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Abstract

Understanding the resource usage of programs is crucial for devel-
oping software that is safe, secure, and efficient. Consequently, there
is ongoing interest in the development of techniques that provide
software developers with support for inferring resource bounds at
compile time. This article introduces a new resource analysis system
for OCaml programs. The system automatically derives worst-case
resource bounds for higher-order, polymorphic programs with side-
effects and user-defined inductive types. The technique is parametric
in the resource and can derive bounds for time, memory, and energy
usage. The derived bounds are multivariate resource polynomials
that are functions of different size parameters that depend on the
standard OCaml types. Bound inference is fully automatic and re-
duced to a standard linear optimization problem that is passed to an
off-the-shelf LP solver. Technically, the analysis system is based on
a novel multivariate automatic amortized resource analysis (AARA).
It builds on existing work on linear AARA for higher-order pro-
grams with user-defined inductive types and on multivariate AARA
for first-order programs with built-in lists and binary trees. For the
first time, it is possible to automatically derive polynomial bounds
for higher-order functions and polynomial bounds that depend on
user-defined inductive types. Moreover, the analysis handles side
effects and even outperforms the linear bound inference of previous
systems. At the same time, it preserves the expressivity and effi-
ciency of existing AARA techniques. The practicality of the analysis
system is demonstrated with an implementation and the integration
with Inria’s OCaml compiler. In a case study, the system infers
bounds on the number of queries that are sent by OCaml programs
to DynamoDB, a commercial NoSQL cloud database service.

1. Introduction

The quality of software crucially depends on the amount of resources
—such as time, memory, and energy—that are required for its exe-
cution. Statically understanding and controlling the resource usage
of software continues to be a pressing issue in software develop-
ment. Performance bugs are very common and among the bugs
that are most difficult to detect [40, 46] and large software systems
are plagued by performance problems. Moreover, many security
vulnerabilities exploit the space and time usage of software [21, 42].
Developers would greatly profit from high-level resource-usage
information in the specifications of software libraries and other
interfaces, and from automatic warnings about potentially high-
resource usage during code review. Such information is particularly
relevant in contexts of mobile applications and cloud services, where
resources are limited or resource usage is a major cost factor.
Recent years have seen fast progress in developing frameworks
for statically reasoning about the resource usage of programs. Many
advanced techniques for imperative integers programs apply abstract
interpretation to generate numerical invariants. The obtained size-
change information forms the basis for the computation of actual
bounds on loop iterations and recursion depths; using counter
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instrumentation [27], ranking functions [2, 6, 15, 48], recurrence
relations [3, 4], and abstract interpretation itself [18, 54]. Automatic
resource analysis techniques for functional programs are based on
sized types [50], recurrence relations [23], term-rewriting [10], and
amortized resource analysis [32, 34, 41, 47].

Despite major steps forward, there are still many obstacles
to overcome to make resource analysis technologies available
to developers. On the one hand, typed functional programs are
particularly well-suited for automatic resource-bound analysis since
the use of pattern matching and recursion often results in a relatively
regular code structure. Moreover, types provide detailed information
about the shape of data structures. On the other hand, existing
automatic techniques for higher-order programs can only infer
linear bounds [41, 50]. Furthermore, techniques that can derive
polynomial bounds are limited to bounds that depend on predefined
lists and binary trees [29, 32] or integers [15, 48]. Finally, resource
analyses for functional programs have been implemented for custom
languages that are not supported by mature tools for compilation
and development [32, 34, 41, 47, 50].

The goal of a long term research effort is to overcome these
obstacles by developing Resource Aware ML (RAML), a resource-
aware version of the functional programming language OCaml.
RAML is based on an automatic amortized resource analysis
(AARA) that derives multivariate polynomials that are functions
of the sizes of the inputs. In this paper, we report on three main
contributions that are part of this effort.

1. We present the first implementation of an AARA that is inte-
grated with an industrial-strength compiler.

2. We develop the first automatic resource analysis system that
infers multivariate polynomial bounds that depend on size
parameters of complex user-defined data structures.

3. We present the first AARA that infers polynomial bounds for
higher-order functions.

The techniques we develop are not tied to a particular resource but
are parametric in the resource of interest. RAML infers tight bounds
for many complex example programs such as sorting algorithms with
complex comparison functions, Dijkstra’s single-source shortest-
path algorithm, and the most common higher-order functions such
as (sequences) of nested maps, and folds. The technique is naturally
compositional, tracks size changes of data across function bound-
aries, and can deal with amortization effects that arise, for instance,
from the use of a functional queue. Local inference rules generate
linear constraints and reduce bound inference to off-the-shelf LP
solving, despite deriving polynomial bounds.

To ensure compatibility with OCaml’s syntax, we reuse the parser
and type inference engine from Inria’s OCaml compiler. We extract
a type-annotated syntax tree to perform (resource preserving) code
transformations and the actual resource-bound analysis. To precisely
model the evaluation of OCaml, we introduce a novel operational
semantics that makes the efficient handling of function closures in
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Inria’s compiler explicit. The semantics is complemented by a new
type system that refines function types.

To express a wide range of bounds, we introduce a novel class
of multivariate resource polynomials that map data of a given type
to a non-negative number. These novel multivariate resource poly-
nomials are a substantial generalization of the resource polynomials
that have been previously defined for lists and binary trees [32]. To
deal with realistic OCaml code, we develop a novel multivariate
AARA that handles higher-order functions. To this end, we draw
inspirations from multivariate AARA for first-order programs [32]
and linear AARA for higher-order programs [41]. However, our new
solution is more than the combination of existing techniques. For
instance, we infer linear bounds for the curried append function for
lists, which has not been possible previously [41].

We performed experiments on more then 3000 lines of OCaml
code. While it is still not straightforward to automatically analyze
complete existing applications, it is easy to develop and analyze
real OCaml applications if we keep the current capabilities of the
system in mind. In Section 8, we present a case study in which we
automatically bound the number of queries that an OCaml program
issues to Amazon’s DynamoDB NoSQL cloud database service.
Such bounds are interesting since Amazon charges DynamoDB
users based on the number of queries made to a database.

2. Overview

Before we describe the technical development, we give a short
overview of the challenges and achievements of our work.
Currying and Function Closures. Currying and function closures
pose a challenge to automatic resource analysis systems that has
not been addressed in the past. To see why, assume that we want
to design a type system to verify resource usage. Now consider for
example the curried append function which has the type append :
alist — alist — alist in OCaml. At first glance, we might say
that the time complexity of append is O(n) if n is the length of the
first argument. But a closer inspection of the definition of append
reveals that this is a gross simplification. In fact, the complexity of
the partial function call app_par = append ¢ is constant. Moreover,
the complexity of the function app_par is linear—not in the length
of the argument but in the length of the list ¢ that is captured in the
function closure. We are not aware of any existing approach that can
automatically derive a worst-case time bound for the curried append
function. For example, previous AARA systems would fail without
deriving a bound [32, 41].

In Inria’s OCaml implementation, the situation is even more
complex since the resource usage (time and space) depends on how
a function is used at its call sites. If append is partially applied to one
argument then a function closure is created as expected. However—
and this is one of the reasons of OCaml’s great performance—if
append is applied to both of its arguments at the same time then
the intermediate closure is not created and the performance of the
function is even better than that of the curried version since we do
not have to create a pair before the application.

To model the resource usage of curried functions accurately we
refine function types to capture how functions are used at their call
sites. For example, append can have both of the following types

alist > alist > alist and [alist, alist] — alist.

The first type implies that the function is partially applied and the
second type implies that the function is applied to both arguments
at the same time. Of course, it is possible that the function has both
types (technically we achieve this using let polymorphism). For the
second type, our system automatically derives tight time and space
bounds that are linear in the first argument. However, our system
fails to derive a bound for the first type. The reason is that we made
the design decision to not derive bounds that asymptotically depend
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on data captured in function closures to keep the complexity of the
system at a manageable level.

Fortunately, append belongs to a large set of OCaml functions in
the standard library that is defined in the from letrec fx y z =e. If
such a function is partially applied, the only computation that hap-
pens is the creation of a closure. As a result, efa expansion does not
change the resource behavior of programs. This means for example
that we can safely replace the expression let app_par = append ¢ in e
with the expression let app_par x = append ¢ x in e prior the analy-
sis. Consequently, we can always use the type [« list, alist] —
« list of append that we can successfully analyze.

The conditions under which functions can be analyzed might
look complex at first but they can be boiled down to simple principle:

The worst-case resource usage of a function must be express-
ible as a function of the sizes of its arguments.

Higher-Order Arguments. The other main challenge with higher-
order resource analysis is functions with higher-order arguments. To
a large extend, this problem has been successfully solved for linear
resource bounds in previous work [41]. Basically, the higher-order
case is reduced to the first-order case if the higher-order arguments
are available. It is not necessary to reanalyze such higher-order
functions for every call site since we can abstract the resource
usage with a constraint system that has holes for the constraints
of the function arguments. However, a presentation of the system
in such a way mixes type checking with the constraint-based type
inference. Therefore, we chose to present the analysis system in a
more declarative way in which the bound of a function with higher-
order arguments is derived with respect to a given set of resource
behaviors of the argument functions.

A concrete advantage of our declarative view is that we can
derive a meaningful type for a function like map for lists even when
the higher-order argument is not available. The function map can
have the following types.

(¢ = B) — alist — SBlist [ — B, alist] — SBlist

Unlike append, the resource usage of map does not depend on the
size of the first argument. So both types are equivalent in our system
except for the cost of creating an intermediate closure. If the higher-
order argument is not available then previous systems [41] produce
a constraint system that is not meaningful to a user. An innovation
in this work is that we are also able to report a meaningful resource
bound for map if the arguments are not available. To this end, we
assume that the argument function does not consume resources. For
example, we report in the case of map that the number of evaluation
steps needed is 11n + 3 and the number of heap cells needed is
4n + 2 where n is the length of the input list. Such bounds are useful
for two purposes. First, a developer can see the cost that map itself
contributes to the total cost of a program. Second, the time bound for
map proves that map is guaranteed to terminate if the higher-order
argument terminates for every input.

In contrast, consider the function rec_scheme
alist) —» alist — Slist that is defined as follows.

(alist —

let rec rec_scheme f 1 =
match 1 with | [] — []

| x::xs — rec_scheme f (f 1);;
let g = rec_scheme tailj;

Here, RAML is not able to derive an evaluation-step bound for
rec_scheme since the number of evaluation steps (and even termina-
tion) depends on the argument f. However, RAML derives the tight
evaluation-step bound 12n + 7 for the function g.

Polynomial Bounds and Inductive Types. Existing AARA sys-
tems are either limited to linear bounds [34, 41] or to polynomial
bounds that are functions of the sizes of simple predefined list and
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let comp f x g = fun z — £ x (g z)

let rec walk f xs =
match xs with | [J] — (fun z —» =2)
| x::ys — match x with | Left _ —
fun y — comp (walk f) ys (fun z — x::2) y
| Right 1 —
let x’ = Right (quicksort f 1) in
fun y — comp (walk f) ys (fun z — x’::2) y

let rev_sort f 1 = walk £ 1 []
RAML output for rev_sort (after 0.68s run time):

10 + 23*%K*M + 32%xL*xM + 20*L*M*Y + 13%L*xMxY~2
where

M is the num. of ::-nodes of the 2nd comp. of the arg.

L is the fraction of Right-nodes in the ::-nodes of
the 2nd component of the argument

Y is the maximal number of ::-nodes in the Right-nodes
in the ::-nodes of the 2nd component of the arg.

K is the fraction of Left-nodes in the ::-nodes of the

2nd component of the argument

Figure 1. Modified challenge example from Avanzini et al. [10]
and shortened output of the automatic bound analysis performed by
RAML for the function rev_sort. The derived bound is a tight bound
on the number of evaluation steps in the big-step semantics if we do
not take into account the cost of the higher-order argument f.

binary-tree data structures [32]. In contrast, this work presents the
first analysis that can derive polynomial bounds that depend on size
parameters of complex user-defined data structures.

The bounds we derive are multivariate resource polynomials that
can take into account individual sizes of inner data structures. While
it is possible to simplify the resource polynomials in the user output,
it is essential to have this more precise information for intermediate
results to derive tight whole-program bounds.

In general, the resource bounds are built of functions that count
the number of specific tuples that one can form from the nodes
in a tree-like data structure. In their simplest form (i.e., without
considering the data stored inside the nodes), they have the form

Xa.[{@ | ai is an Ag;-node in @ and if ¢ < j then a; <jp,. a;}|

where a is an inductive data structure with constructors A1, ..., Am,
d = (a1,...,an), and <jp,.. denotes the pre-order on the tree a.
We are able to keep track of changes of these quantities in pattern
matches and data construction fully automatically by generating
linear constraints. At the same time, they allow us to accurately
describe the resource usage of many common functions in the
same way it has been done previously for simple types [28]. As
an interesting special case, we can also derive conditional bounds
that describe the resource usage as a conditional statement. For
instance, for an expression such as

match x with | True — quicksort y | False — y

we derive a bound that is quadratic in the length of y if and only if x
is True.

Effects. Our analysis handles references and arrays by ensuring
that resource cost does not asymptotically depend on values that
have been stored in mutable cells. While it has been shown that
it is possible to extend AARA to handle mutable state [17], we
decided not to add the feature in the current system to focus on
the presentation of the main contributions. There are still a lot of
possible interactions with mutable state, such as storing functions in
references.
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Example Bound Analysis. To demonstrate some of the capabili-
ties of the new analysis system, Figure 1 shows the output of RAML
for a concrete example. The code is an adoption of a challenging
example that has been recently presented by Avanzini et al. [10] as
a function that can not be handled by existing tools. To illustrate the
challenges of resource analysis for higher-order programs, Avanzini
et al. implemented a (somewhat contrived) reverse function rev for
lists using higher-order functions. RAML can automatically derive
a tight linear bound on the number of evaluation steps used by rev.

To show more features of our analysis, we modified Avanzini et
al’s rev in Figure 1 by adding an additional argument f'and a pattern
match to the definition of the function walk. The resulting type of
walk is

(¢ = a — bool) — [(B = alist) either list; (3 * « list) either list]
— (B = alist) either list

Like before the modification, walk is essentially the append_reverse
function for lists. However, we assume that the input lists contain
nodes of the form Left a or Right b so that b is a list. During the
reverse process of the first list in the argument, we sort each list that
is contained in a Right-node using the standard implementation of
quick sort (not given here). RAML derives the tight evaluation-step
bound that is shown in Figure 1. Since the comparison function for
quicksort (argument f) is not available, RAML assumes that it does
not consume any resources during the analysis. If rev_sort is applied
to a concrete argument f then the analysis is repeated to derive a
bound for this instance.

3. Setting the Stage

We describe and formalize the new resource analysis using Core
RAML, a subset of the intermediate language that we use to perform
the analysis. Expressions in Core RAML are in share-let-normal
form, which means that syntactic forms allow only variables instead
of arbitrary terms whenever possible without restricting expressivity.
We automatically transform user-level OCaml programs to Core
RAML without changing their resource behavior before the analysis.
Syntax. For the purpose of this article, the syntax of Core RAML
expressions is defined by the following grammar. The actual core
expressions also contain constants and operators for primitive
data types such as integer, float, and boolean; arrays and built-in
operations for arrays; conditionals; and free versions of syntactic
forms. These free versions are semantically identical to the standard
versions but do not contribute to the resource cost. This is needed
for the resource preserving translation of user-level code to share-
let-normal form.

ex=x|xx1 -z |Cx|Aze|refz || z1:=122
| matchzwithC'y — e1 | ez

| (z1,...,2n) | matchz with (z1,...,2,) > €

| sharez as (z1,z2)ine | letz = erines | letrec Fline
F:=f=Az.e| Frand F;

The syntax contains forms for variables, function application, data
constructors, lambda abstraction, references, tuples, pattern match-
ing, and (recursive) binding. For simplicity, we only allow recursive
definitions of functions. In the function application we allow the
application of several arguments at once. This is useful to statically
determine the cost of closure creation but also introduces ambigu-
ity. The type system will determine if an expression like f 1 z2
is parsed as (f 1 x2) or (f 1) x2. The sharing expressions
sharex as (z1, x2) in e is not standard and used to explicitly intro-
duce multiple occurrences of a variable. It binds the free variables
21 and x2 in e.

We focus on this set of language features since it is sufficient to
present the main contributions of our work. We sometimes take the
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V(z)=1¢ S # - H(V(2)) = Oz.e, V) S, V' H yAz.e | w| (q,q")
var (E:VAR) var 7 (E:VARAPP)
SVHubx | (GH) | M S,V,H bz | w | M™(¢q,q")
14 v nVien), V, H m q S =. e{l,
(E:ABORT) (1) (zn) bz b wl(g,q) - i vwe {l,o} (E:APP)
S, V,Hube | o|0 SSV,HubFxz x1--2n | w | M3™(q,q)
S # - Vizy): - =Vi(xn), V,H bz | Oz.e, V') | (¢,q) S, V',H y-Xz.e | w| (p,p)
app 7 7 (E:APPAPP)
S V,Hubx 10 § w | M3P-(q,¢)(p,p)
S, V]z— {],H ! S V.H ! il
) [‘T ]a MEe U w | (qaq ), (EZABSBIND) y Vo M e U w ‘ (q7q ) w e { 70}, (EZLET])

0:S,V,H p-Az.e | w | MP™-(q, ")

H' =H, 0~ (\z.e,V)

"aV;Hkﬂ_el U (ZvH/) | (Qaq,)

S,V,H yletz = erines || w | My*(q,q")

S,V[l"_)é],H,]\ﬂ—eg U w | (pap/)

S (E:ABSCLOS)
“V,H ubAze || (6, H) | M3

F = fi =MAri.erand---and f,, = Azp.en

S,V,H pi-letz = erines | w | Mi*(q,q')-Ms*(p,p)w

V' = VI[fi—t,...
H =H 0 — ()\:rl.el,V/),...,Zn — ()\xn.en,V/)

(E:LET2)

, ) 7fn'_)€":| ,
S,V,H mbeo § w|(q,q)

S,V,H piletrec Fineg || w | M™(q,¢")w

(E:LETREC)

Figure 2. Selected rules of the operational big-step semantics.

liberty to describe examples in user level syntax and to use features
such as built-in data types that are not described in this article.

Big-Step Operational Cost Semantics. The resource usage of
RAML programs is defined by a big-step operational cost semantics.
The semantics has three interesting non-standard features. First, it
measures (or defines) the resource consumption of the evaluation
of an RAML expression by using a resource metric that defines a
constant cost for each evaluation step. If this cost is negative then
resources are returned. Second, it models terminating and diverging
executions by inductively describing finite subtrees of infinite
execution trees. Third, it models OCaml’s stack-based mechanism
for function application, which avoids creation of intermediate
function closures.

The semantics of Core RAML is formulated with respect to a
stack (to store arguments for function application), an environment,
and a heap. Let Loc be an infinite set of locations modeling memory
addresses. A heap is a finite partial mapping H : Loc — Val that
maps locations to values. An environment is a finite partial mapping
V' : Var — Loc from variable identifiers to locations. An argument
stack S ::= - | £::S is a finite list of locations. The set of RAML
values Val is given by

vi=L| (l1,...,0k) | Az.e,V) | (C,0)
A value v € Val is either a location £ € Loc, a tuple of locations
(l1,...,4x), a function closure (Az.e, V), or a node of a data
structure (C, £) where C' is a constructor and £ is a location. In a
function closure (Az.e, V'), V' is an environment, e is an expression,
and z is a variable.

Since we also consider resources like memory that can become
available during an evaluation, we have to track the watermark
of the resource usage, that is, the maximal number of resource
units that are simultaneously used during an evaluation. To derive
a watermark of a sequence of evaluations from the watermarks of
the sub evaluations one has to also take into account the number of
resource units that are available after each sub evaluation.

The big-step operational evaluation rules in Figure 2 are formu-
lated with respect to a resource metric M. They define an evaluation
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judgment of the form
S, V,H mt=e } (6, H') | (g,4") -

It expresses the following. If the argument stack .S, the environment
V/, and the initial heap H are given then the expression e evaluates
to the location £ and the new heap H'. The evaluation of e needs
qe Qg resource units (watermark) and after the evaluation there are
¢’ € QF resource units available. The actual resource consumption
is then § = g — ¢'. The quantity J is negative if resources become
available during the execution of e.

There are two other behaviors that we have to express in the
semantics: failure (i.e., array access outside array bounds) and
divergence. To this end, our semantic judgement not only evaluates
expressions to values but also to an error L and to incomplete
computations expressed by o. The judgement has the general form

S, V,Hutel w|(q,q) where w:u=((H)|L]|o.

Intuitively, this evaluation statement expresses that the watermark of
the resource consumption after some number of evaluation steps is q
and there are currently ¢’ resource units left. A resource metric
M : K x N — Q defines the resource consumption in each
evaluation step of the big-step semantics where K is a set of
constants. We write M} for M (k,n) and M* for M (k,0).

It is handy to view the pairs (g, ¢’) in the evaluation judgments
as elements of a monoid Q = (QF x Q, -). The neutral element
is (0,0), which means that resources are neither needed before
the evaluation nor returned after the evaluation. The operation
(q,q") - (p,p’) defines how to account for an evaluation consisting
of evaluations whose resource consumptions are defined by (q, ¢’)
and (p, p'), respectively. We define

' n_f (a+tp—d,p) ifd <p

(¢,4) - (p, 1) f{ (@ 0 +d —p) ifqd >p

If resources are never returned (as with time) then we only have
elements of the form (g,0) and (gq,0) - (p,0) is just (¢ + p,0).
We identify a rational number ¢ with an element of Q as follows:
q = 0 denotes (¢,0) and ¢ < 0 denotes (0, —g). This notation
avoids case distinctions in the evaluation rules since the constants
K that appear in the rules can be negative. In the semantic rules
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we use the notation H' = H, ¢ — v to indicate that £ ¢ dom(H),
dom(H') = dom(H) u {¢}, H'(¢) = v, and H'(z) = H(xz) for
allz # /.

To model the treatment of function application in Inria’s OCaml
compiler, we use a stack S on which we store the locations of
function arguments. The only rules that push locations to S are
E:APP and E: APPAPP. To pop locations from the stack we modify
the leaf rules that can return a function closure, namely, the rules
E:VAR and E:ABS for variables and lambda abstractions: Whenever
we would return a function closure (Az.e,V') we inspect the
argument stack S. If S contains a location ¢ then we pop it form
the stack S, bind it to the argument x, and evaluate the function
body e in the new environment V [z — £]. This is defined by the
rule E: ABSBIND and indirectly by the rule E: VARAPP. Another
rule that modifies the argument stack is E:LET2. Here, we evaluate
the subexpression e; with an empty argument stack because the
arguments on the stack when evaluating the let expressions are
consumed by the result of the evaluation of ea.

The argument stack accurately captures Inria’s OCaml compiler’s
behavior to avoid the creation of intermediate function closures. It
also extends naturally to the evaluation of expressions that are not
in share-let-normal form. As we will see in Section 6, the argument
stack is also necessary to prove the soundness of the multivariate
resource bound analysis.

Another important feature of the big-step semantics, is that it
can model failing and diverging evaluations by allowing partial
derivation judgments that can be used to derive the resource usage
after n steps. Technically, this is realized by the rule E: ABORT
which can be applied at any point to abort the current evaluation
without additional resource cost. The mechanism of abording an
evaluation is most visible in the rules E:LET1 and E:LET2: During
the evaluation of a let expression we have two possibilties. The first
possibility is that the evaluation of the subexpression e; is aborted
using E: ABORT at some point. We can then apply the rule E:LET1
to pass on the resource usage before the abort. The second possibility
is that e; evaluates to a location ¢. We can then apply the E:LET2
to bind ¢ to the variable x and evaluate the expression es.

4. Simple Type System

In this section, we introduce a type system that is a refinement of
OCaml’s type system. In this type system, we mirror the resource-
aware type system and introduce some particularities that explain
features of the resource-aware types. For the purpose of this article,
we define simple types as follows.

To=X|Tref|Ty*--- =T, | [Th,...,Tn] > T
‘MX <Cl :Tl*anw..’Ck:Tk*X"k)

A (simple) type 7" is an uninterpreted type variable X € X, a
type T' ref of references of type 7, a tuple type 14 * --- % T},
a function type [11,...,7,] — T, or an inductive data type
puX. (Cy:TixX™ ..., Cg: T X"k,

Two parts of this definition are non-standard and deserve further
explanation. First, bracket function types [T, ...,T,] — T cor-
respond to the standard function type 177 — --- — 1, — T'. The
meaning of [T1,...,T,] — T is that the function is applied to its
first n arguments at the same time. The type 7Ty — --- = 1T, —» T
indicates that the function is applied to its first n arguments one after
another. These two uses of a function can result in a very different
resource behavior. For instance, in the latter case we have to create
n — 1 function closures. Also we have n different costs to account
for: the evaluation cost after the first argument is present, the cost of
the closure when the second argument is present, etc. Of course, it is
possible that a function is used in different ways in program. We ac-
count for that with let polymorphism (see the following subsection).
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Also note that [T, . .., T, ] — T still describes a higher-order func-
tion while 77 % - - - * T,, — T describes a first-order function with
n arguments.

Second, inductive types are required to have a particular form.
This makes it possible to track cost that depends on size parameters
of values of such types. It is of course possible to allow arbritary
inductive types and not to track such cost. Such an extension is
straighforward and we do not present it in this article.

We assume that each constructor C' € C is part of at most
one recursive type. Furthermore we assume that each recursive
type has at least one constructor. For an inductive type 7" =
uX. (Cy:TixX™ ..., Ck: TexX"*) we sometimes write T' =
(Cr: (Th,m1),...,Ck : (Tk,ni)). We say that T; is the node type
and n; is the branching number of the constructor C;. The maximal
branching number n = max{ni, ..., nx} of the constructors is the
branching number of 7'.

Let Polymorphism and Sharing. Modelling the design of the
resource-aware type system, our simple type system is affine. That
means that a variable in a context can be used at most once in an
expression. However, we enable multiple uses of a variable with the
sharing expression share z as (z1, z2) in e that denotes that x can
be used twice in e using the (different) names x; and x». For input
programs we allow multiple uses of a variable & an expression e
in RAML. We then introduce sharing constructs, and replace the
occurrences of = in e with the new names before the analysis.

Interestingly, this mechanism is closely related to let polymor-
phism. To see this relation, first note that our type system is poly-
morphic but that a value can only be used with a single type in an
expression. In practice, that would mean for instance that we have to
define a different map function for every list type. A simple and well-
known solution to this problem that is often applied in practice is
let polymorphism. In principle, let polymorphism replaces variables
with their definitions before type checking. For our map function it
would mean to type the expression [map — emqp € instead of typing
the expression let map = emgp in €.

In principle, it would be possible to treat sharing of variables in a
similar way as let polymorphism. But if we start form an expression
let x = ey in ez and replace the occurrences of x in the expression
e2 with e then we also change the resource consumption of the
evaluation of ez because we evaluate e; multiple times. Interestingly,
this problem coincides with the treatment of let polymorphism for
expressions with side effects (the so called value restriction).

In RAML, we support let polymorphism for function closures
only. Assume we have a function definition let f = Az.ey in e that
is used twice in e. Then the usual approach to enable the analysis in
our system would be to use sharing

let f = Az.eginshare fas(fi, fo)ine’ .

To enable let polymorphism, we will however define f twice and
ensure that we only pay once for the creation of the closure and the
let binding:

let fi = Ax.epinlet fo = Az.eyin e

The functions f; and f> can now have different types. This method
can cause an exponential blow up of the size of the expression. It
is nevertheless appealing because it enables us to treat resource
polymorphism in the same way as let polymorphism.

Type Judgements. Type judgements have the form
e T

where ¥ = Th,..., T, is a list of types, ' : Var — T is a type
context that maps variables to types, e is a core expression, and 7'
is a (simple) type. The intuitive meaning (which is formalized later
in this section) is as follows. Given an evaluation environment that
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7(T:VAR)

_ T:VARPUSH
s T+ x: T ( )

sz X ->ThHux:

Sl e s

(T:ABSPUSH)

T:App
sz [T, .., Th]-=TxvTh, . ey Fxzy g e T( )

T30 Ax.e: Th iz [T, ..

JTh]>X-T, 21 : 11, . ..

T:APPPUSH
,xn:Tnl—xxl---xn:T( )

sTiker:Th YT,z T —ex:Tn

(T:CoNSs)

T:L
E;Fl,Fgl—letx:elineQ:Tz ( ET)

F = fi =MXri.esand---and f,, = A\zn.en

Vi ';Fi,A = )\1’161 : Tl

STo,Ae:T

;T Aze: T T ABSP T=pX(...C:UxX"..)
v;FI-AI.&:Z—»T('BS oF) sx:UsT"+=Cax:T
:I'e: B W A=fi:Ti,....fn:Th
ST oAre:B (FVEAK S:To, .

(T:LETREC)

.., InletrecFine: T

Figure 3. Selected rules of the simple affine type system.

matches the type context I' and an argument stack that matches the
type stack X then e evaluates to a value of type 7.

The most interesting feature of the type judgements is the
handling of bracket function types [17,...,T,] — T. Even though
function types can have multiple forms, a well-typed expression
has often a unique type (in a given type context). This type is
derived from the way a function is used. For instance, we have
Mz y.fzy @ ([T,T2] - T) > Ty — T» — T and
My (fz)y: (Th > T > T) >T1 - Tp —» T, and
the two function types are unique.

A type T of an expression e has a unique type derivation that
produces a type judgement -,I' - e : T with an empty type
stack. We call this canonical type derivation for e and a closed
type judgement. If T is a function type ¥ — T" then there is a
second type derivation for e that we call an open type derivation. It
derives the open type judgement 3; T — e : T' where |3| > 0. The
following lemma can be proved by induction on the type derivations.

Lemmal. <T'Fe: X > Tifandonly if 3;T' e : T.

Open and canonical type judgements are not interchangeable.
An open type judgement ;" - e : T can only appear in a
derivation with an open root of the form ¥', ;" — e : T, or
in a subtree of a derivation whose root is a closed judgement of the
form ;T e : X", 3 — T where |[X"| > 0. In other words, in an
open derivation X; I" - e : T, the expression e is a function that
has to be applied to n > |X| arguments at the same time. In a given
type context and for a fixed function type, a well-typed expression
has as most one open type derivation.

Type Rules. Figure 3 presents selected type rules of the type
system. As usual I'1, I'2 denotes the union of the type contexts I'y
and ' provided that dom(T'1) n dom(T'2) = (. We thus have the
implicit side condition dom(I'1) ndom(I'2) = ¢F whenever I'1, 'z
occurs in a typing rule. Especially, writing I' = x1:771, ..., 25T}
means that the variables x; are pairwise distinct.

There is a close correspondence between the evaluation rules and
the type rules in the sense that every evaluation rule corresponds to
exactly one type rule. (We view the two rules for pattern match and
let binding as one rule, respectively.) The type stack is modified by
the rules T:VARPUSH, T: APPPUSH, T:ABSPUSH, and T:ABSPOP.
For every leaf rule that can return a function type, such as T: VAR,
T:APpp, and T:APPPOP, we add a second rule that derives the
equivalent open type. The reason becomes clear in the resource-
aware type system in Section 6. The rules that directly control the
shape of the function types are T: ABSPUSH and T: ABSPoP for
lambda abstraction. While the other rules are (deterministically)
syntax driven, the rules for lambda abstraction introduce a non-
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deterministic choice. However, there is often only one possible
choice depending on how the abstracted function is used.

As mentioned, the type system is affine and every variable in a
context can at most be used once in the typed expression. Multiple
uses have to be introduced explicitly using the rule T:SHARE. The
only exception is the rule T:LETREC. Here we allow the use of the
context A in the body of all defined functions. The reason for this is
apparent in the resource aware version: sharing of function types is
always possible without any restrictions.

Well-Formed Environments. For each simple type 7" we induc-
tively define a set [717] of values of type 1. Our goal here is not to
advance the state of the art in denotational semantics but rather to
capture the tree structure of data structures stored on the heap. To
this end, we distinguish mainly inductive types (possible inner nodes
of the trees) and other types (leaves). For the formulation of type
soundness, we also require that function closures are well-formed.
We simply interpret polymorphic data with the set of locations Loc.

[X] = Loc
[T ref] = {R(a) | a € [T]}

[E->T]={z.e,V)|3IT:HE= VI AT Az.e: 3-T}

[Th %% T,] = [T1] x e X 7]
[[Bﬂ = TT(B) if B = (C1:(T1,n1),...,Cn:(Tk,nk»

Here, 7 = Tr((C1:(T1,n1), ..., Cn:(Tk, nx))) is the set of trees
7 with node labels C1, ..., C) which are inductively defined as
follows. Ifi € {1,...,k},a; € [T;],and 7; € T forall1 < j < n;
then Ci(ai, Tly--- 7Tni) eT.

If H is a heap, ¢ is a location, A is a type, and a € [A] then
we write H = ¢ — a:A to mean that ¢ defines the semantic
value a € [A] when pointers are followed in H in the obvious way.
The judgment is formally defined in Figure 4. For a heap H there
may exist different semantic values a and simple types A such that
H =10 — a:A.However, if we fix a simple type A and a heap H
then there exists at most one value a such that H = ¢ +— a: A.

We write H = ¢: A to indicate that there exists a, necessarily
unique, semantic value a € [A] sothat H = v — a:A. An
environment V' and a heap H are well-formed with respect to a
context I' if H = V(z):I'(z) holds for every € dom(I"). We
then write H = V : I'. Similarly, an argument stack S = ¢4, ..., 4,
is well-formed with respect to a type stack > = 11, ..., T}, in heap
H,writen H= S: X, if H={;:T; foralll <i<n.

Note that the rules in Figure 4 are interpreted coinductively. The
reason is that in the rule V:FUN, the location ¢ can be part of the
closure environment V' if the closure has been created with the rule
E:LETREC. The influence of the coinductive definition on the proofs
is minimal since all proofs in this article are by induction.
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Xex £ € dom(H)
(V:TVAR)
HEf(—/{:X
H() =1 Helt —>a:T

V:REF
H =4+ R(a): T ref ( )

H) = (A\z.e,V)
AT HEV:T A 5THXe: X—>T

He=l— (Aze,V):Z—>T

(V:FUN)

H(e) = (617"'7£7b)
Hbe(al,...

Vi: HEVl; — a;:
yan) Ty %% Ty

T;
(V:TUPLE)

B=uX.{...,C:T%X",...)
H(0) = (C,0) HE/?{ — (a,by,...,by): T*B"
H':e'_)c(aablz"wbn):B

(V:CONS)

Figure 4. Coinductively relating heap cells to semantic values.

Type Preservation. Theorem 1 shows that the evaluation of a well-
typed expression in a well-formed environment results in a well-
formed environment.

Theorem 1. If ;' —e: T, HEV : I, HE S : X and
S V,Hutre | (,H) | (q,q)then H EV :T,H E S: %,
and H' = ¢ : T.

Theorem 1 is proved by induction on the evaluation judgement.

5. Multivariate Resource Polynomials

In this section we define the set of resource polynomials which is a
search space of our automatic resource bound analysis. A resource
polynomial p : [T] — QF maps a semantic value of some simple
type T to a non-negative rational number.

An analysis of typical polynomial computations operating on
a list [a1,...,a,] shows that it consists of operations that are
executed for every k-tuple (ai,,...,a;, ) with1l < i3 < --- <
i < n. The simplest examples are linear map operations that
perform some operation for every a;. Other common examples are
sorting algorithms that perform comparisons for every pair (a;, a;)
with 1 < ¢ < j < n in the worst case.

In this article, we generalize this observation to user-defined tree-
like data structures. In lists of different node types with constructors
C1,C5 and Cj, a linear computation is for instance often carried
out for all Ci-nodes, all Cs-nodes, or all C; and C3 nodes. In
general, a typical polynomial computation is carried out for all
tuples (a1, ..., ax) such that a; is a list element with constructor
Cj for some j and a; appears in the list before a;1 for all 4.

As in previous work, which considered binary trees, we will
essentially interpret all tree-like data structures as lists with different
nodes by flattening them in pre-order. As a result, our resource
polynomials only depend on the number of nodes of a certain kind
in tree but not on structural measures like the height of the tree.
To include the height into resource polynomials in a general way,
we would need a way to express a maximum (or a choice) in the
resource polynomials. We leave this for future research in favor
of compositionality and modularity. In practice, it is useful that
the potential of a data structure is invariant under changes in the
structure of the tree.

Base Polynomials and Indices. In Figure 5, we define for each
simple type T" a set P(T") of functions p : [T — N that map values
of type 1 to natural numbers. The resource polynomials for type T°
are then given as non-negative rational linear combinations of these
base polynomials.
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Aa.1 € P(T) Aa. H pi(a;)) € P(Ty - xTy)
1,..

§ = <Cl : (T1,TL1),...,Cm . (Tk,nm)>
C=[Cj,....,C5] Vi:pieP(Ty)

Ab. D] [] pita:) €P(B)

derp (C,b) i=1,s

Figure 5. Defining the set P(7T) of base polynomials for type 7.

V] : Ij GI(T])
,Ik) EI(Tl**Tk)

« e Z(T) (I, ..

B = (Ci:(T1,m),...,Ck : (Trm,nm))
[<Ilvcj1>7"'v<lkacjk>] EI(B)

Vi @ Iji EI(TJ' )

K

Figure 6. Defining the set Z(T") of indices for type 7.

Let B = (Cy: (T1,n1),...,Ck : (Tk,nm)) be an inductive
type. Let C = [Cy,,...,Cj,] be a list of B-constructors and
b € [B]. We inductively define a set 75(C,b) of k-tuples as
follow: 75(C,b) is the set of k-tuples (ai,...,ax) such that
Cj,(a1,b1),...,Cj, (ax, by) are nodes in the tree b € [B] and
Cjy(a1,b1) <pre - <pre Cj, (ax, by,) for the pre-order <pe on b.

Like in the lambda calculus, we use the notation A a. e(a) for the
anonymous function that maps an argument a to the natural number
that is defined by the expression e(a). Every set P(T) contains the
constant function A a. 1. In the case of an inductive data type B this
arises also for C' = [] (one element sum, empty product).

In Figure 6, we indicatively define for each simple type 1" a set
of indices Z(T'). For tuple types T} * - - - * T}, we identify the index
* with the index (%, ..., *). Similarly, we identify the index * with
the index [] for inductive types.

Let T be a base type. For each index i € Z(T'), we define a base
polynomial p; : [T] — N as follows.

ps(a) =1
praplan,-ar) = [T pr(ag)
j=1,..., k
p[<11acl>v~:<1k:ck>](b) = Z H bi; (a;)

Examples. To illustrate the definitions, we construct the set of
base polynomials for different data types. It is handy to use the unit
type that is treated like a type variable X in the previous definitions
but only has a single semantic value, that is, [unit] = {()}.

We first consider the inductive type singleton that has only one
constructor without arguments.

singleton = X (Nil : unit)

Then we have [singleton] = {Nil(())} and P(singleton) =
{Na.1,Xa.0}. To see why, we first examine the set of tuples
T(C) = Tsingleton(C, Nil(())) for different list of constructors C. If
|C| > 1 then T(C) = ¢ because the tree Nil(()) does not contain
any tuples of size 2. Thus we have py(s, .c).,...,z.,c,)1 (NIl(()) =
0 in this case (empty sum). The only list of remaining construc-

tor lists C' are [] and [{x,Nil)]. As always pp(Nil(())) = 1
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(singleton sum). Furthermore pp.. nip)(Nil(())) = 1 because
Tsingleton ([ (%, NiD)], Nil(())) = {Nil(())} and P(unit) = {\a.1}.
Let us now consider the usual sum type

sum(T4,Ty) = pX (Left : Th, Right : Tb) ;.

Then [sum(T%,T2)] = {Left(a) | a € [T1]} v {Right(b) | b €
[T2]}. If we define

ser)(C@) { 5

then P(sum(71,72)) = {x — 1,z — 0}u{oLex(p) | p € P(T1)}
U {origne(p) | p € P(T2)}.
The next example is the list type
list(T') = pX (Cons : T+X, Nil : unit) .

Then [list(T)] = {Nil(()), Cons(a1, Nil(())),...} and we write
Mist(T)] = {[l,[a1];[a1,a2],... | a;i € [T7}. It holds that
Tiist([(*, Cons)], [a1,...,an]) = {ai,...,an} and moreover
Tt ([(*, Cons) , (x, Cons)], [a1,...,an]) = {(ai,a;) | 1 < i<
j < n}. More general, 7iis(C, [a1, . ..,ar]) = {(@i,...,ai,) |
1 <id1 <+ <ig <n}if C = [{(x,Cons),..., (x,Cons)] or
C = [(*,Cons),..., (x,Cons), (x, Nil)] for lists of length k and
k+1, respectively. On the other hand, 7 (D, [a1, . . ., an]) = & if
D = {,Nil) ::D’ for some D’ # []. Since Zaeﬂ WColarsan)) L =
() and Aa.1 € P(T) we have {\b. (lz‘) | n e N} < P(list(7)).
Finally consider a list type with two different Cons-nodes

list2(T1,T2) = pX (C1: T1+X,C2: Ty % X, Nil : unit) .

Then [list2(T)] = {[], [e1], [a1, az2],... | ai € {C1,C2} x [[T]]}
We furthermore have s ([(*, C1)], [b1, bn]) = {b1,...,bn |
Vida : b; = (C1l,a)} and s ([(*, C1) , (x, C2)], [b1, . . .,bn]) =
{(bl,b]) | Vi,jﬂa,a/ c b = (Cl,a) A by = (C2 a) Al <<
j < n}.Let C = [(x,Cons),...,{*,Cons)] and |C| = k. It
furthermore holds that 3, &, 1 = (le1) where [blcy de-
notes the number of Cl-nodes in the list b. Therefore we have
{Ab. ("le1) | n e N} < P(list2(T)).

Coinductive types like stream(7") = pX (St: T+X) are not
inhabited in our language since we interpret them inductively. A
data structure of such a type cannot be created since we allow
recursive definitions only for functions.

ifC=C'
otherwise

Spurious Indices. The previous examples illustrate that for some
inductive data structures, different indices encode the same re-
source polynomial. For example, for the type list(7") we have
prs,ninj (@) = pp(a) = 1 for all lists a. Additionally, some in-
dices encode a polynomial that is constantly zero. For the type
list(T) this is for example the case for p,, vy, .. if |C| > 0. We
call such indices spurious.

In practice, it is not beneficial to have spurious indices in the in-
dex sets since they slow down the analysis without being useful com-
ponents of bounds. It is straightforward to identify spurious indices
from the data type definition. The index [{I1,C4), ..., (Ix, Ck)] is
for example spurious if & > 1 and the branching number of C; is 0
foranie {1,...,k—1}.

Resource Polynomials. A resource polynomial p : [T] — Qg
for a simple type 7" is a non-negative linear combination of base

polynomials, i.e.,
p= > aG-p

i=1,....m

form e N, ¢; € QF and p; € P(T). We write R(T) for the set of
resource polynomials for the base type 7'

Selecting a Finite Index Set. Every resource polynomial is de-
fined by a finite number of base polynomials. In an implementation,
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we also have to fix a finite set of indices to make possible an effec-
tive analysis. The selection of the indices to track can be customized
for each inductive data type and for every program. However, we
currently allow the user only to select a maximal degree of the
bounds and then track all indices that correspond to polynomials of
the same or a smaller degree.

6. Resource-Aware Type System

In this section, we describe the resource aware type system. Es-
sentially, we annotate the simple type system from Section 4 with
resource annotations so that type derivations correspond to proofs
of resource bounds.

Type Annotations. We use the indexes and base polynomials to
define type annotations and resource polynomials.
A type annotation for a simple type T is defined to be a family

Q1 = (q1)1ez(r) With g1 € QF

We write Q(T") for the set of type annotations for the type 7.
An annotated type is a pair (A, Q) where Q is a type annotation
for the simple type | A| where A and | A| are defined as follows.

Au=X|Aref| A1 - % Ay, | ([A1,...,An] > B, F)
| pX. (Cy: Ay X™ .. Crt A X))

We define | A| to be the simple type T that can be obtained from A
by removing all type annotations from function types.

A function type ([A1,. .., An] — B, F) is annotated with a set
F < {(Qa,Qp) | Qa € QA1 --- % Au) A Qs € Q(IBI)}.
The set F potentially contains multiple valid resource annotations
for arguments and the result of the function.

Potential of Annotated Types and Contexts. Let (A, Q) be an
annotated type. Let H be a heap and let v be a value with H = v —
a:|A. Then the type annotation ) defines the porential

ou(v:(4,Q) = >, g pr(a)

IeZ(T)

Usually, we define type annotations ) by only stating the values of
the non-zero coefficients g;.

If a € [|A|] and Q € Q(|A]) is a type annotation then we also
write ®(a : (A, Q)) for >3, q1 - pr(a).

For use in the type system we need to extend the definition of
resource polynomials to type contexts and stacks. We treat them
like tuple types. Let I" = z1: A4, ..., xn: Ay, be a type context and

let X = Bi,..., B be alist of types. The index set Z(X;T') is
defined through
Z(5T) =A{(T1y o Iy sy ) | €Z(|By), Ji€Z(|Asl} -

A type annotation @ for 3; I is a family

Q = (q1)rez(s;m) With gr € Q.

We denote a resource-annotated context with 3;1'; Q. Let H be
a heap and V be an environment with H = V : I' where
H E V(zj) = as; : |T'(x;)|. Let furthermore S = {1, ..., £m be

an argument stack with H = S : ¥ where H = ¢; — b; : | Bs| for
all 4. The potential of X3; I'; @ with respect to H and V' is
m m+n
Povu(ST5Q) = Y, ar [ [p () ] piy(as;)
Tez(zm)  J=1 j=m+1
Here, I = (I1,- -+ y Im+n). In particular, if ¥ = ' = - then

Z(Z;T) = {0} and Qv (E;T5q0) = q(. We sometimes also
q

write g« for q().
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_ / Mvar P P/ ]:- ?;- =P Mvar P/ _ /
Q-Q+ ~ (A:VAR) (P P) e ™ (Q) + - Q (A:VARPUSH)
szB;Q bz (B,Q) S;2:(X > B, F);Qutz: (B,Q")
I=a1:A1,...,20:A, (PPYeF m(Q =P+M»® Q=P ArAPP)
:APP
s ([AL, ..., An]—=B, F), T;Q mzx1 -2 ¢ (B, Q)
D =ux1:A1,..., 204, (P,PYeF (RR)eF Q) =P+M» 7(Q—-q+p.=R R =Q
v 7 (A:APPPUSH)
Z;x:<[A1,...,An]—><E—>B,]:>,f>,F;QA1I—xx1 sz (B,Q)
ST wA; Pub-e: (B,Q)  Q=R+M™  VIJ:r; 5 =pgp
5 : — (A:ABSPUSH)
AT Q M Azee: (B, Q)
—_ 0 abs / . LT, . / I pbr lfj=;
Q=Q +M V(P,P)e F: ;T RuAze: (B,P) A T { 0" otherwise
7 (A:ABSPopr)
STy Q ub-Aze: ((X— B, F),Q")
B=upuX (...C: AxX"..)) YT, y:A%B™; P a1 : (A', P)
S0, a:B;Rubes: (AR) <5(Q)=P+M™ P =Q  Q=R+M™ R =Q (AMAT)
:MAT

5T, 2:B; Q k- match = with Cy — e1 | ez : (A", Q)

cons

B=pX.(...C:AxX"..) Q=<]g(Q/)+M T, 21:A, 20:A; P e : (B,Q") Q = M4 Y (P)

- 7 (A:CONS) . 7 (A:SHARE)
s AxB" Q- Ca: (B,Q) 3T, x:A; Q mt-sharex as (z1,x2)ine : (B,Q)
$:T2,T'1; P yber ~ X;0a, 2:A; P il x:A; R ke : (B, Q) Q=P+ M P = R+ M e
:LET
T2, T1;Q m-letz = erines : (B,Q")
F = f; = Ax1.erand---and f, = Azn.en A= fi:A1,..., fniAy
Vi o Ty, A Pomb Axiei : (Aq, PY) ﬂ';ET“(Q) = WE;FO(P) + M™ + n. M ¥ To, A; P yke: (B, Q) (A:LETREC)
:LETREC
¥ T0,...,T0;Q mletrecFine : (B, Q")
ST:Pre: (B,P >P+ "< P+ PR (B, Q'
Fe ( ) Q © @ ¢ (A:WEAK-A) il (Q) mi-e ( Q) (A:WEAK-C)

S5TQFe: (B,Q)

T Qumbe: (B,Q)) B <:B
Qe (B,Q')

(A:SUBTYPE-R)

* *

VjieZ(X;A):

T2 A Qe (B,Q)

2;1—‘7‘%':14;@1\/1%6 : (B7Ql)

A< A

j=% = T;7m (Q) mbe: (AyﬂftA(Q/))

7 (A:SUBTYPE-C)
5haAQ u-e: (B, Q)

*

o AT r . (A A
j#E* = I (Q)ate: (A, 77 (Q)) (B:BIND)

AT Qube~ A 24, Q'

Figure 7. Selected type rules for annotated types.

Folding of Potential Annotations. A key notion in the type system
is the folding for potential annotations that is used to assign potential
to typing contexts that result from a pattern match (unfolding) or
from the application of a constructor of an inductive data type
(folding). Folding of potential annotations is conceptually similar to
folding and unfolding of inductive data types in type theory.

Let B = pX.{(...,C:A%X", ...) be an inductive data
type. Let X be a type stack, I', b: B be a context and let Q =
(qr) rez(s;r,y:3) be a context annotation. The C-unfolding <1§(Q)
of @ with respect to B is an annotation <15(Q) = (¢}) rez(s:r)
for a context IV = I', z: A B" that is defined by

j=0
j#0

4(1,(J,C):: LyLn) T Q(I,Ly-Ly)

/
d(1,(J,L1,....Ln)) = { Q(1,(J,C)::L1-Lnp)

Draft 9

Here, L; - - - L, is the concatenation of the lists L1, ..., L,.

Lemma 2. Let B = pX.(...,C: AxX",...) be an inductive
data type. Let ;1" x:B; Q) be an annotated context, H = V
Ie:B, HE= S: X% HV(x)) = (C0), and V! = V]y —
£]. Then H & V' : T,y:AxB™ and ®sv,u(Z;T,2:B; Q) =
D5y, (55T, y: AxB™ <95(Q)).

Sharing. Let ;1" x1:A, x2:A; Q be an annotated context. The
sharing operation Y () defines an annotation for a context of
the form ;" x: A. Tt is used when the potential is split between
multiple occurrences of a variable. Lemma 3 shows that sharing is a
linear operation that does not lead to any loss of potential.

Lemma 3. Let A be a data type. Then there are natural numbers
c,(j’]) fori,j,k € I(|A|) such that the following holds. For ev-
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ery context ;' x1:A, x2:A; Q and every H,V with H = V :
I,z:Aand H = S : X it holds that ®sv,u (3, T,2:4; Q") =
D v (5T, x1:A, 22:4; Q) where V' = V]z1,z2 — V(z)]
and 4o 1y = 2 jez(a) i qe,i,5).

The coefficients c,(f’j ) can be computed effectively. We were
however not able to derive a closed formula for the coefficients.
The proof is similar as in previous work [33]. For a context
T, 21:A, 22:A; Q we define Y Q to be Q' from Lemma 3.

Type Judgements. A resource-aware type judgement has the form

T;Q mbe: (4,Q)

where ¥;T'; @ is an annotated context, M is a resource metric,
A is an annotated type and Q' is a type annotation for | A|. The
intended meaning of this judgment is that if there are more than
®(%;T'; Q) resource units available then this is sufficient to cover
the evaluation cost of e under metric M. In addition, there are at
least ®(v:(A, Q")) resource units left if e evaluates to a value v.

Notations. Families that describe type and context annotations are
denoted with upper case letters ), P, R, . .. with optional super-
scripts. We use the convention that the elements of the families are
the corresponding lower case letters with corresponding superscripts,
ie., Q= (qr)rez and Q" = (q7)1ez-

If Q, P and R are annotations with the same index set Z then
we extend operations on Q pointwise to (), P and R. For example,
we write Q < P+ Rif gf < pr +ryforevery [ € Z. For K € QQ
we write Q@ = Q' + K to state that g, = ¢}, + K > 0and qr = ¢
for I # = € Z. Let Q be an annotation for a context 33; 'y, I's. For
J € Z(I'2) we define the projection W{}’J,) (Q) of Q to I'; to be the
annotation Q' for -;I'y with q7 = g(,7,7). In the same way, we
define the annotations 75 (Q) for 2; - and 75" (Q) for 3; T'y.

Cost Free Types. We write 3;T; Q s e : (A, Q") to refer to cost-
free type judgments where cf is the cost-free metric with cf (K) = 0
for constants K. We use it to assign potential to an extended context
in the let rule. More info is available in previous work [30].

Subtyping. As usual, subtyping is defined inductively so that types
have to be structurally identical. The most interesting rule is the one
for function types:

FcF Vi A < A; B<: B
([A1,...,An] = B, F) <: <[A/1,...,A'n] — B',]—")

A function type is a subtype of another function type if it allows more
resource behaviors (' < JF). Result types are treated covariant and
arguments are treated contravariant.

Unsurprisingly, our type system does not have principle types.
This is to allow the typing of examples such as rec_scheme from
Section 2. In a principle type, we would have to assume the weakest
type for the arguments, that is, function types that are annotated
with empty sets of type annotations. This would mean that we
cannot use functions in the arguments. However, it is possible to
derive a principle type (X — B, F) for fixed argument types X.
Here, we would derive all possible annotations (Q, Q') € F in the
function annotation and all possible annotations (Q, Q) that appear
in function annotations of the result type.

If we take the more algorithmic view of previous work [41]
then we can express a principle type for a function with a set of
constraints that has holes for the constraint sets of the higher-order
arguments. It is however unclear what such a type means for a user
and we prefer a more declarative view that clearly separates type
checking and type inference. An open problem with constraint based
principle types is polymorphism.

Type Rules. Figure 7 contains selected type rules for annotated
types. Many of the rules are similar to the rules in previous pa-
pers [31, 33, 41] and detailed explanations can be found there.

(S:FuUN)
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Soundness. Our goal is to prove the following soundness state-
ment for type judgements. Intuitively, it says that the initial potential
is an upper bound on the watermark resource usage, no matter how
long we execute the program.

FXTQube: (A,Q)and S,V H mt-e | o | (p,p)
thenp < @57V,H(E;F;Q).

To prove this statement by induction, we need to prove a stronger
statement that takes into account the return value and the annotated
type (A, Q') of e. Moreover, the previous statement is only true
if the values in S, V and H respect the types required by ¥ and
I". Therefore, we adapt our definition of well-formed environments
to annotated types. We simply replace the rule V:FUN in Figure 4
with the following rule. Of course, H = V' : I refers to the newly
defined judgment.

H(O) = (\weV)  30,Q,Q:HEV:Ta
sT;Qmb-Aze: ((E— B, F),Q)
HEetl— AzeV): (E—> B,F)

In addition to the aforementioned soundness, the Theorem 2 states
a stronger property for terminating evaluations. If an expression
e evaluates to a value v in a well-formed environment then the
difference between initial and final potential is an upper bound on
the resource usage of the evaluation.

Theorem 2 (Soundness). Let H = V : I, H E S : X, and
0Q m-e: (B, Q).

LIfS,V,Hute | (6, H') | (p,p') thenp < ®s,v,u(5:T;Q),
p—p < Psva(E;T5Q) — Oy (6:(B,Q")), and H = £ : B.
2. IfS7 ‘/7H1\/I|_ € U © | (p7p,) thenp < (I)S;V»H(X;F; Q)

Theorem 2 is proved by a nested induction on the derivation
of the evaluation judgment and the type judgment >;I';Q
e:(B,Q"). The inner induction on the type judgment is needed
because of the structural rules. There is one proof for all possible
instantiations of the resource constants. An sole induction on the
type judgement fails because the size of the type derivation can
increase in the case of the function application in which we retrieve
a type derivation for the function body from the well-formed
judgement as defined by the (updated) rule V:FUN.

The structure of the proof matches the structure of the previous
soundness proofs for type systems based on AARA [31, 33, 34, 41].
The induction case of many rules is similar to the induction cases
of the corresponding rules for multivariate AARA for first-order
programs [33] and linear AARA for higher-order programs [41].
For one thing, additional complexity is introduced by the new
resource polynomials for user-defined data types. We designed
the system so that this additional complexity is dealt with locally
in the rules A:MAT, A:CONS, and A:SHARE. The soundness of
these rules follows directly from an application of Lemma 2 and
Lemma 3, respectively. As in previous work [34] the well-formed
judgement that captures type derivations enables us to treat function
abstraction and application in a very similar fashion as in the first-
order case [33]. The coinductive definition of the well-formedness
judgement does not cause any difficulties. A major novel aspect
in the proof is the typed argument stack S : 3 that also carries
potential. Surprisingly, this typed stack is simply treated like a typed
environment V' : I" in the proof. It is already incorporated in the
shift and share operations (Lemma 2 and Lemma 3).

We deal with the mutable heap by requiring that array elements
do not influence the potential of an array. As a result, we can prove
the following lemma, which is used in the proof of Theorem 2.

Lemmad. f H=VI, HE S: % 5T5Qu-e : (B,Q)
and stack,V,H pte | (¢, H') | (p,p’) then ®5v,u(T;Q) =
Psvm (15 Q).

(V:Fun)

2015/7/27



Input vl OCaml RAML Compiler RAML Analyzer| Resource
| Explicit Let ivari Metrics
Program | Parser Polymorphism AARA
! Typed Bracket-Type Typed LP Solver | . OR
Type Inference | |OCaml Inference RAML Frontend OCaml-C  CLP
Syntax y Syntax ! Bindings
Tree Stack-Based Tree Resource Type
Type Checking Interpretation
! |
Share-Let
Normal Form Resource
Bounds

Figure 8. Implementation of RAML.

7. Implementation and Bound Inference

Figure 8 shows an overview of the implementation of RAML. It
consists of about 12000 lines of OCaml code, excluding the parts that
we reused from Inria’s OCaml implementation. The development
took around 8 person months. We found it very helpful to develop
the implementation and the theory in parallel, and many theoretical
ideas have been inspired by implementation challenges.

We reuse the parser and type inference algorithm from OCaml
4.01 to derive a typed OCaml syntax tree from the source program.
We then analyze the function applications to introduce bracket
function types. To this end, we copy a lambda abstraction for every
call site. We still have to implement a unification algorithm since
functions, such as let g = f x, that are defined by partial application
may be used at different call sites. Moreover, we have to deal with
functions that are stored in references.

In the next step, we convert the typed OCaml syntax tree into a
typed RAML syntax tree. Furthermore, we transform the program
into share-let-normal form without changing the resource behavior.
For this purpose, each syntactic form has a free flag that specifies
whether it contributes to the cost of the original program. For
example, all share forms that are introduced are free. We also insert
eta expansions whenever they do not influence resource usage.

After this compilation phase, we perform the actual multivariate
AARA on the program in share-let-normal form. Resource metrics
can be easily specified by a user. We include a metric for heap cells,
evaluation steps, and ticks. The letter allows the user to flexibly
specify the resource cost of programs by inserting tick commands
Raml.tick(q) where q is a (possibly negative) floating-point number.

In principle, the actual bound inference works similarly as in
previous AARA systems [32, 34]: First, we fix a maximal degree
of the bounds and annotate all types in the derivation of the simple
types with variables that correspond to type annotations for resource
polynomials of that degree. Second, we generate a set of linear
inequalities, which express the relationships between the added
annotation variables as specified by the type rules. Third, we solve
the inequalities with Coin-Or’s fantastic LP solver CLP. A solution
of the linear program corresponds to a type derivation in which
the variables in the type annotations are instantiated according
to the solution. The objective function contains the coefficients
of the resource annotation of the program inputs to minimize the
initial potential. Modern LP solvers provide support for iterative
solving that allows us to express that minimization of higher-degree
annotations should take priority.

The type system we use in the implementation significantly
differs from the declarative version we describe in this article. For
one thing, we have to use algorithmic versions of the type rules in
the inference in which the non-syntax-directed rules are integrated
into the syntax-directed ones [33]. For another thing, we annotate
function types not with a set of type annotations but with a function
that returns an annotation for the result type if presented with an
annotation of the return type. The annotations here are symbolic
and the actual number are yet to be determined by the LP solver.
Function annotations have the side effect of sending constraints
to the LP solver. It would be possible to keep a constraint set for
the respective function in memory and to send a copy with fresh
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variables to the LP solver at every call. However, it is more efficient
to lazily trigger the constraint generation from the function body at
every call site when the function is provided with a return annotation.

To make the resource analysis more expressive, we also allow
resource-polymorphic recursion. This means that we need a type
annotation in the recursive call that differs from the annotation in
the argument and result types of the function. To infer such types
we successively infer type annotations of higher and higher degree.
Details can be found in previous work [30].

For the most part, our constraints have the form of a so-called
network (or network-flow) problem [49]. LP solvers can handle
network problems very efficiently and in practice CLP solves the
constraints RAML generates in linear time. Because our problem
sizes are large, we can save memory and time by reducing the num-
ber of constraints that are generated during typing. A representative
example of an optimization is that we try to reuse constraint names
instead of producing constraints like p = q.

RAML provides two ways of analyzing a program. In main mode
RAML derives a bound for evaluation cost of the main expression
of the program, that is, the last expression in the top-level list of
let bindings. In module mode, RAML derives a bound for every
top-level let binding that has a function type.

Apart from the analysis itself, we also implemented the con-
version of the derived resource polynomials into easily-understood
polynomial bounds and a pretty printer for RAML types and expres-
sions. Additionally, we implemented an efficient RAML interpreter
that we use for debugging and to determine the quality of the bounds.

8. Case Study: Bounds for DynamoDB Queries

Having integrated the analysis with Inria’s OCaml compiler enables
us to analyze and compile real programs. An interesting use case
of our resource bound analysis is to infer worst-case bounds on
DynamoDB queries. DynamoDB is a commercial NoSQL cloud
database service, which is part of Amazon Web Services (AWS).
Amazon charges DynamoDB users on a combination of number
of queries, transmitted fields, and throughput. Since DynamoDB
is a NoSQL service, it is often only possible to retrieve the whole
table—which can be expensive for large data sets—or single entries
that are identified by a key value. The DynamoDB API is available
through the Opam package aws. We make the API available to the
analysis by using tick functions that specify resource usage. Since
the query cost for different tables can be different, we provide one
function per action and table.

let db_query student_id course_id =
Raml.tick(1.0); Awslib.get_item ...

In the following, we describe the analysis of a specific OCaml
application that uses a database that contains a large table that stores
grades of students for different courses. Our first function computes
the average grade of a student for a given list of courses.

let avge_grade student_id course_ids =
let f acc cid =

let (length,sum) = acc in

let grade = match db_query student_id cid with
| Some q — q
| None — raise (Not_found (student_id,cid))
in
(length +. 1.0, sum +. grade)
in

let (length,sum) = foldl f (0.0,0.0) course_ids in
sum /. length

In 0.03s RAML computes the tight bound 1 - m where m is the
length of the argument course_ids. We omit the standard definitions
of functions like foldl and map. However, they are not built-in into
our systems but the bounds are derived form first principles.
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Next, we sort a given list of students based on the average grades
in a given list of classes using quick sort. As a first approximation
we use a comparison function that is based on average_grade.

let geq sidl sid2 cour_ids =
avge_grade sidl cour_ids >= avge_grade sid2 cour_ids

This results in O(n?m) database queries where n is the number of
students and m is the number of courses. The reason is that there are
O(nz) comparisons during a run of quick sort. Since the resource
usage of quick sort depends on the number of courses, we have to
make the list of courses an explicit argument and cannot store it in
the closure of the comparison function.

let rec partition gt acc 1 =
match 1 with
| [ — let (cs,bs,_) = acc in (cs,bs)
| x::xs — let (cs,bs,aux) = acc in
let acc’ = if gt x aux then (cs,x::bs,aux)
else (x::cs,bs,aux)
in partition gt acc’ xs
n-10a

let rec gsort gt aux 1 = match 1 with |

| x::xs —
let ys,zs = partition (gt x) ([],[],aux) xs in
append (gsort gt aux ys) (x::(gsort gt aux zs))

let sort_students s_ids c_ids = gsort geq c_ids s_ids

In 0.31s RAML computes the tight bound n?*m — nm for
sort_students where n is the length of the argument s_ids and m is
the length of the argument c_ids. The negative factor arises from the
translation of the resource polynomials to the standard basis.

Given the alarming cubic bound, we reimplement our sorting
function using memoization. To this end we create a table that
looks up and stores for each student and course the grade in
the DynamoDB. We then replace the function db_query with the
function lookup.

let lookup sid cid table =
let cid_map = find (fun id — id = sid) table in
find (fun id — id = cid) cid_map

For the resulting sorting function, RAML computes the tight bound
nm in 0.87s.

9. Related Work

Our work builds on past research on automatic amortized resource
analysis (AARA). AARA has been introduced by Hofmann and
Jost for a strict first-order functional language with built-in data
types [34]. The technique has been applied to higher-order func-
tional programs and user defined types [41], to derive stack-space
bounds [16], to programs with lazy evaluation [47, 52], to object-
oriented programs [35, 38], and to low-level code by integrating
it with separation logic [8]. All the aforementioned amortized-
analysis—based systems are limited to linear bounds. Hoffmann et
al. [29, 32, 33] presented a multivariate AARA for a first-order lan-
guage with built-in lists and binary trees. Hofmann and Moser [37]
have proposed a generalization of this system in the context of
(first-order) term rewrite systems. However, it is unclear how to
automate this system. In this article, we introduce the first AARA
that is able to automatically derive (multivariate) polynomial bounds
that depend on user-defined inductive data structures. Our system
is the only one that can derive polynomial bounds for higher-order
functions. Even for linear bounds, our analysis is more expressive
than existing systems for strict languages [41]. For instance, we can
for the first time derive an evaluation-step bound for the curried
append function for lists. Moreover, we integrated AARA for the
first time with an existing industrial-strength compiler.
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Type systems for inferring and verifying resource bounds have
been extensively studied. Vasconcelos et al. [50, 51] described an
automatic analysis system that is based on sized-types [39] and
derives linear bounds for higher-order functional programs. Here
we derive polynomial bounds.

Dal Lago et al. [43, 44] introduced linear dependent types
to obtain a complete analysis system for the time complexity of
the call-by-name and call-by-value lambda calculus. Crary and
Weirich [20] presented a type system for specifying and certifying
resource consumption. Danielsson [22] developed a library, based
on dependent types and manual cost annotations, that can be used
for complexity analyses of functional programs. The advantage of
our technique is that it is fully automatic.

Classically, cost analyses are often based on deriving and solving
recurrence relations. This approach was pioneered by Wegbreit [53]
and is actively studied for imperative languages [1, 5, 7, 25]. These
works are not concerned with higher-order functions and bounds do
not depend on user-defined data structures.

Benzinger [11] has applied Wegbreit’s method in an automatic
complexity analysis for Nuprl terms. However, complexity infor-
mation for higher-order functions has to be provided explicitly.
Grobauer [26] reported a mechanism to automatically derive cost
recurrences from DML programs using dependent types. Danner et
al. [23, 24] propose an interesting technique to derive higher-order
recurrence relations from higher-order functional programs. Solving
the recurrences is not discussed in these works and in contrast to our
work they are not able to automatically infer closed-form bounds.

Abstract interpretation based approaches to resource analysis [12,
18, 27, 48, 54] focus on first-order integer programs with loops.
Cicek et al. [19] study a type system for incremental complexity.

In an active area of research, techniques from term rewriting
are applied to complexity analysis [9, 15, 45]; sometimes in combi-
nation with amortized analysis [36]. These techniques are usually
restricted to first-order programs and time complexity. Recently,
Avanzini et al. [10] proposed a complexity preserving defunctional-
iztion to deal with higher-order programs. While the transformation
is asymptotically complexity preserving, it is unclear whether this
technique can derive bounds with precise constant factors.

Finally, there exists research that studies cost models to formally
analyze parallel programs. Blelloch and Greiner [13] pioneered
the cost measures work and depth. There are more advanced cost
models that take into account caches and IO (see, e.g., Blelloch and
Harper [14]), However, these works do not provide machine support
for deriving static cost bounds.

10. Conclusion

We have presented important first steps towards a practical automatic
resource bound analysis system for OCaml. Our three main contribu-
tions are (1) the integration of automatic amortized resource analysis
with the OCaml compiler, (2) a novel automatic resource analysis
system that infers multivariate polynomial bounds that depend on
size parameters of user-defined data structures, and (3) the first
AARA that infers polynomial bounds for higher-order functions.

As the title of this article indicates, there are many open problems
left on the way to a usable resource analysis system for OCaml. In
the future, we plan to improve the bound analysis for programs
with side-effects and exceptions. We will also work on mechanisms
that allow user interaction for manually deriving bounds if the
automation fails. Furthermore, we will work on taking into account
garbage collection and the runtime system when deriving time and
space bounds. Finally, we will investigate techniques to link the high-
level bounds with hardware and the low-level code that is produced
by the compiler. These open questions are certainly challenging but
we now have the tools to further push the boundaries of practical
quantitative software verification.
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