de-
termined for the abstract machine of the language Hume [Hammond and Michaelson
2003] on the Renesas M32C/85U architecture. A list can be found in the literature
[Jost et al. 2009].

The following proposition states that heap cells are never changed during an eval-
uation after they have been allocated. This is a convenient property to simplify some
of the later proofs but it is not necessarily needed. In fact, we could also allow the
deallocation of memory cells. How to formally deal with this is described in the litera-
ture [Jost et al. 2009].

PROPOSITION 3.2. Let e be an expression, V be a stack, and H be a heap. If V, H +
e~ v, H | (q,q) then H'(£) = H({) for all ¢ € dom(H).

PROOF. The only rules that allocate new heap cells are E:CONS and E:NODE. And
in these rules we have the side condition ¢ ¢ # that prevents and old location from
being changed by assigning a value to /. O

3.5. Well-Formed Environments

If H is a heap, v is a value, A is a type, and a € [A] then we write H E v — a: A to
mean that v defines the semantic value a € [A] when pointers are followed in # in the
obvious way. The judgment is formally defined in Figure 2.

We write [ for the empty list. For a non-empty list [a1, ..., a,] we write [ay,...,a,] =
aj ::lag, ..., a,]. The tree with root a, left subtree ¢; and right subtree ¢, is denoted
by tree(a,t1,t2). The empty tree is denoted by leaf. For a heap H, we write H' = H\/¢
for the heap in which the location ¢ is removed. That is, dom(#') = dom(#)\{¢} and
H (') = H(¢') for all ¢/ € dom(H’).
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Note that for every heap H there exist three pairs of semantic values a and data
types A such that H F NULL — a: A; namely a = (), a = [|, and a = leaf. However, if
we fix a data type A and a heap H then there exists at most one semantic value a such
that H E NULL — a: A.

PROPOSITION 3.3. Let H be a heap, v be a value, and let A be a data type. If H =
v a:Aand HEv—ad : A thena=d.

PROOF. We prove the claim by induction on the derivation of H F v a: A.

Assume first that H F v — a: A has been derived by the application of a single
rule. Then the judgment has been derived by one of the rules V:BooL, V:INT, V:UNIT,
V:NIL, or V:LEAF. An inspection of the rules shows that for given A and v only one of
rules is applicable. Thus it follows that a = o'.

Assume now that the derivation of 4 F v — a: A ends with an application of the rule
V:CoNS. Then A = L(B), a = [a1, ..., an], v € Loc, and H(v)=(v1,vz). It follows that the
derivation of # £ v — a': A also ends with an application of V:CONS. Thus we have
a' = [by,...,by]. From the premises of V:CONS it follows that

HEv — a1 A
H Eve = [ag,...,a,]: L(A)
HEv — bt A
H Evg — [ba,...,by]: L(A)

where H' = H\v. It follows by induction that n = m and b; = a; for all 1 < i < n.
The cases in which the derivation ends with the V:NODE or V:PAIR are similar. O

Note that if H F v — a: A then v may well point to a data structure with some alias-
ing, but no circularity is allowed since this would require infinity values a. We do not
include them because in our functional language there is no way of generating such
values.

We write H E v: A to indicate that there exists a, necessarily unique, semantic value
a € [A] sothat HF v+ a:A. A stack V and a heap H are well-formed with respect to
a context I' if # F V(z) : T'(z) holds for every x € dom(I"). We then write X EV : T.

Theorem 3.4 shows that the evaluation of a well-typed expression in a well-formed
environment results in a well-formed environment.

THEOREM 3.4. IfX;Tre: B, HEV:Tand V,Htre~v,H | (¢,¢)then H' EV: T
and H' Ev: B.

A proof of Theorem 3.4 is given in the first author’s PhD thesis [Hoffmann 2011].

3.6. Partial Big-Step Operational Semantics

A notorious dissatisfying feature of classical big-step semantics is that it does not pro-
vide evaluation judgments for non-terminating evaluations. This is problematic if one
intends to prove statements for all computations (divergent and convergent) that do
not go wrong—that is, for all computations that result from the evaluation of well-
typed programs.

A straightforward remedy is to use a small-step semantics to describe computations.
But in the context of resource analysis, the use of big-step rules seems to be more
favorable. Firstly, big-step rules can more directly axiomatize the resource behavior of
compiled code on specific machines. Secondly, it allows for shorter and less syntactic
proofs.

Another classic approach [Cousot and Cousot 1992; Leroy 2006] is to add divergence
rules to the operational semantics that are interpreted coinductively. But then one
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loses the ability to prove statements by induction on the evaluation which is crucial
for the proof of the soundness theorem (Theorem 6.7). It should also be possible to work
with a coinductive definition in the style of Cousot or Leroy [Cousot and Cousot 1992;
Leroy 2006]. However, coinductive semantics leans itself less well to formulating and
proving semantic soundness theorems of the form “if the program is well-typed and
the operational semantics says X then Y holds”. For example, in Leroy’s Lemmas 17-
22 [Leroy 2006] the coinductive definition appears in the conclusion rather than as a
premise.

That is why we use a different approach that we proposed in a companion paper
[Hoffmann and Hofmann 2010a]. We define a big-step semantics for partial evaluations
that directly corresponds to the rules of the big-step semantics in Figure 1. It defines
a statement of the form

V. HEe~|q

where V is a stack, H is a heap, ¢ € Q, and ¢ is an expression. The meaning is that
there is a partial evaluation of e with the initial stack V and the initial heap # that
consumes ¢ resources. Here, ¢ is the watermark of the resource usage. We do not have
to keep track of the restituted resources since a partial evaluation consists always of a
complete evaluation followed by a partial evaluation.

Note that the rule P:ZERO is essential for the partiality of the semantics. It can
be applied at any point to stop the evaluation and thus yields to a non-deterministic
evaluation judgment.

The rule P:VAR can be understood as follows. To partially evaluate a variable, one
can only do one evaluation step, namely evaluating the variable thereby producing the
cost KV if KV2 > (0 and zero cost otherwise.

The rule P:LET1 can be read as follows. If there is a partial evaluation of e; that
needs ¢ resources then one can partially evaluate let « = e; in ey by starting the evalu-
ation of the let expression which costs K1 > 0 or reimburses K¢ < 0 resources. Then
one can partially evaluate e, deriving a partial evaluation of the let expression that
produces the watermark K + q.

Theorem 3.5 proves that if an expression converges in a given environment then the
resource-usage watermark of the evaluation is an upper bound for the resource usage
of every partial evaluation of the expression in that environment.

THEOREM 3.5. If V. Hte~uv,H | (¢,¢)and V,H It e~ | pthen p <q.

PROOF. By induction on the derivation D of the judgment V,H F e~ v, H' | (¢,¢').
To prove the induction basis let D consist of one step. Then e is a constant ¢, a variable
x, a binary operation x; op 3, a pair (x1,z2), the constant nil, leaf, cons(z1,z53), or
node(x1,x2,x3). Let e be for instance a variable z. Then by definition of E: VAR it follows
that V,HE e~ v, H | (K¥,0) or V,HF e~ v, H' | (0,—K"). Thus ¢ = max(0, K2").
The only P-rules that apply to = are P:VAR and P:ZERO. Thus it follows that if V, H +
e ~ | p then p = max(0, K¥?"). The other cases are similar.

For the induction step assume that |D| > 1. Then e is a pattern match, a function
application, a conditional, or a let expression. For instance, let ¢ be the expression
let x = e; in es. Then it follows from rule E:LET that V.H + e; ~ v, H1 | (¢1,4)),
V[z — vi], H1 b ea ~ va,Ha | (¢2,¢5) and

(0:4) = K1 - (a1, 41) - K5 (a2, 05) - K5 @
By induction we conclude

ifV,?-H—elM|p1 thenp1 Séh (2)
if V[z > v1],H1 - ea ~ | p2 then py < g2 (3)
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b € {True, False}

- (P: (P:CONSTB) — (P:CoNsTU)
ViHFew]0 TEERO ) G o K ViHE ()~ | K
€z , T2 € dom(V
n—.t (P:CoNsTI) M (P:VAR) 1,22 om(V) — (P:PAIR)
VHEnR~| K™ VHEz~| K™ V,HE (21, x2) ~ | KP*"
= V,HFE el ~
V) =v vl HEer21q gy ot L B
V,HE f(z)~ | Ki™® +¢ V,HEletx =€ ine; ~ | Ki 4q
V7H Fep~ 111177-[1 ‘ (q7 ql)l
Vervltabe~lp K @d) K0 =00 oy,
V., HEletz =eiines~ | r
V(z) = True V,HFe
( -) : Mm‘ng (P:ConDT) o, @2 € dom(V) 5 (P:BINOP)
V,Ht ifz then e, else ey ~ | Ki™ +¢q V,H b x1 0p x2 ~ | K®
V(x) = False V,HEF ef ~
( )~ - lni (P:CONDF) tot €dMY) b cons)
V,Ht ifz thene; elsee; ~ | K1° +¢ V,H F cons(zn,z) ~ | K
1% = , V[ri = vi,z2 — v, H
(r) = (onva)  VIero o e vl HE e [0 o g, : - (P:NIL)
V,H + match x with (z1,72) = e~ | K" +¢ V,Ht nil~ | K™
V(z) = NULL V,HEei~]q
(P:MATNIL)

V,H + match x with | nil — e, | cons(zn,z;) = €2 ~ | KN 44

V(z)=1{¢ H(L) = (vn,ve) V[zh = vn, e — v, HE ea ~ | g

V,H F match x with | nil — e1 | cons(xn,x;) — eg ~ | KT

(P:MATCONS)

o, T1,T2 € dOIIl(V)
V,HFE node(mo,xl,xg) ~> | Knode

(P:LEAF) (P:NODE)

V,H + leaf~ | K

V(z) = NULL V,HEe1~]q
matTL +

- (P:MATLEAF)
V,H + match x with | leaf — e | node(xo, 1, z2) — €2 ~ | K] q

V(z) =14 H() = (vo,v1,v2) V[xo—=vo, 101, T2—v2), H F e2 ~ | g (P:MATNODE)

V,H + match = with | leaf — e1 | node(zo, x1,z2) — ez ~ | K™ 4 ¢

Fig. 3. Partial big-step operational semantics.
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Now let V,H + e ~| p. Then this judgment was derived via the rules P:LET1 or
P:LET2. In the first case it follows by definition that p = max(p; + K, 0) for some p,
and p; < ¢1 by (2). Therefrom it follows with (1) that p < q.

If V,H I e ~» | p was derived by P:LET2 then it follows that (p,p’) = Ki¢*- (¢, ¢})- KXt
(p2, 0) for some p’, p. We conclude from (3) that p, < g2 and hence from Proposition 3.1
and (1) p < q. The other cases are similar to the case P:LET1. O

Theorem 3.9 states that, in a well-formed environment, every well-typed expression
either diverges or evaluates to a value of the stated type. To this end we instantiate
the resource constants in the rules to count the number of evaluation steps.

PROPOSITION 3.6. Let the resource constants be instantiated by K* = 1, K{¥ = 1
and Kj =0 forall xand all y > 1. Let V,H I~ e~ v,H' | (q,q') and let the derivation of

the judgment have n steps. Then q = n and ¢’ = 0.

PROOF. By induction on the derivation D of V. H e~ v, H' | (q,¢).

If D consists of only one step (]D| = 1) then e is a constant ¢, a variable z, a binary
operation z; op x5, a pair (x1, z2), the constant nil, leaf, cons(z1, z3), or node(x1, x2, x3).
In each case, g = 1 and ¢’ = 0 follows immediately from the respective evaluation rule.

Now let |D| > 1. Then e is a pattern match, a function application, a conditional, or
a let expression. For instance, let e be the expression let x = ¢; in es. Then it follows
from rule E:LET that V,H F e; ~ v1,H1 | (@1, 4)), V[r — v1], H1 b e2 ~ va, Ha | (q2,5)
and

(,4)=1(q1,4)) 0+ (g2, ¢5) - 0= (1 + q1,4}) - (g2, G5)

Let n; be the evaluation steps needed by e; and let ny be the number of evaluation
steps needed by e;. By induction it follows that ¢; = n1, g2 = ny and ¢} = ¢4 = 0. Thus
g=ni+ns+1=n.

The other cases are similar. O

The following lemma shows that if there is a complete evaluation that uses n steps
then there are partial evaluations that use i steps for 0 < 7 < n. It is used in the proof
of Theorem 3.9 with i = n.

LEMMA 3.7. Let the resource constants be instantiated by K* = 1, K = 1 and
K: =0forallzand allm > L. IfVHF e~ v, H | (n,0) then V,H I e~ | i for every
0<i<n.

PROOF. By induction on the derivation D of V,H I ¢ ~ v,H' | (n,0). The proof is
very similar to the proof of Theorem 3.5. O

Lemma 3.8 proves that one can always make one partial evaluation step for a well-
typed expression in a well-formed environment. It is used in the induction basis of the
proof of Theorem 3.9.

LEMMA 3.8. Let the resource constants be instantiated by K* = 1, K = 1 and
K? =0forallzandallm > 1. IfS;TFe: A, HEV:T'then V,HE e~ | L

PROOF. By case distinction on e. The proof is straightforward so we only demon-
strate two characteristic cases.

Let ¢ for instance be a variable z. Then it follows from ;' 2z : Aand HEV : T
that © € V. Thus V,H I « ~ | 1 by (P:VAR).

Let e now be a conditional if z then e; else ¢;. Then it follows from ;' e : A and
H E V : T that V(z) € {True, False}. Furthermore, we derive V,H F ¢, ~| 0 and
V,H I ey ~| 0 with the rule P:ZERO. Thus we can use either P:CONDT or P:CONDF
toderive V,HlFe~|1. O
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THEOREM 3.9. Let the resource constants be instantiated by K* = 1, K{ = 1 and
K* =0forallzandallm > 1LIfS;TFe: Aand HEV : T then V., HE e~ v, H | (n,0)
forann € Nor V,Ht e~ | m for every m € N.

PRrOOF. We show by induction on n that if
Yk e: A, V,HEe~|n and HEV:T (4)

then V,HF e~ v,H | (n,0) or V,H F e ~| n+ 1. Then Theorem 3.9 follows since
V,HF e~ 0 forevery V,H and e.

Induction basis n = 0: We use Lemma 3.8 to conclude from the well-formedness of
the environment (4) that V, H F e~ 1.

Induction step n > 0: Assume (4). If e is a constant ¢, a variable z, a binary operation
1 op x9, a pair (x1,x2), the constant nil, or cons(x1,x2). Then n = 1 and we derive
V,HE e~ v,H | (1,0) immediately from the corresponding evaluation rule.

If e is a pattern match, a function application, a conditional, or a let expression then
we use the induction hypothesis. Since the other cases are similar, we provide the
argument only for the case where e is a let expression let x = e ines. Then V,H +
e ~| n was derived via P:LET1 or P:LET2. In the case of P:LET1 it follows that
V,H F ey ~| n — 1. By the induction hypothesis we conclude that either V, H F ¢; ~
| nor V,H F e; ~ v, H1 | (n—1,0). In the first case we can use P:LET1 to derive
V,H + e ~| n+ 1. In the second case it follows from Theorem 3.4 that 4, F V : T
and H; F vi:A and thus H; F V[z — v]:T',x:A. We then apply Lemma 3.8 to obtain
V[z + v1], H1 b ez ~ | 1. Therefore we can apply P:LET2 to derive V,H - e~ | n + 1.

Assume now that e was derived by the use of P:LET2. Then it is true that V, H - ¢; ~
v, H1 | (n1,0) and V]z — v1], H1 F ea ~ | ng for some ny, ny with ny + ns + 1 = n. From
Theorem 3.4 it follows that H; E V[z — v;]:T", 2: A. Therefore we can apply the induction
hypothesis to infer that V[z — v1],H1 F €2 ~ va, Ha | (n2,0) or V[z — v1],H1 F eg ~
| no + 1. In the first case we apply E:LET and derive V,H F e ~ vy, Ha | (n,0). In the
second case we apply P:LET2 and derive V,HFe~|n+1. O

3.7. The Cost-Free Resource Metric

The typing rules in Section 6 make use of the cost-free resource metric. This is the
metric in which all constants K that appear in the rules are instantiated to zero. It
follows that if V, H e~ v, H' | (¢,¢’) then ¢ = ¢’ = 0. We will use the cost-free metric
in Section 6 to pass on potential in the typing rule for let expressions.

The following proposition is direct.

PROPOSITION 3.10. Let all resource constants K be instantiated by K = 0. If V,H
e~v,H | (q,¢)thenq=¢q¢ =0.If V,HF e~ | qthen q=0.

4. RESOURCE POLYNOMIALS

A resource polynomial maps a value of some data type to a non-negative rational num-
ber. Potential functions are always given by such resource polynomials.

In the case of an inductive tree-like data type, a resource polynomial will only depend
on the list of entries of the data structure in pre-order. Thus, if D(A) is such a data type
with entries of type A, e.g., A-labelled binary trees, and v is a value of type D(A) then
we write elems(v) = [aq,...,ay] for this list of entries. For example, if D(A) is the set of
binary, node-labelled trees then we have elems(leaf) = [] and elems(tree(a,t1,t2)) = a ::
elems(t1)elems(tz).

An analysis of typical polynomial computations operating on a data structure v with
elems(v) = [a1,...,a,] shows that it consists of operations that are executed for every
k-tuple (ai,,...,a;) with 1 < i3 < --- < 4 < n. The simplest examples are linear
map operations that perform some operation for every a;. Other common examples are
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sorting algorithms that perform comparisons for every pair (a;,a;) with1 <i < j<n
in the worst case.

4.1. Base Polynomials

For each data type A we now define a set P(A) of functions p : [A] — N that map values
of type A to natural numbers. The resource polynomials for type A are then given as
non-negative rational linear combinations of these base polynomials.

We use the notation a — e(a) for the anonymous function that maps an argument a
to the natural number that is defined by the expression e(a). In the lambda calculus
one would write Aa.e(a) instead of a — e(a). We define P(A) as follows.

P(A) = {a > 1} if Ais an atomic type
P(A1, Az) = {(a1,a2) = p1(a1) - p2(a2) [ pi € P(Ai)}

P(DA)={vor Y I »i(as) |k eNp € P(A)}

1<j1<<jr<n i=1,...,k

In the last clause [ay, .. ., a,] = elems(v). Every set P(A) contains the constant function
v — 1. In the case of D(A) this arises for k¥ = 0 (one element sum, empty product).

In the case of lists, the intuition is that—for a fixed k—we process all ordered k-
tuples that can be formed from the elements of the list. The cost for processing one of
the k-tuples is given by a product of base polynomials and we sum up these polynomials
to obtain a base polynomial for the list. For example, the function ¢ + (!{) is in P(L(A))
for every k € N; simply take p; = ... = pr = 1 in the definition of P(D(A)). The
function (¢, £3) — (lgll) (lﬁzl) isin P(L(A), L(B)) for every ki, ks € Nand [¢4,...,6,] —

di<ici<n (lﬁ’ll) (|e ‘) € P(L(L(A))) for every ki, ks € N.

4.2. Resource Polynomials

A resource polynomial p : [A] — Qf for a data type A is a non-negative linear combi-
nation of base polynomials, i.e.,

form € N, ¢; € Qf and p; € P(A). We write R(A) for the set of resource polynomials
for A.

An instructive, but not exhaustive, example is given by R,, = R(L(int), ..., L(int)).
The set R, is the set of linear combinations of products of binomial coefficients over
variables z1,...,z,, that is, R, = {3202, ; [T}, (;” ) | ¢ € Qf,m € N,k;; € N}.

(As always, we have 0 € N.) Here, the variable xl represents the lengths of ith
list. These expressions naturally generahze the polynomials used in our univariate
analysis [Hoffmann and Hofmann 2010b] and meet two conditions that are impor-
tant to efficiently manipulate polynomials during the analysis. First, the polynomials
are non-negative, and secondly, they are closed under the discrete difference opera-
tors A; for every i. The discrete derivative A; p is defined through A; p(z1,...,z,) =
p(ay, - xi+ 1 an) = p(a, .. ).

Asin [Hoffmann and Hofmann 2010b] it can be shown that R,, is the largest set of
polynomials enjoying these closure properties. It would be interesting to have a similar
characterisation of R(A) for arbitrary A. So far, we know that R(A) is closed under sum
and product (see Lemma 5.1) and are compatible with the construction of elements of
data structures in a very natural way (see Lemmas 5.3 and 5.4). This provides some
justification for their choice and canonicity. An abstract characterization would have
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to take into account the fact that our resource polynomials depend on an unbounded
number of variables, e.g., sizes of inner data structures, and are not invariant under
permutation of these variables. See Section 9 for a more detailed discussion.

5. ANNOTATED TYPES

The resource polynomials described in Section 4 are non-negative linear combinations
of base polynomials. The rational coefficients of the linear combination are present as
type annotations in our type system. To relate type annotations to resource polynomi-
als we systematically describe base polynomials and resource polynomials for data of
a given type.

If one considers only univariate polynomials then their description is straightfor-
ward. Every inductive data of size n admits a potential of the form >, _, . ¢:("}). So we
can describe the potential function with a vector ¢ = (¢1,...,qx) in the corresponding
recursive type. For instance, we can write L9(A) for annotated list types. Since each
annotation refers to the size of one input part only, univariately annotated types can
be directly composed. For example, an annotated type for a pair of lists has the form
(LI(A),LP(A)). See [Hoffmann and Hofmann 2010b] for details.

Here, we work with multivariate potential functions, i.e., functions that depend on
the sizes of different parts of the input. For a pair of lists of lengths n and m we have,
for instance, a potential function of the form > _ . -, 4;;(7) (/) which can be described
by the coefficients ¢;;. But we also want to describe potential functions that refer to the
sizes of different lists inside a list of lists, etc. That is why we need to describe a set of
indexes I(A) that enumerate the basic resource polynomials p; and the corresponding
coefficients ¢; for a data type A. These type annotations can be, in a straightforward
way, automatically transformed into usual easily understood polynomials. This is done
in our prototype to present the bounds to the user at the end of the analysis.

5.1. Names For Base Polynomials

To assign a unique name to each base polynomial we define the index set I(A) to denote
resource polynomials for a given data type A. Interestingly, but as we find coinciden-
tally, I(A) is essentially the meaning of A with every atomic type replaced by unit. For
example, the indices for pair types are pairs and the indices for list types are lists etc.

I(A) = {x} if A € {int, bool, unit}
I(A17A2) = {(il,iQ) | il € I(Al) and 2'2 S I(AQ)}
I(L(B)) = I(T(B)) = {[i1,...,ix] | k > 0,i; € I(B)}
The degree deg(i) of an index i € I(A) is defined as follows.
deg(x) =0
deg(i1,i2) = deg(i1) + deg(iz)
deg([i1,...,ix]) =k + deg(i1) + - - - + deg(ix)

Define I}, (A) = {i € I(A) | deg(i) < k}. The indexes i € I;;(A) are an enumeration of the
base polyonomials p; € P(A) of degree at most k. For each i € I(A), we define a base
polynomial p; € P(A) as follows: If A € {int, bool, unit} then

p(v) = L.
If A= (4, As) is a pair type and v = (v1,v2) then

D(iyin) (V) = Piy (V1) - Piy (v2)
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If A = D(B) (in our type system D is either lists or binary node-labelled trees) is a
data structure and elems(v) = [v1,...,v,] then

Pliv,eeiyim) (U) = Z Piy (Ujl) * Pin, (U.j'rn)
1< < <jm<n

We use the notation 04 (or just 0) for the index in I(A) such that py, (a) = 1 for all a.
We have 0;,¢ = * and 04, 4,) = (04,,04,) and Op(py = [. If A = D(B) for B a data type
then the index [0,...,0] € I(A) of length n is denoted by just n. We identify the index
(il, ’ig, ig, i4) with the index (’il, (ig, (ig, 24)))

For a list ¢ = [iy,...,ix] we write ig::i to denote the list [ig,41,. .., i;]. Furthermore,
we write i’ for the concatenation of two lists ¢ and 7'

Recall that R(A) denotes the set of non-negative rational linear combinations of the
base polynomials. For p € R(A) we define deg(p) = deg(i) where ¢ € I(A) is the unique
index such that p; = p

LEMMA 5.1. If p,p) € R(A) then p + p',p-p" € R(A), and deg(p + p) =
max{deg(p),deg(p)} and deg(p - p') = deg(p) + deg(p’).

PROOF. By linearity it suffices to show this lemma for base polynomials, as no can-
cellation can occur since our linear combinations are non-negative.
A simple induction on A shows the claim for the base polynomials. O

COROLLARY 5.2. Forevery p € R(A, A) there exists p' € R(A) with deg(p’) = deg(p)
and p'(a) = p(a,a) for all a € [A].

PROOF. Since p is a linear combination of base polynomials it is sufficient to show
the corollary for base polynomials. Assume thus that p € P(A, A). By definition there
are p;,p; € P(A) such that p(a,ad’) = pi(a) - pj(d’) all a,a’ € [A]. From Lemma 5.1 it
follows that p’ = p; - p; € P(A). Per definition, we have for all a € [A] that p'(a) =
pi(a) - pj(a) = p(a, a) and deg(p') = deg(p). O

LEMMA 5.3. Let a € [A] and ¢ € [L(A)]. Let io,...,ix € I(A) and k > 0. Then
Plio,in.nin) (1) = 0 @nd plig s ... i) (a::0) = pig (@) - Pl ,....i ) (€) + Po(@) * Pligin...,ix) (€)-

PROOF. Recall that po(a) = 1 for all @ and let ¢ = [vq,...,v,]. Writing vy for a we
compute as follows, splitting the sum into the case where vy is chosen and the case
where vy is not chosen.

Plioyin,ix) (@) = D20<iiciycocimen Pio(Vio) * Piy (V1) Piy (V4,,)

= Xi<jico<imen Pio(V0) + Piy (vjy) -+ piy, (v5,,)
+ D i<jociiccimen Pio (Vo) * Piy (V1) Piy (V4,,)

= pi,(@) X< <n Pin (Vi) D, (V),,)
+ El§j0<j1<---<jm§n i, (Vjo) * Piy (V1) ++ Pi (V4,,)
= Pio (@) - Pliy,....i] (£) + 20(@) * Pligis....i] (£)

The statement pj;, ;,.....i,1([]) = 0 is obvious as the sum in the definition of the corre-
sponding base polynomial is over the empty index set. O

Lemma 5.4 characterizes concatenations of lists (written as juxtaposition) as they
will occur in the construction of tree-like data.

LEMMA 5.4. Let /1,0, € [[L(A)]] Then (145 € [[L(A)H and p[il,m,ik](élég) =
Ef:o p[ilwuyit](El) .p[it+1~,~~aik](€2)'
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This can be proved by induction on the length of ¢; using Lemma 5.3 or else by a
decomposition of the defining sum according to which indices hit the first list and
which ones hit the second.

5.2. Annotated Types and Potential Functions

We use the indexes and base polynomials to define type annotations and resource poly-
nomials. We then give examples to illustrate the definitions.
A type annotation for a data type A is defined to be a family

Qa = (¢i)icr(a) With ¢; € QF

We say Q4 is of degree (at most) k if ¢; = 0 for every i € I(A) with deg(i) > k. An
annotated data type is a pair (A,Q4) of a data type A and a type annotation Q4 of
some degree k.

Let H be a heap and let v be a value with H F v—a: A for a data type A. Then the
type annotation () 4 defines the potential

Oy (v:(A,Qa)) = Y ai-pi(a)

i€I(A)

Usually, we define type annotations Q 4 by only stating the values of the non-zero coef-
ficients ¢;. However, it is sometimes handy to write annotations (qo, .. ., ¢,) for a list of
atomic types just as a vector. Similarly, we write annotations (qo, 4(1,0), 9(0,1)> 9(1,1) - - -)
for pairs of lists of atomic types sometimes as a triangular matrix.

If a € [A] and Q4 is a type annotation for A then we also write ®(a : (A,Q4)) for

Zi qi - pia).

5.3. Examples

The simplest annotated types are those for atomic data types like integers. The indexes
for int are I(int) = {+} and thus each type annotation has the form (int,q) for a
qo € Qg . It defines the constant potential function ®4 (v:(int, qo)) = qo. Similarly, tuples
of atomic types feature a single index of the form (x,...,x) and a constant potential
function defined by some g, . € Qf.

More interesting examples are lists of atomic types like, e.g., L(int). The set of
indexes of degree k is then I.(L(int)) = {[],[*], [*,*],...,[*,...,x]} where the last
list contains k unit elements. Since we identify a list of ¢ unit elements with
the integer ¢ we have I;(L(int)) = {0,1,...,k}. Consequently, annotated types
have the form (L(int),(qo,-..,qx)) for ¢ € QF. The defined potential function is
(p([a'h s 7an](L(1nt)7 (QO7 o ,Qn)) = Eogigk qi (?)

The next example is the type (L(int), L(int)) of pairs of integer lists. The set
of indexes of degree k is I,(L(int),L(int)) = {(i,j) | ¢« +j < k} if we identify
lists of units with their lengths as usual. Annotated types are then of the from
((L(int), L(int)), Q) for a triangular k x k matrix @) with non-negative rational en-
tries. If ¢; = [a1,...,ay)], b2 = [b1,...,b,] are two lists then the potential function is
®((€1, €2), ((L(int), L(int)), (9(i.5)))) = Do<ivij<k 9i.) (%) (7)

Finally, consider the type A = L(L(int)) of lists of lists of integers. The set of indexes
of degree k is then [ (L(L(int))) = {[i1,...,im| |m < k,i; € N, 3., i <k—m} =
{0,...,k}U{[1],...,[k—1]}U{[0,1],.. .}U---. Let £ = [[@11,- - -, G1my]s - - > [Qnls - - - s G, ]
be a list of lists and Q@ = (¢:)ic1, (L(L(int))) be a corresponding type annotation. The
defined potential function is then ®(¢, (L(L(int)),Q)) =

Z[il,...,il]elk(A) Zl§j1<~-'<jz§n iy, ... i) ("ZI) T (”Zl“)
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In practice the potential functions are usually not very complex since most of the ¢;
are zero. Note that the resource polynomials for binary trees are identical to those for
lists.

5.4. The Potential of a Context

For use in the type system we need to extend the definition of resource polynomials to
typing contexts. We treat a context like a tuple type.

LetI' = z1:44,...,2,:4,, be a typing context and let k¥ € N. The index set I (I") is
defined through

Ii(D) = {(i1, -« yin) | ij € I, (Ay), | > my <k}

A type annotation () of degree k for I is a family
Q = (¢i)ier,(r) With ¢; € Q.

We denote a resource-annotated context with I'; Q). Let H be a heap and V be a stack
with H F V : I where H F V(z;)—a,; : I'(x;). The potential of I'; Q with respect to H
and V is

Py u(I;Q) = > g [ [ pi, (az,)

(ila-uain)elk(r) J=1

Here, i = (i1, - - ,i,). In particular, if T = () then I,,(T") = {()} and ®y, 4 (T; q0) = q()- We
sometimes also write g, for ().

6. TYPING RULES

If f:[A] — [B] is a function computed by some program and K (a) is the cost of the
evaluation of f(a) then our type system will essentially try to identify resource polyno-
mials p € R(A) and p € R(B) such that p(a) > p(f(a)) + K(a). The key aspect of such
amortized cost accounting is that it interacts well with composition.

PROPOSITION 6.1. Letpe R(A),p e R(B), p € R(C), f:[A] — [B], g:1B] — [C1],
1:[A]l = @ and K, : [B] = Q. If p(a) = p(f(a)) + Ki(a) and j(b) = p(g (b))+K2(b>for
alla b, c then p(a) = p(g(f(a))) + Ki(a) + Ka(f(a)) for all a.

Notice that if we merely had p(a) > K;(a) and p(b) > K3(b) then no bound could be
directly obtained for the composition.

Interaction with parallel composition, i.e., (a,¢) — (f(a),c), is more complex due to
the presence of mixed multiplicative terms in the resource polynomials. Assume, for
example, that (f(a), c) is a pair of lists that is used as the argument of a function g in a
larger program. If the resource consumption of g(f(a), c) is, say, | f(a)| - |c| then we need
to assign the corresponding potential to the pair (f(a), ¢). But to express a global bound
on the resource consumption of the program, this potential has to be derived from the
potential of the pair (a,c) taking into account the different sizes of a and f(a). The
following proposition describes at a high level how this is handled in our type system.

PROPOSITION 6.2. Letp € R(A,C),p € R(B,C), f:[A] — [B], and K : [A] — Q.
For each j € I(C) let p\¥) € R(A) and p') € R(B) be such that p(a,c) = 3. p'¥ (a)p;(c)
and p(b,c) =3, P9 (b)p;(c).

If p©(a) > p(f(a)) + K(a) and pY)(a) > pY)(f(a)) holds for all a and j # 0 then
pla,c) 2 p(f(a),c) + K(a).
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In fact, the situation is more complicated due to our accounting for high watermarks as
opposed to merely additive cost, and also due to the fact that functions are recursively
defined and may be partial. Furthermore, we have to deal with contexts and not merely
types. To gain an intuition for the development to come, the above simplified view
should, however, prove helpful.

6.1. Type Judgments

The declarative typing rules for RAML expressions (see Figures 4 and 5) define a
resource-annotated typing judgment of the form 3;T;Q + e:(A,Q') where e is a
RAML expression, X is a resource-annotated signature (see below), I'; Q is a resource-
annotated context and (A, Q’) is a resource-annotated data type. The intended mean-
ing of this judgment is that if there are more than ®(I'; Q) resource units available
then this is sufficient to evaluate e. In addition, there are at least ®(v:(4, Q’)) resource
units left if e evaluates to a value v.

6.2. Programs with Annotated Types

Resource-annotated first-order types have the form (A, Q) — (B, Q’) for annotated data
types (A, Q) and (B, Q’). A resource-annotated signature Y. is a finite, partial mapping
of function identifiers to sets of resource-annotated first-order types.

A RAML program with resource-annotated types consists of a resource-annotated
signature ¥ and a family of expressions with variables identifiers (es,yy) fedom(x) such
that 3;y;:A; Q F ey : (B, Q') for every function type (A4, Q) — (B, Q') € X(f).

6.3. Notations

Families that describe type and context annotations are denoted with upper case let-
ters Q, P, R, ... with optional superscripts. We use the convention that the elements of
the families are the corresponding lower case letters with corresponding superscripts,
ie., Q= (¢)ier, @ = (¢;)ic1, and Q" = (¢} )ic1-

Let Q, Q" be two annotations with the same index set . We write Q < Q' if ¢; < ¢
for every i € I. For K € Q we write Q = Q' + K to state that ¢z = q(% + K > 0 and

g = ¢, for i # 0 €I Let ' = I';,I's be a context, let i = (i1y...,1,) € I(I'1) and
j=(1,--.,51) € I(T'2) . We write (4, j) to denote the index (i1, ...,%x, j1,...,751) € I(T).

We write ;T;Q FL e : (A,Q’) to refer to cost-free type judgments where all con-
stants K in the rules from Figures 4 and 5 are zero. We use it to assign potential to an
extended context in the let rule. More explanations will follow later.

Let Q be an annotation for a context I';,I's. For j € I(I';) we define the projection
77;1 (Q) of Q to I'; to be the annotation Q' € I(I'y) with ¢; = ¢(; ;). The essential prop-
erties of the projections are stated by Propositions 6.2 and 6.3; they show how the
analysis of juxtaposed functions can be broken down into individual components and
combined again after the size of one component has changed.

PROPOSITION 6.3. Let I',2:A;Q be an annotated context, H E V:T',x:A, and H =
V(z)—a:A. Then it is true that ®y 3 (I, 2:4;Q) = 3 14y Pvu(T W;(Q)) - pj(a).

6.4. Additive Shift

A key notion in the type system is the additive shift that is used to assign potential
to typing contexts that result from a pattern match or from the application of a con-
structor of an inductive data type. We first define the additive shift, then illustrate the
definition with examples and finally state the soundness of the operation.

Let I',y:L(A) be a context and let @ = (gi)icr(r,y:z(4)) be a context annotation
of degree k. The additive shift for lists <1;(Q) of @ is an annotation <.(Q) =
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(@})ic1(r,2:A,2s:(4)) of degree k for a context I', 2: A, 25:L(A) that is defined through

0= g0 T 960 J=0

(2:3:0) q(i,j::6) J 7& 0
Let I, :T(A) be a context and let Q = (¢;);cr(r,+:7(4)) be a context annotation of degree
k. The additive shift for binary trees <i7(Q)) of Q is an annotation <7 (Q) = (¢;)icr(r) of

degree k for a context IV =T, z: A, xs1:T(A), zs5:T(A) that is defined by

d. _ ) gt T ey J=0
(1.5,1,62) q(i,j::0102) J # 0

The definition of the additive shift is short but substantial. The shift operations are
used in a situation where y = x :: zs and ¢ = tree(x, zs1, zs2), respectively. We begin by
illustrating its effect in some example cases.

To start with, consider a context ¢:L(int) with a single integer list that features
an annotation (qo,...,qx) = (q,---,qp,...0)).- The shift operation < for lists pro-
duces an annotation for a context of the form x:int, zs:L(int), namely <11 (qo,...,qx) =
(9(0,0ys - - - » q0,k)) such that q ;) = ¢ + qiy1 for all i < k and ¢ ) = qx. This is ex-
actly the additive shift that we introduced in our previous work for the univariate
system [Hoffmann and Hofmann 2010b]. We use it in a context where ¢ points to a
list of length n + 1 and zs is the tail of £. It reflects the fact that >_,_, ;¢ ("t =

Zi:o,...,kq di+1 (?) + Zi:o,‘..,k i (?)

Now consider the annotated context ¢:7(int); (qo, - . -, &) With a single variable ¢ that
points to a tree with n + 1 nodes. The additive shift < produces an annotation for a
context of the form z:int,t,:7(int), t2:T(int). We have <r(qo,.-.,qx) = (q(0.i,j))i+i<k
where g, ;) = ¢iyj + irj41 if i +j < k and qq,; = ¢irj if i +j = k. The in-
tention is that ¢; and ¢, are the subtrees of ¢ which have n; and n, nodes, respec-
tively (n; + no = n). The definition of the additive shift for trees incorporates the
convolution ("}™) = >, (7)(’}) for binomials. It is true that 3°,_, @ ("}!) =

>izo,.. k—1(Gitdi+1) () +a () = Zf:ol D i 4ja—ilCitait1) (7;11) (?22) D5 4 ja=k i (7;11) (73122)

As a last example consider the context /;:L(int), [>:L(int); Q where Q = (q(; j))i+j<k»
[, is a list of length m, and [ is a list of length n + 1. The additive shift results in an
annotation for a context of the form [,:L(int), x:int, xs: L(int) and the intention is that
zs is the tail of Io, i.e., a list of length n. From the definition it follows that <1, (Q) =
(4(:,0,5))i+j<k Where qi 0 j) = (i) + qi,j+1) if i+ < kand g 0.5) = q(i,5) if i+ = k. The
soundness follows from the fact that for every i < k we have that Z?;i ai (7) (”jl) =

m k—i—1 n n
(D) (X520 (@i + 965+0) (7) + g0 (;))-
Lemmas 6.4 and 6.5 state the soundness of the shift operations for lists and trees,
respectively.

LEMMA 6.4. Let T',¢:L(A);Q be an annotated context, H = V : ', L:L(A), H({) =
(v1,0) and let V' = V[zp, — vi,xy — ). Then H E V' : T,ap:A,x:L(A) and
Dy (I 0:L(A); Q) = Py 4y (T, wp: A, w4 L(A); < (Q))-

This is a consequence of Lemma 5.3. One takes the linear combination of instances of

its second equation and regroups the right hand side according to the base polynomials
for the resulting context.

LEMMA 6.5. Let I',t:T(A);Q be an annotated context, H E V : T',t:T(A), H(t) =
(v1,t1,t2), and V' = V[zg — v, 21 — t1, 29 — ta]. If TV = T, 2:A, 21:T(A),29:T(A) then
HEV T and (I)VJ{(F,tZT(A); Q) = (I)V’,H (FI, <]T(Q))
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We remember that the potential of a tree only depends on the list of nodes in pre-
order. So, we can think of the context splitting as done in two steps. First the head
is separated, as in Lemma 6.4, and then the list of remaining elements is split into
two lists. Lemma 6.5 is then proved like the previous one by regrouping terms using
Lemma 5.3 for the first separation and Lemma 5.4 for the second one.

6.5. Sharing

LetT',x1:A, 25:A; Q be an annotated context. The sharing operation Y(Q) defines an an-
notation for a context of the form I, z: A. It is used when the potential is split between
multiple occurrences of a variable.

The following lemma shows that sharing is a linear operation that does not lead to
any loss of potential. This is a consequence of Corollary 5.2. However, we include a
proof to shows how the coefficient can be computed.

'LEMMA 6.6. Let A be a data type. Then there are non-negative rational numbers
c,(:’” fori,j k € I(A) and deg(k) < deg(i, j) such that the following holds. For every con-
text T',x1:A, x2:A; Q and every H,V with HEV : T, z:A it holds that v (T, 2:4; Q") =

Py (I, 21:4, 22:4; Q) where V' = V{[z1, 22 = V(z)] and q(y ) =32, jer(a) &)

PROOF. The task is to show that for every resource polynomial p(; ;)((v,v)) = pi(v) -
p;(v) can be written as a sum (possibly with repetitions) of p;/ (v)’s.

We argue by induction on A. If A is an atomic type bool, int, or unit, we can sim-
ply write 1-1 as 1. If A is a pair A = (B, C') then we have p(; j)((v,w)) - pu ) ((v,w)) =
pi(v)pj(w)py (v)pj (w) = (pi(v)pir (v))(pj(w)p; (w)). By induction hypothesis, (p;(v)pi (v))
and (p;(w)p;(w)) both are sums of elemtary resource polynomials for B or C, re-
spectively. So the expression is a sum of terms of the form p;(v)p;(w), which is
P iy ((v,w)). If Ais alist A = L(B) we have to consider

p[il,...,ik]([vla ce ,Un])p[z"l,...,i;c,]([vlv ceey Un]) =
(21§j1<“.<jk§n Piy (Ujl) - Diy, (Ujk)>(21§ji<.“<j,’c/§n Di; (vji) -+ - Dit, (’Ujl/c,))

Using the distributive law, this can be considered as the sum over all possible ways to
arrange the ji,...,ji and ji,..., ;. relative to each other respecting their respective
orders, including the case that some j; coincide with some j/,. Each of term in this sum
of fixed length (independent of the lists!) has the shape

Yo alvy)-alvy)

1<57<...<jy <n

where each ¢, (v;,) is either a p;_(v;, ), a pi, (v;,) or a product p;, (v;.)pi, (vj,). The latter
can, by induction hypothesis, be written as sum of p;~ (v;,.)’s. Again, this representation
is independent of the actual value of v;,. Using distributivity again, we obtain a sum
of expressions of the form

> piy (V) -« iy (V) = Ppay...iy)
1< <<y <n

The case of A being a tree A = T'(B) is reduced to the case of A being a list, as the
potential for trees is defined to be that of a list—the preorder traversal of the tree. O

In fact, inspection of the argument of the underlying Lemma 5.1 shows that the coeffi-
cients c,(;’J ), are indeed natural numbers and can be computed effectively. For a context
T, x1:A, 29:4; Q we define Y(Q) to be the Q' from Lemma 6.6.
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For example, consider a function f(¢1,¢2) with two list arguments that has a re-
source consumption of 2|¢;||¢z|. This can be expressed by a resource annotation Q =
(¢i)ier(L(int),L(int)) With g(1,1) = 2 and ¢; = 0 for all i # (1, 1). Assume now, that we define

a function g(z) = f(z,z). The sharing coefficients 01(61,1) describe now how we can ex-

press the potential Q' = (q},)rer(z(r)) of the argument . Namely, we have ¢, = 2- Ay,

Furthermore, cgl’l) =1, cél’l) =2 and c,gl"l) = 0 for k & {1,2}. This reflects the identity

6.6. Typing Rules

Figures 4 and 5 show the annotated typing rules for RAML expressions. We assume a
fixed global signature ¥ that we omit from the rules. The last four rules are structural
rules that apply to every expression. The other rules are syntax-driven and there is
one rule for every construct of the syntax. In the implementation we incorporated the
structural rules in the syntax-driven ones. The most interesting rules are explained
below.

T:SHARE has to be applied to expressions that contain a variable twice (z in the
rule). The sharing operation Y (P) transfers the annotation P for the context I', x: A, y: A
into an annotation () for the context I', z: A without loss of potential (Lemma 6.6). This
is crucial for the accuracy of the analysis since instances of T:SHARE are quite fre-
quent in typical examples. The remaining rules are affine linear in the sense that they
assume that every variable occurs at most once.

T:CONS assigns potential to a lengthened list. The additive shift </ (Q’) transforms
the annotation @’ for a list type into an annotation for the context x,:A,z;:L(A).
Lemma 6.4 shows that potential is neither gained nor lost by this operation. The po-
tential () of the context has to pay for both the potential @)’ of the resulting list and the
resource cost K™ for list cons.

T:MATL shows how to treat pattern matching of lists. The initial potential defined
by the annotation @ of the context I, x:L(A) has to be sufficient to pay the costs of the
evaluation of ¢; or e; (depending on whether the matched list is empty or not) and the
potential defined by the annotation Q' of the result type. To type the expression e; of
the nil case we use the projection 7 (Q) that results in an annotation for the context
I'. Since the matched list is empty in this case no potential is lost by the discount of
the annotations q(; ;) of @ where j # 0. To type the expression e, of the cons case we
rely on the shift operation <17, (Q) for lists that results in an annotation for the context
[, xp:A, x4:L(A). Again there is no loss of potential (see Lemma 6.4). The equalities re-
late the potential before and after the evaluation of e; or e,, to the potential before and
after the evaluation of the match operation by incorporating the respective resource
cost for the matching.

T:NODE and T:MATT are similar to the corresponding rules for lists but use the
shift operator <7 for trees (see Lemma 6.5).

T:LET comprises essentially an application of Proposition 6.2 (with f = e; and C =
I's) followed by an application of Proposition 6.1 (with f being the parallel composition
of ¢; and the identity on I'; and ¢ being e3). Of course, the rigorous soundness proof
takes into account partiality and additional constant costs for dispatching a let. It is
part of the inductive soundness proof for the entire type system (Theorem 6.7).

The derivation of the type judgment I'y,T9;Q + letz = e; ines : (B,Q’) can be
explained in two steps. The first one starts with the derivation of the judgment I'y; P +
e1 : (A, P') for the sub-expression e;. The annotation P corresponds to the potential
that is attached exclusively to I'; by the annotation ) plus some resource cost for the
let, namely P = 7T§1 (Q)+ Kl¢t. Now we derive the judgment I'y, 2:A; R - ey : (B, R'). The
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-0 Kver be T ,F 1 — Kbool
Q=@ +K  qyam {True, False} a0 = a0 + (T:CONSTB)
:B;QFx:(B,Q) 0;QFb: (bool, Q")
d — Knp 7 — Kint
opeforandy  qooy=d+ KT o000, mE =4+ (T:CoNsTI)
x1:bool, z2:bool; Q F 1 op x2 : (bool, Q")

0;QF n: (int,Q")

op € {+, —, *, mod, div} 40,0 =90 + K
xy:int, zo:int; Q F x1 op x2 : (int, Q")

go = q(l) + Kunit
(T:OPINT) - ~ (T:CoNsTU)
0;QF () : (unit, Q")

P+K{™=Q P =Q +K™ (A;P) > (B, P)eX() (T:APP)
2:A;QF f(z): (B,Q)

I'i;Pler: (A P) e, 2:A;RFex: (B, R)
P+E=m(Q) P =rf"(R)+K5* R =Q +Ky
VO#jeIla): TP b er:(AP)  P=7Q) Pl=r"(R) R
I, T2;QFletz=e;ines: (B, Q") '

I;PFe:(B,P) P+E™ =75(Q) P =Q+K™
I;RFep: (B,R) R+K™ =m0(Q) R =Q+K™

T:COND
', z:bool; Q - if x then ¢, else es : (B, Q') ( )
A=(A1,As)  T,z1:A1,20:A0;PFe: (B,P) P+KMP=qQ P =Q+Ky?® (T MATP)
T, x:A; Q - match x with (z1,22) — e: (B,Q’) '
— 0 Kpair — Knil
Q=0+ _ (T:PAIR) do =45 + — (T:NIL)
x1:A1, 2:A2; Q F (21, 22) 1 ((A1, A2), Q") 0;Q F nil: (L(A),Q")
— Kleaf =4 ’ JgCons

G =4+ (T:LEAF) @ (@) +

0; Q & leaf: (T(A),Q")

T:C
xn:A, 2 L(A); Q - cons(zy, z:) : (L(A), Q) (T:CoNs)

Q — <]T(Q/) +Knode .
x0: A, 21:T(A), 22:T(A); Q - node(zo, x1,2) : (T(A),Q") (T:NODE)

I;REe :(B,R) R+KMPN=zl(Q R =Q + KyN
D, an:A,z:L(A); PFes: (B,P) P+EKMC=q9,(Q P =Q +Ky®° (T-MaTL)
I, z:L(A); Q F match x with | nil — e1 | cons(xp, x:) — ez : (B, Q") '

I'RFer: (B,R) [, 2o:A, 21:T(A), 22:T(A); P& ea : (B, P)
R+KinatTL — ﬂ'g(Q) R/ _ Q/+K31atTL P+KinatTN — <]T(Q) Pl — Q/+KénatTN

- 7 (T:MATT)
I, z:T(A); Q - match x with | leaf — e1 | node(xo, z1,22) — e2 : (B, Q")

Fig. 4. Typing rules for annotated types (1 of 2).
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T,2:A,4:A; PFe: (B,Q =Y(P T8 (Q) Fe: (B,Q
y L 7y ) € ( 7Q) Q ,Y( ) (TISHARE) 77T()(Q) € ( 7Q/) (TIAUGMENT)
D22 A;Q Felz/m,2/y) : (B,Q) IzA;Qke: (B,Q)
I'PFe: (B,P) I'PFe: (B,P)
> P "< p =P =P
@2 © —— (T:WEAKEN) @ e @ 7 re (T:OFFSET)
QFe: (B,Q) IQkFe: (B,Q

Fig. 5. Typing rules for annotated types (2 of 2).

potential that is assigned by R to z:A is the potential that resulted from the judgment
for e; plus some cost that might occur when binding the variable x to the value of e,
namely P’ = 7T§:A(R) + K. The potential that is assigned by R to I'; is essentially the

potential that is assigned to I's by @, namely 7T(1):2(Q> = 710%(R).

The second step of the derivation is to relate the annotations in R that refer to
mixed potential between z:A and I'; to the annotations in ) that refer to potential
that is mixed between I'; and I';. To this end we remember that we can derive from
a judgment I'1; S F e; : (A,5) that &(I'1;S) > ®(v:(A,S5")) if e; evaluates to v. This
inequality remains valid if multiplied with a potential for ¢r, = ®(T'2; T), i.e., &(I'y; 5)-
¢or, > P(v:(A,S")) - ¢r,. To relate the mixed potential annotations we thus derive a
cost-free judgment T'y; P KL ¢ - (A, P}) for every 0 # j € I(T'y). (We use cost-free
judgments to avoid paying multiple times for the evaluation of e;.) Then we equate P;
to the corresponding annotations in () and equate ] to the corresponding annotations

inR,ie., P; = 77?1 (Q) and P = n7*4(R). The intuition is that j corresponds to ¢r,. Note

that we use a fresh signature X in the derivation of each cost-free judgment for e;.

6.7. Soundness

The main theorem of this paper states that type derivations establish correct bounds:
an annotated type judgment for an expression e shows that if e evaluates to a value
v in a well-formed environment then the initial potential of the context is an upper
bound on the watermark of the resource usage and the difference between initial and
final potential is an upper bound on the consumed resources.

The introduction of the partial evaluation rules enables us to formulate a stronger
soundness theorem than in earlier works on amortized analysis; for instance, [Hoff-
mann and Hofmann 2010b] and [Jost et al. 2009]. It states that the bounds derived
from an annotated type judgment also hold for non-terminating evaluations. Addition-
ally, the novel way of cost monitoring in the operational semantics enables a more
concise statement.

THEOREM 6.7 (SOUNDNESS). Let H E V:I'and ;T Q F e:(B, Q).

D IfV,HE e~ v,H | (pp) then p < Oy u(T5Q) and p — p' < Py u(I5Q) —
CI)’H/ (’UZ(B,Q/)).
@) IfV,HtE e~ |pthenp < @y 4(T;Q).

Theorem 6.7 is proved by a nested induction on the derivation of the evaluation
judgment—V, H F e ~ v,H | (p,p’) or V,;H F e ~»| p, respectively—and the type
judgment T'; Q + e:(B, Q). The inner induction on the type judgment is needed because
of the structural rules. There is one proof for all possible instantiations of the resource
constants. It is technically involved but conceptually unsurprising. Compared to ear-
lier works [Hoffmann and Hofmann 2010b; 2010a], further complexity arises from the
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new rich potential annotations. It is mainly dealt with in Lemmas 6.4, 6.5, and 6.6 and
the concept of projections as explained in Propositions 6.2 and 6.3.

The proof can be found in the appendix of this article.

It follows from Theorem 6.7 and Theorem 3.9 that run-time bounds also prove the
termination of programs. Corollary. 6.8 states this fact formally.

COROLLARY 6.8. Let the resource constants be instantiated by K* =1, K{ =1 and
K* =0forall zand all m > 1. If H E VT and Z;T;Q + e:(A,Q’) then there is an

m

n € N,n < ®y (T Q) such that V,Ht e~ v,H | (n,0).

7. TYPE INFERENCE

The type-inference algorithm for RAML extends the algorithm that we have developed
for the univariate polynomial system [Hoffmann and Hofmann 2010a]. It is not com-
plete with respect to the typing rules in Section 6 but it works well for the example
programs we tested.

Its basis is a classic constraint-based type inference [Pierce 2004] generating simple
linear constraints for the annotations that are collected during the inference. The con-
straints can be solved later by linear programming. In order to obtain a finite set of
constraints one has to provide a maximal degree of the resource bounds. If the degree
is too low then the generated linear program has no solution. The maximal degree can
either be specified by the user or can be incremented successively after an unsuccessful
analysis.

A main challenge in the inference is the handling of resource-polymorphic recursion
which we believe to be of very high complexity if not undecidable in general. To deal
with it practically, we employ a heuristic that has been developed for the univariate
system. In a nutshell, a function is allowed to invoke itself recursively with a type
different from the one that is being justified (polymorphic recursion) provided that the
two types differ only in lower-degree terms. In this way, one can successively derive
polymorphic type schemes for higher and higher degrees.

The idea is based on the observation that any concrete typing for a given resource
metric can be superposed with a cost-free typing to obtain another typing for the given
resource metric (cf. solutions of inhomogeneous systems by superposition with homo-
geneous solutions in linear algebra). With respect to this declarative view, the infer-
ence algorithm can compute every set of types for a function f that has the form
Sy ={T+q-Ti | ¢ € Q},1 < i < m} for a resource-annotated function type 7,
cost-free function types T;, and m recursive calls of f in its function body.

The technique is exemplified for the function append in Section 7.4. For further de-
tails, see [Hoffmann and Hofmann 2010a]. The generalization of this approach to the
multivariate setting poses no extra difficulties.

The number of multivariate polynomials our type system takes into account grows
exponentially in the maximal degree (e.g., nm,n('y),n(y),m(3),m(3), (5) (3) for a pair
of integer lists if the maximal degree is 4). Thus the number of inequalities we collect
for a fixed program grows also exponentially in the given maximal degree.

Moreover, one often has to analyze function applications context-sensitively with
respect to the call stack. Recall, for example, the type derivation of the expression
filter(a,filter(b,])) from Section 2 in which we use two different types for filter. The
function type ((int, L(int)), (0,2)) — (L(int), (0,0)) is used for the outer call of filter.
However, the type ((int, L(int)), (0,4)) — (L(int), (0,2)) is used for the inner call of
filter to assign potential to its output that is sufficient to match the argument type of
the outer call.

In our prototype implementation we collapse the cycles in the call graph and analyze
each function once for every path in the resulting graph. As a result, a (mutually)
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z:B ’ var k ’
e = K I x1:A 20:A; P : (B =Y(P
6 (Q) kQ + (A:VAR) y L1 > L2 kv |—€ ( aQ) Q Y( ) (A:SHARE)
Ie:B;Q F z: (B,Q) I',z:A; Q }= share (z,z1,72) ine : (B,Q’)
P HE e (B,P)  P+K™=nb(Q) P >Q+K™
k / conF T / / conF
IR :(B,R R+ K = R > K
;R er:(B,R) _ + Ky 75 (Q) > Q+K; (A:COND)
T, z:bool; Q = if x then e; else ey : (B, Q")
P KPP = nt P =q K3 S(f)=(A,P) — (A, P
+c+ Ky 5 (Q) Q1+C+ 2/ : (f)=(A,P)— (A, P) (A:APP1)
LA Q = f(x): (A, Q)
P+ P+ K™ =m54Q) P +Pr=Q +K»  3(f)=(AP)— (4, P)
Self) = (A, Pu) = (A Pl)  ypidi P FEE=1 p o (A Py) k> 1 AoAPP)

k
I z:A;Q = f() (A, Q)
Fig. 6. Selected algorithmic typing rules.

recursive definition can have a different type at every call site after its definition.
The recursive calls of a function in its definition are treated with our algorithm for
resource-polymorphic recursion as described before. This type inference for function
types is explained more formally by the algorithm in Section 7.2.

7.1. Algorithmic Type Rules

To obtain a type inference that produces linear constraints, we have to develop algo-
rithmic versions of the typing rules from Section 6. We describe this in detail for the
univariate system in another article [Hoffmann and Hofmann 2010a]. It works similar
for the multivariate system in this paper. Basically, the structural typing rules have to
be integrated in the syntax directed rules.

Other than in the declarative versions, in the algorithmic typing, signatures map
function names to a single function type. The judgment

[Q H-e: (4,Q)
denotes that T;Q + e : (A,Q’) and that all type annotations in the corresponding
derivation are of maximal degree k. The judgment I'; Q F{EL ¢ (4, Q') states that we
have I'; Q H- e : (A, Q') for the cost-free resource metric.

The rule T:AUGMENT can be eliminated by formulating the ground rules such as
T:VAR or T:CONSTU for larger contexts. As an example we present the rule A:VAR,
which is the algorithmic version of the rule T:VAR in Figure 6.

If the syntax-directed rules implicitly assume that two resource annotations are
equal or defer by a fixed constant in two branches of a computation, an integration
of the rule T:WEAKEN enables the analysis of a wider range of programs. For example,
T:WEAKEN is integrated into the rule A:COND in Figure 6 by replacing the two pre-
conditions P’ = Q'+ KT and R’ = Q'+ K$F of the rule T:COND with P’ > Q'+ KT
and R > Q'+K$"F. This enables type inference for programs whose resource con-
sumptions differ in the two branches of the conditional. The same adaption is needed
in the rules for pattern matching.

A difference to standard type systems is the sharing rule T:SHARE that has to be ap-
plied if the same free variable is used more than once in an expression. The rule is not
problematic for the type inference and there are several ways to deal with it in prac-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: YYYY.



Multivariate Amortized Resource Analysis A:31

tice. In our implementation, we transform input programs into programs that make
sharing explicit with a syntactic construct before the type inference. Such a transfor-
mation is straightforward: Each time a free variable x occurs twice in an expression
e, we replace the first occurrence of z with x; and the second occurrence of = with x5
obtaining a new expression ¢’. We then replace e with share(x,z1,22) in ¢'. In this way,
the sharing rule becomes a normal syntax-directed rule in the type inference. Another
possibility would be to integrate sharing directly into the typing rule for let expres-
sions as we did in an earlier work [Hoffmann and Hofmann 2010a]. Then one has to
ensure a variable only occurs once in each function or constructor call. The algorithmic
type rule A:SHARE for the sharing construct is given in Figure 6.

Key rules for the type inference are the algorithmic versions of the rule T:APP in
Figure 6. The rule A:APP1 is essentially the rule T:APP from Section 6. It is used if the
maximal degree is one and leads to a resource-monomorphic typing of recursive calls.
The rule A:APP1 is the only rule in which we integrate the structural rule T:OFFSET.
In some sense, this is analogous to our treatment of function calls with maximal degree
greater than one.

The rule A:APP is used if the maximal degree is greater than one. It enables
resource-polymorphic recursion. More precisely, it states that one can add a cost-free
typing of the function body to the function type that is given by the signature X. Note
that (ef,ys) fedom(s,) must be a valid RAML program with cost-free types of degree
at most k — 1. The signature X is annotated with fresh resource variables on each
application of the rule.

The idea behind the rule A:APP is as follows. In order to pay for the resource
cost of a function call f(z), the available potential (®(z:A; W§:A(Q))) must meet the

requirements of the functions’ signature (®(z:A4; P)). Additionally available potential
(®(x:A4; Py)) can be passed to a cost-free typing of the function body. The potential after
the function call (®(f(z):(4’,Q"))) is then the sum of the potentials that are assigned by
the cost-free typing (®(f(x):(A’, P)))) and by the function signature (®(f(x):(A", P'))).
As a result, f(x) can be used resource-polymorphically with a specific typing for each
recursive call while the resource monomorphic function signature enables an efficient
type inference.

7.2. lterative Inference of Function Types

The collection of constraints can be informally described as follows. For every strongly
connected component F of functions in the call graph—that is, a set of mutually recur-
sive definitions F—repeat the following.

(1) Annotate the signature of each function f € F' with fresh resource variables.

(2) Use the algorithmic typing rules to type the corresponding expressions e. Intro-
duce fresh resource variables for each type annotation in the derivation and collect
the corresponding inequalities.

(a) For a function application g € F: if the maximal degree is 1 use the function
resource-monomorphically with the signature from (1) using the rule A:APP1.
If the maximal degree is greater than 1, go to (1) and derive a cost-free typing
of e, with a fresh signature. Store the arising inequalities and use the resource
variables from the obtained typing together with the signature from (1) in the
rule A:APP.

(b) For a function application g ¢ F': repeat the algorithm for the SCC of g. Store
the arising inequalities and use the obtained annotated type of g.

In contrast to the univariate system [Hoffmann and Hofmann 2010al, cost-free type
derivations also depend on resource-polymorphic recursion to assign super-linear po-
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tential to function results. A simple example is the function append whose type infer-
ence is explained in detail in Section 7.4.

7.3. LP Solving

The last step of the inference is to solve the generated constraints with an LP solver.
The linear objective function that we use states that the annotations of the arguments
of function types should be minimized. We use a heuristic that approximates that the
minimization coefficients of higher degree takes priority over the minimization of co-
efficients of lower degree.

However, one can always construct programs with, say, maximal degree two, for
which the LP solver would return a solution in which the quadratic coefficient is not
the minimal one. The reason is that the objective function must be a linear expression
in the current LP solvers. So we can not state that it is preferable to minimize the
quadratic coefficient ¢, at the cost of a larger linear coefficient ¢;. This is nevertheless
unproblematic in practice. Our experiments showed that the inferred types are quite
robust to changes to the objective function. The reason is that it is for example not
possible to use quadratic potential instead of a linear potential for many programs.

7.4. Type Inference for an Example Program

The inference algorithm is best illustrated by way of example. To this end, consider
the functions append, pairs, and appPairs which are defined in the following program.

append : (L(int),L(int)) -> L(int)
append(l,ys) = match 1 with | nil -> ys
| (x::xs) -> let 1’ = append(xs,ys) in x::1°;

attach : (int,L(int)) -> L(int,int)
attach(n,l) = match 1 with | nil -> nil
| (x::xs8) -> (n,x)::attach(n,xs);

append2 : (L(int,int),L(int,int)) -> L(int,int)
append2(1l,ys) = match 1 with | nil -> ys
| (x::xs) -> let 1’ = append2(xs,ys) in x::17;

pairs : L(int) -> L(int,int)
pairs(1l) = match 1 with | nil -> nil
| (x::xs) -> append2(attach(x,xs),pairs xs);

appPairs : (L(int),L(int)) -> L(int,int)
appPairs (x,y) = let z = append(x,y) in
pairs(z);

The definition of the function append?2 is identical to the definition of append. But
since we have a monomorphic language we need two versions with different types. The
function pairs computes the two-element subsets of a given set (representing sets as
tuples or lists). The expression pairs([1,2,3]) evaluates for example to [(1,2),(1,3),(2,3)].
Finally, the function appPairs concatenates its two list arguments using append and
then calls pairs on the resulting list.

We are now interested in the heap-space consumption of the function appPairs. For
this purpose, assume that each list node occupies exactly one heap cell and that only
lists are stored on the heap. The (worst-case) heap-space consumptions of the func-
tions can then be described as follows by using the argument names in the respective
definitions.

— append consumes || heap cells
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— attach consumes |¢| heap cells
— append2 consumes |¢| heap cells

— pairs consumes 2 ( ‘g') heap cells
— appPairs consumes |z| + 2('2') + 2(!4)) + 2|z||y| heap cells

To derive these bounds with our type-inference algorithm, we set K°°* =1and K =0
for all other constants K. If we set the maximal degree to 2 then we infer the following

types.

append : ((L(int), L(int)), (ggz) ) — (L(int), (0,2,0))
attach : ((int, L(int)), (0,2,0)) — (L(int, int), (0, 1,0))
append? : ((L(int), L(int)), (ggo) ) — (L(int), (0,0,0))
pairs : (L(int), (0,0,2)) — (L(int, int), (0,0,0))
0
2

appPairs : ((L(int), L(int)), ( (2)2) ) — (L(int, int), (0, 0, 0))

Note that the given function types are those that are needed to derive the typing for
appPairs. For example, the type of append does not only express that the function
consumes |¢| heap cells but also that the resulting list of length |¢| + |ys| has to carry
the potential 2(/“I)**) = 2/¢|ys| +2(5)) +2("%!) to pay for the resource consumption of
pairs in appPairs.

In the remainder of this section, we illustrate how the inference algorithm derives
the typing for appPairs. First, we set the maximal degree to 2. We then annotate all
functions in the SCC of appPairs with fresh resource variables of maximal degree 2.
Since appPairs is the only function in the SCC we obtain the following function type.

appPairs : (L(int), L(int), Q) — (L(int, int), Q")

We have Q = (Q(o,o),Q(l,o),Q(2,0)7Q(1,1)7Q(071)7Q(072)) and Q" = (q5,q1,95) where all g;
and ¢; are fresh variables. In Figure 7, we then use the type rules to obtain a type
derivation for the function body eapppairs. We use the same resource variables as in
the function type for the argument (namely @) and the result (namely Q’). All other
types are annotated with fresh resource variables and constraints are collected as in-
dicated by the type rules. Note that the constraints in Figure 7 are given using the
generic constants like K", However, in our current heap-space setting we have in
fact KPP = K5PP = Klet = Klft = Kt = 0. As before, we use abbreviations for the con-
straints. For example, R > B + K" stands for the constraints 7o > by + Ki*°, 11 > by,
and r, > bs. Since there are no recursive calls to appPairs, we do not derive a cost-free
typing for the function.

To establish relationships between the constraints A and A’ in the function anno-
tation for append and between the constraints B and B’ in the annotation for pairs,
we initiate another run of the algorithm for the respective SCCs of the functions. We
express this by the use of a new type rule APPEXT.

In an analysis of the SCC of the function pairs, the inference algorithm would gen-
erate constraints that are equivalent to the following constraints.

bo > b} by >0 by > 2+ b, by =0
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((L(int), L(int), A) — (
€ Y (append)

z : L(int),y : L(int); P Il

L(int), A")

(APPEXT) (1 ,(int), B) — (L(int, int), B') € (pairs)

5 (APPEXT)
append(z,y) : (L(int), P") z : L(int); R = pairs(2) : (L(int, int), R') (T-Lem)
z : L(int),y : L(int); Q 2 let » = append(z,y) in pairs(z) : (L(int, int), Q") '

P> A+ KPP R> B+ KPP Q>P+ Kt R > Q' + Kkt

Al > P+ KSPP B > R + K;PP P’ >R+ K%et
Fig. 7. Type inference for the function appPairs.

If pairs would be called twice in the body of appPairs then we would generate two
copies of this constraint set with different resource variables, one for each application
of function. In this way, we allow the LP solver to infer a different typing for every
(non-recursive) call site.

We do not study the generation of the constraints for pairs in detail but focus rather
on the more interesting generation of the constraints for append whose type derivation
uses polymorphic recursion.® The inference algorithm will in fact infer the following
infinite set X(append) of types for append.

Y(append) = {((L(int),L(int)), <(1)+2n gn 2) ) — (L(int), (0,2n,2)) | n € N}
2

To see why polymorphic recursion is required, consider a type derivation of the typing
in X(append) for n = 0. This function type states that we have to assign the type
(L(int), (0,0, 2)) to the result of the function. The type rules then require the same type
for the cons expression z::¢’ in the cons part of the pattern match. That means that if
|¢'| = m then z::¢' has potential 2("’;1). An inspection of the rule T:CONS shows that,
according to the additive shift, the type of ¢’ has to be (L(int), (0, 2,2)). This represents
the potential 2m+2 (") = 2("™;"). Since ¢’ = append(xs,ys) the expression append(xs,ys)
has to be typed with type (L(int), (0, 2,2)) too. However, the monomorphic function type
(n = 0) of append states that append(xs,ys) is of type (L(int), (0,0, 2)). To get a correct
type derivation, we have thus to use the following function type in ¥(append) for n = 2.

To infer the types in Y (append) we apply the inference algorithm like in the case
of appPairs. For the function arguments we use the annotation A and for the result
we use A’ as needed in the function signature Y in the type derivation of appPairs.
To generate the constraints, we fix this typing in a monomorphic signature ¥’ with
Y'(append) = ((L(int), L(int)), A) — (L(int), A"). Since append is the only function in
the SCC, we do not have to annotate other functions with fresh resource variables and
have dom(X’) = {append}.

The most interesting part of the type derivation is the function application of append
in the rule A:APP. The cost-free function type X¢(append) = ((L(int), L(int)),C) —
(L(int), C') has only annotations of maximal degree 1. That is, C' = (c(9,0), ¢(1,0), ¢(0,1))
and C’ = (¢}, c}). The type states how to pass linear potential from the argument to
the results. To generate the constraints that relate C' to C’ we annotate all functions
in the SCC of append with fresh resource variables of maximal degree 1 and infer a
cost-free type derivation for append. Since the maximal degree is 1, we use the rule

6Note that the constraint generation for the function pairs would also involve a cost-free typing of maximal
degree one for pairs which is used in the recursive call. However, all coefficients in this typing can simply be
zZero.
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¥'(append) = ((L(int), L(int)), A) — (L(int), A")
b)) d) = ((L(int), L(int)), C) — (L(int),C’
imcone Zetappend) = (ELind) L(in0).C) — (in). )
x : int, ¢’ : L(int); S = xs : L(int),ys : L(int); T =
x:0' : (L(int), S") _ append(xs,ys) : (L(int),T") (TLen)
X :int,xs: L(int), ys : L(int) ; U }= - 3 - — (T:VAR)
let ¢ = append(xs,ys) in x::¢' : (L(int), U’) ys : L(int); V = ys : (L(int), V) (T:MaTL)
. i 2 match £ with | nil — ys . . ' ’
¢: L(int),ys : L(int); A = | (x::xs) — let ¢/ = append(xs,ys) in x::¢' ° (L(int), A7)
U' > A+ KpatC a(0,2) = U(x,0,2) Uee0,0) > too) + K w1y >ta
a(0,0) + (1,0 = U(x,0,0) + KPHC VI > A 4 KpaiN U(x,1,0) = (1,0) th > s(u0) + K5
a(1,0) T a(2,0) 2 U(«,1,0) vo > ago,2) + KN U(%,2,0) = t(2,0) 1 > 8(x,1)
a(1,1) 2 U(x,1,1) V1 2 a(0,2) U(x,0,1) = t0,1) th > 5(x,2)
a(2,0) Z U(x,2,0) v2 > a(o,2) U(x,0,2) 2 t(0,2) S’ > U+ Kyt
T2A+C+K?pp A/+C/2T/+K;pp SZQL(S/)+KCOHS Vzv/+Kvar

Fig. 8. Type inference for the function append.

A:APP1 instead of A:APP using the function type that is given in X only. The gener-
ated constraints are equivalent to the following ones.

co > ¢ co,1) > ¢} c1,0) > ¢

Intuitively, the constraints 7 > A+C+ K;* and A’ +C’ > T’ + K3*® that are generated
during the application of A:APP express that the available potential (given by 7) must
be sufficient to cover cost of the recursive call as stated by X’ (given by A). Additional
potential (given by C)), can be passed on to the result of the function using a cost-free
type.

Finally, we solve the collected constraints with an LP solver. To obtain an opti-
mal typing for the function appPairs, the solver minimizes the objective function
q(0,0) +100g(1,0) +100g(o,1) +10000g(,2) + 10000g2 o) +10000q(; 1). It states that quadratic
coefficients are more expensive than linear ones and that linear coefficients are more
expansive than constants.

8. EXPERIMENTAL EVALUATION

We implemented the analysis system in a prototype of Resource-Aware ML. It is writ-
ten in Haskell and consists of a parser (546 lines of code), a standard type checker
(490 lines of code), an interpreter (333 lines of code), an LP solver interface (301 lines
of code), and the actual analyzer (1637 lines of code). So far, we successfully analyzed
2491 lines of RAML code with the prototype.

In the conference version of this article we experimented with an early version of
the prototype without any performance optimizations. In fact, the computed constraint
systems were sometimes infeasible for the LP solver” we used.

Meanwhile we improved the performance of the prototype by an order of magni-
tude. Mainly, this improvement is due to the use of a different LP solver. We currently
use the solver Coin LP®. Further speed-up would be possible by using a commercial
LP solver and by optimizing our Haskell implementation. However, we decided that
accessibility and maintainability take precedence over performance in the prototype
implementation. Right now, the maximal degree for which the performance is accept-
able seems to be five or six.

"Ip_solve version 5.5.0.1
8Clp version 1.14. See https://projects.coin-or.org/Clp
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Table I. The table shows analyzed functions together with the function types, the computed evaluation-step
bounds, the actual worst-case time behavior, the run time of the analysis in seconds, and the number of gen-
erated linear constraints. All computed bounds are asymptotically tight and the constant factors are close to the
worst-case behavior. In the bounds n is the size of the first argument, m; are the sizes of the elements of the
first argument, x is the size of the second argument, y; are the sizes of the elements of the second argument,
M = max;<;<n M, aNd y = max; <j<g Yi-

Function / Computed Evaluation-Step Bound / Actual Run Time /
Type Simplified Computed Bound Behavior  # Constr.
isortlist : Picicjon 16mi+16(5)+12n43 O(n?m)  0.19s
L(L(int))—L(L(int)) 8n?m+8n2—8nm+-4n+3 7307
nub : . . Pi<icjn 12mi+18(5)+12n43 O(n?m)  0.21s
(L(L(int)), L(L(int))) = L(L(int))  6n2m+9n%—6nm-+3n+3 9170
transpose : D i<i<n 32mi+2n+13 O(nm) 0.10s
L(L(int))— L(L(int)) 32nm¥2n+13 4223
mmult : (X1<i<e ¥i)(32 4+ 28n)+14n+2z+21  O(nay) 0.32's
(L(L(int)), L(L(int)))—L(L(int))  28zyn+32zy+2z+14n+21 12311
dyad : 10nx+14n+3 O(nzx) 0.02 s
(L(int), L(int))— L(L(int)) 10nz+14n+3 344

les: 39nx + 6z + 21n + 19 O(nz) 0.10s
(L(int), L(int))—int 39nx + 6z + 21n + 19 2921
subtrees : 8(4) +23n+3 O(n?) 0.06 s
T'(int)—L(T (int)) 4n? +19n + 3 854
eratos : 16(5)+12n +3 O(n?) 0.04 s
L(int)— L(int) 8n2+4n+3 288
splitandsort : 42(%)+58n + 9 O(n?) 0.64 s
L(int, int)—L(L(int), int) 21n2 +3Tn + 9 20550

Further improvement is possible by finding a suitable heuristic that is in between
the (maybe too) flexible method we use here and the inference for the univariate sys-
tem that also works efficiently with high maximal degree for large programs. For exam-
ple, we could set certain coefficients ¢; to zero before even generating the constraints.
Alternatively, we could limit the number of different types for each function.

Table I shows a compilation of the computation of evaluation-step bounds for several
example functions. All computed bounds are asymptotically tight. The run time of the
analysis is less then one second for all examples on an 3.6 GHz Intel Core 2 Duo iMac
with 4 GB RAM depending on the needed degree and the complexity of the source
program.

Our experiments show that the constant factors in the computed bounds are gener-
ally quite tight and even match the measured worst-case running times of many func-
tions. The univariate analysis [Hoffmann and Hofmann 2010b; 2010a] infers identical
bounds for the functions subtrees and eratos. In contrast, it can infer bounds for the
other functions only after manual source-code transformations. Even then, the result-
ing bounds are not asymptotically tight.

We present the experimental evaluation of five programs below. The source code and
the experimental validation for the other examples are available online®. It is also
possible to download the source code of the prototype and to analyze user generated
examples directly on the web.

mttp://raml.tcs.ifi.1lmu.de
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8.1. Lexicographic Sorting of Lists of Lists

The following RAML code implements the well-known sorting algorithm insertion sort
that lexicographically sorts a list of lists. To lexicographically compare two lists one
needs time linear in the length of the shorter one. Since insertion sort does quadratic
many comparisons in the worst-case it has a running time of O(n?m) if n is the length
of the outer list and m is the maximal length of the inner lists.

leq (11,12) = match 11 with | nil -> true
| (x::xs) -> match 12 with | nil -> false
| (y::ys) -> (x<y) or ((x == y) and leq (xs,ys));

insert (x,1) = match 1 with | nil -> [x]
| (y::ys) -> if leq(x,y) then x::y::ys
else y::insert(x,ys);

isortlist 1 = match 1 with | nil -> nil
| (x::xs) -> insert (x,isortlist xs);

Below is the analysis’ output for the function isortlist when instantiated to bound
the number of needed evaluation steps. The computation needs less than a second on
typical desktop computers.

isortlist: L(L(int)) --> L(L(int))
Positive annotations of the argument
0 --> 3.0 2 --> 16.0 1 -->12.0 [1,0] --> 16.0

The number of evaluation steps consumed by isortlist is at most:
8.0*%n"2*m + 8.0*n"2 - 8.0*n*m + 4.0*%n + 3.0
where
n is the length of the input
m is the length of the elements of the input

The more precise bound implicit in the positive annotations of the argument is pre-
sented in mathematical notation in Table I.

We manually identified inputs for which the worst-case behavior of isortlist emerges
(namely reversely sorted lists with similar inner lists). Then we measured the needed
evaluation steps and compared the results to our computed bound. Our experiments
show that the computed bound exactly matches the actual worst-case behavior.

8.2. Longest Common Subsequence

An example of dynamic programming that can be found in many textbooks is the com-
putation of (the length of) the longest common subsequence (LCS) of two given lists
(sequences). If the sequences a1, ...,a, and b1,...,b,, are given then an n x m matrix
(here a list of lists) A is successively filled such that A(i, j) contains the length of the
LCSofay,...,a; and by, ...,b;. The following recursion is used in the computation.

0 ifi=0o0orj=0
A(Z,j):{ A(’L— 1,5 — 1)+1 le,]>0 and ai:bj
max(A(i, j—1), A(i—1, 5)) if 4,5>0 and a;#b;
The run time of the algorithm is thus O(nm). Below is the RAML implementation of
the algorithm.

1lcs(11,12) = let m = lcstable(11,12) in
match m with | nil -> 0
| (11::_) -> match 11 with | nil -> 0
| (len::_) -> len;
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lcstable (11,12) =
match 11 with | nil -> [firstline 12]
| (x::x8) -> let m = lcstable (xs,12) in
match m with | nil -> nil
| (1::1s) -> (newline (x,1,12))::1::1s;

newline (y,lastline,l) =
match 1 with | nil -> nil
| (x::xs) -> match lastline with | nil -> nil
| (belowVal::lastline’) —>
let nl = newline(y,lastline’,xs) in
let rightVal = right nl in
let diagVal = right lastline’ in
let elem = if x == y then diagVal+l
else max(belowVal,rightVal)

in elem::nl;

firstline(l) = match 1 with | nil -> nil
| (x::xs) -> 0::firstline xs;

right 1 = match 1 with | nil -> 0
| (x::x8) -> x;

The analysis of the program takes less than a second on a usual desktop computer and
produces the following output for the function Ics.

lcs: (L(int),L(int)) --> int
Positive annotations of the argument

(0,0) --> 19.0 (1,0) --> 21.0

(0,1) --> 6.0 (1,1) --> 39.0

The number of evaluation steps consumed by lcs is at
most: 39.0*m*n + 6.0*m + 21.0%n + 19.0

where

n is the length of the first component of the input
m is the length of the second component of the input

Figure 9 shows that the computed bound is close to the measured number of evaluation

steps needed. In the case of Ics the run time exclusively depends on the lengths of the
input lists.

8.3. Split and Sort
Our multivariate resource polynomials take into account the individual sizes of all
inner data structures. In contrast to the approximation of, say, the lengths of inner
lists by their maximal lengths, this approach leads to tight bounds when composing
functions.

The function splitAndSort demonstrates this advantage.

splitAndSort : L(int,int) -> L(L(int),int)

splitAndSort 1 = sortAll (split 1);

An input to the function is a list such as ¢=[(1,0),(2,1),(3,0),(4,0),(5,1)] that con-
tains integer pairs of the form code(value,key). The list is processed in two steps.
First, split partitions the values according to their keys. For instance we have
split(¢) = [(12,5],1),([1,3,4]1,0)]. In the second step—implemented by sortAll—the inner
lists are sorted with quick sort.
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The function split is implemented as follows.
split : L(int,int) -> L(L(int),int)

split 1 = match 1 with | nil -> nil
| (x::xs) -> insert( x, split xs);

insert : ((int,int),L(L(int),int)) -> L(L(int),int)

insert (x,1) = let (valX,keyX) = x in
match 1 with | nil -> [([valX],keyX)]
| (11::1s) -> let (valsl,keyl) = 11 in
if keyl == keyX then (valX::valsl,keyl)::1ls
else (valsl,keyl)::insert(x,ls);

The prototype computes the tight quadratic bound 9n2 + 9n + 3 on the number of eval-
uation steps split needs for inputs of length n.

The second part of splitAndSort is sortAll. It uses the sorting algorithm quick sort
to sort all the inner lists of its input. The function can be implemented as follows.

sortAll : L(L(int),int) -> L(L(int),int)

sortAll 1 = match 1 with | nil -> nil
| (x::x8) -> let (vals,key) = x in
(quicksort vals,key)::sortAll(xs);

quicksort : L(int) -> L(int)

quicksort 1 = match 1 with | nil -> nil
| (z::2zs8) -> let (xs,ys) = splitgs (z,zs) in
append(quicksort xs, z::(quicksort ys));

splitgs : (int,L(int)) -> (L(int),L(int))

splitgs(pivot,1l) = match 1 with | nil -> (nil,nil)
| (x::xs8) -> let (1s,rs) = splitqs (pivot,xs) in
if x > pivot then (1s,x::rs) else (x::ls,rs);

append : (L(int),L(int)) -> L(int)

append(l,ys) = match 1 with | nil -> ys
| (x::xs) -> x::append(xs,ys);

The simplified computed evaluation-step bound for sortAll is 12nm? + 14nm + 14n + 3
where n is the length of the outer list and m is the maximal length of the inner lists.

Now consider the composed function splitAndSort again and assume we would like
to derive a bound for the function using the simplified bounds for sortAll and split.
This would lead to a cubic bound for splitAndSort rather than a tight quadratic bound.
The reason is that—in the evaluation of splitAndSort(/)— both n and m can only be
bounded by |¢| the bound 12nm? + 14nm + 14n + 3 for sortAll

In contrast, the use of the multivariate resource polynomials enables the in-
ference of a quadratic bound for splitAndSort. For one thing, the actual bound
S i<icn (24(77) +26m;) + 14n + 3 for sortAll incorporates the individual lengths m;
of the inner lists. For another thing, the type annotation for the function split passes
potential from the function’s argument to the inner lists of the result without losses.

As a result, the prototype computes the asymptotically tight, quadratic bound 21n? +
37n + 9 for the function splitAndSort. The constant factors are however not tight. The
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measured worst-case steps  + measured worst-case steps
39xy + 6y + 21x + 19 —— 2yA2 + 15xyA3 + 14xyA2 + 15xy + 104x + 51 ———

100000
80000
60000
40000

1.4e+07
1.2e+07
le+07
8e+06
6e+06
4e+06
2e+06
0

Fig. 9. The computed evaluation-step bound (lines) compared to the actual worst-case number of eval-
uation-steps for sample inputs of various sizes (crosses) used by Ics (on the left) and bftMult (on the right).

reason is that the worst-case behavior of the function split emerges if all values in
the input have different keys but the worst-case of sortAll emerges if all values in the
input have the same key. The analysis cannot infer that the worst-case behaviors are
mutually exclusive but assumes that they can occur for the same input.

8.4. Breadth-First Traversal with Matrix Multiplication

A classic example that motivates amortized analysis is a functional queue. A queue
is a first-in-first-out data structure with the operations enqueue and dequeue. The
operation enqueue(a) adds a new element a to the queue. The operation dequeue()
removes the oldest element from the queue. A queue is often implemented with two
lists L;, and L,,; that function as stacks. To enqueue a new element in the queue, one
simply attaches it to the beginning of L;,. To dequeue an element from the queue, one
detaches the first element from L,;. If L,,; is empty then one transfers the elements
from L;, to L,,;; thereby reversing the elements’ order.

Later in this example we shall store trees of matrices (lists of lists of integers) in
our queue. So the two lists of queue have type L(T(L(L(int)))) in the following RAML
implementation.

dequeue : (L(T(L(L(int)))),L(T(L(L(int)))))
=> (L(T(L(L(int)))), (L(T(L(L(int)))) ,L(T(L(L(int))))))

dequeue (outq,inqg) = match outq with
| nil -> match reverse ing with | nil -> ([1,([],[1))
| t::ts —> ([t], (ts,[1))
| t::ts => ([t],(ts,inqg));

enqueue : (T(L(L(int))), (L(T(L(L(int)))),L(T(L(L(int))))))
-> (L(T(L(L(int)))),L(T(L(L(int)))))

enqueue (t,queue) = let (outq,inq) = queue in (outq,t::inq);
appendreverse : (L(T(L(L(int)))),L(T(L(L(int))))) -> L(T(L(L(int))))
appendreverse (toreverse,sofar) = match toreverse with

| nil -> sofar

| (a::as) -> appendreverse(as,a::sofar);

reverse: L(T(L(L(int)))) -> L(T(L(L(int))))

reverse xs = appendreverse(xs,[]);
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The prototype implementation infers precise linear bounds for the above functions.
The evaluation-step bound for reverse is for instance 8n + 7 where n is the length of
the input list.

The point of this example is nevertheless the use of a queue in a breadth-first traver-
sal of a binary tree. Suppose we are given a binary tree of matrices and we want to
multiply the matrices in breadth first-order. The matrices are represented as lists of
lists of integers and can have different dimensions. However, we assume that the di-
mensions fit if the matrices are multiplied in breadth-first order. Before we implement
the actual breadth-first traversal, we first implement matrix multiplication as follows.
We use accumulation to avoid transposing matrices before the multiplication.

matrixMult : (L(L(int)),L(L(int))) -> L(L(int))

matrixMult (m1,m2) = match ml with | [] -> []
| (1::1s) -> (computeLine(1l,m2,[])) :: matrixMult(ls,m2);

computeLine : (L(int),L(L(int)),L(int)) -> L(int)

computeLine (line,m,acc) = match line with | [] -> acc
| (x::xs8) -> match m with [] -> []
| (1::1s) -> computeLine(xs,ls,lineMult(x,1l,acc));

lineMult : (int,L(int),L(int)) -> L(int)

lineMult (n,11,12) = match 11 with | [ -> []
| (x::xs8) -> match 12 with | [] -> x*n::1lineMult(n,xs,[])
| (y::ys) -> x*n + y :: lineMult(n,xs,ys);

The computed evaluation step bound for matrixMult is 15mkn + 16nm + 15n + 3 if the
first matrix is of dimension n x m and the second matrix is of dimension m x k.10

Eventually, we implement the breadth-first traversal with matrix multiplication as
follows.

bftMult : (T(L(L(int))),L(L(int))) -> L(L(int))
bftMult (t,acc) = bftMult’ (([t],[]),acc);
bftMult’ : ((L(T(L(L(int)))),L(T(L(L(int))))),L(L(int))) -> L(L(int))

bftMult’ (queue,acc) =
let (elem,queue) = dequeue queue in
match elem with | nil -> acc
| t::_ -> match t with | leaf -> bftMult’ (queue,acc)
| node(y,tl1,t2) -> let queue’ = enqueue(t2,enqueue(tl,queue)) in
bftMult’ (queue’ ,matrixMult(acc,y));

If parametrized with the evaluation-step metric, the prototype produces the following
output for bftMult.

bftMult: (T(L(L(int))),L(L(int))) --> L(L(int))
Positive annotations of the argument

0,0) --> 51.0 (1,1) --> 15.0
(0,[11) --> 2.0 ([11,1) --> 14.0
(1,0) --> 104.0 ([f111,1) --> 15.0

10In fact, the bound that is presented to a user is at bit more general because the analysis can not assume
that the dimensions of the matrices fit.
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The number of evaluation steps consumed by bftMult is at most:
2.0*xy*z + 15.0*y*n*m*x + 14.0*y*n*m + 15.0*y*n + 104.0*n + 51.0

where

n is the size of the first component of the input
is the length of the nodes of the first component of the input
is the length of the elems. of the nodes of the first comp. of the input
is the length of the second component of the input
is the length of the elements of the second component of the input

N< X B

The analysis thus derives a non-trivial asymptotically-tight bound on the number of
evaluation-steps of bftMult. The analysis of the whole program takes about 30 seconds
on a usual desktop computer and the prototype generates 947650 constraints. It is
unclear how such a bound can be computed without the use of amortized analysis.

We compared the computed evaluation-step bound with the measured run time of
bftMult for balanced binary trees with quadratic matrices. Figure 9 shows the result
of this experiment where = denotes the number of nodes in the tree and y x y is the
dimension of the matrices. The constant factors in the bound almost match the optimal
ones.

8.5. Non-Termination and Reuse of Resources

Note that there is no syntactic restriction on the functions that can by analyzed by
automatic amortized resource analysis. If a function does not consume resources then
even non-termination is unproblematic.

Consider the function omega defined as follows.

omega : L(int) -> L(int)

omega (x) = omega (x)

The function does not terminate but does not consume any heap cells neither. For the
heap-space metric and the type annotation omega: (L(int), (g0, ¢1)) — (L(int), (¢}, q})),
the constraint system that is generated by the prototype implementation poses no
restrictions on the values of the resource annotations. Consequently, our prototype
infers that no heap-space is used by omega.

Assume that a cell of an integer list occupies two heap cells. The function append
then consumes two heap cells per list element in the first input list. Since the prototype
can infer the typing omega:(L(int), (0,0)) — (L(int),(0,2)) it can also infer that the
expression let I’ = omega I in append(l’,]’) needs zero heap cells.

For an example of a non-terminating function that consumes and restitutes re-
sources, consider the following function fibs that successively stores pairs of Fibonacci
numbers on the heap.

fibs : L(int) -> unit
fibs 1 = matchD 1 with | nil -> ()
| n::1s => matchD 1ls with | nil -> ()
| m::_ -> fibs (m::(n+m)::nil);
main = fibs (0::1::nil)

The destructive pattern matching matchD deallocates the matched node of the list ¢
and frees 2 memory cells.!! As a result, the function fibs stores the Fibonacci numbers
in the heap space that is occupied by the input list ¢ without requiring additional space.

11See [Hofmann and Jost 2003] for details on destructive pattern matches.
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The prototype implementation infers the following types for the program.
fibs : (L(int), (0,0)) — (unit,0)
main : (unit,4) — (unit,0)

The type of fibs states that the function does not need any heap space and the type of
main states that the main expressions requires four heap cells. These cells are used to
create the initial list [0,1].

Finally, the function facList, which is defined below, is potentially non-terminating
but has a worst-case heap-space consumption that is linear in the input.

fac : int -> int
fac n = if n == 0 then 1 else n*fac(n-1);
facList : L(int) -> L(int)

facList 1 = match 1 with | nil -> nil
| x::xs => (fac x) :: (facList xs);

The function fac computes the factorial n! for a non-negative input n > 0 and diverges
if n < 0. The function call facList(/) applies fac to every element of the integer list ¢.
Consequently, facList(¢) terminates if and only if all elements of ¢ are non-negative.
However, the worst-case heap-space consumption of the function is 2|¢| (if we again
assume that a list element occupies two heap cells). The prototype computes this heap-
space bound since it infers the typing facList : (L(int), (0,2)) — (L(int), (0,0)).

9. THEORETICAL AND PRACTICAL LIMITATIONS

We only study the problem of deriving worst-case resource bounds rather than deter-
mining average-case resource behavior or lower bounds. Our analysis does also not
establish any guaranties on the quality of the bounds.

Moreover, it is undecidable whether the resource usage of a RAML program is
bounded. As a consequence, every method that automatically computes resource
bounds has limitations.

9.1. Resource Polynomials

The bounds that we compute are resource polynomials. That means that we cannot
express non-polynomial bounds like n-log n or 2”. It also means that we cannot express
every polynomial bound.

Recall from Section 4 that R,, = R(L(int),..., L(int)) = {372, ¢; []}_, (,‘fj?) | g; €

Qf,m € N,k;; € N} of resource polynomials for n-tuples of integer lists is the set
linear combinations of products of binomial coefficients. The variables z; represent the
lengths of the ith input list. The polynomials in R, are non-negative and closed under
discrete differentiation A; in the variable x; for every i. Since it is the largest set of
polynomials that enjoys these properties [Hoffmann and Hofmann 2010b], it includes
polynomials of the form > ¢; - H?zl xf’ for ¢; > 0. This shows that for every given
polynomial p(Z) in variables z; there is a resource polynomial r(Z) of the degree of
p such that p(#) < (&) for all . One can obtain r for example by removing all the
negative terms from p but often there exist resource polynomials r that are tighter
upper bounds.

On the other hand, there exists monotonically non-decreasing polynomials that are
not resource polynomials. An example is F(z) = 23 — 622 + 122. Then A(F)(z) = 322 —
15z + 19 and A(A(F))(z) = 6z — 18. So the second discrete derivative is negative at
z = 1 and F is not an element of R;.
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Of course, it is possible to implement a program Pr whose worst-case behavior is ex-
actly described by F'. Since F' is monotonically non-decreasing, the worst-case resource
consumption of Pr for inputs of size x is greater than the worst-case resource consump-
tion for inputs of size x — 1. This is a property that one would possibly expect from a
typical program. However, the difference A(F')(x) between the worst-case behavior of
Pr for in inputs of size x and inputs of size x — 1 is not monotonically non-decreasing.
Right now, we are not aware of a simple, well-known function or algorithm that has
this property.

In general, resource polynomials are functions that can only be described by in-
finitely many variables or as a family of polynomials. Consider for example the re-

source polynomial ppa 11([01; .-, 0n]) = Y1cicicn (1) - |¢;| which maps lists of lists of
integers to non-negative rational numbers. It can be seen as the family (p,,),cny Where

T4

Pn(@1,- - %n) = X i<icj<n (%) - 25

More interestingly, every resource polynomial p € R(L(L(int))) for lists of lists of in-
tegers with p([[],...,[]]) = 0 (i.e., pis given by (¢;)icr(r(L(int))) Such that ¢, = 0forn € N
and thus p does not assign potential to the outer list) can be written as quasisym-
metric function. A quasisymmetric function [Stanley 2001] is a formal power series of
bounded degree in variables x, x2, ... with coefficients in Q such that the coefficient of
the monomial x‘f’ﬂ ..., z% is equal to the coefficient of the monomial xfll et xfﬂl for any
strictly increasing sequence of positive integers i; < --- < i,, and any positive integer
sequence of exponents dy, . .., d,. For instance, we have pjy 1) = 3, _; ie?x; — Loz

Clearly, resource polynomials can not describe every formal power series. Apart from
power series and quasisymmetric functions, we are not aware of any concepts of poly-
nomials in infinitely many variables that we could rely on to discuss the limitations of
our resource polynomials.

It seems to be possible to establish an analogous property for R(L(L(int))) as for R,,
in the sense that R(L(L(int))) contains the largest set of non-negative quasisymmetric
functions that is closed under discrete derivation. It seems also possible to give a full
characterization of the resource polynomials in terms of generalized quasisymmetric
functions. However, such a characterization is beyond the scope of this article.

9.2. Type System

Our type system is a compromise between expressiveness and effectiveness. To en-
able automatic type inference and type checking, we restrict the entities that appear
as sizes in the resource polynomials to be sizes of data structures. As a result, the
derived bounds can not depend on any user defined measures such as the size differ-
ence between two values. For one thing, such measures would be useful to design a
semi-automatic analysis that could be used interactively to develop resource bounds
for more complicated programs.

For another thing, the limitation to sizes is problematic for numeric programs where
recursive calls are often guarded by boolean expressions like n > m andi < j. The re-
source cost of the program would then depend on the differences j—i and n—m between
the initial values of n, m, i and j. In general, it is possible to derive bounds on programs
whose resource consumption depends on natural numbers by interpreting the numbers
as unit lists in the our type system. It would then be possible to derive a bound for a
function like the factorial function where recursive calls are made on smaller num-
bers only (fac(n) = ... nxfac(n—1) ...). However it is not possible to derive a bound for
a function that is recursively called with larger arguments (f(n,m) = ... f(n+1,m)...).
Another problem that we do not address here is the computation of bounds for pro-
grams whose resource consumption depend on integers. The main challenges there
are the treatment of overflows and negative numbers.
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There are cases in which the uniform treatment of data structures in the type
system inevitably leads to loose bounds. The problem is for instance that the types
L(L(int)) and (L(int),L(L(int))) are not isomorphic in our type system, that is,
L(L(int)) % (L(int), L(L(int))). The reason is that the pair type allows for more re-
source annotations than the list type. Consider for example a function f of type
(L(int), L(L(int))) — unit whose resource consumption is given by the resource

polynomial p(y 1)) (4, [¢1,. .., 6n]) = [€] - X1 <;<,, |¢i|- To bound the resource consump-
tion of a function g(Is)= flhead(ls),tail(Is)) we have to use the resource polynomial
(b, a]) = -2 i j<n |6l - |€;]. This is however a crude upper bound since we

do not need the terms |¢;| - |¢;| for ¢ > 1.

9.3. Implementation

As mentioned in Section 8, our main focus in the implementation was correctness
rather than performance. As a result, the analysis takes several minutes for lager
programs if the given maximal degree is larger than five.

There are many ways to speed up the generation of constraints which takes currently
almost as long the LP solving. More importantly, the generation of constraints for all
potential annotation of a fixed maximal degree for the whole program as well as a
separate constraint set for every call site of a function are very coarse heuristics. To
enable the analysis of very large programs, it would be necessary to develop a smarter
heuristic to select the possible annotations for different parts of the program.

10. RELATED WORK

Automatic computation of resource bounds for program has been the topic of exten-
sive study. In this section, we compare our work with related research on automatic
resource analysis and on verification of resource bounds.

Classically, automatic resource analysis is based on recurrence relations. We discuss
this long line of work in Section 10.1. Most closely related to this paper is the previous
work on automatic amortized analysis, which we describe in Section 10.2.

Other important techniques for resource analysis are based on sized types, or on
abstract interpretation and invariant generation. We discuss this research in Sec-
tion 10.3 and 10.4, respectively. Further related work is discussed in Section 10.5.

10.1. Recurrence Relations

The use of recurrence relations (or recurrences) in automatic resource analysis has
been pioneered by Wegbreit [1975]. The proposed analysis is performed in two steps:
first extract recurrences from the program, then compute closed expressions for the
recurrences. Wegbreit has implemented his analysis in the METRIC system for ana-
lyzing LISP programs but notices that it “can only handle simple programs” [Wegbreit
1975]. The most complicated examples that he provides are a reverse function for lists
and a union function for sets represented by lists.

Webreit’s method has dominated automatic resource analysis for many years. Ben-
zinger [2001] notices:

Automated complexity analysis is a perennial yet surprisingly disregarded
aspect of static program analysis. The seminal contribution to this area was
Wegbreit’'s METRIC system, which even today still represents the state-of-
the-art in many aspects.

Ramshaw [1979] and Hickey and Cohen [1988] address the derivation of recurrences
for average-case analysis. Flajolet et al. [1991] describe a theory of exact analysis in
terms of generating functions for average-case analysis. A fragment of this theory has
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been implemented in an automatic average-case analyses of algorithms for “decompos-
able” combinatorial structures. Possible applications of Flajolet’s method to worst-case
analysis have not been explored.

The ACE system of Le Métayer [1988] analyses FP programs in two phases. A recur-
sive function is first transformed into a recursive function that bounds the complexity
of the original function. This function is then transformed into a non-recursive one,
using predefined patterns. The ACE system can only derive asymptotic bounds rather
than constant factors as it is done in RAML.

Rosendahl [1989] has implemented an automatic resource analysis for first-order
LISP programs. The analysis first converts programs into step-counting version which
is then converted into a time bound function via abstract interpretation of the step-
counting version. The reported results are similar to Wegbreit’s results and programs
with nested data structures and typical compositional programs can not be handled.

Benzinger [2001; 2004] has applied Wegbreit’s method in an automatic complexity
analysis for higher-order Nuprl terms. He uses Mathematica to solve the generated
recurrence equations. Grobauer [2001] has reported an interesting mechanism to au-
tomatically derive cost recurrences from DML programs using dependent types. The
computation of closed forms for the recurrences is however not discussed.

Recurrence relations have also been proposed to automatically derive resource
bounds for logic programs [Debray and Lin 1993].

In the COSTA project, both the derivation and the solution of recurrences are stud-
ied. Albert et al. [2007] have introduced a method for automatically inferring recur-
rence relations from Java bytecode. They rely on abstract interpretation to generate
size relations between program variables at different program points. A recent ad-
vancement is the derivation of bounds that take garbage collection into account [Albert
et al. 2010].

The COSTA team states that existing computer algebra systems are in most cases
not capable of handling recurrences that originate from resource analysis [Albert et al.
2008]. As a result, a series of papers [Albert et al. 2008; 2011; Albert et al. 2011] studies
the derivation of closed forms for so called cost relations; recurrences that are produced
by automatic resource analysis. They use partial evaluation and apply static analysis
techniques such as abstract interpretation to obtain loop invariants and ranking func-
tions. Another work [Albert et al. 2009] studies the computation of asymptotic bounds
for recurrences.

While the COSTA system can compute bounds that contain integers, the amortized
method is favorable in the presence of (nested) data structures and function composi-
tion.

10.2. Automatic Amortized Analysis

The concept of automatic amortized resource analysis has been introduced in [Hof-
mann and Jost 2003]. The potential method is used there to analyze the heap-space
consumption of first-order functional programs, establishing the idea of attaching po-
tential to data structures, the use of type systems to proof bounds, and the inference
of type annotations using linear programming. Other than here, the analysis system
uses linear potential annotations and thus derives linear resource bounds only.

The subsequent work on amortized analysis for functional programs successively
broadened the range of this analysis method while the limitation to linear bounds
remained. Jost et al. [2009] have extended automatic amortized analysis to generic
resource metrics and user defined inductive data structures, Campbell [2009] has de-
veloped an amortized resource analysis that computes bounds on the stack space of
functional programs, and Jost et al. [2010] have extended linear amortized resource
analysis to polymorphic and higher-order programs.
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Automatic amortized resource analysis was successfully applied to object-oriented
programs [Hofmann and Jost 2006; Hofmann and Rodriguez 2009] requiring refined
potential annotations to deal with object-oriented language features such as inheri-
tance, casts and imperative updates. Atkey [2010] integrated linear amortized analysis
into a program logic for Java-like bytecode using bunched implications and separation
logic.

All the previous works on amortized analysis only describe systems that are re-
stricted to linear bounds. In [Hoffmann and Hofmann 2010b; 2010a], we have de-
scribed the first automatic amortized analysis that can compute super-linear bounds.
In this work, we extend this system from univariate bounds (such as n% 4+ m?) to mul-
tivariate bounds (such as nm). This article is the full version of an earlier conference
article [Hoffmann et al. 2011].

10.3. Sized Types

A sized type is a type that contains size bounds for the inhabiting values. The size infor-
mation is usually attached to inductive datatypes via natural numbers. The difference
to the potential annotations of amortized analysis is that sized types bound sizes of
data while potential annotations define a potential as a function of the data size.

Sized types have been introduced by Hughes et al. [1996] in the context of functional
reactive programming to prove that stream manipulating functions are productive or
in other words, that the computation of each stream element terminates.

Hughes and Pareto [1999] have studied the use of sized types to derive space bounds
for a functional language with region-based memory management. The type system
features both resource and size annotations to express bounds but the annotations
have to be provided by the programmer.

Type inference for sized types has first been studied by Chin and Khoo [2001].
They employ an approximation algorithm for the transitive closure of Presburger con-
straints to infer size relations for recursive functions. The algorithm only computes
linear relations and does not scale well for nested data structures.

Vasconcelos [2008] studies sized types to infer upper bounds on the resource usage of
higher-order functional programs. He employs abstract interpretation techniques for
automatically inferring linear approximations of the sizes of data structures and the
resource usage of recursive functions. Other than RAML, this system can only compute
linear bounds.

10.4. Abstract Interpretation

Abstract interpretation is a well-established framework for static program analysis.
There are several works that employ abstract interpretation to compute symbolic com-
plexity bounds. Unfortunately, none of the described prototype implementations is
publicly available. Hence, we can compare our analysis only to the results that are
reported in the respective papers.

Worst-case execution time (WCET) analysis is a large research area that tradition-
ally computes time bounds for “a restricted form of programming, which guarantees
that programs always terminate and recursion is not allowed or explicitly bounded as
are the iteration counts of loops” [Wilhelm et al. 2008]. The time bounds are computed
for specific hardware architectures and are very precise because the analysis takes
into account low-level features like hardware caches and instruction pipelines.

In contrast to traditional WCET analysis, parametric WCET analysis uses ab-
stract interpretation to compute symbolic clock-cycle bounds for specific hardware.
Lisper [2003] has proposed the use of a flow analysis with a polyhedral abstraction
and symbolically bounds the points in polyhedrals. This method has recently been im-
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plemented [Bygde et al. 2009]. It can only handle integer programs without dynamic
allocation and recursion.

Altmeyer et al. [2008; 2011] have reported a similar approach. They propose a para-
metric loop analysis that consists of four phases: identifying loop counters, deriving
loop invariants, evaluation of loop exits, and finally constructing loop bounds. The
analysis operates directly on executables and can also handle recursion. However, a
user has to provide a parameters that bound the recursion (or loop iterations) that
traverses a data structure. In contrast, our analysis is fully automatic.

Cook et al. [2009] describe a method for computing symbolic heap-bounds for C pro-
grams that are used in hardware synthesis. They use a numerical heap abstraction
and rely on non-linear constraint solving. While it is in principle possible to derive
non-linear bounds with this technique, the paper only describes examples with linear
bounds.

A successful method to estimate time bounds for C++ procedures with loops and
recursion has recently been developed by Gulwani et al. [2008; 2009] in the SPEED
project. They annotate programs with counters and use automatic invariant discovery
between their values using off-the-shelf program analysis tools which are based on
abstract interpretation. An alternative approach that leads to impressive experimental
results is to use “a database of known loop iteration lemmas” instead of the counter
instrumentation [Gulwani et al. 2009].

Another recent innovation for non-recursive programs is the combination of dis-
junctive invariant generation via abstract interpretation with proof rules that employ
SMT-solvers [Gulwani and Zuleger 2010].

In contrast to our method, these techniques can not fully automatically analyze iter-
ations over data structures. Instead, the user needs to define numerical “quantitative
functions”. This seems to be less modular for nested data structures where the user
needs to specify an “owner predicate” for inner data structures. It is also unclear if
quantitative functions can represent complex mixed bounds such as >, _, ., (10m; +

2m;)+16(}) +12n+ 3 which RAML computes for isortlist. Moreover, our method infers
tight bounds for functions such as insertion sort that admit a worst-case time usage
of the form }, _,,, i. In contrast, Gulwani et al. [2009] indicate that a nested loop on

1<i<nandl < j<iis over-approximated with the bound n2.

A methodological difference to techniques based on abstract interpretation is that
we infer (using linear programming) an abstract potential function which indirectly
yields a resource-bounding function. The potential-based approach may be favorable
in the presence of compositions and data scattered over different locations (partitions
in quick sort). Additionally, there seem to be no experiments that relate the derived
bounds to the actual worst-case behavior and there is no publically available imple-
mentation.

As any type system, our approach is naturally compositional and lends itself to
the smooth integration of components whose implementation is not available. More-
over, type derivations can be seen as certificates and can be automatically translated
into formalized proofs in program logic [Beringer et al. 2004]. On the other hand, our
method does not model the interaction of integer arithmetic with resource usage.

10.5. Other Work

There are techniques [Braberman et al. 2008; Clauss et al. 2009] that can compute the
memory requirements of object oriented programs with region based garbage collec-
tion. These systems infer invariants and use external tools that count the number of
integer points in the corresponding polytopes to obtain bonds. The described technique
can handle loops but not recursive or composed functions.
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Taha et al. [2003] describe a two-stage programming language in which the first
stage can arbitrarily allocate memory and the second stage—that uses LFPL [Hof-
mann 2000]—can allocate no memory. The work explores however no method to derive
a memory bound for the first stage.

Other related works use type systems to validate resource bounds. Crary and
Weirich [2000] have presented a (monomorphic) type system capable of specifying and
certifying resource consumption. Danielsson [2008] has provided a library, based on
dependent types and manual cost annotations, that can be used for complexity anal-
yses of purely functional data structures and algorithms. In contrast, our focus is on
the inference of bounds.

Chin et al. [2008] use a Presburger solver to obtain /inear memory bounds for low-
level programs. In contrast, the analysis system we present can compute polynomial
bounds.

Polynomial resource bounds have also been studied by Shkaravska et al. [2007] who
address the derivation of polynomial size bounds for functions whose exact growth
rate is polynomial. Besides this strong restriction, the efficiency of inference remains
unclear.

11. CONCLUSION AND DIRECTIONS FOR FUTURE WORK

We have introduced a quantitative amortized analysis for first-order functions with
multiple arguments. For the first time, we have been able to fully automatically derive
complex multivariate resource bounds for recursive functions on nested inductive data
structures such as lists and trees. Our experiments have shown that the analysis is
sufficiently efficient for the functions we have tested, and that the resulting bounds
are not only asymptotically tight but are also surprisingly precise in terms of constant
factors.

The system we have developed will be the basis of various future projects. A chal-
lenging unsolved problem we are interested in is the computation of precise heap-space
bounds in the presence of automatic memory management.

We have first ideas for extending the type system to derive bounds that contain not
only polynomial but also involve logarithmic and exponential functions. The extension
of linear amortized analysis to polymorphic and higher-order programs [Jost et al.
2010] seems to be compatible with our system and it would be interesting to integrate
it. Finally, we plan to investigate to what extent our multivariate amortized analysis
can be used for programs with cyclic data structures (following [Hofmann and Jost
2006; Hofmann and Rodriguez 2009; Atkey 2010]) and recursion (including loops) on
integers. For the latter it might be beneficial to merge the amortized method with
successful existing techniques on abstract interpretation [Gulwani et al. 2009; Albert
et al. 2009].

Another very interesting and rewarding piece of future work would be an adaptation
of our method to imperative languages without built-in inductive types such as C. One
could try to employ pattern-based discovery of inductive data structures as is done,
e.g., in separation logic.

APPENDIX (SOUNDNESS PROOF)

In the following we prove Theorem 6.7 which states the soundness of the type system.
Let HEV:I' and ;T Q + e:(B, Q’). We prove the following two statements.

M UEVHE e~ v,H | (pp) then p < Oy x(I50Q) and p — p' < Oy 5(15Q) —

(1)7.[/(’[)2(37@/)).
(2) fV,HF e~ |pthenp < Oy 4 (T;Q).
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Lemma A.1 is used to show the soundness of the rule T:LET and states that the poten-
tial of a context is invariant during the evaluation. This is a consequence of allocated
heap-cells being immutable with the language features that we describe in this paper.

LEMMA A.l. Let HEVI, X;T5QFe: (B,Q)and V,H It e~ v,H | (p,p'). Then it
is true that @y (T; Q) = Oy 4 (T Q).

PROOF. The lemma is a direct consequence of the definition of the potential ® and
the fact that H'(¢) = H(¢) for all ¢ € dom(#) which is proved in Proposition 3.2. O

Proof of Part 1

We prove p < &y 4 (I';Q) and p — p' < &y (I, Q) — Py (v:(B, Q")) by induction on the
derivations of V,H F e~ v, H' | (p,p') and ;T;Q F e : (B, Q’), where the induction on
the evaluation judgment takes priority.

(T:SHARE) Suppose that the derivation of ;T;Q F e : (B, Q’) ends with an appli-
cation of the rule T:SHARE. Then I' =T”, z: A. It follows from the premise that

I oA y:A; P e 2 (B,Q) (5)

for a type annotation P with Q = Y(P) and an expression e’ with e'[z/z, z/y] = e. Since
HEV: TV, zzZAand V,H e~ v, H' | (p,p’) it follows that H F V,,, : ", z:A, y:A and

Vg, HE €~ v, H' | (p,p') (6)

where V,, =V U {z — V(z),y — V(z)}. Thus we can apply the induction hypothesis to
(5) and (6) to derive

p < @sz7H(F/,x:A,y:A; P) )
and
p—p < (I)Vuzy)H(F’,x:Ay:A; P) — (P (v:(B,Q")) . (8)

From the definition of the sharing annotation Y(Q) (compare Lemma 6.6) it follows
that

Dy, w2 A, y:A; P) = @y 3 (T7, 2:4; Q) ©))
The claim follows from (7), (8), and (9).

(T:AUGMENT) If the derivation of ;T;Q I e : (B, Q') ends with an application of
the rule T:AUGMENT then we have X;T7;Q e : (B, Q') for a context IV with I, 2: A =
I'. From the assumption # = V : IV, 2: A it follows that # = V : I”. Thus we can apply
the induction hypothesis to the premise I"; wgl(Q) Fe: (B,Q) of T:AUGMENT. We
derive

p < Py u(I';75 (Q)) (10)

and
p=v < Pyp(l'smg (Q) = (@r(v:(B, Q) (11)
Assume that % = V(z)—a: A. From Proposition 6.3 it follows that ®y, 3, (T"; wg/ (@) =

Dy (I3 75 (Q)) - p5(a) < Yjercay Dy (I 71 (Q)) - pj(a) = Py (I, 2:4; Q). Hence we
have

Dy (1575 (Q) < Py (TQ) (12)
and the claim follows from (10), (11), and (12).
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(T:-WEAKEN) Assume the derivation of the typing judgment ends with an applica-
tion of the typing rule T:WEAKEN. Then we have I'; P+ e : (B, P’),Q > P,and Q' < P'.
We can conclude by induction that

p < @y u(l;P) and p—p < Pyl P) — Py (v:(B, P')) . (13)
From the definition of < for type annotations it follows immediately that
Py (l5Q) = @y (T P) and D3y (v:(B, P')) < 3y (v:(B, Q")) - (14)

The claim follows then from (13) and (14).
(T:OFFSET) The case T:OFFSET is similar to the case T:WEAKEN.

(T:VAR)  Assume that e is a variable z that has been evaluated with the rule E:VAR.
Then it is true that H = H’. The type judgment %;T; Q I z:(B, Q') has been derived by
a single application of the rule T:VAR. Thus we have I = x: B,

Py y(2:B;Q) — Py (2:(B, Q")) = K™ (15)
and in particular ®y 4 (z:B; Q) > K.

Assume first that KV > 0. Then it follows by definition that p = KV, p’ = 0 and
thus p — p’ = K"?'. The claim follows from (15). Assume now that K'®* < 0. Then it
follows by definition that p = 0, p’ = —K"#". We have again that p — p’ = K" and
the claim follows from (15). (Remember that we have the implicit side condition that
Py 4 (2:B;Q) > 0.)

(T:CONST*) Similar to the case (T:VAR).

(T:OPINT) Assume that the type derivation ends with an application of the rule
T:OPINT. Then e has the form z; op x5 and the evaluation consists of a single applica-
tion of the rule E:BINOP. From the rule T:OPINT it follows that I" = x1:int, x5:int and
<I>V}H(a;1:1'nt, J]Qlint; Q) — (bVﬂ-l’ (’U : (int, Q/)) = 4(0,0) — q(l) = K°P,

If K7 > 0 then p = K°? and p’ = 0. Thus p = K < q(0,0) = Py #(z1:int, 5:int; Q)
and p— p/ = K° = CIDV,H(:rlzint, Zl'giint; Q) — (Q)V}[/(U;(jna Q/))

If K < 0thenp = 0 and p’ = —K°P. Thus p < ¢ = ®y (z;:int, 25:int; Q) and
p—p = K = ®y 3 (xy:int, z9:int; Q) — (Py 3 (v : (int, Q"))).
(T:OpPBoOL) The case in which the type derivation ends with an application of
T:0OPBOOL is similar to the case (T:OPINT).

(T:LET) If the type derivation ends with an application of T:LET then e is a let
expression of the from let x = e; in e, that has eventually been evaluated with the rule
E:LET. Then it follows that V, H ey ~ v, H1 | (r,7') and V', H; b eg ~ vy, Ha | (E,1)
for V' = V[z — v1] and r, ¢/, t,t’ with

(p,p)) = K- (r,r) - K§* () - K (16)

The derivation of the type judgment for e ends with an application of L:LET. Hence
r=",Ty, XTy;Pker: (A P),5Ty,2:A4;RE ey : (B, R') and

P+ K" = 721(Q) 17
P = 7T§:A(R) + Kt (18)
R = Q + Kyt (19)
Furthermore we have for every 0 # j € I(I'2):  T'1; P; <L e; : (A, P),
P =(Q) (20)
Pl = r74(R) (21)
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Since H F V : T we have also H F V : I'; and can thus apply the induction hypothesis
for the evaluation judgment of e; to derive

r < @y y(Ty; P) (22)
r— 7"/ S q)v,’)‘-[(l—‘h P) — (bq.[l (’UlZ(A, P/)) (23)
Form Theorem 3.4 it follows that #, F V' : I's, 2: A and thus again by induction
t < (I)V','H1 (FQ, x:A; R) (24)
t— t/ < (I)V’J-Ll (PQ, l‘:A; R) — (Pq.b (’UQI(B, R/)) (25)

Furthermore we apply the induction hypothesis to the evaluation judgment for e; with
the cost-free metric. Then we have r = ' = 0 and therefore for every 0 £ j € I(T'5)

Py (15 Py) > @3y, (v1:(A, P))) - (26)

Let ' = L1y Tn, Iy = Yiye ooy Yms HE V({,Cj)'—)az]. : P(.’tj), and H V(yj)'—)by] : F(yj)
Define

¢p = QT P)+ > dyyyP Hpgk 1)
O0#7El,(T2)
ppr = Py, (v1:(A, P)) + Z Dy, (v1:(4, P” Hp]k wi)
0#7€11(T'2)

We argue that

Prop. 6.3 .
Oy (T, T2:Q) = > Dy Tyt H P (b
FEI(T>) k=1
(17,20) . et _ —
=7 By y(TiP)+ K1+ Y @ppu(T; P - [ pi(be)
0£7€Tx(T'2) k=1
=  ¢p+ K (27)
Similarly, we use Proposition 6.3, (18), and (21) to see that
d)p/ = (I)V’,H1 (Fg, Z‘ZA; R) + Kée': (28)
Additionally we have
(23)
T — Tl S ‘I)V,’H(Fl; P) - CI)H1 (vl:(A7 P/))
(26) m
< By u(T; P) = p, (vi:(A, P+ Y Syu(T; P - [ v (0s)
0£7E,(T2) k=1
— Z Dy, (v1:(A, P})) Hpjk o)
0#7€%(I'2)
= op—op (29)

Now let
(u,u) = K (¢p,dpr) - K¥* - (Pyr g, (T2, 2:4; R), Py, (v2:(B, R))) - K

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: YYYY.



Multivariate Amortized Resource Analysis A:53

Then it follows that

19,28

(') "EY K (9p,dpr — K - (B 3q, (D2, 2:4; R), By, (v2:( B, R)) — Ki)

28)
E Kt (gp,0)
for some v’ € Q7. Now we can conclude that

(27)
u < max(0, pp + K%et) < Oy (15Q)

Finally, it follows with Proposition 3.1 applied to (22), (29), (24), (25), and (16) that
u > p.

For the second part of the statement we apply Proposition 3.1 to (16) and derive the
following.

p*p/ _ rfrl+t7t/+K}Et+K;6t+KéEt
(25,29) B AL . . / let let let
<  ¢p—dp + Py gy, (L2, 2:4; R) — Py, (v2:(B, R)) + K + K5 + K3
(28)

¢p — Pa, (v2:(B, R')) + K + K3*
(27)

= Oy u(l;Q) — By, (v2:(B,R)) + Kt

(19)
< Dy u(15Q) — Py, (v2:(B, Q"))

(T:APpP) Assume that ¢ is a function application of the form f(z). The evaluation
of e then ends with an application of the rule E:APP. Thus we have V(z) = v/ and
lyf = V', HFep~v,H | (r,7") for some r, 1’ with

(p,p") = K{* - (r,r") - K3 (30)

The derivation of the type judgment for e ends with an application of T:FUN. Therefore
itis true thatT' = 2:4; Q, (A, P) — (B, P’) € %(f), and

P+ K™ —Q and P'=Q + K. (31)

In order to apply the induction hypothesis to the evaluation of the function body ey
we recall from the definition of a well-formed program that (A, P) — (B, P’) € %(f)
implies that X;ys:A; P - ep:P’'. Since H F V : 2:A and V(z) = ¢’ it follows H F [y; —
V'] : yy:A. We obtain by induction that

=1 < Py (yf A ; P) — @3y (v:(B, P)) (33)
Now define
(uau/) = Kilpp ’ (q)[yf»—)v’],H(yf:A; P)’ Dy (U:(B7 P/))) .K;pp : (34)

From (31) it follows that &3 (v:(B,P’)) > K3 and thus v = max(0,K;™" +
Py, 50,1 (ys:A; P)). We apply Proposition 3.1 to (30), (32), (33), (34) and obtain p < u.
If u = 0 then p = 0 < ®y 3 (2:4; Q). Otherwise we have u = (2 (ys:A; P) + K.
Furthermore it follows from (31) that @, .../ 5 (ys:4; P) + Ki™ = ®y 3(2:4; Q) and
therefore p < &y 3(2:4; Q).
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For the second part for the statement observe that
p—p =r—1 + KPP 4 KPP

(33)
< Q[nyv/],H(yf:A; P) — &3 (v:(B, P")) + K5 + K3

D @y 20(2:4; Q) — Bpur(0:(B, Q)

(T:NiIL) If the type derivation ends with an application of T:NIL then we have
e=nil,T' =0, B= L(A) for some A, and ¢y = qé + K™ The corresponding evaluation
rule E:NIL has been applied to derive the evaluation judgment and hence v = NULL.

If K™ > 0 then p = K™ and p’ = 0. Thus p = K™ < ¢y = @y 5(0, Q). Furthermore
it follows from the definition of ® that ®, 3,,(NULL:(L(A4),Q’)) = qé. Thus p — p/ =
K™ = @y, 4(0; Q) — ®y 3 (NULL:(L(A), Q). If K™ < 0 then p = 0 and p’ = — K™,
Then clearly p < ®y, 4(0, Q) and again p — p’ = K™l

(T:CoNsS) If the type derivation ends with an application of the rule T:CONS then
e has the form cons(zp, ;) and it has been evaluated with the rule E:CONS. It follows
by definition that V,H + cons(zp,z:) ~ (,H[L — '] | K, 2y, 2, € dom(V), v/ =
(V(zp),V(x¢)), and ¢ ¢ dom(H). Thus

p=K®“andp =0 or (if K" < 0) p=0andp = —K°

Furthermore B = L(A) and the type judgment ¥;x,:A, xi:L(A);Q + cons(xp, ) :
(L(A), Q") has been derived by a single application of the rule T:CONS; thus

Q=< (Q) + K™ (35)

If p = 0 then p < @y 4(T'; Q) follows because potential is always non-negative. Other-
wise we have p = K" < &y, 4 (T'; Q) from (35).

From Lemma 6.4 it follows that ®y 3 (zp:A, 2 L(A); <0 (Q')) = Py g (6:(L(A),Q))

and therefrom with (35) ®y 3 (2n:A, 24 L(A); Q) — Py pyjemse(G(L(A), Q")) = KO =
p—r.
(T:MATL)  Assume that the type derivation of ¢ ends with an application of the rule
T:MATL. Then ¢ is a pattern match of the form match « with | nil — e, | cons(x},, ;) —
ez whose evaluation ends with an application of the rule E:MATCONS or E:MATNIL.
Assume first that the derivation of the evaluation judgment ends with an application
of E:MATCONS.

Then V(z) = ¢, H(¢) = (vn,ve), and V', H F eg ~ v, H' | (r,7) for V' = V[zyp — v, 20 —
v¢] and some r, ’ with

() = K7 - (r,r) - K5*© (36)

Since the derivation of ¥;T;Q F e : (B,Q) ends with an application of T:MATL, we
have I' =T, 2:L(A), Z; T, xp:A,xp:L(A); Pt ey : (B, P),

P+ K™ — 4, (Q) and P =Q + Kpat© (387)
It follows from Lemma 6.4 that
Dy 3 (T5Q) = Py 4 (I, A, 2 L(A); 9L(Q)) - (38)

Since H E V' : TV xp: A, x1:L(A) we can apply the induction hypothesis to V', H + es ~»
v,H' | (r,7") and obtain
H(F/axh:Avxt:L(A);P) (39)

(DV/7
Py (T 2y A, 2: L(A); P) — ®yyr (v:(B, P')) (40)

IAINA

r
/
r—r
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We define
(uyt') = KTC - (B 3T, i A, 22 L(A); P), Dy (v:(B, P))) - KFHC . (41)

Per definition and from (37) it follows that ®;, (v:(B,P")) > KPaC and thus u =
max(0, @y 3 (I, 21 A, 24:L(A); P) + KPaC), From Proposition 3.1 applied to (39), (40),
(41) and (36) we derive u > p. If @y 3 (T, xp: A, 24 L(A); P) + KP3C < 0 thenu =p = 0
and ®y %(T;Q) > p trivially holds. If ®yy 3 (I7,z4:A, 24:L(A); P) + KP3C > 0 then it
follows from (37) and (38) that

By (T5Q) = Py u(l wn:A 2 L(A); P) + KP*C = u > p.
Finally, we apply Proposition 3.1 to (36) to see that
p_p/ - r—q +KinatC _’_Kénatc

(40)
< By (T, zp:A, 2 L(A); P) — ®gpr (v:(B, P')) + KPC 4 gmatC

D Dy (T, 2pi A, w0 L(A); 9L(Q))) — o (v:(B, Q"))
D)ty (11Q) — o 025, 2)

Assume now that the derivation of the evaluation judgment ends with an application
of E:MATNIL. Then V(z) = NULL, and V,H - e; ~ v, H' | (r,7’) for some r, r’ with

(p.p') = KN - (1) - KN (42)

Since the derivation of ;¢ F e : (B,Q’) ends with an application of T:MATL, we
have ;T Rb ey : (B, R),

R+ K™ = 75(Q) and R =Q + K3*™ (43)
From Proposition 6.3 it follows that
Oy (F5 R) + KN < &y, 3(T;Q) (44)

Because H F V : T' we can apply the induction hypothesis to V,H F e; ~ v, H' | (r,7')
and obtain

r S (I)V,H (F; R) (45)
T — 7‘/ S (I)V,'H(F; R) — (I)H’ (UZ(B, R/)) (46)

Now let
(u,u') = KDaN (B, 5/ (T; R), §yyr (v:(B, R'))) - KPaWN | (47)

Per definition and from (43) it follows that v = max(0, ®y, 3 (I'; R)+ K™N). From Propo-
sition 3.1 applied to (45), (46), (47) and (42) we derive u > p. If ®y 4 (T'; R) + K{natN <0
then u = p = 0 and @y (T;Q) > p trivially holds. If ®y, 4(T; R) + K™aN > 0 then it
follows from (44) that

Oy u(T5Q) > By (T R) + KN =u>p.
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Finally, we apply Proposition 3.1 to (42) to see that

» _p/ = r—p 4+ KinatN + KénatN
(46)
< Py (T R) — @0 (0:(B, R')) + KN 4 Kpa

(44)

< By (15 Q) — (P9 (v:(B, R)) — K3N)
43 ,

2 @y 4 (1:Q) — By (1:(B,Q)
(T:LEAF) This case is nearly identical to the case (T:NIL).

(T:NODE) If the type derivation ends with an application of the rule T:NODE
then e has the form node(z,z1,x2) and it has been evaluated with the rule E:NODE.
It follows by definition that V,H + node(xg,x1,29) ~ LH[ — o] | K™% o =
(V(x0),V(21), V(22)), and £ ¢ dom(H). Thus

p=K"%*andp =0 or (if K™% < ) p=0andp = —K"°de

Furthermore we have B = T(A) and the type judgment z¢:A, 21:T(A),z2:T(A); Q +
node(xg,x1,22) : (T(A),Q’) has been derived by a single application of the rule
T:NODE; thus

Q _ QT(QI) +Knode (48)

If p = 0 then clearly p < @y, 4(T; Q). Otherwise we have p = K™% < &y, 5 (T; Q) from
(48).

By applying Lemma 6.5 we derive that ®y 3 (21:4,22:T(A),z3:T(A); <r(Q")) =
Dy 4 (0:(T(A), Q")) and therefrom with (48)

Dy 3y (21:A4, 29:T(A), 23:T(A); <7 (Q")) — Py oo (6:(T(A), Q")) = Krode — p pf

(T:MATT) Assume that the type derivation of ¢ ends with an application of
the rule T:MATT. Then e is a pattern match of the form match x with | leaf —
e1 | node(xzp,x1,22) — e whose evaluation ends with an application of the rule
E:MATNODE or E:MATLEAF. The case E:MATLEAF is similar to the case E:MATNIL.
So assume that the derivation of the evaluation judgment ends with an application
of E:MATNODE. Then V(z) = ¢, H({) = (vo,v1,v2), and V', H + ez ~ v, H' | (r,7’) for
V' =V|xg — v, x1 — v1, T3 — vz] and some r, v’ with

(1) = KL (7, ) - KB=ETL (49)

Since the derivation of ;T;Q F e : (B, Q) ends with an application of T:-MATT, we
have ' =17, 2:T(A), %1V, 21:A,29:T(A), 25T (A); P+ ea: (B, P'),

P+ K™ = q,(Q) and P =Q + K™, (50)
It follows from Lemma 6.5 that
(I)V,’H (1—‘, Q) = q’V’,H (F/, l‘liA7 :L‘QZT(A), ,’EdT(A), <]T(Q)) . (51)

Since H F V' : TV, 21:A,29:T(A), z3:T(A) we can apply the induction hypothesis to
V' HE es~v,H' | (r,r') and obtain

r < Oy oy (I, 21:A,29:T(A), z3:T(A); P) (52)

r—r" < Oy (U, 21:A, 29T (A), 23:T(A); P) — &3y (v:(B, P")) (53)

We define
(u,u') = K{natTN ( Py (T, 21: A, 29T (A), 23:T(A); P), Py (v:(B, P))) - KénatTN . (54)
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Per definition and from (50) it follows that ®;; (v:(B, P’)) > KP*™ and thus u =
max(0, @y 3 (I, 21: A, 29:T(A), x3:T(A); P) + KPatTN),

From Proposition 3.1 applied to (52), (53), (54) and (49) we derive v > p. If
Dy (17, 21: A, 29:T(A), 23:T(A); P) + KPa™N < 0 then u = p = 0 and @y 4(I;Q) > p
trivially holds. If @y 3, (I, 21:A, 22:T(A), x3:T(A); P) + KPaTN > then it follows from
(50) and (51) that

Py u(15Q) = Py (I, w1:A, 20 T(A), 23:T(A); P) + KP*™N =u > p.
Finally, we apply Proposition 3.1 to (49) to see that

P _p/ = r—¢ & KinatTN + K;natTN
(%3) / . . . . _ . / matTN matTN
S q)V’,'H(P 71’1.A,.’E2.T(A),.T3.T(A),P) @H/(U(B,P))-f—Kl +K2

(5:0) (I)V’,H (F/7 J,‘llA, .’L‘QIT(A), .133T(A), QL(Q))) - (I)H’ (U:(Ba Q/))

2 0y u(l:Q) — P (1:(B.Q))

(T:PAIR) This case is similar to the case in which the type derivation ends with an
application of the rule T:CONS.

(T:MATP) This case is proved like the case T:-MATL.
(T:COND) This case is similar to (but also simpler than) the case T:MATL.

Proof of Part 2

The proof of part 2 is similar but simpler than the proof of part 1. However, it uses part
1 in the case of the rule P:LET2. Like in the proof of part 1, we prove p < ®y, 4 (I'; Q)
by induction on the derivations of V,H e ~| pand %;T5Q + e : (B,Q’), where the
induction on the partial evaluation judgment takes priority.

We only present a few cases to show that the proof is similar to the poof of part 1.

(T:VAR)  Assume that e is a variable = and the type judgment &; Q -z : (B, Q') has
been derived by a single application of the rule T:VAR. Thus we have I"' = z:B,

Py 3 (2:B;Q) — Py (2:(B, Q")) = K'*

and in particular ®y 4 (z:B; Q) > K2,

Furthermore e has been evaluated with a single application of the rule P:VAR and
it follows by definition that p = max(K"? 0). (Remember that V,H + = ~ | KV is an
abbreviation for V, H F z ~ | max(K"?",0) in P:VAR.)

Assume first that KV > 0. Then we have p = K¥®" < ®y, 4 (2:B; Q). Assume now
that K2 < 0. Then it follows by definition that p = 0 and p < ®y, y(x:B; Q) trivially
holds.

(T:MATL)  Assume that the type derivation of e ends with an application of the rule
T:MATL. Then e is a pattern match of the form match = with | nil — e; | cons(zy, ) —
e2 whose evaluation ends with an application of the rule P:MATCONS or P:MATNIL.
Assume first that the derivation of the evaluation judgment ends with an application
of P:-MATCONS.

Then V(z) =1, H(l) = (vn,ve), and V', H F ez ~ | r for V' = V]zy — vp, 2 — v¢] and
some r with

p = max(K™C 4 7 0) (55)
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Since the derivation of ¥;T;Q F e : (B, Q) ends with an application of T:-MATL, we
have' =T",2:L(A), %;TV,zp:A,2e:L(A); PFes: (B, P),

P+ KMC — 4, (Q) (56)
It follows from Lemma 6.4 that
Py 4 (T;Q) = Oy 5 (I, xp: A, 24:L(A); <(Q)) (87)

Since HE V' : TV, zp,: A, ;:L*(A) we can apply the induction hypothesis to V', H + ez ~»
| » and obtain

r < Oy (I, 2p:A, 2 L(A); P) (58)

If p = 0 then the claim follows immediately. Thus assume that p = K7€ 4 1, Then it
follows that

(58)

p=KmaC 4 < KMl L &y, 5 (T, 20 A, 2 L(A); P)

(56)
< K{natc + @y 3 (T, zpi A, 2 L(A); < (Q))
(57)
< Py x(5Q)

Assume now that the derivation of the evaluation judgment ends with an application
of P:MATNIL. Then V,H - e; ~ | r for a  with

p = max(K™aN 4 1 0)

Since the derivation of X:T;q - e : (B,Q’) ends with an application of T:-MATL, we
have ;T;RF ey : (B, R/),

R+ K™ =m5(Q)
From Proposition 6.3 it follows that

Oy (L5 R) + K™ < @y 5(15Q) (59)
Since H E V : IV we can apply the induction hypothesis to V,H I ¢; ~ | r and obtain
r S (I)V’H(I‘; R) (60)

If p = 0 then the claim follows immediately. So assume that p = KP3N 4 r Then it
follows from (59) and (60) that

p=KPaN L < KPatN 4 ), 0 (T3 R) < @y (T5Q) .

(T:LET) If the type derivation ends with an application of T:LET then e is a let
expression of the from let x = ¢; in e; that has eventually been evaluated with the
rule P:LET1 or with the rule P:LET2.

The case P:LET1 is similar to the case P:MATCONS. So assume that the evaluation
judgment ends with an application of the rule P:LET2. Then it follows that V, H - e; ~
v, Hi | (r,r") and V', Hq b eg ~ | ¢ for V' = V[z + v1] and r, 7', ¢ with

(p,p/) = Kiet ! (Tv T.I) : Kéet ' (tv 0) (61)

The derivation of the type judgment for ¢ ends with an application of L:LET. Hence
r=",Ty, 3Ty;Pker: (A P), 5Ty, 2:A;RFep: (B, R') and

P+ K = m:'(Q) (62)

P = 7Z4(R) + K (63)

0
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Furthermore we have for every 0 # j € I(T2):  T'1; P FL e; : (A4, P)),

P; = 7751(@) (64)
P} =77(R) (65)

Since H F V : " we have also # = V : I'; and can thus apply part 1 of the soundness
theorem to the evaluation judgment of ¢; and derive

T S (I)VH(FLP) (66)
r—1" < Oy (L5 P) = @y, (v1:(A, P')) (67)

Form Theorem 3.4 it follows that Hs F V' : I'y, 2: A. Thus we can apply the induction
hypothesis of part 2 to the partial evaluation judgment for e; and obtain

t < (I)V’,H1 (FQ, CUZA; R) (68)

Furthermore we apply part 1 of the theorem to the evaluation judgment for e¢; with
the cost-free metric. Then we have r =/ = 0 and therefore for every 0 # j € I(I';)

Py 3 (15 Py) > @y, (v1:(A, P))) - (69)

LetI'y =21,...,20, o = y1, .., Ym, HE V(2j)—ay, : T(z;), and H E V(y;)—b,, : T'(y;).
Define

¢p = QT P)+ Y dyy[yP Hpgk )
0£7€15(I'2)

(bp/ = @Hl(vlz(fLP Z (I)’Hl Ul A P“ Hp]k zk

0471 (T2)

We argue that

Prop. 6.3 1
Dy (M1, T9Q) = > vt (@) [ piben)
JEIL(T2)

Cyu(TP)+ K+ Y @y (T Py) - [ pii(bey)
0#£7€ 11 (T2) k=1
e 10
Similarly, we use Proposition 6.3, (63), and (65) to see that
dpr = Oy gy, (Do, :A; R) + Kt (71)

(62,64)

Additionally we have

(67)
T — ’I“/ S @V7H(F1;P) — ‘I)Hl (’Ull(A,Pl))

(69) m
< Dy (T P) = g, (v1:(A, P+ Y Dy y(T; P H Dji (bay,)
0£7E€ Tk (T2)

- Z Dy, (v1:(A, P~ Hp]k )

0£7€ 1k (T'2)

= ¢p— ¢p (72)
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Now let
(u7 u/) = K%et . (¢P7 ¢P’) : Kéet . ((I)V’,Hl (F27 $:A; R)7 0)
Then it follows that

71
(u,u’) @ K- (¢p, ppr — KXY - (®yr 3, (T2, 2:4; R), 0)

(71) let

= Kl : (¢P70)

(70)
Now we conclude that u < max(0,¢p + Kl¢t) < &y, 4(I; Q). Finally, it follows with

Proposition 3.1 applied to (66), (72), (68), and (61) that u > p.
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