
Amortized Resource Analysis with Polymorphic
Recursion and Partial Big-Step Operational Semantics

Jan Hoffmann? and Martin Hofmann

Ludwig-Maximilians-Universität München

Abstract. This paper studies the problem of statically determining upper bounds
on the resource consumption of first-order functional programs. A previous work
approached the problem with an automatic type-based amortized analysis for
polynomial resource bounds. The analysis is parametric in the resource and can
be instantiated to heap space, stack space, or clock cycles. Experiments with a
prototype implementation have shown that programs are analyzed efficiently and
that the computed bounds exactly match the measured worst-case resource be-
havior for many functions. This paper describes the inference algorithm that is
used in the implementation of the system. It can deal with resource-polymorphic
recursion which is required in the type derivation of many functions. The com-
putation of the bounds is fully automatic if a maximal degree of the polynomials
is given. The soundness of the inference is proved with respect to a novel opera-
tional semantics for partial evaluations to show that the inferred bounds hold for
terminating as well as non-terminating computations. A corollary is that run-time
bounds also establish the termination of programs.

1 Introduction

The quantitative analysis of algorithms is a classic problem in computer science. For
many applications in software development it is necessary to obtain not only asymptotic
bounds but rather specific upper bounds for concrete implementations. This is especially
the case for the development of embedded and safety-critical systems.

Even for basic programs, manual analysis of the specific (non-asympt.) costs is te-
dious and error-prone. The problem gets increasingly complex for high-level program-
ming languages, since one needs to be aware of the translation performed by the com-
piler. As a result, automatic methods for analyzing the resource behavior of programs
have been the subject of extensive research (see §7).

Our approach to the problem follows a line of research that was initiated by Hof-
mann and Jost [1]. It is based on the potential method of amortized analysis that has
been invented by Sleator and Tarjan [2] to simplify the manual reasoning about the costs
of a sequence of operations that manipulate a data structure. [1] showed that a fully
automatic amortized resource analysis can efficiently compute bounds on the heap-
space consumption of many (first-order) functional programs that admit linear resource
bounds. The limitation to linear bounds and accordingly linear constraints was essential
for the efficiency of the analysis. Subsequent research considerably extended the range

? Supported by the DFG Graduiertenkolleg 1480 (PUMA).

2 Jan Hoffmann and Martin Hofmann

of type-based amortized analysis, but the restriction to linear bounds remained. Exam-
ples are the extensions of type-based amortized analysis to object-oriented programs
[3, 4], to generic resource metrics [5, 6], to polymorphic and higher-order programs [7],
and to Java-like bytecode by means of separation logic [8].

Somewhat unexpectedly, we recently discovered a technique [9] that yields an auto-
matic amortized analysis for polynomial bounds while still relying on linear constraint
solving only. The resulting system efficiently computes resource bounds for first-order
functional programs that admit bounds that are sums

∑
pi(ni) of univariate polyno-

mials pi. This includes bounds on the heap-space usage and the number of evaluation
steps for a number of interesting functions such as quick sort, merge sort, insertion sort,
longest common subsequence via dynamic programming, breadth-first traversal of a
tree using a functional queue, and sieve of Eratosthenes.

The system has been implemented for Resource Aware ML (RAML) which is a first-
order fragment of OCAML. It is available online1 and can be run in a web browser
to analyze example programs and user-generated code. Our experiments show that the
computed bounds exactly match the measured worst-case behavior in many cases. For
example we obtain tight evaluation-step bounds for quick sort and insertion sort.

The basic idea of the analysis is to fix a maximal degree k and then to collect lin-
ear constraints on the coefficients of polynomials of this degree. One can iteratively
increase the degree so as to avoid costly computations earlier on. A fine point arises
from the fact that polynomials must be nonnegative and monotone and that in order for
allowing local constraint generation for pattern matches the class of allowed polynomi-
als must be closed under the operation p(n) 7→ p(n + 1) − p(n). This naturally leads
to nonnegative linear combinations of binomial coefficients.

A further challenge for the inference of polynomial bounds is the need to deal with
resource-polymorphic recursion (see §2), which is required to type most of the above
example programs. However, it seems to be a hard problem to infer general resource
polymorphic recursion even for the original linear system.

In this paper we present a pragmatic approach to resource-polymorphic recursion
that works well and efficiently in practice. Despite being not complete with respect to
the type rules, it infers types for most functions that admit a type-derivation, including
the above examples. A somewhat artificial function that admits a resource-polymorphic
typing that cannot be inferred by our algorithm is given in the extended version.

The main theorem of the paper (see §5) shows that the resource bounds are sound
with respect to a big-step operational semantics. A dissatisfying feature of classical
big-step semantics is that it does not provide evaluation judgments for non-terminating
evaluations. As a result, the soundness theorems for amortized resource analyses have
in the past been formulated for terminating evaluations only [1, 5, 7].

A secondary contribution of this paper is the introduction of a novel big-step opera-
tional semantics for partial evaluations which agrees with the usual big-step semantics
on terminating computations. In this way, we retain the advantages of big-step seman-
tics (shorter, less syntactic proofs; better agreement (arguably) with actual behaviour of
computers) while capturing the resource behaviour of non-terminating programs. This
enables the proof of an improved soundness result: if the type analysis has established a

1 See http://raml.tcs.ifi.lmu.de.

Amortized Resource Analysis with Polymorphic Recursion 3

resource bound then the resource consumption of the (possibly non-terminating) evalua-
tion does not exceed the bound. It follows that run-time bounds also ensure termination.

This paper complements a previous paper [9]. The main contributions are as follows.
We introduce a novel operational semantics for partial evaluations that allows a simpli-
fied and improved soundness theorem (in §4). We present algorithmic typing rules used
by the inference algorithm (in §5). An extended soundness proof shows that the inferred
bounds hold for both terminating and non-terminating computations (Thm. 4). We de-
scribe an inference algorithm that efficiently computes resource-polymorphic types for
most functions for which such a type exists (in §6).

An extended version of this paper is available on the first author’s website. It con-
tains proofs, a case study on sorting algorithms in RAML, and a summary of our exper-
iments with the inference algorithm.

2 Informal Presentation

Linear Potential The general idea of type-based amortized analysis for functional
programs has been introduced in [1] as follows. First, inductive data structures are stat-
ically annotated with a positive rational number q to define a non-negative potential
Φ(n) = q ·n as a function of the size n of the data. Second, the potential is shown to be
sufficient to pay for all operations that are performed on this data structure during any
possible evaluation of the program. The initial potential (summed over all input data)
then describes an upper bound on the resource costs. We illustrate the idea by analyzing
the heap-space consumption of the function attach below.

attach (x, l) = match l with | nil → nil | (y :: ys) → (x,y)::(attach (x,ys))

It takes an integer and a list of integers and returns a list of pairs of integers in which the
first argument is paired with each element of the list. If we assume that a list element
for a pair of integers has size 3 (two cells for the integers, one for the pointer to the next
element) then the heap-space cost of an evaluation of attach(x,l) is 3|l| memory cells.

In order to infer an upper bound on the heap-space usage of the function we annotate
the type of attach with a priori unknown resource-annotations s, s′, q and p that range
over non-negative rational numbers. The intuitive meaning of the resulting type attach:
(int, Lq(int))−−−→s/s′ Lp(int, int) is as follows: to evaluate attach(x,l) one needs q memory
cells per element in the list l and s additional memory cells. After the evaluation there
are s′ memory cells and p cells per element of the returned list left. We say that the list
l has potential Φ(l, q) = q · |l| and that l’ = attach(x,l) has potential Φ(l′, p) = p · |l′|.

The problem of computing a resource bound then amounts to finding valid instan-
tiations of the resource variables, i.e., a potential that suffices to cover the costs of any
possible evaluation. The validity of an instantiation can be verified statically in a sound
albeit not complete type-based analysis of the program text. A valid resource annota-
tion for attach can be obtained by setting q = 3 and s = s′ = p = 0. The computed
upper bound on the heap-space costs is then 3n where n is length of the input list. An-
other possible instantiation would be q = 6, p = 3, and s = s′ = 0. The resulting
typing of attach could be used for the inner occurrence of attach to type an expression
like attach(x,attach(z,ys)). The associated upper bound on the heap-space costs for the
evaluation of the expression is then 6|ys|.

4 Jan Hoffmann and Martin Hofmann

The use of linear potential functions relieves one of the burden of having to manipu-
late symbolic expressions during the analysis by a priori fixing their format. This gives
rise to a particularly efficient inference algorithm for the type annotations. It works like
a standard constraint-based type inference in which simple linear constraints are col-
lected as each type rule is applied. The constraints are then solved by linear program-
ming. To see the basic idea, consider the function attach in which expressions of type
list are annotated with variables q, p, r, . . . that range over Q+. The intended meaning
of lq is that l is of type Lq(A) for some type A.

attach (x, lq) = match lq
′

with | nil → nilp | (y :: ysr)→ ((x,y)::(attach (x,ysq))p)p

The syntax-directed inference then computes inequalities like q′ + s ≥ 3 + p + s. It
expresses the fact that the potential q′ of the first list element and the initial potential
s need to cover the costs for the cons operation (3 memory cells), the potential p of a
list element of the result, and the input potential s of the recursive call. To pay the cost
during the recursion we require the annotation of the function arguments and the result
of the recursive call to match their specification (q and p in the case of attach). The
function is then used resource-monomorphically.

Polynomial Potential Our previous work [9] showed that an automatic amortized anal-
ysis can also be used to derive polynomial resource bounds by extracting linear in-
equalities from a program. The main innovation is the use of potential-functions of the
form

∑
i=1,...,k qi

(
n
i

)
with qi ≥ 0. They are attached to inductive data structures via

type annotations of the form ~q = (q1, . . . , qk) with qi ∈ Q+. For instance, the typing
l:L(3,2,1)(int), defines the potential Φ(l, (3, 2, 1)) = 3|l|+ 2

(|l|
2

)
+ 1
(|l|
3

)
.

The use of binomial coefficients rather than powers of variables has many ad-
vantages as discussed in [9]. In particular, the identity q1 +

∑
i=1,...,k−1 qi+1

(
n
i

)
+∑

i=1,...,k qi
(
n
i

)
=
∑
i=1,...,k qi

(
n+1
i

)
gives rise to a local typing rule for cons match

which naturally allows the typing of both recursive calls and other calls to subordi-
nate functions in branches of a pattern match. This identity forms the mathematical
basis of the additive shift C of a type annotation which is defined by C(q1, . . . , qk) =
(q1+ q2, . . . , qk−1+ qk, qk). It appears, e.g., in the typing tail:L~q(int)−−−→0/q1 LC(~q)(int)
of the function tail that removes the first element from a list. The idea underlying the
additive shift is that the potential resulting from the contraction xs:LC(~q)(int) of a list
(x::xs):L~q(int) (usually in a pattern match) is used for three purposes: (i) to pay the con-
stant cost after and before the recursive calls (q1), (ii) to fund calls to auxiliary functions
((q2, . . . , qn)), and (iii) to pay for the recursive calls ((q1, . . . , qn)).

To see how the polynomial potential annotations are used to compute polynomial
resource bounds, consider the function pairs that computes the two-element subsets of
a given set (representing sets as tuples or lists).

pairs l = match l with | nil → nil | (x :: xs) → append(attach(x,xs), pairs xs)

The function append consumes 3 memory cells for every element in the first argument.
Similar to attach we can compute a tight resource bound for append by inferring the
type append: (L(3)(int, int), L(0)(int, int))−−−→0/0 L(0)(int, int).

The evaluation of the expression pairs(l) consumes 6 memory cells per element of
every sub-list (suffix) of l. The inferred type for pairs is L(0,6)(int)−−−→0/0 L(0)(int, int).

Amortized Resource Analysis with Polymorphic Recursion 5

It states that a list l in an expression pairs(l) has the potential Φ(l, (0, 6)) = 0 · |l| +
6 ·
(|l|
2

)
and thus furnishes a tight upper bound on the heap-space usage. To type the

function’s body, the additive shift assigns the type xs:L(0+6,6)(int) to the variable xs
in the pattern match. The potential is shared between the two occurrences of xs in the
following expression by using xs:L(6,0)(int) to pay for append and attach (ii) and using
xs:L(0,6)(int) to pay for the recursive call of pairs (iii); the constant costs (i) are zero.

To compute the bound, we start with an annotation with resource variables as before.

pairs l = match l(q1,q2) with | nil→ nil
| (x :: xs(p1,p2))→ append(attach(x,xs(r1,r2)),pairs xs(s1,s2))

The constraints that our type system computes include q2≥p2 and q1+q2≥p1 (addi-
tive shift); p1=r1+s1 and p2=r2+s2 (sharing between two variables); r1≥6 (pay for
non-recursive function calls); q1=s1, q2=s2 (pay for the recursive call). This system is
solvable by q2 = s2 = p1 = p2 = r1 = 6 and q1 = s1 = r2 = 0.

Polymorphic Recursion As in the linear case, we require in the constraint system that
the type of the recursive call of pairs matches its specification (qi = si). But other than
in the linear case, such a resource-monomorphic approach results in an unsolvable lin-
ear program for many non-tail-recursive functions with a super linear resource behavior.
We illustrate this with the function pairs’ that is a modification of pairs in which we per-
mute the arguments of append and hence replace the expression in the cons-branch of
the pattern match with append(pairs’ xs,attach(x,xs)). The heap-space usage of pairs’
is 3
(
n
2

)
+ 3
(
n
3

)
since append is called with the intermediate results of pairs’ in the first

argument and thus consumes
∑

2≤i<n
(
i
2

)
=
(
n
3

)
memory cells.

The resource-polymorphic system determines an exact heap-space bound for the
function pairs’ by computing the typing L(0,3,3)(int)−−−→0/0 L(0)(int, int). Similar to the
case of pairs the additive shift assigns the type L(3,6,3)(int) to xs in the cons-branch.
The linear potential xs:L(3,0,0)(int) is passed on to the occurrence of xs in attach. But in
order to pay the costs of append we have to assign a linear potential to the result of the
recursive call and thus use the alternate typing pairs’: L(0,6,3)(int)−−−→0/0 L(3)(int, int).
The need of passing on potential of degree at most k−1 to the output of a function with
a resource consumption of degree k is quite common in typical functions. It is present
in the derivation of time bounds for most non-tail-recursive functions that we consid-
ered, e.g., quick sort and insertion sort. The classic (resource-monomorphic) inference
approach of requiring the type of the recursive call to match its specification fails for
these functions and it was a non-trivial problem to address it with an efficient solution.

Cost-Free Resource Metric Our pragmatic approach is to introduce a special cost-
free resource metric that assigns zero costs to every evaluation step. A cost-free func-
tion type f: A−−−→a/a′ B then describes how to pass potential from x to f(x) without
paying for resource usage. Any concrete typing for a given resource metric can be su-
perposed with a cost-free typing to obtain another typing for the given resource metric
(cf. solutions of inhomogeneous systems by superposition with homogeneous solutions
in lin. algebra).

We illustrate the idea using pairs’. For A=(int, int), we derive the cost-free types
attach: (int, L(3)(int))−−−→0/0 L(3)(A) and append: (L(3)(A), L(3)(A))−−−→0/0 L(3)(A). The

6 Jan Hoffmann and Martin Hofmann

type inference for, e.g., attach works as outlined above with the inequality q′ + s ≥
3 + p+ s replaced with q′ + s ≥ p+ s. Similar, we can assign pairs’ the cost-free type
L(0,3)(int)−−−→0/0 L(3)(int, int). The typing xs:L(3,3)(int) that results from the additive
shift is used as xs:L(3,0)(int) in attach and as xs:L(0,3)(int) in the recursive call.

If we now want to infer the type of a function with respect to some cost metric
then we deal with recursive calls by requiring them to match the functions type speci-
fication and to optionally pass potential to the result via a cost-free type. The cost-free
type is then inferred resource-monomorphically. In the case of the heap-space con-
sumption of pairs’ we would first infer that the recursive call has to be of the form
L(0+q1,3+q2,3)(int)→L(0+p1)(int, int) such that L(q1,q2)(int)→L(p1)(int, int) is a cost-
free type. We then infer like in the linear case that q1 = 0 and q2 = p1 = 3.

This method cannot infer every resource-polymorphic typing with respect to declar-
ative type derivations with polymorphic recursion. This would mean to start with a (pos-
sibly infinite) set of annotated types for each function and to justify each function type
with a type derivation that uses types from the initial set. With respect to this declar-
ative view, the inference algorithm in this paper can compute every set of types for a
function f that has the form Σ(f) = {T + q · Ti | q ∈ Q+, 1 ≤ i ≤ m} for a resource-
annotated function type T , cost-free function types Ti, and m recursive calls of f in
its function body. Since many resource-polymorphic type derivations feature a set of
function types of this format, our approach leads to an effective inference method. In
the algorithmic type rules (Fig. 3) we directly integrated the above format of Σ(f) in
the rule T:FUNAPP for function applications to enable an efficient inference.

3 Resource Aware ML

RAML (Resource Aware ML) is a first-order functional language with ML-style syntax,
booleans, integers, pairs, lists, recursion and pattern match.

To simplify typing rules in this paper, we define the following expressions of RAML
to be in let normal form. In the implementation we allow unrestricted expressions. One
can use every binary operation binop whose worst-case cost is bounded by a constant.

e ::= () | True | False | n | x | x1 binop x2 | f(x1, . . . , xn) | let x = e1 in e2
| if x then et else ef | (x1, x2) | match x with (x1, x2)→ e

| nil | cons(xh, xt) | match x with
nil→ e1

 cons(xh, xt)→ e2

In the implementation of RAML we included a destructive pattern match and the ex-
tended version of [9] describes how polynomial potential can be applied to tree-like
data types. The inference algorithm can easily be adopted to handle these extensions.

We define the well-typed expressions of RAML by assigning a simple type, a usual
ML type without resource annotations, to well-typed expressions. Simple types are data
types and first-order types as given by the grammars below.

A ::= unit | bool | int | L(A) | (A,A) F ::= A→ A

A typing context Γ is a partial, finite mapping from variable identifiers to data types. A
signature Σ is a finite, partial mapping of function identifiers to first-order types. The

Amortized Resource Analysis with Polymorphic Recursion 7

typing judgment Γ `Σ e : A states that the expression e has type A under the signature
Σ in the context Γ . The typing rules that define the typing judgment are standard and
identical with the resource-annotated typing rules from §5 if the resource annotations
are omitted. A RAML program consists of a signature Σ and a family (ef , yf)f∈dom(Σ)

of expressions with a variable identifier such that yf :A `Σ ef :B if Σ(f) = A→ B.

4 Operational Semantics

We define a big-step operational semantics that measures the quantitative resource con-
sumption of programs. It is parametric in the resource of interest and can measure every
quantity whose usage in a single evaluation step can be bounded by a constant. The ac-
tual constants for a step on a specific system architecture can be derived by analyzing
the translation of the step in the compiler implementation for that architecture [5].

The semantics is formulated with respect to a stack and a heap: A value v ∈ Val is
either a location l ∈ Loc, a boolean constant b, an integer n, a null value NULL or a
pair of values (v1, v2). A heap is a finite partial mappingH : Loc→ Val from locations
to values. A stack is a finite partial mapping V : VID → Val from variable identifiers
to values. Since we also consider resources like memory that can become available
during an evaluation, we have to track the watermark of the resource usage, i.e., the
maximal number of resources units that are simultaneously used during an evaluation.
In order to derive a watermark of a sequence of evaluations from the watermarks of the
sub evaluations one has also to take into account the number of resource units that are
available after each sub evaluation.

The operational evaluation rules in Fig. 1 thus define an evaluation judgment of the
form V,H ` e v,H′ | (q, q′) expressing the following. If the stack V and the initial
heap H are given then the expression e evaluates to the value v and the new heap H′.
In order to evaluate e one needs at least q ∈ Q+ resource units and after the evaluation
there are at least q′ ∈ Q+ resource units available. The actual resource consumption is
then δ = q − q′. The quantity δ is negative if resources become available.

In contrast to similar versions in earlier works there is at most one pair (q, q′) such
that V,H ` e v,H′ | (q, q′) for an expression e and fixedH and V . The non-negative
number q is the watermark of simultaneous resources usage during the evaluation.

It is handy to view the pairs (q, q′) in the evaluation judgments as elements of a
monoid2 R = (Q+ ×Q+, ·). The neutral element is (0, 0) which means that resources
are neither used nor restituted. The operation (q, q′) · (p, p′) defines how to account for
an evaluation consisting of evaluations whose resource consumptions are defined by
(q, q′) and (p, p′), respectively. We define

(q, q′) · (p, p′) =
{
(q + p− q′, p′) if q′ ≤ p
(q, p′ + q′ − p) if q′ > p

The intuition is that we need q resource units to perform the first evaluation after which
q′ restituted units remain. The second operation needs then p units. If q′ ≤ p then we
additionally need p− q′ resources to pay for both evaluations and have p′ resources left

2 It is possible to define the evaluation more abstractly with respect to an arbitrary monoid M .

8 Jan Hoffmann and Martin Hofmann

V,H ` () NULL,H | Kunit E:CONSTU
x1, x2∈dom(V) v=op(V(x1),V(x2))

V,H ` x1 op x2 v,H | Kop E:BINOP

n ∈ Z
V,H ` n n,H | K int E:CONSTI

V(x)=v [yf 7→ v],H ` ef v′,H′ | (q, q′)
V,H ` f(x) v′,H′ | Kapp

1 · (q, q
′) ·Kapp

2

E:FUNAPP

b ∈ {True, False}
V,H ` b b,H | Kbool

E:CONSTB V(x) = True V,H ` et v,H′ | (q, q′)
V,H ` if x then et else ef v,H′ | KconT

1 ·(q, q′)·KconT
2

E:CONDT

V(x) = False V,H ` ef v,H′ | (q, q′)
V,H ` if x then et else ef v,H′ | KconF

1 · (q, q′) ·KconF
2

E:CONDF

V,H ` e1 v1,H1 | (q, q′) V[x 7→ v1],H1 ` e2 v2,H2 | (p, p′)
V,H ` let x = e1 in e2 v2,H2 | K let

1 · (q, q′) ·K let
2 · (p, p′) ·K let

3

E:LET

x1, x2 ∈ dom(V) v = (V(x1),V(x2))
V,H ` (x1, x2) v,H | Kpair E:PAIR

V,H ` nil NULL,H | Knil E:NIL

x ∈ dom(V)
V,H ` x V(x),H | Kvar E:VAR

xh, xt∈dom(V) v=(V(xh),V(xt)) l 6∈dom(H)
V,H ` cons(xh, xt) l,H[l 7→ v] | Kcons E:CONS

V(x) = (v1, v2) V[x1 7→ v1, x2 7→ v2],H ` e v,H′ | (q, q′)
V,H ` match x with (x1, x2)→ e v,H′ | KmatP

1 · (q, q′) ·KmatP
2

E:MATP

V(x) = NULL V,H ` e1 v,H′ | (q, q′)
V,H ` match x with

nil→ e1
 cons(xh, xt)→ e2 v,H′ | KmatN

1 · (q, q′) ·KmatN
2

E:MATN

V(x)=l H(l)=(vh, vt) V[xh 7→vh, xt 7→vt],H ` e2 v,H′ | (q, q′)
V,H ` match x with

nil→ e1
 cons(xh, xt)→ e2 v,H′ | KmatC

1 · (q, q′) ·KmatC
2

E:MATC

Fig. 1. Big-step operational semantics.

in the end. If q′ > p then q units suffices to perform both evaluations. Additionally, the
q′ − p units that are not needed for the second evaluation are added to the resources
becoming finally available. If resources are never restituted (as with time) then we can
restrict to elements of the form (q, 0) and (q, 0) · (p, 0) is just (q + p, 0).

We identify (positive and negative) rational numbers with elements ofR as follows:
q ≥ 0 denotes (q, 0) and q < 0 denotes (0,−q). This notation avoids case distinctions
in the evaluation rules since the constants K that appear in the rules might be negative.

Partial Evaluations A shortcoming of classic big-step operational semantics is that
it does not provide judgments for evaluations that diverge. This is problematic if one
intends to prove statements for divergent and convergent computations.

A straightforward remedy is to use a small-step semantics. But in the context of
resource analysis, the use of big-step rules seems to be more favorable. First, big-step
rules can more directly axiomatize the resource behavior of compiled code on specific
machines. Secondly, it allows for shorter and less syntactic proofs.

An alternative approach is to use coinductively defined big-step semantics [10, 11].

Amortized Resource Analysis with Polymorphic Recursion 9

V,H ` e | 0
P:ZERO

b ∈ {True, False}
V,H ` b | Kbool P:CONSTB

V,H ` () | Kunit P:CONSTU

n ∈ Z
V,H ` n | K int P:CONSTI

x ∈ dom(V)
V,H ` x | Kvar P:VAR

x1, x2 ∈ dom(V)
V,H ` (x1, x2) | Kpair P:PAIR

V(x) = v [yf 7→ v],H ` ef | q
V,H ` f(x) | Kapp

1 + q
P:FUNAPP

V,H ` e1 | q
V,H ` let x = e1 in e2 | K let

1+q
P:LET1

V,H ` e1 v1,H1 | (q, q′) V[x7→v1],H1 ` e2 | p K let
1 ·(q, q′)·K let

2 ·(p, 0)=(r, r′)

V,H ` let x = e1 in e2 | r P:LET2

V(x) = True V,H ` et | q
V,H ` if x then et else ef | KconT

1 + q
P:CONDT

x1, x2 ∈ dom(V)
V,H ` x1 op x2 | Kop P:BINOP

V(x) = False V,H ` ef | q
V,H ` if x then et else ef | KconF

1 +q
P:CONDF

xh, xt ∈ dom(V)
V,H ` cons(xh, xt) | Kcons P:CONS

V(x) = (v1, v2) V[x1 7→ v1, x2 7→ v2],H ` e | q
V,H ` match x with (x1, x2)→ e | KmatP

1 +q
P:MATP

V,H ` nil | Knil P:NIL

V(x) = NULL V,H ` e1 | q
V,H ` match x with

nil→ e1
 cons(xh, xt)→ e2 | KmatN

1 + q
P:MATN

V(x) = l H(l) = (vh, vt) V[xh 7→ vh, xt 7→ vt],H ` e2 | q
V,H ` match x with

nil→ e1
 cons(xh, xt)→ e2 | KmatC

1 + q
P:MATC

Fig. 2. Partial big-step operational semantics.

However, coinductive semantics lends itself less well to formulating and proving se-
mantic soundness theorems of the form “if the program is well-typed and the opera-
tional semantics says X then Y holds” (like Thm. 4). For example, in Leroy’s Lemmas
17-22 [11] the coinductive definition appears in the conclusion rather than as a premise.

That is why we use a novel approach to the problem here by defining a big-step
semantics for partial evaluations that directly corresponds to the rules of the big-step
semantics in Fig. 1. It defines a statement of the form V,H ` e | q for a stack V , a
heapH, q ∈ Q+ and an expression e. The meaning is that there is a partial evaluation of
e with the stack V and the heapH that consumes q resources. Here, q is the watermark
of the resource usage. We do not have to keep track of the restituted resources.

Note that the rule P:ZERO is essential for the partiality of the semantics. It can
be applied at any point to stop the evaluation and thus yields to a non-deterministic
evaluation judgment.

Since there might be negative constants K, the partial evaluation rules in Fig. 2
have conclusions of the form V,H ` e | max(q, 0) to ensure non-negative values.
We simply write V,H ` e | q instead of V,H ` e | max(q, 0) in each conclusion.

We prove that if an expression converges in a given environment then the resource-
usage watermark of the evaluation is an upper bound for the resource usage of every
partial evaluation of the expression in that environment.

10 Jan Hoffmann and Martin Hofmann

Theorem 1. If V,H ` e v,H′ | (q, q′) and V,H ` e | p then p ≤ q.

A stack V and a heap H are well-formed with respect to a context Γ if, for every
x ∈ dom(Γ), V(x) is a value matching the type Γ (x) or a location in H that contains
a value matching Γ (x). We then write H � V:Γ . Similarly, we write H � v:A if v is a
value matching type A inH. A formal definition is given in [7].

Thm. 2 states that, in a well-formed environment, every well-typed expression either
diverges or evaluates to a value of the stated type. To this end we instantiate the resource
constants in the rules to count the number of evaluation steps.

Theorem 2. Let the resource constants be instantiated byKx = 1,Kx
1 = 1 andKx

m =
0 for all x and all m > 1. If Γ `Σ e:A and H � V:Γ then V,H ` e v,H′ | (n, 0)
for an n ∈ N or V,H ` e | m for every m ∈ N.

Cost-Free Metric The type inference algorithm makes use of the cost-free resource
metric. This is the metric in which all constants K that appear in the rules are instanti-
ated to zero. We will use it in §5 to define a resource-polymorphic recursion where we
use cost-free function types to pass potential from the argument to the result.

With the cost-free resource metric the resource usage of evaluations is always zero:
If V,H ` e v,H′ | (q, q′) then q = q′ = 0 and if V,H ` e | q then q = 0.

5 Resource Annotated Types

Resource-annotated types are simple types where lists are annotated with non-negative
vectors ~p ∈ Qn. Here we only give a short definition of the potential functions defined
by annotated types. More explanations can be found in [9].

Let ~p = (p1, . . . , pk) be an annotation.The additive shift of ~p is C(~p) = (p1 +
p2, p2 + p3, . . . , pk−1 + pk, pk). Let H be a heap, A be a resource-annotated type and
let v be a value matching typeA inH. The potentialΦH(v:A) is then defined as follows.

ΦH(v:A) = 0 if v = NULL or A ∈ {unit, int, bool}
ΦH((v1, v2):(A1, A2)) = ΦH(v1:A1) + ΦH(v2:A2)

ΦH(l:L
~p(A′)) = p1 + ΦH(v

′:A′) + ΦH(l
′: LC(~p)(A′)) ifH(l)=(v′, l′)

If l1 is a location that points to a list then we write H(l1) = [v1, . . . , vn] if H(li) =
(vi, li+1) for i = 1, . . . , n and ln+1 = NULL. If l1 = NULL then H(l1) = []. Thm. 3
shows how to express the potential ΦH(v:A) of a value v with respect the heap H and
a matching annotated type A in terms of polynomials in the lengths of the lists that are
reachable from v. A proof can be found in the extended version of [9].

Theorem 3. Let H be a heap and let H(l) = [v1 . . . , vn] be a list of length n. Then
ΦH(l:L

~p(A)) =
∑k
i=1 pi

(
n
i

)
+
∑n
i=1 ΦH(vi:A).

As in the case of simple types, a typing context is a finite partial mapping from variable
identifiers to annotated data types. The potential of a context Γ with respect to a heap
H and a stack V is ΦV,H(Γ) =

∑
x∈dom(Γ) ΦH(V(x):Γ (x)).

Amortized Resource Analysis with Polymorphic Recursion 11

Resource-annotated first-order types have the form A−−−→q/q′ B for q, q′ ∈ Q+ and
annotated data types A,B. A resource-annotated signature Σ is a finite, partial map-
ping from function identifiers to resource-annotated first-order types.

A resource-annotated typing judgment has the form Σ;Γ k
q

q′ e:A where e is a
RAML expression, k ∈ N+ is the length of the list annotations, q, q′ ∈ Q+ are
non-negative rational numbers, Σ is a resource-annotated signature, Γ is a resource-
annotated context and A is a resource-annotated data type. The intended meaning of
this judgment is that if there are more than q+Φ(Γ) resource units available then this is
sufficient to evaluate e and there are more than q′+Φ(v:A) resource units if e evaluates
to the value v.

A RAML program with resource-annotated types of degree k consists of a resource-
annotated signatureΣ and a family (ef , yf)f∈dom(Σ) of expressions with variables iden-
tifiers such that for each ef we have Σ; yf :A k

q

q′ ef :B if Σ(f)=A−−−→q/q′ B.

We writeΣ;Γ cf (k)
q

q′ e:A to refer to cost-free type judgments where all constants
K in the rules are zero. It is used to define a resource-polymorphic recursion where we
use cost-free function types to pass potential from the argument to the result (see §2).

In the typing rules in Fig. 3 we write e[z/x] to denote the expression e with all
free occurrences of the variable x replaced with the variable z. We assume that a fixed
but arbitrary global resource-annotated signature Σ is given. Furthermore, there is the
implicit constraint q ≥ 0 for every resource annotation q.

The rules are mostly algorithmic versions of the typing rules in [9]. The most im-
portant difference is the rule T:FUNAPP which enables resource-polymorphic recur-
sion. It states that one can add any cost-free typing of the function body to the function
type that is given by the signature Σ. The signature Σcf is a fresh signature such that
(ef , yf)f∈Σcf

is a valid RAML program with cost-free types of degree k − 1. It can
differ in every application of the rule. The idea is as follows. To pay for the resource
costs of a function call f(x), the available potential (Φ(x:B) + q) must meet the re-
quirements of the functions’ signature (Φ(x:B′) + p). Additionally available potential
(Φ(x:Bcf) + pcf) can be passed to a cost-free typing of the function body. The poten-
tial after the function call (Φ(f(x):A) + q′) is then the sum of the potentials that are
assigned by the cost-free typing (Φ(f(x):Acf) + pcf) and by the function signature
(Φ(f(x):A′) + p). As a result, f(x) can be used resource-polymorphically with a spe-
cific typing for each recursive call while the resource monomorphic function signature
enables an efficient type inference.

The sharing relation . defines how potential can be shared between multiple oc-
currences of a variable. Intuitively, if . (A | A1, A2) holds then x:A can be used
twice, once with type A1 and once with type A2. We define . (A | A,A) if A ∈
{unit, bool, int}; . (L~p(A) | L~q(A1), L

~r(A2)) if . (A | A1, A2) and ~p = ~q + ~r; and
. ((A,B) | (A1,B1), (A2, B2)) if . (X | X1, X2) for X=A,B. The sharing relation
is analogously extended to contexts Γ, Γ1, Γ2 with dom(Γ) = dom(Γ1) = dom(Γ2) in
a per element way.

A data typeA is a subtype of a data typeB,A <: B, only ifA andB are structurally
identical, and if Φ(v:A) ≥ Φ(v:B) holds for every value v. We define C <: C if
C ∈ {unit, bool, int}; (A1, A2) <: (B1, B2) ifA1 <: B1 andA2 <: B2; and L~p(A) <:
L~q(B) if A <: B and ~p ≥ ~q.

12 Jan Hoffmann and Martin Hofmann

q ≥ q′ +Kvar

Γ, x:A k
q

q
′ x : A

T:VAR
q ≥ q′ +Kunit

Γ k
q

q
′ ():unit

T:CONSTU
n ∈ Z q ≥ q′ +K int

Γ k
q

q
′ n : int

T:CONSTI

b ∈ {True, False} q≥q′+Kbool

Γ k
q

q
′ b:bool

T:CONSTB
op ∈ {or, and} q ≥ q′ +Kop

Γ, x1:bool, x2:bool k
q

q
′ x1 op x2 : bool

T:BINOPB

q ≥ q′ +Kpair

Γ, x1:A1, x2:A2
k
q

q
′ (x1, x2):(A1, A2)

T:PAIR
op ∈ {+,−, ∗, . . .} q≥q′+Kop

Γ, x1:int, x2:int k
q

q
′ x1 op x2 : int

T:BINOPI

k = 1 Σ(f) = B−−−→p/p′ A q = p+ c+Kapp
1 q′ = p′ + c−Kapp

2

Γ, x:B k
q

q
′ f(x) : A

T:FUNAPP1

Σ(f)=B′−−−→p/p′ A′ .(A |A′, Acf) .(B |B′, Bcf) Σcf (f)=Bcf−−−−−−→pcf/p′cf Acf

q=p+pcf+c+K
app
1 q′=p′+p′cf+c−Kapp

2 Σcf ; yf :Bcf
cf (k−1) pcf

p
′
cf
ef :Acf

Γ, x:B k
q

q
′ f(x) : A T:FUNAPP

q ≥ p1 +K let
1 p′1 ≥ p2 +K let

2 p′2 ≥ q′ +K let
3 .(∆ | ∆1,∆2)

Var(Γ1) ∩ Var(Γ2) = ∅ Γ1,∆1
k
p1
p
′
1
e1:B Γ2,∆2, x:B k

p2
p
′
2
e2:A

Γ1, Γ2,∆ k
q

q
′ let x = e1 in e2 : A

T:LET

q ≥ pt +KconT
1 q ≥ pf +KconF

1 p′t ≥ q′ +KconT
2

p′f ≥ q′ +KconF
2 Ai <: A for i = 1, 2 Γ k

pt
p
′
t
et : A1 Γ k

pf

p
′
f
ef : A2

Γ, x:bool k
q

q
′ if x then et else ef : A

T:COND

q≥p+KmatP
1 p′≥q′+KmatP

2 Γ, x1:B1, x2:B2
k
p

p
′ e:A

Γ, x:(B1, B2) k
q

q
′ match x with (x1, x2)→ e : A

T:MATP
q ≥ q′ +Knil

Γ k
q

q
′ nil:L(A)

T:NIL

~p = (p1, . . . , pk) ~r ≥ C(~p) q ≥ q′ + p1 +Kcons Ai <: A for i = 1, 2

Γ, xh:A1, xt:L
~r(A2) k

q

q
′ cons(xh, xt):L~p(A)

T:CONS

q+p1≥sc+KmatC
1 q≥sn+KmatN

1 s′c≥q′+KmatC
2 s′n≥q′+KmatN

2 Γ k
sn
s
′
n
e1:A1

~p=(p1, . . . , pk) Ai <: A for i=1, 2 Γ, xh:B, xt:L
C(~p)(B) k

sc
s
′
c
e2:A2

Γ, x:L~p(B) k
q

q
′ match x with

nil→ e1
 cons(xh, xt)→ e2 : A

T:MATL

Fig. 3. Algorithmic type rules.

The introduction of the partial evaluation rules enables us to formulate a stronger
soundness theorem than, e.g., in [9]. It states that the bounds derived from an annotated
type statement also hold for non-terminating evaluations. Additionally, the new notation
that we use in the operational semantics allows for a more concise statement.

Theorem 4 (Soundness). Let H � V:Γ and Γ k
q

q′ e:A. (1) If V,H ` e v,H′ |
(p, p′) then p ≤ ΦV,H(Γ) + q and p− p′ ≤ ΦV,H(Γ) + q − (ΦH′(v:A) + q′).
(2) If V,H ` e | p then p ≤ ΦV,H(Γ) + q.

Amortized Resource Analysis with Polymorphic Recursion 13

It follows from Thm. 4 and Thm. 2 that run-time bounds also prove termination.

Corollary 1. Let the resource constants be instantiated by Kx = 1, Kx
1 = 1 and

Kx
m = 0 for all x and all m > 1. If H � V:Γ and Γ k

q

q′ e:A then there is an
n ∈ N, n ≤ ΦV,H(Γ) + q such that V,H ` e v,H′ | (n, 0).

Thm. 4 is proved by induction on the derivation of the evaluation statements V,H `
e v,H′ | (p, p′) and V,H ` e | p, respectively. There is one proof for all
possible instantiations of the resource constants. It is technically involved but concep-
tually unsurprising. Compared to earlier works [7, 9], further complexity arises from the
matching of the constraints in the type rules with the monoid elements in the semantics.
The proof can be found in the extended version of this paper.

6 The Inference Algorithm

The inference algorithm is mainly defined by the type rules in the previous section.
It works like a standard type inference in which each type is annotated with resource
variables and the corresponding linear constraints are collected as each type rule is
applied. The main innovation in comparison to the classic algorithm [1] is the resource-
polymorphic recursion enabled by the rule T:FUNAPP.

The number of computed constraints grows linearly in the maximal degree k that
has to be provided by the user. There is a trade-off between the quality of the analysis
and the size of the constraint system. The reason is that one sometimes has to analyze
function applications context-sensitively with respect to the call stack. Recall, e.g., the
expression attach(x,attach(y,xs)) from §1 where we used two different types for attach.

In our implementation we collapse the cycles in the call graph and analyze each
function once for every path in the resulting graph. In a nutshell, the algorithm computes
inequalities for annotations of degree k for a strongly connected component (SCC) F
of the call graph as follows.

1. Annotate the signature of each function f ∈ F with fresh resource variables.
2. Use the type rules from §5 to type the corresponding expressions ef . Introduce

fresh resource variables for each type annotation in the derivation and collect the
corresponding inequalities.
(a) For a function application g ∈ F : if k = 1 or in the cost-free case use the

function resource-monomorphically with the signature from (1). Otherwise, go
to (1) and derive a cost-free typing of eg with a fresh signature. Store the arising
inequalities and use the resource variables from the obtained typing together
with the signature from (1) in T:FUNAPP.

(b) For a function application g 6∈ F : repeat the algorithm for the SSC of g. Store
the arising inequalities and use the obtained annotated type of g.

The context sensitivity can lead to an exponential blow up of the constraint system if
there is a sequence of function f1, . . . , fn such that fi calls fi+1 several times. But
such sequences are short in most programs. It would not be a substantial limitation in
practice to restrict oneself to programs that feature a collapsed call graph with a fixed
maximal path length to obtain a constraint system that is linear in the program size.

14 Jan Hoffmann and Martin Hofmann

In general, the computed constraint systems are simple and can be quickly solved
by standard LP-solvers. The objective function states that annotations of arguments in
function signatures have to be minimized and that annotations of high degree are more
expensive then annotations of low degree.

In the extended version one finds a comparison of the computed evaluation-step
bounds with the actual worst-case time behavior for several example programs together
with the run times of the analyses. The inference algorithm works efficiently and infers
resource-polymorphic types for all programs that we manually typed in our system.
However, it is not complete with respect to full resource-polymorphism. This would
mean to start with a (possibly infinite) set of annotated function types for each function
and to justify each type with a derivation that uses first-order types from the initial set.

The extended version of the paper contains a somewhat artificial example that ad-
mits a resource-polymorphic type derivation that cannot be inferred by our algorithm.
It seems to be unlikely that there is a method to infer a typing for such functions with
a method that uses only linear constraints. One could move to quadratic constraints to
address the problem but the efficiency of such an approach is unclear. We plan to also
experiment with SMT solvers to deal which such constraints.

7 Related Work

Most closely related is the previous work on automatic amortized analysis [9, 1, 3–5, 7]
(see §1). This paper focuses on polymorphic recursion and is the first that investigates
relations of the inferred bounds to non-terminating computations.

Other resource analyses that can in principle obtain polynomial bounds are ap-
proaches based on recurrences pioneered by Grobauer [12] and Flajolet [13]. In those
systems, an a priori unknown resource bounding function is introduced for each func-
tion in the code; by a straightforward intraprocedural analysis a set of recurrence equa-
tions or inequations for these functions is then derived. A type-based extraction of such
recurrences has been given in [14]. Even for relatively simple programs the resulting
recurrences are quite complicated and difficult to solve with standard methods. In the
COSTA project [15, 16] progress has been made with the solution of those recurrences.
In an automatic complexity analysis for higher-order Nuprl terms Benzinger uses Math-
ematica to solve the generated recurrence equations [17]. Still, we find that amortization
yields better results in cases where resource usage of intermediate functions depends on
factors other than input size, e.g., sizes of partitions in quick sort. Also compositions of
functions seem to be better dealt with by amortization.

A successful method to estimate time bounds for C++ procedures with loops and
recursion was recently developed by Gulwani et al. [18, 19] in the SPEED project. They
annotate programs with counters and use automatic invariant discovery between their
values using off-the-shelf program analysis tools which are based on abstract inter-
pretation. A recent innovation for non-recursive programs is the combination of dis-
junctive invariant generation via abstract interpretation with proof rules that employ
SMT-solvers [20]. In contrast to our method, these techniques can not fully automati-
cally analyze iterations over data structures. Instead, the user needs to define numerical
“quantitative functions”. A methodological difference is that we infer (using linear pro-

Amortized Resource Analysis with Polymorphic Recursion 15

gramming) an abstract potential function which indirectly yields a resource-bounding
function. The potential-based approach may be favorable in the presence of composi-
tions and data scattered over different locations (partitions in quick sort). Moreover, our
method infers tight bounds for functions like insertion sort that admit a worst-case time
usage of the form

∑
1≤i≤n i. In contrast, [18] indicates that a nested loop on 1 ≤ i ≤ n

and 1 ≤ j ≤ i is over-approximated with the bound n2.
The examples from loc. cit. suggest that the two approaches are complementary

in the sense that the method of Gulwani et al. works well for programs with little or
no recursion but integrate interaction of linear arithmetic with loops. Our method, on
the other hand, does not model the interaction of integer arithmetic with resource us-
age, but is particularly good for analyzing recursive programs involving inductive data
types. Moreover, type derivations can be seen as certificates and can be automatically
translated into formalized proofs in program logic [21].

Another related approach is the use of sized types [22–24] which provide a general
framework to represent the size of the data in its type. Sized types are a very important
concept and we also employ them indirectly. Our method adds a certain amount of data
dependency and dispenses with the explicit manipulation of symbolic expressions in
favour of numerical potential annotations.

Polynomial resource bounds have also been studied in [25] that addresses the deriva-
tion of polynomial size bounds for functions whose exact growth rate is polynomial.

8 Conclusion and Future Research

We have continued our work on automatic type-base amortized analysis for polynomial
resource bounds. To deal with the challenge of resource-polymorphic recursion we have
introduced a new inference algorithm. It uses a special cost-free resource metric to com-
pute alternate function types for recursive calls. The algorithm has been implemented
and it has been shown by experiments that it efficiently computes types for interesting
examples such as sorting algorithms. To prove the non-trivial soundness of the algo-
rithm for terminating and non-terminating evaluations we introduced a novel partial
big-step operational semantics. It models non-termination with non-deterministic in-
ductive rules.

Even though there are examples that the inference algorithm cannot handle we find
it to be a good compromise between efficiency and performance. Therefore, our future
research will focus mainly on conceptual extensions of the type system that will em-
ploy the same inference method. Most notably we plan an extension to mixed potential
capable of inferring bounds like n ·m, an extension to recursion on non-inductive data
like integers, and the integration of higher-order and polymorphism.

References

1. Hofmann, M., Jost, S.: Static Prediction of Heap Space Usage for First-Order Functional
Programs. In: 30th ACM Symp. on Principles of Prog. Langs. (POPL’03). (2003) 185–197

2. Tarjan, R.E.: Amortized Computational Complexity. SIAM J. Algebraic Discrete Methods
6(2) (1985) 306–318

16 Jan Hoffmann and Martin Hofmann

3. Hofmann, M., Jost, S.: Type-Based Amortised Heap-Space Analysis. In: Prog. Langs. and
Systems, 15th European Symp. on Prog. (ESOP’06). (2006) 22–37

4. Hofmann, M., Rodriguez, D.: Efficient Type-Checking for Amortised Heap-Space Analysis.
In: 18th Conf. on Comp. Science Logic (CSL’09), LNCS (2009)

5. Jost, S., Loidl, H.W., Hammond, K., Scaife, N., Hofmann, M.: Carbon Credits for Resource-
Bounded Computations using Amortised Analysis. In: 16th Intl. Symp. on Form. Meth.
(FM’09). (2009) 354–369

6. Campbell, B.: Amortised Memory Analysis using the Depth of Data Structures. In: 18th
Euro. Symp. on Prog. (ESOP’09). (2009) 190–204

7. Jost, S., Hammond, K., Loidl, H.W., Hofmann, M.: Static Determination of Quantitative
Resource Usage for Higher-Order Programs. In: 37th ACM Symp. on Principles of Prog.
Langs. (POPL’10). (2010) 223–236

8. Atkey, R.: Amortised Resource Analysis with Separation Logic. In: 19th Euro. Symp. on
Prog. (ESOP’10). (2010) 85–103

9. Hoffmann, J., Hofmann, M.: Amortized Resource Analysis with Polynomial Potential. In:
19th Euro. Symp. on Prog. (ESOP’10). (2010) 287–306

10. Cousot, P., Cousot, R.: Inductive Definitions, Semantics and Abstract Interpretations. In:
19th ACM Symp. on Principles of Prog. Langs. (POPL ’92). (1992) 83–94

11. Leroy, X.: Coinductive Big-Step Operational Semantics. In: 15th Euro. Symp. on Prog.
(ESOP’06). (2006) 54–68

12. Grobauer, B.: Cost Recurrences for DML Programs. In: 6th Intl. Conf. on Funct. Prog.
(ICFP’01). (2001) 253–264

13. Flajolet, P., Salvy, B., Zimmermann, P.: Automatic Average-case Analysis of Algorithms.
Theoret. Comput. Sci. 79(1) (1991) 37–109

14. Crary, K., Weirich, S.: Resource Bound Certification. In: 27th ACM Symp. on Principles of
Prog. Langs. (POPL’00). (2000) 184–198

15. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost Analysis of Java Bytecode.
In: 16th Euro. Symp. on Prog. (ESOP’07). (2007) 157–172

16. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Automatic Inference of Upper Bounds for
Recurrence Relations in Cost Analysis. In: 15th Symp. Stat. An. (SAS’08). (2008) 221–237

17. Benzinger, R.: Automated Higher-Order Complexity Analysis. Theor. Comput. Sci. 318(1-
2) (2004) 79–103

18. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: SPEED: Precise and Efficient Static Estimation
of Program Computational Complexity. In: 36th ACM Symp. on Principles of Prog. Langs.
(POPL’09). (2009) 127–139

19. Gulavani, B.S., Gulwani, S.: A Numerical Abstract Domain Based on Expression Abstrac-
tion and Max Operator with Application in Timing Analysis. In: Comp. Aid. Verification,
20th Int. Conf. (CAV ’08). (2008) 370–384

20. Gulwani, S., Zuleger, F.: The Reachability-Bound Problem. In: Conf. on Prog. Lang. Design
and Impl. (PLDI’10). (2010) 292–304

21. Beringer, L., Hofmann, M., Momigliano, A., Shkaravska, O.: Automatic Certification of
Heap Consumption. In: Log. f. Prog., AI, and Reas., 11th Conf. (LPAR’04). (2004) 347–362

22. Hughes, J., Pareto, L., Sabry, A.: Proving the Correctness of Reactive Systems Using Sized
Types. In: Symp. Princ. of Prog. Langs. (POPL’96). (1996) 410–423

23. Hughes, J., Pareto, L.: Recursion and Dynamic Data-structures in Bounded Space: Towards
Embedded ML Programming. In: 4th Intl. Conf. on Funct. Prog. (ICFP’99). (1999) 70–81

24. Chin, W.N., Khoo, S.C.: Calculating Sized Types. High.-Ord. and Symb. Comp. 14(2-3)
(2001) 261–300

25. Shkaravska, O., van Kesteren, R., van Eekelen, M.C.: Polynomial Size Analysis of First-
Order Functions. In: Typed Lambda Calc. Apps. (TLCA’07). (2007) 351–365

