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Abstract. In 2003, Hofmann and Jost introduced a type system that
uses a potential-based amortized analysis to infer bounds on the re-
source consumption of (first-order) functional programs. This analysis
has been successfully applied to many standard algorithms but is lim-
ited to bounds that are linear in the size of the input.
Here we extend this system to polynomial resource bounds. An automatic
amortized analysis is used to infer these bounds for functional programs
without further annotations if a maximal degree for the bounding poly-
nomials is given. The analysis is generic in the resource and can obtain
good bounds on heap-space, stack-space and time usage.
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1 Introduction

In this paper we study the problem of statically determining an upper bound on
the resource usage of a given first-order functional program as a function of the
size of its input.

As in an earlier work by Hofmann and Jost [15] we rely on the potential
method of amortized analysis to take into account the interaction between the
steps of a computation and thus obtain tighter bounds than by a mere addi-
tion of the worst case resource bounds of the individual steps. Furthermore, the
use of potentials relieves one of the burden of having to manipulate symbolic
expressions during the analysis by a priori fixing their format.

The main limitation of the system of Hofmann and Jost [15] is its restric-
tion to linear resource bounds. While this restriction is often acceptable when
accounting heap space, it is rather limiting when accounting time and other
resources. This raises the question whether it is possible to effectively utilize
the potential method to compute super-linear resource bounds. We address the
problem in this work by using a potential-based amortized analysis to infer poly-
nomial resource bounds.
? Supported by the DFG Graduiertenkolleg 1480 (PUMA).
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The analysis system we present applies to functional first-order programs
with integers, lists and recursion. We also show how the analysis can be extended
to programs with tree-like data structures.

Our analysis of the programs is fully automatic and does not require type
annotations. It is furthermore generic in the resource and provides good bounds
on heap space, stack space, clock cycles (time) or other resources that might be
of interest to a user.

The linear system [15, 19] has been successfully applied in the domain of
embedded systems [13]. We envisage that the present extension will also have
applications there, in particular in situations where only a few functions exhibit
super-linear resource consumption. For this, it is important that the system
described here properly extends the linear one so that no expressive power is
lost when moving to polynomials.

We give examples of typical programs with a polynomial resource behavior to
which our extended system successfully applies. The examples have been imple-
mented in a prototype of the system that is available online1. It can be directly
used in a web browser to analyze and to evaluate user generated programs. We
experimented with a variety of example programs such as

• quicksort, mergesort, insertionsort
• multiplication and division for bit-vectors of arbitrary length
• longest common subsequence via dynamic programming
• breadth-first traversal of a tree using a functional queue
• sieve of Eratosthenes

A comparison of the computed bounds with the actual resource costs showed
that many bounds exactly match the measured worst-case time and heap-space
behaviors of the functions (this is for instance the case for quicksort, insertion-
sort, pairs and triples). Plots of our experiments are available online and in §8.

The main conceptual contribution of this paper lies in the transfer of the anal-
ysis method of Hofmann and Jost from linear to polynomial bounds. They used
an automatic amortized analysis to infer first-order types that are annotated
with information on the resource consumption. The analysis works basically like
a standard type inference instrumented with linear constraints for the type an-
notations that can then be solved by linear programming. For this method to
work it is essential that the occurring constraints are linear. Since one would ex-
pect an analysis for non-linear bounds to result in non-linear constraints it has
been often assumed that amortized analysis is limited to linear bounds. That is
maybe why the problem of an extension of amortized analysis to super-linear
bounds has remained open for several years. The amortized analysis with polyno-
mial potential we present is an elegant and powerful extension of the amortized
analysis to polynomial bounds that naturally results in linear constraints.

Another substantial contribution is the use of amortized analysis to infer sized
types in functional programs. Sized types provide a general framework to repre-
sent the size of the data in its type [17]. There has been work on the inference

1 http://raml.tcs.ifi.lmu.de
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of linear bounds for sized types [16, 5] and on the inference of size information
for so-called shapely functions, i.e., functions such that the size of the function
value is determined exactly by a polynomial in the sizes of the arguments. Our
amortized analysis with polynomial potential provides an inference system for
sized types which is not limited to linear bounds nor to shapely functions. We
can rather infer sized types for the same wide range of functions whose resource
consumption can be analyzed by our system.

The paper is organized as follows. In §2 we introduce the concept of amortized
analysis and informally describe the novel technique that we introduce here. We
then, in §3, define the functional programming language RAML (Resource Aware
ML) that is used to describe our system and give, in §4, the operational big-
step semantics that define the resource consumption of RAML programs. In the
sections 5 and 6 we define the type system for the resource aware types that are
used in the analysis. §7 shows the analysis of example functions. §8 contains a
compilation of the experiments that we perfomred with the implementation. In
§9 we describe how our system can be used to infer sized types and §10 shows how
this size information can be used in turn to improve the amortized analysis. The
inference algorithm is presented in §11 and in §12 we discuss how the analysis
can be extended to trees. §13 gives an overview of the related work.

In the conference version of this article we omitted §9, §12, and §8. Further-
more, it contains only short versions of of §7, §10 and §11.

2 Amortized Analysis: Examples and Intuition

Amortized analysis was initially introduced by Sleator and Tarjan [21] to analyze
the efficiency of data structures. For a given data structure one is often interested
in the costs of a sequence of operations whose costs vary depending on the state
of the data structure. A method to analyze the cost of such a sequence is to
introduce a non-negative potential of the data structure that can be used to pay
(costly) operations. More precisely one defines the amortized cost of an operation
as the sum of its actual cost and the (possibly negative) net gain of potential
incurred by its invocation. The sum of the amortized costs taken over a sequence
of operations plus the potential of the initial data structure then furnishes an
upper bound on the actual cost of that sequence.

In 2003, Hofmann and Jost [15] applied amortized analysis to type systems
in order to derive linear bounds on the heap-space usage of functional pro-
grams. The idea is to assign a linear potential to all data structures of variable
length. This potential can then be used to “pay” for the resource consumption
of functions that are applied to that data. Consider for example the function
attach:(int, L(int))→L(int, int) that takes an integer and a list of integers and
returns a list of pairs of integers such that the first argument is attached to
every element of the list. The expression attach(1,[1,2,3,4]) thus evaluates to
[(1,1),(1,2),(1,3),(1,4)]. The function attach can be implemented as follows.

attach(x, l ) = match l with | nil → nil
| (y :: ys) → (x,y)::(attach (x,ys))
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To analyze the heap-space usage of attach we suppose that we need one memory
cell for both creating a new list element, and creating a new pair. The heap-space
usage of an execution of attach(x,l) is then 2n memory cells if n is the length of
l. This fact can be expressed by the resource-annotated type

attach: (int, L(2)(int))−−−→0/0 L(0)(int, int).

The intuitive meaning of this typing is the following: To evaluate attach(x,l)
one needs 0 memory cells and 2 memory cells per element in the list. After the
execution there are 0 memory cells and 0 cells per element of the returned list
left. We say that the list l has the potential Φ(l, 2) = 2 · |l| and that attach(x,l)
has the potential 0. Another possible typing of attach would be

attach: (int, L(4)(int))−−−→8/8 L(2)(int, int).

This typing could be used for the inner occurrence of attach to type an expression
like attach(x,attach(z,ys)).

Surprisingly, it turned out that such resource-annotated types can be auto-
matically inferred without requiring any type annotations [15]. Essentially, the
inference is done by a conventional type checking that produces linear inequal-
ities which can be solved with linear programming. Furthermore, it has been
shown [19] that the same potential-based approach can be similarly applied to a
wide range of resources such as time and stack space [4] as well as to polymor-
phic, higher-order programs [18].

Now consider the function pairs:L(int)→L(int, int) that computes the two-
element sets of a given set (if one views the input list as a set). The expression
pairs([1,2,3,4]) thus evaluates to the list [(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]. Below
is an implementation of pairs.

pairs l = match l with | nil → nil
| (x :: xs) → append(attach(x,xs),pairs xs)

Since the size of pairs(l) is quadratic in the size of l it is impossible to assign
pairs a type with linear potential analogous to attach. In the next sections we
show how to extend the linear potential annotation in a way that allows us to
type functions with a polynomial resource consumption while still being able to
perform automatic type inference. The function pairs could then be assigned the
typing

pairs: L(0,4)(int)−−−→0/0 L(1)(int, int).

This means that a list l in an expression pairs(l) has the potential Φ(l, (0, 4)) =
0 · |l|+ 4 ·

(|l|
2

)
and thus the linear potential 4|l′| for every sub-list (suffix) l′ of l.

The function append could get the type

append: (L(2)(int, int), L(1)(int, int))−−−→0/0 L(1)(int, int)

since the function consumes one heap-cell for every element in the first argument.
That is why pairs(l) consumes 3 heap-cells per element of every sub-list of l and
we can attach the potential 1 to every element of the list pairs(l).
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In a nutshell, our approach is as follows. We start from an as yet unknown
potential-function of the form

∑
pi(ni) with polynomials pi of a given maximal

degree k and ni referring to the sizes of the parameters. We then derive lin-
ear constraints on the coefficients of the pi by type-checking the program. We
choose, and this is an important contribution, a representation of polynomials
of degree k as sums

∑
i=0,...,k ai

(
n
i

)
with ai ≥ 0. Compared with the traditional

representation
∑
ai · ni, ai ≥ 0, this has the following advantages.

1. Some naturally arising resource bounds such as
∑
i=1,...,n i cannot be ex-

pressed as a polynomial with non-negative coefficients in the traditional rep-
resentation. On the other hand it is true that

(
n
2

)
=
∑
i=1,...,n i.

2. It is the largest class C of non-negative, monotone polynomials such that
p ∈ C implies f(n) = p(n + 1) − p(n) ∈ C (see §5). All three properties
are clearly desirable. The latter one, in particular, expresses that the “spill”
arising upon shortening a list by one falls itself into C.

3. The identity
∑
i=1,...,k ai

(
n+1
i

)
= a1 +

∑
i=1,...,k−1 ai+1

(
n
i

)
+
∑
i=1,...,k ai

(
n
i

)
gives rise to a local typing rule for cons match which very naturally allows
the typing of both recursive calls and other calls to subordinate functions.

4. The linear constraints arising from the type inference have a very simple
form due to the above equation. In particular each constraint involves at
most three variables.

A key notion in the polynomial system is the additive shift C of a type an-
notation which is defined through C(q1, . . . , qk) = (q1 + q2, . . . , qk−1 + qk, qk)
to reflect the identity from item 3. It is for instance present in the typing
tail:L~q(int)−−−→0/q1 LC(~q)(int) of the function tail that removes the first element
from a list.

The idea behind the additive shift is that the potential resulting from the
contraction xs:LC(~q)(int) of a list (x::xs):L~q(int) (usually in a pattern match) is
used for three purposes: i) to pay the constant costs after and before the recursive
calls (q1), ii) to fund calls to auxiliary functions ((q2, . . . , qn)), and iii) to pay
for the recursive calls ((q1, . . . , qn)). For instance, this pattern is present in the
definition of the function pairs: In the pattern match, the type xs:L(4,4)(int)
is assigned to the variable xs. The potential is then shared between the two
occurrences of xs in the following expression by using xs:L(4,0)(int) to pay for
append and attach (ii) and using xs:L(0,4)(int) to pay for the recursive call of
pairs (iii); the constant costs (i) are zero in this example.

In this paper we restrict ourselves to bounds that are sums of univariate
polynomials. Mixed bounds such as m · n must be over-approximated by poly-
nomials like m2 + n2. This results in a particularly efficient inference algorithm
since the number of constraints grows only linear in the maximal degree of the
polynomials (see §11). We are nevertheless currently investigating an extension
to arbitrary multivariate polynomials.
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3 RAML – A Functional Programing Language

In this section we define the functional first-order language RAML (Resource
Aware ML). RAML is similar to LF (linear functional language) from [15]. It
enjoys an ML-style syntax, Booleans, integers, pairs, lists, recursion and pattern
matching.

The differences between LF and RAML are irrelevant for the resource aware
type analysis. On the one hand, we have added integers to formulate more real-
istic examples. On the other hand, we have abandoned the sum type since it is
not used in the examples that are presented here. Additionally, for the sake of
simplicity, we do not have a destructive match operation in RAML. The inte-
gration of both features into the system is straightforward and analogous to the
method used in LF.

Below is the EBNF grammar for the expressions of RAML. We skip the
standard definitions of integer constants n ∈ Z and variable identifiers x ∈ VID.

e ::= () | True | False | n | x
| x1 binop x2 | f(x1, . . . , xn)
| let x = e1 in e2

| if x then et else ef

| (x1, x2)
| match x with (x1, x2)→ e

| nil | cons(xh, xt)
| match x with

nil→ e1
 cons(xh, xt)→ e2

binop ::= + | − | ∗ | mod | div | and | or

For the resource analysis it is unimportant which ground operations are used
in the definition of binop. In fact one can use here every function that has a
constant worst-case resource consumption. In our case we assume that we have
integers of a fixed length, say 32 bits, in our system to ensure this property of
the integer operations.

In the examples we often write (x::y) instead of cons(x,y).
We restrict our attention mainly to list types in this paper. However, we

discuss extensions to other algebraic data types in §12.
The expressions of RAML are in let normal form. This means that term

formers are applied to variables only whenever possible. This simplifies typing
rules and semantics considerably without hampering expressivity in any way.

Below we define the well-typed expressions of RAML by assigning a simple
type, i.e. a usual ML type without resource annotations, to every well-typed
expression. Simple types are zero-order and first-order types as given by the
following grammars.

A ::= unit | bool | int | L(A) | (A,A) F ::= (A, . . . , A)→ A

Let AS be the set of simple zero-order types (A in the grammar) and let FS be
the set of simple first-order types (F in the grammar).
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The typing rules for RAML expressions are given as an affine linear type
system with a sharing rule that explicitly tracks multiple occurrences of variables.
The type system thus imposes no linearity restrictions but gives finer information
on occurrences of variables than a simple type system does.

A typing context is a partial, finite function Γ : VID → AS from variable
identifiers to zero-order types. As usual Γ1, Γ2 denotes the union of the contexts
Γ1 and Γ2 provided that dom(Γ1)∩dom(Γ2) = ∅. We thus have the implicit side
condition dom(Γ1) ∩ dom(Γ2) = ∅ whenever Γ1, Γ2 occurs in a typing rule.

Let FID be a set of function identifiers. A signature Σ : FID→ FS is a finite,
partial mapping of function identifiers to first-order types.

The typing judgment Γ `Σ e : A is defined by the following rules and states
that the expression e has type A under the signature Σ in the context Γ .

∅ `Σ () : unit
(S:Const-U)

b ∈ {True,False}
∅ `Σ b : bool

(S:Const-B)

n ∈ Z
∅ `Σ n : int

(S:Const-I)
x : A `Σ x : A

(S:Var)

op ∈ {+,−, ∗,mod,div}
x1:int, x2:int `Σ x1 op x2 : int

(S:BinOp-I)

op ∈ {or, and}
x1:bool, x2:bool `Σ x1 op x2 : bool

(S:BinOp-B)

Σ(f) = (A1, . . . , Ak)→ A

x1:A1, . . . , xk:Ak `Σ f(x1, . . . , xk) : A
(S:FunApp)

Γ1 `Σ e1 : A Γ2, x:A `Σ e2 : B
Γ1, Γ2 `Σ let x = e1 in e2 : B

(S:Let)

Γ `Σ et : A Γ `Σ ef : A
Γ, x:bool `Σ if x then et else ef : A

(S:Cond)

x1:A1, x2:A2 `Σ (x1, x2) : (A1, A2)
(S:Pair)

Γ, x1:A1, x2:A2 `Σ e : B
Γ, x:(A1, A2) `Σ match x with (x1, x2)→ e : B

(S:Match-P)

A ∈ AS
∅ `Σ nil : L(A)

(S:Nil)
xh:A, xt:L(A) `Σ cons(xh, xt) : L(A)

(S:Cons)

Γ `Σ e1 : B Γ, xh:A, xt:L(A) `Σ e2 : B
Γ, x:L(A) `Σ match x with

nil→ e1
 cons(xh, xt)→ e2 : B

(S:Match-L)
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Γ `Σ e : B x ∈ VID A ∈ AS
Γ, x:A `Σ e : B

(S:Augment)

Γ, x:A, y:A `Σ e : B
Γ, z:A `Σ e[z/x, z/y] : B

(S:Share)

A RAML program is a tuple that consists of a signature Σ and a fam-
ily of expressions with specified variable identifiers (ef , ~yf )f∈dom(Σ) such that
yf1 :A1, . . . , y

f
k :Ak `Σ ef :A if Σ(f) = (A1, . . . , Ak)→ A.

In the example programs we write f(yf1 , . . . , y
f
k ) = ef to indicate that the

expression ef and the variables yf1 , . . . , y
f
k are associated with the function f .

4 Operational Semantics for RAML

In this section we define a big-step operational semantics for RAML which is
instrumented with resource counters. It is parametric in the particular resource
of interest and can be instantiated for different resources including time, heap
space and stack size.

The resource counter is only used to state and to prove the soundness of
the upper bounds that follow from the resource aware type system and can be
omitted in an implementation of the system. One can think of the counter as
an abstraction of the actual resource consumption of the assembler code. In
the more abstract view of this paper it simply defines the resource behavior of
RAML.

Preliminaries: Let Loc be an infinite set of locations modeling memory ad-
dresses on a heap. The set of RAML values Val is given by

v ::= l | b | n | Null | (v, v)

Thus a value v ∈ Val is either a location l ∈ Loc, a Boolean constant b, an
integer n, a null value Null or a pair of values (v1, v2).

A heap is a finite partial function H : Loc → Val that maps locations to
values. A stack is a finite partial mapping V : VID → Val from variables to
values.

The rules below define an evaluation judgment of the form

V,H q

q′ e v,H′

expressing the following. If q ∈ Q+ is the value of the resource counter and if
the stack V and the initial heap H are given then the expression e evaluates
to the value v and the new heap H′. Furthermore the resource counter is never
negative during the evaluation and q′ ∈ Q+ is the value of the resource counter
after the evaluation. The actual resource consumption is then δ = q − q′. Note
that δ could be negative if resources become available during the execution of e.

There can exist two different evaluation judgments V,H q

q′ e  v,H′ and
V,H p

p′ e  v,H′ for an expression e under the same heap H and stack V.
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But then the resource consumption δ of e is identical in both cases and thus
δ = q−q′ = p−p′. Since q, q′, p, p′ ∈ Q+ it follows also that q, p ≥ δ. Moreover it
is an invariant of the rules that if V,H q

q′ e v,H′ then also V,H q + a

q′+a e 
v,H′ for every a ≥ 0.

The execution steps below are formulated with respect to constants K ∈ Q
that depend on the resource the user is interested in. For example one could set
Kpair = Kcons = 1 and K = 0 for all other constants K to analyze the number
of heap-cells that are used during the execution. The constants might also be
negative if resources are restituted during an execution step. This is the case
for stack space and also heap space if one were to include destructive pattern
matching as in LF [15] which is omitted here for simplicity.

V,H q+K
unit

q () Null,H
(E:Const-U)

b ∈ {True,False}

V,H q+K
bool

q b b,H
(E:Const-B)

n ∈ Z

V,H q +K
int

q n n,H
(E:Const-I)

x ∈ dom(V)

V,H q +K
var

q x V(x),H
(E:Var)

op ∈ {+,−, ∗,mod,div, and, or}
x1, x2 ∈ dom(V) v = op(V(x1),V(x2))

V,H q +K
op

q x1 op x2  v,H
(E:BinOp)

Σ(f) = (A1, . . . , Ak)→ A ∀1 ≤ i ≤ n : V(xi) = vi

[yf1 7→ v1, . . . , y
f
k 7→ vk],H

q −Kapp
1

q
′
+K

app
2

ef  v,H′

V,H q

q
′ f(x1, . . . , xk) v,H′

(E:FunApp)

V,H q1 −Klet
1

q2 e1  v1,H1 V[x 7→ v1],H1
q2 −Klet

2

q3 +K
let
3

e1  v2,H2

V,H q1
q3 let x = e1 in e2  v2,H2

(E:Let)

V(x) = True V,H
q −KconT

1

q
′
+K

conT
2

et  v,H′

V,H q

q
′ if x then et else ef  v,H′

(E:Cond-T)

V(x) = False V,H
q −KconF

1

q
′
+K

conF
2

ef  v,H′

V,H q

q
′ if x then et else ef  v,H′

(E:Cond-F)

x1, x2 ∈ dom(V) v = (V(x1),V(x2)) l 6∈ dom(H)

V,H q +K
pair

q (x1, x2) l,H[l 7→ v]
(E:Pair)

V(x) = l H(l) = (v1, v2)

H,V[x1 7→ v1, x2 7→ v2]
q −KmatchP

1

q
′
+K

matchP
2

e v,H′

V,H q

q
′ match x with (x1, x2)→ e v,H′

(E:Match-P)
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V,H q +K
nil

q nil Null,H
(E:Nil)

xh, xt ∈ dom(V) v = (V(x1),V(x2)) l 6∈ dom(H)

V,H q +K
cons

q cons(xh, xt) l,H[l 7→ v]
(E:Cons)

V(x) = Null H,V
q −KmatchN

1

q
′
+K

matchN
2

e1  v,H′

V,H q

q
′ match x with

nil→ e1
 cons(xh, xt)→ e2  v,H′

(E:Match-N)

V(x) = l H(l) = (vh, vt)

V[xh 7→ vh, xt 7→ vt],H
q −KmatchC

1

q
′
+K

matchC
2

e2  v,H′

V,H q

q
′ match x with

nil→ e1
 cons(xh, xt)→ e2  v,H′

(E:Match-C)

Our analysis works for every resource whose consumption can be measured
by a counter in the big-step semantics. This allows the analysis a wide range
of resources including clock cycles, heap space or even very particular resource
consumptions that might be of interest in special embedded systems.

Actual constants for stack-space, heap-space and clock-cycle consumption
have been determined for the abstract machine of the language Hume [14] on
the Renesas M32C/85U architecture. A list can be found in the literature [19].

5 Resource Annotations for Polynomial Bounds

Resource-annotated types are simple types where lists are annotated with non-
negative vectors ~p ∈ Qn. These vectors associate a potential with the list that
can be used to pay for resource consumptions during an execution.

Recall the example functions attach and pairs that have been introduced in
§2. We assigned the annotated type attach: (int, L(2)(int))−−−→0/0 L(0)(int, int) to
the function to indicate that the evaluation of attach(x,l) consumes 2·|l| resource
units.

The function pairs calls the function attach for every sub-list (suffix) of the
input which leads to a quadratic resource consumption. This corresponds to
a general pattern in the sense that many typical quadratic functions consume
a linear amount of resources for every sub-lists (suffix) of an input just like a
typical linear function that consumes a constant amount of resources per element
in its input list. We reflect this resource behavior by assigning a type like pairs:
L(0,5)(int)−−−→0/0 L(2)(int, int). Informally, this type says: To evaluate pairs(l) one
needs 0 resource units per element of l and 5 resource units per element of each
sub-list of l. The result of the computation is a list of pairs of integers that has
a potential of 2 resource units per element.

In general we define resource-annotated zero-order types A as follows.

A ::= unit | bool | int | L~p(A) | (A,A)
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Here ~p is a resource annotation for a list type which is defined as a k-tuple
~p = (p1, . . . , pk) ∈ Qk with pi ≥ 0 and k > 0. Let A be the set of resource-
annotated zero-order types.

For two resource annotations ~p = (p1, . . . , pk) and ~q = (q1, . . . , ql) we write
~p ≤ ~q if k ≤ l and pi ≤ qi for all 1 ≤ i ≤ k. If l ≥ k then we define ~p + ~q =
(p1 + q1, . . . , pk + qk, qk+1, . . . , ql).

Let ~p = (p1, . . . , pk) be an annotation for a list type. The additive shift of ~p
is C(~p) = (p1 + p2, p2 + p3, . . . , pk−1 + pk, pk).

Let H be a heap and A be a resource-annotated type and let v be a value
matching type A in H . The potential ΦH(v:A) is then defined as follows.

• ΦH(Null:A) = 0
• If A ∈ {unit, int,bool} then ΦH(v:A) = 0.
• If A = (A1, A2) and v = (v1, v2) is a pair then ΦH(v:A) = ΦH(v1:A1) +
ΦH(v2:A2).

• If A = L(p1,...,pk)(A′) is a list type and v = l is a location with H(l) = (v′, l′)
then

ΦH(l:A) = p1 + ΦH(v′:A′) + ΦH(l′: LC(p1,...,pk)(A′)).

In the following sections we will sometimes explain an idea by talking about
the potential Φ(x:A) of a variable x with respect to an annotated type A. In
such a case we mean in fact the potential ΦH(V(x):A) with respect to a stack V
and a heap H that we do not want to specify precisely.

If l1 is a location that points to a list then we write H(l1) = [v1, . . . , vn] if
H(li) = (vi, li+1) for i = 1, . . . , n and ln+1 = Null. If l1 = Null then we write
H(l1) = [].

Let for example H be a heap such that H(v) = [v1 . . . , vn] is a list of integers.
Then

• ΦH(l:L(p1)(int)) = p1 · n
• ΦH(l:L(0,p2)(int)) =

∑n−1
i=1 p2 · i = p2

n·(n−1)
2

• ΦH(l:L(0,0,p3)(int)) =
∑n−1
i=1 p3

i·(i−1)
2 = p3

n·(n−1)·(n−2)
6

The next lemma shows how to express the potential ΦH(v:A) of a value v with
respect the heap H and a matching annotated type A in terms of polynomials
in the lengths of the lists that are reachable from v. For a list annotation ~p and
an integer n we define

φ(n, ~p) =
k∑
i=1

(
n

i

)
pi.

Lemma 1. Let H be a heap such that H(l) = [v1 . . . , vn] is a list of length n
and let ~p = (p1, . . . , pk) be an annotation for a list type. Then ΦH(l:L~p(A)) =
φ(n, ~p) +

∑n
i=1 ΦH(vi:A).

Proof. We prove the statement by induction on n. If n = 0 then l = Null and
we have ΦH(l:L~p(A)) = 0 =

∑n
i=1 ΦH(vi:A) + φ(0, ~p).
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Let n > 0. It then follows by induction that

ΦH(l:L~p(A)) = p1 + ΦH(v1:A) + ΦH(l′: LC(~p)(A))

= p1 +
n∑
i=1

ΦH(vi:A) + φ(n− 1,C(~p))

But since (
n− 1
i

)
+
(
n− 1
i+ 1

)
=
(

n

i+ 1

)
(1)

it is true that

φ(n− 1,C(~p)) =
k∑
i=1

(
n− 1
i

)
pi +

k−1∑
i=1

(
n− 1
i

)
pi+1

= (n− 1)p1 +
k−1∑
i=1

((
n− 1
i+ 1

)
+
(
n− 1
i

))
pi+1

= (n− 1)p1 +
k−1∑
i=1

(
n

i+ 1

)
pi+1 (by (1))

=
k∑
i=1

(
n

i

)
pi − p1 = φ(n, ~p)− p1

It is essential for the type system that φ is linear in the sense of the following
lemma that follows directly from the definition of φ.

Lemma 2. Let n ∈ N, α ∈ Q and let ~p, ~q be resource annotations. Then
φ(n, ~p) + φ(n, ~q) = φ(n, ~p+ ~q) and α · φ(n, ~p) = φ(n, α · ~p).

As mentioned before it is a general pattern in functional programs to compute
a task on a list recursively for the tail of the list and to use the result of the
recursive call to compute the result of the function. In such a recursive function it
is natural to assign a uniform potential to each sub-list (depending on its length)
that occurs in a recursive call. In other words: one wants to use the potential
of the input list to assign a uniform potential to every suffix of the list. With
this view, the list potential α = φ(n, (p1, p2, · · · , pk)) can be read as follows: a
recursive function on a list l of length n that has the potential α can use the
potential φ(i, (p2, · · · , pk) for the suffixes of l of length 1 ≤ i < n that occurs in
the recursion. This intuition is proved by the following lemma.

Lemma 3. Let ~p = (p1, . . . , pk) be a resource annotation, let n ∈ N and define
φ(n, ()) = 0. Then φ(n, (p1, . . . , pk)) = n · p1 +

∑n−1
i=1 φ(i, (p2, . . . , pk)).

Proof. The proof uses the following well-known equation.

n−1∑
i=1

(
i

k

)
=
(

n

k + 1

)
for each k ∈ N (2)
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Let now k ≥ 0. Then

φ(n, (p1, . . . , pk+1)) =
k+1∑
j=1

(
n

j

)
pj

= n · p1 +
k∑
j=1

(
n

j + 1

)
pj+1

= n · p1 +
k∑
j=1

(
n−1∑
i=1

(
i

j

)
pj+1)) (by (2))

= n · p1 +
n−1∑
i=1

(
k∑
j=1

(
i

j

)
pj+1))

= n · p1 +
n−1∑
i=1

φ(i, (p2, . . . , pk+1)) (by definition)

Note that the binomial coefficients are a basis of the vector space of the poly-
nomials. Here, however, we are only interested in non-negative linear combina-
tions of binomial coefficients. These admit a natural characterization in terms
of growth: for f : N → N define (∆f)(n) = f(n + 1) − f(n). Call f hereditar-
ily non-negative if ∆if ≥ 0 for all i ≥ 0. One can show that a polynomial p
is hereditarily non-negative if and only if it can be written as a non-negative
linear combination of binomial coefficients. To wit, the coefficient of

(
n
i

)
in the

representation of p is (∆ip)(0). The hereditarily non-negative polynomials are
scalar multiples of unary resource polynomials [9] and thus are closed under
sum, product, and composition. Note that they include all non-negative linear
combinations of the polynomials (xi)i∈N.

6 Type system

This section presents typing rules for the resource-annotated zero-order types A
that have been defined in §5 and establishes their semantic soundness. Later in
§10 we add another rule.

As in the case of the simple types, a typing context is a partial finite func-
tion Γ : VID → A from variable identifiers to annotated zero-order types. The
potential of a typing context Γ with respect to a heap H and a stack V is

ΦV,H(Γ ) =
∑

x∈dom(Γ )

ΦH(V(x):Γ (x))

Sometimes we write just Φ(Γ ) leaving stack and heap implicit.
The resource-annotated first-order types F are defined by

F ::= (A, . . . , A)−−−→q/q′ A.
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Here q, q′ are rational numbers and A ranges over the resource-annotated zero-
order types. Let F denote the set of resource-annotated first-order types.

A resource-annotated signature Σ : FID → F is a finite, partial mapping of
function identifiers to resource-annotated first-order types. A resource-annotated
typing judgment has the formΣ;Γ

q

q′ e:A where e is a RAML expression, q, q′ ∈
Q+ are non-negative rational numbers, Σ is a resource-annotated signature, Γ
is a resource-annotated context and A is a resource-annotated zero-order type.
The intended meaning of this judgment is that if there are more than q + Φ(Γ )
resource units available then this is sufficient to evaluate e and then there are
more than q′ + Φ(v:A) resource units left after the evaluation of e to a value v.

Similarly as for simple types, a RAML program with resource-annotated
types is a tuple that consists of a resource-annotated signature Σ and a family
of expressions with specified variable identifiers (ef , ~yf )f∈dom(Σ) such that for
each ef we have Σ; yf1 :A1, . . . , y

f
k :Ak

q

q′ ef :A if Σ(f)=(A1, . . ., Ak)−−−→q/q′ A.
The following type rules are used to derive a resource-annotated type judg-

ment for RAML expressions. Therein, we write e[z/x] to denote the expression
e with all free occurrences of the variable x replaced with the variable z.

Σ; ∅ K
unit

0 ():unit

(T:Const-U)
n ∈ Z

Σ; ∅ K
int

0 n : int

(T:Const-I)

b ∈ {True,False}

Σ; ∅ K
bool

0 b:bool

(T:Const-U)

Σ;x:A
K

var

0 x : A
(T:Var)

op ∈ {+,−, ∗,mod,div}

Σ;x1:int, x2:int
K

op

0 x1 op x2 : int
(T:BinOp-I)

op ∈ {or, and}

Σ;x1:bool, x2:bool
K

op

0 x1 op x2 : bool
(T:BinOp-B)

Σ(f) = (A1, . . . , Ak)−−−→q/q′ A Γ = x1:A1, . . . , xk:Ak

Σ;Γ
q +K

app
1

q
′ −Kapp

2
f(x1, . . . , xk) : A

(T:FunApp)

Σ;Γ1
q −Klet

1
p e1 : A Σ;Γ2, x:A

p−Klet
2

q
′
+K

let
3

e2 : B

Σ;Γ1, Γ2
q

q
′ let x = e1 in e2 : B

(T:Let)

Σ;Γ
q −KconT

1

q
′
+K

conT
2

et : A Σ;Γ
q −KconF

1

q
′
+K

conF
2

ef : A

Σ;Γ, x:bool
q

q
′ if x then et else ef : A

(T:Cond)

Σ;x1:A1, x2:A2
K

pair

0 (x1, x2) : (A1, A2)
(T:Pair)

A = (A1, A2) Σ;Γ, x1:A1, x2:A2
q −KmatchP

1

q
′
+K

matchP
2

e : B

Σ;Γ, x:A
q

q
′ match x with (x1, x2)→ e : B

(T:Match-P)
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A ∈ A

Σ; ∅ K
nil

0 nil:L(A)
(T:Nil)

~p = (p1 . . . pk)

Σ;xh:A, xt:LC(~p)(A)
p1+K

cons

0 cons(xh, xt):L~p(A)
(T:Cons)

~p = (p1, . . . , pk) Σ;Γ
q −KmatchN

1

q
′
+K

matchN
2

e1 : B

Σ;Γ, xh:A, xt:LC(~p)(A)
q + p1 −KmatchC

1

q
′
+K

matchC
2

e2 : B

Σ;Γ, x:L~p(A)
q

q
′

match x with
nil→ e1 cons(xh, xt)→ e2

: B
(T:Match-L)

Σ;Γ, x:A1, y:A2
q

q
′ e : B .(A | A1, A2)

Σ;Γ, z:A
q

q
′ e[z/x, z/y] : B

(T:Share)

Σ;Γ, x:A
q

q
′ e : B A′ <: A

Σ;Γ, x:A′
q

q
′ e : B

(T:Supertype)

Σ;Γ
q

q
′ e : B B <: B′

Σ;Γ
q

q
′ e : B′

(T:Subtype)

Σ;Γ
p

p
′ e : B q ≥ p q − p ≥ q′ − p′

Σ;Γ
q

q
′ e : B

(T:Relax)

Σ;Γ
q

q
′ e : B x ∈ VID A ∈ A
Σ;Γ, x:A

q

q
′ e : B

(T:Augment)

The definitions of the relations .(. | ., .) and <: are given below.
We describe the idea behind the type rules exemplary for T:Cons and

T:Match. The rule T:Cons formalizes the fact that one has to pay for the
resource consumption of the evaluation of cons(xh, xt), i.e., basically the allo-
cation of a new heap-cell that points to xh and xt. This is represented by the
constant Kcons that depends on the resource that is studied. In addition one has
to pay for the potential that is assigned to the new list of type L~p(A). We do so
by requiring xt to have the type LC(~p)(A) and to have p1 resource units avail-
able. It corresponds exactly to the recursive definition of the potential function
Φ and ensures that potential is neither gained nor lost.

Complementarily, the rule T:Match-L defines how to use the potential of a
list to pay for resource consumptions. First, it matches the corresponding rules
from the operational semantics E:Match-* in terms of resource consumption.
It incorporates the fact that either e1 or e2 is evaluated. More interestingly, the
“cons case” is inverse to the rule T:Cons and allows one to use the potential
associated with a list. For one thing, p1 resource units become available directly,
for another the tail of the list is annotated with C(~p) rather than ~p, permitting
e.g. a recursive call (requiring annotation ~p) and an additional use of the tail
with annotation (p2, p3, . . . ).
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It is important that all the numerical constraints that result from rules
T:Cons, T:Match-L and the other rules are linear. This is the reason why
it is easy to verify the constraints and why one can use linear programming to
infer type annotations that match the constraints.

The Subtyping Relation Intuitively it is true that a zero-order type A is a subtype
of a zero-order type B if and only if A and B have the same set of values, and
for every value v the potential of v:A is greater or equal than the potential of
v:B. More formal, we define <: to be the smallest relation such that

C <: C if C ∈ {unit,bool, int}
(A1, A2) <: (B1, B2) if A1 <: B1 and A2 <: B2

L~p(A) <: L~q(B) if A <: B and ~p ≥ ~q

The Sharing Relation The sharing relation .(. | ., .) defines how the potential of
a zero-order variable can be shared by multiple occurrences of that variable. We
will have .(A | A1, A2) if and only if A, A1 and A2 are structural identical, i.e.
have the same set of values, and for every value v the potential Φ(v:A) of v:A is
identical to the sum Φ(v:A1) + Φ(v:A2) of the potentials of v:A1 and v:A2. So
.(. | ., .) is the smallest relation such that

.(C | C,C) if C ∈ {unit,bool, int}
.(L~p(A) | L~q(A1), L~r(A2)) if .(A | A1, A2) and ~p = ~q + ~r

.((A,B) | (A1,B1), (A2,B2)) if .(A | A1, A2) and .(B | B1, B2)

Soundness of the Analysis The soundness theorem below states that a resource
annotated type statement guarantees that an expression can be evaluated in
the stated resource bounds and that at least the stated amount of resources is
available after the evaluation.

Such a statement is only meaningful with respect to a well-formed stack and
a well-formed heap. A stack V and a heap H are well-formed with respect to a
context Γ if V(x) is a value matching the type Γ (x) for every x ∈ dom(Γ ). We
then write H � V:Γ . It is not hard to show that if H � V:Γ and V,H q

q′ e  
v,H′ then also H′ � V : Γ .

Theorem 1 (Soundness). Let Σ be the signature of a given RAML program
and let e be an expression. Let H � V:Γ and let there exist some u, u′ ∈ Q+ such
that V,H u

u′ e v,H′. If

Σ;Γ
p

p′ e:A and q ≥ ΦV,H(Γ ) + p+ r for a r ∈ Q+

then there is a q′ ≥ ΦH′(v:A) + p′ + r such that V,H q

q′ e v,H′.

Theorem 1 is proved in the same way as the corresponding theorem in the
system of [15]. The key ingredients that are used are the lemmas from §5.
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7 Examples

For simplicity we only provide examples for heap-space consumption in this
section. We assume that one heap-cell is allocated whenever new data is created.
Thus we set Kpair=Kcons=1 and K=0 for all other constants K.

For each function we give its annotated type and the type of the potential-
carrying variables that appear in its definition. We distinguish different occur-
rences of the same variable by adding superscripts. To save space we omit some
less interesting types and sometimes waive the let-normal form.

The types contain meta-variables p1, c, d, q3 ranging over non-negative ratio-
nal numbers. Any instantiation of the former yields a correct typing.

7.1 Subsets of Size k

Our canonical example for polynomial heap-space consumption is the following
problem: view a given list as a set and compute the subsets of size k for a given
k. The size of the output is a polynomial of degree k.

Below we define the subset functions for k = 2 and k = 3 but one can also see
how it works for k > 3. The function attach(x,l) computes a list of pairs so that
x is paired with every element in the list l. The function pairs(l) computes a list
of all (unordered) pairs that can be built from the elements of l and similarly
the function triples(l) computes a list of all (unordered) triples.

attach(x, l ) = match l with | nil → nil
| (y :: ys) → let l’ = attach(x,ys) in (x,y) :: l ’

attach: (int, L(p+2)(int))−−→c/c L(p)(int, int)

l:L(p+2)(int) ys:L(p+2)(int) l’:L(p)(int, int)

append(l,ys) = match l with | nil → ys
| (x :: xs) → let l’ = append(xs,ys) in x::l ’

append: (L(p+1)(A), L(p)(A))−−→c/c L(p)(A)

l:L(p+1)(A) ys:L(p)(A) xs:L(p+1)(A) l’:L(p)(A)

pairs( l ) = match l with | nil → nil
| (x :: xs) → let nps = attach(x,xs1) in

let rps = pairs(xs2) in append(nps,rps)

pairs: L(0,p2+3)(int)−−→c/c L(p2)(int, int)

l :L(0,p2+3)(int) xs1:L(p2+3)(int) rps :L(p2)(int, int)

xs:L(p2+3,p2+3)(int) xs2:L(0,p2+3)(int) nps:L(p2+1)(int, int)

triples( l ) = match l with | nil → nil
| (x :: xs) → let tps = pairs(xs1) in

let nts = attach(x,tps) in
let rts = triples (xs2) in append(nts,rts)

triples: L(0,0,p3+6)(int)−−→c/c L(p3)(int, int, int)

xs :L(0,p3+6,p3+6)(int) xs2:L(0,0,p3+6)(int) nts:L(p3+1)(int, int, int)

xs1:L(0,p3+6)(int) rts :L(p3)(int, int, int) tps:L(p3+3)(int, int)
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In the above functions it is the case that the type used for recursive calls is
the same as the type of the function itself (monomorphic recursion). For example
in the function pairs the type of append(nps,rps) and rps is identical. That is
not the case in general. Suppose for example that one would swap the arguments
of append in the last line of pairs:

pairs ’( l ) = match l with | nil → nil
| (x :: xs) → let nps = attach(x,xs1) in

let rps = pairs’(xs2) in append(rps,nps)

pairs’: L(0,p2+2,1)(int)−−→c/c L(p2)(int, int)

l :L(0,p2+2,1)(int) rps:L(p2+1)(int, int) nps:L(p2)(int, int)

xs:L(p2+2,p2+3,1)(int) xs2:L(0,p2+3,1)(int) xs1 :L(p2+2)(int)

The function pairs’ is used resource polymorphically in its recursive call. That
means that the resource annotation of the argument of pairs’ differs from the
annotation of the original argument. The soundness of polymorphic recursion is
unproblematic and covered by our results; the inference of resource polymorphic
is restricted to special cases. See §10 and §11 which cover the present example.

At a first glance it might be surprising that the heap-space consumption of
pairs’ is not quadratic but cubic. The reason is that the heap-space consumption
of append is linear in the length of the first argument and append is called |l|
times. In the case of pairs the length of the first argument is about the length
|l| but in the case of pairs’ the first argument is rps which is quadratic in |l|.

Note that a run-time analysis of pairs and pairs’ would result in analogous
types as above with different constants. That is to say the analysis of pairs would
result in a quadratic bound while we would get a cubic bound for pairs’. But
in contrast to the heap-space use, the run-time of pairs’ would be cubic even
in the presence of garbage collection or in an extended system that enjoys a
destructive pattern matching. So this is a nice example where our system might
help a programmer to produce more efficient code.

7.2 Dyadic Products and Nested Folds

In functions with a quadratic heap-space consumption it is often the case that
the heap-space usage is not quadratic in the length of a single list but rather the
product m · n of the lengths of two lists.

Consider for example the multiplication of two vectors which results in a
dyade (matrix) of size m · n which is represented as a list of lists. One would
possibly implement the function as follows.

mult(x,l) = match l with | nil → nil
| (y :: ys) → (x∗y)::(mult(x,ys))

mult: (int, L(p+2)(int))−−→c/c L(p)(int)

dyade(v1,v2) = match v1 with | nil → nil
| (x :: xs) → mult(x,v2)::dyade(xs,v2)
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If defined as above the function dyade is an example of a function that cannot
be typed in our system. The reason is that the heap space that is used by dyade
is quadratic in both arguments but the quadratic potential in v2 can only be
accessed by a pattern matching on v2.

A closer look at the definition of dyade shows that there are |v1| calls of
mult(x,v2) which can only be paid from the potential in v2. But the potential
of v2 does not depend on the length of v1.

Luckily there is a uniform approach to such a problem. The idea is basically to
do a recursive call dyade(xs,ys) that involves the tails of both input lists. Below
we present a different version of dyade that can be analyzed by our system.

merge(col,mat) = match col with | nil → nil
| (c :: cs) → match mat with | nil → nil

| (m::ms) → (c::m)::(merge(cs,ms))

merge: (Lp+2(int), Lq(Lp(int)))−−→c/c Lq(Lp(int))

dyade(v1,v2) = match v1 with | nil → nil
| (x :: xs) → match v2a with | nil → nil::dyade(xs,nil)

| (y :: ys) → let mat’ = dyade(xs1,ys) in

let line = mult(x,v2b) in
let col = mult(y,xs2) in
let mat = merge(col,mat’) in line :: mat

dyade: (L(q+1,p+4)(int), L(p+2,p+2)(int))−−→c/c Lq+1(Lp(int))

xs :L(p+q+5,p+4)(int) v2a:L(0,p+2)(int) line :L(p)(int) v1 :L(q+1,p+4)(int)

xs1:L(q+1,p+4)(int) v2b :L(p+2)(int) mat’:Lq(Lp(int)) ys :L(p+2,p+2)(int)

xs2:L(p+4)(int) v2 :L(p+2,p+2)(int) mat :Lq(Lp(int)) col:L(p+2)(int)

The idea of the above version of dyade is as follows. In order to compute
dyade(x::xs,y::ys) compute dyade(xs,ys) first. Then use the linear potential of
the first list to create a new column and use the linear potential of the second
list to create new line.

As mentioned before, this approach works for a wide range of functions. To
see which functions can be typed in this way note that dyade can be implemented
in ML with two nested folds as follows.

fun dyade(v1,v2) = foldr (fn (x,m) => (foldr (fn (y, l ) => (x∗y)::l) [] v2) :: m)
[] v1

Assume now that a general function of the following form is implemented in
ML.

fun h(l1, l2 ,b0,c0) = foldr (fn (x,c) => g(foldr (fn (y,b) => f(x,y,b)) b0 l2 , c))
c0 l1

Assume furthermore that we have f: (A1, A2, B)−−−→r/0 B and g: (B,C)−−→s/0 C
already implemented in our system. Then we can implement the function h as
follows.

innerfold(x, l ,b0) = match l with | nil → b0
| (y :: ys) → let b = innerfold(x,ys,b0) in f(x,y,b)
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merge(y,xlist , blist ) = match xlist with | nil → nil
| (x :: xs) → match blist with | nil → nil

| (b ::bs) → f(x,y,b)::merge(x,bs,as)

infolds (l1 , l2 ,b0) = match l1 with | nil → nil
| (x :: xs) → match l2 with | nil → b0::infolds(xs,nil ,b0)

| (y :: ys) → let folds = infolds(xs,ys,b0) in
let newfold = innerfold(x,l2 ,b0) in
let folds ’ = merge(y,xs,folds) in newfold:: folds ’

outerfold( l ,c0) = match l with | nil → c0
| (b ::bs) → let c = outerfold(bs) in g(b,c)

h(l1 , l2 ,b0,c0) = let l = innerfolds(l1 , l2 ,b0) in outerfold( l ,c0)

innerfold: (A1, L
r(A2), B)−−→q/q B

merge : (A2, L
r+2(A1), Lp(B))−−→q/q B

infolds : (L(p+1,r+2)(A1), L(r,r)(A2), B)−−→q/q Lp(B)

outerfold: (Ls(B), C)−−→q/q C

h : (L(s+1,r+2)(A1), L(r,r)(A2), B, C)−−→q/q C

7.3 Longest Common Subsequence

A standard example of dynamic programming that can be found in many text-
books is the computation of the longest common subsequence (LCS) of two given
lists (sequences). Given two sequences a1, . . . , an and b1, . . . , bm, one successively
fills an n×m matrix (here a list of lists) A such that A(i, j) contains the length
of the LCS of a1, . . . , ai and b1, . . . , bj . It is the case that

A(i, j)=

0 if i = 0 or j = 0
A(i− 1, j − 1) + 1 if i, j>0 and ai=bj
max(A(i, j−1), A(i−1, j)) if i, j>0 and ai 6=bj

This algorithm can be analyzed in our system and is exemplary for similar
algorithms that use dynamic programming.

tail’( l ) = match l with | nil → nil | (x::xs) → xs

firstline(m) = match m with | nil → nil | (l:: ) → l

lastvals ( l ) = match l with | nil → (0,0)
| (a1 :: l ’) → match l’ with | nil → (a1,0)

| (a2 :: ) → (a1,a2)

tail’ : Lp(int)−−→c/c Lp(int) firstline: Lp(Lq(int))−−→c/c Lq(int)

lastvals: Lp(int)−−→c/c (int, int)

addcolumn(m,x,c) = match c with | nil → nil
| (y :: ys) → let m’ = addcolumn(tail’(m),x,ys) in
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let (above,updiag) = lastvals( firstline (m’)) in
let l1 = firstline (m) in
let ( left , ) = lastvals (l1) in
let elem = if x = y then updiag+1

else max(above,left)
in ((elem:: l1 ):: m’)

addcolumn: (Lp(Lq(int)), int, Lp+q+2(int))−−→c/c Lp(Lq(int))

newline (y, lastline , l ) = match l with | nil → nil
| (x :: xs) → let nl = newline(y,tail’( lastline ),xs) in

let ( left , ) = lastvals (nl) in
let (above,updiag) = lastvals( lastline ) in
let elem = if x = y then updiag+1

else max(above,left)
in elem::nl

newline: (int, Lq(int), Lq+1(int))−−→c/c Lq(int)

addline(m,y,xs) = let nl = newline(y, firstline (m),xs) in nl :: m

addline: (Lp(Lq(int)), int, Lq+1(int))−−−−−−−−−→c+p+1/c Lp(Lq(int))

lcstable(l1 , l2) = match l1 with | nil → nil
| (x :: xs1) → match l21 with | nil → nil
| (y :: ys) → let m = lcstable(xs2,ys) in

let m’ = addline(m,y,xs3) in
addcolumn(m’,x,l22)

lcstable: (L(0,q+1)(int), L(2p+q+3,p+q+2)(int))−−→c/c Lp(Lq(int))

ys :L(2p+q+3,p+q+2)(int) xs3:L(q+1,0)(int) m’:Lp(Lq(int)) l21:L(p+1,p+q+2)(int)

xs1:L(q+1,q+1)(int) xs2:L(0,q+1)(int) m :Lp(Lq(int)) l22:L(p+q+2)(int)

lcs(l1 , l2) = let m = lcstable(l1, l2) in
match m with | nil → 0

| ((length :: ):: ) → length

lcs: (L(0,1)(int), L(3,2)(int))−−→c/c int

8 Experiments

We developed a prototype implementation and implemented a number of well-
known, non-trivial algorithms that exhibit a super-linear resource consumption.
These examples, as well as the prototype itself, are available online2 and can be
directly tested and modified in a web-browser. The prototype implementation
can analyze the heap-space consumption and the number of evaluation steps. It
is adequately documented easy to use. One can use it not only compute resource
bounds but also to measure the actual resource consumption of a program. We
invite everybody to experiment with it to explore the frontiers of our system.

The algorithms that we implemented include
2 http://raml.tcs.ifi.lmu.de
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• quicksort, mergesort, insertionsort
• multiplication and division for bit-vectors of arbitrary length
• longest common subsequence via dynamic programming
• breadth-first traversal of a tree using a functional queue
• sieve of Eratosthenes

The bounds inferred by our prototype are asymptotically tight in most cases
(quicksort, insertionsort, pairs, triples, quadruples, eratos, startBreadth). If the
bounds are not asymptotically tight then it is the case that the tight bound is
not a polynomial (mergesort) or that it contains mixed terms like n ·m (mult,
div, dyade, lcs).

The computation of the bounds scales well and does only take a few seconds
in most cases.

Table 1 and 2 contain a compilation of our experiments with the prototype.
They show a list of functions that we implemented and for each function the
computed bound, the asymptotic worst-case behavior, and the run time of the
prototype on a MacBook Pro with a 2.16 GHz Intel Core 2 Duo, 2 GB RAM and
Mac OS 10.6. The implementation of the functions is available on the website.

Table 1. The computed evaluation-step bounds, the actual worst-case time behavior,
and the run time of the analysis in seconds.

Computed Time Bound Act. Behavior Run Time

quicksortD 3 + 14a + 12a2 O(a2) 0.1438 s
insertionsortD 3 + 6a + 6a2 O(a2) 0.0542 s
mergesort 5− 46a + 46a2 O(a log a) 0.3059 s
pairs 3 + 7a + 9a2 O(a2) 0.0507 s
triples 3 + 24a− 10a2 + 6a3 O(a3) 0.3043 s
quadruples 3 + 1.83a + 26.75a2 − 10.83a3 + 2.25a4 O(a4) 2.0892 s
dyade 3− a + 11a2 + 29b + 5b2 O(a·b) 0.1673 s
lcs 13− 22.5a + 24.5a2 + 67.5b + 30.5b2 O(a·b) 2.0146 s
mult 7 + 143a + 29a2 − 81b + 87b2 O(a·b) 0.3173 s
div 33 + 98a + 34a2 + 16b O(a·b) 1.7259 s
eratos 3 + 4a + 8a2 O(a2) 0.0447 s
startBreadth 17 + 45a + 45a2 O(a2) 1.0464 s

To verify the quality of the computed bounds we measured the actual re-
source consumption of the analyzed functions with a counter and compared it to
the bound. In order to measure the worst-case costs for larger inputs we manu-
ally identified inputs for which the worst-case behavior emerges (for example a
backward ordered list for quicksort).

The comparison of the measured resource costs with the computed bounds
showed that the bounds match exactly the measured worst-case costs for many
functions (e.g. quicksort, insertionsort, pairs and triples). Figures 1, 2, 3 and 4
exemplarily show the plots of our experiments for the functions quicksort and
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Table 2. The computed heap-space bounds, the actual worst-case heap-space behavior,
and the run time of the analysis in seconds.

Computed Heap Bound Act. Behavior Run Time

quicksortD 2a O(a) 0.1002 s
insertionsortD 2a O(a) 0.0449 s
mergesort 0 O(1) 0.1626 s
pairs −3a + 3a2 O(a2) 0.0461 s
triples 4.6a +−7a2 + 2.3a3 O(a3) 0.2588 s
quadruples −6a + 11a2 − 6a3 + 1a4 O(a4) 1.6634 s
dyade −a + 3a2 + b + b2 O(a·b) 0.1609 s
lcs −a + a2 + 4b + 2b2 O(a·b) 1.4311 s
mult 8a + 2b O(a + b) 0.2058 s
div 6a + 2b O(a) 0.9720 s
eratos 2a O(a) 0.0398 s
startBreadth 14a + 14a2 O(a2) 1.0148 s

triples. The blue lines are plots of the computed bounds and the red crosses
show the measured worst-case resource consumption for several input lengths.
The plots for the other functions are available on the website.

Many of the tight resource bounds contain negative and rational coefficients.
This shows how both resource polynomials, i.e. binomial coefficients, and rational
coefficients are used to derive tight resource bounds.

9 Resource-Annotated Types and Sized Types

An application of the inference algorithm for resource-annotated types in RAML
is the inference of bounds on the size of the output of a function in terms of the
sizes of its arguments. This size information can be used in turn to infer the
resource consumptions of a larger class of functions.

Hughes, Pareto and Sabry [17] have introduced the notion of sized types
which are a framework for type systems that provides information on the size
of the data. The basic idea of sized types is to enrich the recursive data types
with a number that represents the size of data structures. This information can
be used to prove termination [1], to find errors [17] or to state bounds on the
resource consumption of functional programs [16, 10].

In this section we provide an inference method that computes polynomial
relations between the sizes of the input and the size of the output of a function.
This method is not limited to shapely functions (see §1) but can infer sized types
for every function that can be analyzed with our method.

Sized types are usually defined in terms of denotational semantics. Here, we
rely on an intuitive, informal semantics of sized types. A formalization along the
lines of [17] would be possible. Below we give the grammar of sized types for
RAML and an informal explanation of what a sized type statement means. The
size types that we will infer are existential sized types as defined by Xi [22].
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Fig. 1. The computed heap-space bound (blue line) compared to the measured worst-
case heap-space consumption (red crosses) of quicksort.

Fig. 2. The computed evaluation-step bound (blue line) compared to the actual worst-
case number of evaluation-steps (red crosses) used by quicksort.
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Fig. 3. The computed heap-space bound (blue line) compared to the measured worst-
case heap-space consumption (red crosses) of triples.

Fig. 4. The computed evaluation-step bound (blue line) compared to the actual worst-
case number of evaluation-steps (red crosses) used by triples.
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Here we present our results only for lists over non-inductive data types (sim-
ple lists) in this extended abstract. All results can be extended to arbitrary
RAML types but this would require more involved notations without introduc-
ing additional ideas.

The sized zero-order types with simple lists for RAML are defined by

C ::= Lx(D) | (C,C) D ::= unit | bool | int | (D,D)

Herein x is a size variable. Let Var(C) be the set of size variables that occur in
a sized zero-order type C.

Let C,C1, . . . , Ck be sized zero-order types with
⋃

Var(Ci) = {x1, . . . , xs},
Var(C) = {y1, . . . , yt}, Var(Ci)∩Var(Cj) = ∅ for i 6= j and

⋃
Var(Ci)∩Var(C) =

∅. Let furthermore fi be polynomials, cij ∈ {0, 1} and let ψ be a constraint of
the form ψ =

∧
i=1,...,r

∑
i=1,...,t cijyj ≤ fi(x1, . . . , xs). Then

[∀~x](C1, . . . , Ck)→ [∃~y.ψ] C

is a sized first-order type.
Signatures Σ and typing contexts Γ with respect to sized types are defined

similar as in the case of simple types. If Γ is a typing context for sized types
then Var(Γ ) =

⋃
{Var(C) | C ∈ dom(Γ )} is the set of size variables that occur

in Γ .
We say that a value v respects a sized type C under a valuation α : Var(C)→

N if it has the size that is stated by the type with respect to α. That is the case
if one of the following statements applies.

• C ∈ {int,bool,unit} and v is a value of type C
• C=(C1, C2), v=(v1, v2) and vi respects Ci under α for i=1, 2
• C = Ln(D), v = [v1, . . . , vn′ ] is a list of length n′ ≤ n and vi respects D

under α for i ∈ {1, . . . , n′}

Let Σ be a signature, Γ a typing context with Var(Γ ) = {x1, . . . , xs}, let
e a RAML expression and let A be a sized zero-order type with Var(A) =
{y1, . . . , yt}. A type statement with respect to size types has then the form

[∀~x]Γ 
Σ e : [∃~y.
r∧
i=1

t∑
i=1

cijyj ≤ fi(x1, . . . , xs)]A

for polynomials f1, . . . , fr and cij ∈ {0, 1}. The informal meaning of this state-
ment is the following. In an environment in which the variables in the context
Γ respect their corresponding sized types for some x1, . . . , xs ∈ N there are
y1, . . . , yt ∈ N such that

∧
i=1,...,r

∑
i=1,...,t cijyj ≤ fi(x1, . . . , xs) and e evaluates

to a value that respects the sized type A under this valuation.
To see how the resource types of RAML can be used to derive sized types

consider the function pairs that has been defined in §2. We argued that we can
derive the annotated type

pairs: L(0,4)(int)−−−→0/0 L(1)(int, int)
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that bounds the heap-space consumption of pairs. Let n be the length of the
list that is the result of an evaluation of y = pairs(x). The potential of y is then
Φ(y:L(1)(int, int)) = n and it can be paid for from two sources. First, from the
potential of the argument x of pairs(x) and, secondly, from the resources that
became available during the execution of pairs(x). The latter can for example
be the case for heap-cells when we add a destructive pattern-matching to our
language which is straightforward and only omitted for simplicity.

In order to get bounds on the size of the result of a function we want to be in
a situation where the potential of the result can only be paid from the potentials
of the inputs, and where we furthermore do not have to deal with any resource
consumption during the execution. This can be easily achieved by instantiating
the resource-annotated type system to a trivial resource where all constants K
that appear in the type rules are set to zero. We call this trivial resource cost-free
and write

f :A−−−−−−−→CF(q/q′) B and Σ;Γ CF
q

q′ e:A

for typing judgments that refer to the cost-free resource.
For the function pairs it is for example possible to infer the cost-free type

pairs: L(0,1)(int)−−−−−−−→CF(0/0) L(1)(int, int).

From the above cost-free type we conclude that the potential Φ(y:L(1)(int, int)) =
n of a result y = pairs(x) of length n has been paid exclusively from the po-
tential Φ(x:L(0,1)(int)) of the argument x. Thus we can conclude that n ≤
Φ(x:L(0,1)(int)) =

(
m
2

)
where m is the length of x. In other words we have

inferred the sized type

pairs:[∀m]Lm(int)→ [∃n.n ≤
(
m
2

)
]Ln(int, int).

To prove this observation for the general case we introduce some notations.
For a resource-annotated type A we inductively define a sized type A and a
polynomial fA : Var(A)→ Q.

A = A and fA = 0 if A ∈ {unit,bool, int}

(A1, A2) = (A1, A2) and f(A1,A2) = fA1 + fA2

L~p(B) = Ly(B) and fL(~p)(B) = fB + φ(y, ~p) for a y 6∈ Var(B)

A resource-annotated type with 0-1 annotations (0-1 type) is a resource-
annotated type A such that the vectors (0, . . . , 0) and (1, 0, . . . , 0) are the only
annotations that occur in A. For a 0-1 type A we have that fA is a sum
y1 + · · · + yk with yi ∈ Var(A). If for example A = (L0(int), L1(int), L1(int))
then A = (Ly1(int), Ly2(int), Ly3(int)) and fA = y2 + y3.

Let Γ be a resource-annotated typing context. Then Γ is defined by Γ (x) =
Γ (x) and the polynomial fΓ : Var(Γ )→ Q is defined by fΓ =

∑
x∈dom(Γ ) fΓ (x)

such that Var(Γ (x)) ∩ Var(Γ (y)) = ∅ if x 6= y. Consider for instance Γ = a :
L(0,4)(int), b : L3(int). Then Γ = a : Lx1(int), b : Lx2(int) and fΓ (x1, x2) =
4
(
x1
2

)
+ 3x2.
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Theorem 2. Let e be an expression and Σ;Γ CF
q

0 e:A be a cost-free resource-
annotated type statement involving only simple lists. Let furthermore Var(Γ ) =
{x1, . . . , xs}, Var(A) = {y1, . . . , yt} and Var(Γ ) ∩Var(A) = ∅. Then

[∀x1, . . . , xs]Γ 
Σ e : [∃y1, . . . , yt.fA ≤ fΓ+q]A

Theorem 2 shows how our resource-annotated type system can be applied to
derive sized types. As a result we can infer sized types for the same wide range
of polynomially bounded functions for which we can infer resource bounds. It
is of course also possible to combine multiple constraints into a conjunction of
constraints.

Proposition 1. Let e be a RAML expression and C be a sized type. It is true
that [∀~x]Γ 
Σ e : [∃~y.ϕ]C and [∀~x]Γ 
Σ e : [∃~y.ψ]C if and only if [∀~x]Γ 
Σ e :
[∃~y.ϕ ∧ ψ]C.

10 Passing Non-Linear Potential

An unsatisfying limitation of the type rules that have been presented in §6 is that
they fail to assign super-linear potential to the result of some basic functions that
can be typed with linear potential. We show here how to use the methods that
have been presented in §9 to overcome this shortcoming by adding a super-linear
potential to an expression that already carries a linear potential.

Like in the previous section we present the results only for simple lists for
simplicity.

Consider for example the function append. With the rules from §6 we are
able to derive a type of the form

append: (L(p+1)(int), L(p)(int))−−→c/c L(p)(int).

This typing reflects the fact that append consumes one resource unit per element
of the first list. More importantly, the above type also shows how to pass linear
potential to the result of append. That is why we can derive an annotated type
for an expression like let z = append(x,y) in append(x,z).

However, it is impossible to assign a super-linear potential to the result of
append even though this can be semantically sound given an appropriate poten-
tial for the arguments. For example, the following (sound) quadratic type would
be needed to type the expression let z = append(x,y)in pairs(z).

append: L(4,12)(int), L(3,12)(int)−−→c/c L(0,3)(int)

In the linear case it is easy to assign potential to a conjoint list z = append(x,y)
since the potential p·|z| of the list z is simply the sum of the potentials p·|x|+p·|y|
of the lists x and y. But this is not true in the quadratic case since in general
p · |z|2 6= p · |x|2 + p · |y|2.

But we have seen in §9 that we can derive size information for functions
whose result has a linear resource-annotated type. We now show how one can
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use this information to obtain a super-linear resource-annotated type. Assume
that the sized type for the function pairs is given as in the previous section
and that we would like to assign a resource-annotated type of the form pairs:
. . .−−→c/c L~p(int, int). Then it is the case that the potential of the expression
pairs(x):L~p(int, int) is not more than φ(

(
m
2

)
, ~p) if m is the length of x.

To formalize this idea we need some notations. For a polynomial f let Var(f)
be the set of variables that occur in f . Let C be a sized zero-order type, Y ⊆
Var(C) and ~p ∈ Qn. We define inductively a resource-annotated type A = C~pY
as follows.

C~pY = C if C ∈ {unit,bool, int}

(C1, C2)~pY = ((C1)~pY , (C2)~pY )

Ly(B)~pY =

{
L~p(D~p

Y ) if y ∈ Y
L0(D~p

Y ) if y 6∈ Y

Theorem 3. Let e be an expression, C be a sized type and [∀~x]Γ ′ 
Σ e :
[∃~y.yi1 +. . .+yij ≤ g(~x)]C be a sized type statement. If Γ is a resource-annotated
context such that Γ = Γ ′ and fΓ (~x)+q ≥ φ(g(~x), ~p) for all ~x ∈ (Q+)n then
Σ;Γ CF

q

0 e : C~p{yi1 ,...,yij
}.

Theorem 3 and Theorem 2 from §9 can be summarized by the following
typing rules for types with simple lists.

A is a 0-1 type Σ;Γ CF
q

0 e : A Var(Γ ) = {x1, . . . , xs}
Var(A) = {y1, . . . , yt} Var(A) ∩Var(Γ ) = ∅
[∀x1, . . . , xs]Γ 
Σ e : [∃y1, . . . , yt.fA ≤ fΓ+q]A

(ToSized)

[∀~x]Γ ′ 
Σ e : [∃~y.yi1 + . . .+ yij ≤ g(~x)]A
Γ = Γ ′ fΓ (~x)+q ≥ φ(g(~x), ~p)

Σ;Γ CF
q

0 e : A~p{yi1 ,...,yij
}

(FromSized)

If we use the cost-free resource we can derive the resource-annotated type

Σ; l1:L(1)(int), l2:L(1)(int) CF
0

0 append(l1,l2) : L(1)(int).

With the rule ToSized we derive then the sized type

[∀x, y]l1:Lx(int), l2:Ly(int) 
Σ append(l1,l2) : [∃z.z ≤ x+y]Lz(int)

Now we would like to assign a quadratic potential ~p = (0, 3) to append(l1,l2).
Therefore we have to find an annotated context Γ ′ = l1:L~q(int), l2:L~r(int) such
that fΓ ′ = φ(x, ~q) + φ(y, ~r) ≥ φ(x+ y, (0, 3)) = 3 ·

(
x+y

2

)
. It is for example true

that
3
(
x+y

2

)
≤ 3
(
2x
2

)
+3
(
2y
2

)
= 3

(
4
(
x
2

)
+x
)

+3
(
4
(
y
2

)
+y
)

= φ(x, (3, 12))+φ(y, (3, 12))
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That is why we can use the rule FromSized to derive

Σ; l1:L(3,12)(int), l2:L(3,12)(int) CF
0

0 append(l1,l2):L(0,3)(int).

Moreover it is not hard to prove the following rule correct in the sense of
Theorem 1.

Σ;Γ ′
c

c
′ e : A′

Σ;Γ ′′ CF
q

0 e : A′′ .(A | (A′, A′′)) .(Γ | (Γ ′, Γ ′′))

Σ;Γ
c+ q

c
′ e : A

(Combine)

Here the sharing relation . (Γ | (Γ ′, Γ ′′)) is generalized to contexts in a
per element way. The rule Combine can be used to obtain the following type
statement for heap-space consumption.

l1:L(p+4,12)(int), l2:L(p+3,12)(int)
c

c append(l1,l2):L(p,3)(int)

In the following we combine the rules ToSized, FromSized and combine
into a modified let rule that can be used for type inference. Let A be a resource-
annotated zero-order type. We write |A| for the simple type that can be derived
from A by removing all annotations. We define the sequence of annotations
Ann(A) that appear in A inductively as follows.

Ann(A) =() if A ∈ {unit,bool, int}
Ann((A1, A2)) =(~pi)1≤i≤s+t if Ann(A1)=(~pi)1≤i≤s and Ann(A2)=(~pi)s+1≤i≤t

Ann(L~p(B)) =(~p, ~p1, . . . , ~ps) if Ann(B) = (~pi)1≤i≤s

Let f(n) be a hereditarily non-negative polynomial (see end of §5). We define
co(f(n)) = ~p to be the coordinates of f(n) with respect to the basis bk(n) =
φ(n, ek), i.e., f(n) =

∑k
i=1

(
n
i

)
pi.

Suppose we have given a 0-1 type A such that Ann(A) = ei and fA = y,
i.e., A has only one list type with the annotation (1, 0, . . . , 0). Let furthermore
Σ;Γ CF

q

0 e:A be a type judgment that involves only simple lists. Then we can
deduce for the sized-type judgment [∀~x]Γ 
Σ e:[∃~y]A that

fA ≤ q+fΓ = q +
∑

i=1,...,s

φ(xi, ~pi)

provided that Ann(A) = (pi)1≤i≤s and (xi)1≤i≤s is an appropriate enumeration
of Var(Γ ).

Let u = |{~pi | ~pi 6= ~0}|. Then we can conclude that

φ(y, ~q) ≤ φ(
∑

i=1,...,s

φ(xi, ~pi), ~q) ≤
∑

i=1,...,s

φ(u · φ(xi, ~pi), ~q)

≤
∑

i=1,...,s

φ(φ(xi, u · ~pi), ~q)
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Let fi(x) = φ(φ(x, u · ~pi), ~q). We define Pass(Γ,A, ~q) = (co(f1), . . . , co(fs)).
Note that the coordinates of the polynomials fi can be computed in polynomial
time by standard techniques from linear algebra.

This and the previous discussion shows the correctness of the rule T:Let-
Pass for types with simple lists that is defined below.

Σ;Γ0
r0 −Klet

1
p e1 : A0

Σ;Γ2, x:A
p−Klet

2

q
′
+K

let
3

e2 : B .(A | A0, A
′) .(Γ | Γ0, . . . , Γn)

Ann(A′) = (~q1, . . . , ~qs) q = r0 + · · ·+ rn ∀1 ≤ i ≤ s :
Σ;Γ ′i CF

ri

0 e1 : A′i Ann(A′i) = ei Ann(Γi) = Pass(Γ ′i , A
′
i, ~qi)

Σ;Γ, Γ2
q

q
′ let x = e1 in e2 : B

As mentioned above a very similar rule can be formulated for arbitrary
RAML types. The rule T:Let-Pass will be used by the inference algorithm
in §11. It can also be used to type functions that pass more potential through
the arguments of a recursive call than was attached to the original arguments.
This allows the inference of a limited resource-polymorphic recursion that can
be used for instance to infer the typing of the function pairs’ from §7.

11 Inference of Annotated Types

In the following we present a heuristic which infers resource-annotated types.
This inference algorithm is not complete with respect to the declarative rules
in the earlier sections. However, it does find types for most example programs
that we considered, including all programs in this paper. Additionally, we believe
that completeness is not vitally important because the declarative rules are a
somewhat arbitrary choice and for decidability reasons there does not exist a
semantically complete algorithm anyway.

The type inference for RAML is achieved by multiple runs of a basic type-
inference algorithm that works similar to the algorithm of Hofmann and Jost
that has been developed for the linear system [15]. The basic algorithm does a
classic type inference instrumented with linear constraints for the annotations
that are collected during the inference, and that can be solved later by linear
programming. We use the function pairs as an illustrative example that shows
how this algorithm can be applied to infer resource-annotated types with the
rules that have been presented in §6. The only difference to the method of
Hofmann and Jost is that we have to provide a maximal degree of the resource
bounds in order to obtain a finite set of equations. This degree can either be
specified by the user or can be incremented successively after an unsuccessful
analysis. In most cases it should be sufficient to run the analysis for instance
twice, first with a maximal degree of, say, 5 and a second time with maximal
degree 10.

Furthermore we show how multiple runs of the basic algorithm can be com-
bined with the rule T:Let-Pass to infer types for a greater class of functions.
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c1
c
′
1

nil :L
(q1,q2,q3)

(int, int)
(T:Nil)

attach :. . .

x:int, xs
1
:L

(s1,s2,s3)
(int)

a

a
′ attach(x,xs

1
) : L

(v1,v2,v3)
(int, int)

(T:FunApp)

pairs : L
(p1,p2,p3)

(int)−−−→c/c′
L

(q1,q2,q3)
(int)

xs:L
(t1,t2,t3)

(int, int)
e

e
′ pairs(xs

2
) : L

(u1,u2,u3)
(int, int)

(T:FunApp)
append :. . .

nps:L
(v1,v2,v3)

(int, int), rps:L
(u1,u2,u3)

(int, int)
d

d
′ append(nps,rps) : L

(q1,q2,q3)
(int, int)

(T:FunApp)

xs
2
:L

(t1,t2,t3)
(int), nps:L

(v1,v2,v3)
(int, int)

b

b
′ let rps = pairs(xs

2
)in

append(nps,rps)
: L

(q1,q2,q3)
(int, int)

(T:Let)

········

x:int, xs
1
:L

(s1,s2,s3)
(int), xs

2
:L

(t1,t2,t3)
(int)

c2
c
′
2

let nps = attach(x,xs
1
)in

let rps = pairs(xs
2
)in

append(nps,rps)

: L
(q1,q2,q3)

(int, int)

(T:Let)

x:int, xs:L
(r1,r2,r3)

(int)
c2
c
′
2

let nps = attach(x,xs) in
let rps = pairs(xs) in
append(nps,rps)

: L
(q1,q2,q3)

(int, int)

(T:Share)

l:L
(p1,p2,p3)

(int)
c

c
′ epairs : L

(q1,q2,q3)
(int, int)

(T:Relax/Match-L)

c−KmatchN
1 ≥ 0 c−KmatchN

1 −c1 ≤ c′+KmatchN
2 −c′

1

c1 ≥ c−KmatchN
1 c+p1−KmatchC

1 −c2 ≤ c′+KmatchC
2 −c′

2

c2 ≥ c+p1−KmatchC
1 c+p1−KmatchC

1 ≥ 0
r1 = p1+p2 r2 = p2+p3 r3 = p3 s1+t1 = r1

s2+t2 = r2 s3+t3 = r3 a = c2−K let
1 b = a′−K let

2

b′ = c′
2+K let

3 e = b−K let
1 d = e′−K let

2 d′ = b′+K let
3

p1 = t1 p2 = t2 p3 = t3 q1 = u1

q2 = u2 q3 = u3 e = c+Kapp
1 e′ = c′−Kapp

2

Fig. 5. Type inference for the function pairs and the resulting linear constraints. The
rule T:Relax has been combined with the rules that occur before the rule T:Match-L.

Fig. 5 shows the basic inference of the function pairs and the linear constraints
that correspond to the derivation. Additionally to the constraints in Fig. 5 we
have v ≥ 0 for every variable v. Note that the rule T:Let-Pass is not used
in the derivation. The resource-annotations of the types contain variables that
range over Q+.

In addition there are the constraints that follow from the derivation of append
and attach. Consider e.g. our heap-space example where we have Kpairs =
Kcons = 1 and K = 0 for all other constants K. It then follows from the deriva-
tion of append that in the above example also v1+1≥q1, u1≥q1, u2≥q2, u3≥q3,
C(v1, v2, v3) = (v1, v2, v3) and C(q1, q2, q3) = (q1, q2, q3) and therefore it fol-
lows that v2=v3=q2=q3=0. Similar, from the derivation of attach it follows that
s1 + 2 ≥ v1 and v2=v3=s2=s3=0. That is why the basic algorithm infers only a
linear type to the output of pairs. Note that the solutions to the above constraint
set include the ones that we have given in §7.

We show now how we can use the rule T:Let-Pass to infer a super-linear
potential for the output of a function. Roughly speaking, we will analyze every
function in a program twice. First with respect to the cost-free resource and
secondly with respect to the resource R we are actually interested in.

A cost-free 0-1 type inference for a function f is defined as follows. Fix a
maximal degree d. Infer a type derivation with a set C of constraints with respect
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to the cost-free resource like in Fig. 5. Let A be the result type of f and let
Ann(A) = (~p1, . . . , ~pk) with ~pi = (pi1, . . . , pid). Let Ci be the constraint set
C together with the equations pi1 = 1 and pjl = 0 if j 6= i or l 6= 1. We
then compute k solutions to the refined constraint sets C1 . . . , Ck and obtain k
different typings of f . The result of a cost-free 0-1 type inference is thus a 0-1
typing of the function as needed for the rule T:Let-Pass. We call it a cost-free
0-1 type of f .

Note that a cost-free 0-1 type of a function f can already be helpful in a
cost-free 0-1 type inference of another function that calls f . The full inference
algorithm works therefore as follows.

Heuristic 1 Let P be a RAML program, let R be a resource (i.e., a set of
constants K) and a fix a maximal degree d for the bounds.

1. Compute the strongly connected components (SCCs) of the call graph of the
functions in P .

2. In the topological order of the SCCs, do for every SCC C: Compute simul-
taneously the cost-free 0-1 types with maximal degree d of the functions in C
with the basic algorithm. Use the rule T:Let-Pass instead of T:Let after
a function call f(~x) if a cost-free 0-1 type of f has been inferred already.

3. Do a type-inference with the basic algorithm for the whole program with re-
spect to the resource R. Use the rule T:Let-Pass instead of T:Let after a
function call.

12 Adding Trees

One can define a potential for trees of degree d similar as for lists. For a resource
annotation ~p = (p1, . . . , pk) and an annotated type A let T ~p(A) be the type
of trees of degree d. If l is a location that points to a tree of type T ~p(A) in a
well-formed heap H then we have H(l) = Null or H(l) = (v, l1, . . . , ld) such
that v matches the type A and li points to a tree of type T ~p(A) for all i.

We extend the definition of the potential function Φ for such a l:T ~p(A)
through

ΦH(l:T ~p(A)) = p1 + ΦH(v:A) +
d∑
i=1

ΦH(ti: TC(~p)(A)).

As in the case of lists we give a closed formula of the potential of a tree.
This formula is more complicated for trees since the actual potential of a tree
depends heavily on its layout.

Lemma 4 (Closed Formula for Trees). Let H be a heap and let l be a loca-
tion that points to a tree t of height h with nodes v1, . . . , vn such that ni is the
number of nodes at level i. If ~p = (p1, . . . , pk) is an annotation and pi = 0 for
i > k then

ΦH(l:T ~p(A)) =
n∑
i=1

ΦH(vi:A) +
h∑
i=1

ni

i+1∑
j=1

pj

(
i

j−1

)
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Proof. We prove the statement by induction on h. If h = 0 then n = 0 and the
statement follows directly from the definition of Φ.

Let now h > 0. Then

ΦH(l:T ~p(A)) = p1 + ΦH(v1:A) +
d∑
i=1

ΦH(ti: TC(~p)(A))

= p1 +
n∑
i=1

ΦH(vi:A) +
h−1∑
i=1

ni+1

i+1∑
j=1

(pj + pj+1)
(

i

j−1

)
= p1 +

n∑
i=1

ΦH(vi:A) +
h∑
i=2

ni

 i∑
j=1

(pj + pj+1)
(
i−1
j−1

)
= p1 +

n∑
i=1

ΦH(vi:A)

+
h∑
i=2

ni

p1 + pi+1 +
i∑

j=2

pj

((
i−1
j−2

)
+
(
i−1
j−1

))
=

n∑
i=1

ΦH(vi:A) +
h∑
i=1

ni

i+1∑
j=1

pj

(
i

j−1

)
Lemma 5 shows two bounds that might be presented to a user after the

analysis.

Lemma 5. Let ~p = (p1, . . . , pk), let H be a heap and let l be a location that
points to a tree t of height h with nodes v1, . . . , vn.

1. ΦH(l:T ~p(A)) ≤ φ(n, ~p) +
∑n
i=1 ΦH(vi:A)

2. ΦH(l:T ~p(A)) ≤
∑n
i=1 ΦH(vi:A) +

∑k
i=1 p1 · n · (h+ 1)i−1

Proof. Part 1 follows by induction on n and from the fact that φ(n1, ~p) +
φ(n2, ~p) ≤ φ(n1 + n2, ~p).

To prove part 2 let ni be the number of nodes on level i. It follows from
Lemma 4 that ΦH(l:T ~p(A)) =

n∑
i=1

ΦH(vi:A) +
h∑
i=1

ni

i+1∑
j=1

pj

(
i

j−1

)
≤

n∑
i=1

ΦH(vi:A) +
h∑
i=1

ni

h+1∑
j=1

pj

(
h+1
j−1

)
≤

n∑
i=1

ΦH(vi:A) + n

h+1∑
j=1

pj

(
h+1
j−1

) ≤ n∑
i=1

ΦH(vi:A) + n

 k∑
j=1

pj(h+ 1)j−1


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Below are the typing rules for the construction and destruction of trees.

Γ ′ = x0:A, x1:TC(~p)(A), . . . , xd:TC(~p)(A) ~p = (p1, . . . , pk)

Σ;Γ
q −KmatchNT

1

q
′
+K

matchNT
1

e1 : B Σ;Γ, Γ ′
q + p1 −KmatchCT

1

q
′
+K

matchCT
2

e2 : B

Σ;Γ, x:T ~p(A)
q

q
′

match x with | nilT→ e1
| consT(x0, . . . , xd)→ e2

:B
(T:Match-T)

A ∈ A

Σ; ∅ K
nilT

0 nilT : T (A)
(T:Nil-T)

~p = (p1, . . . , pk)

Σ;x0:A, x1:TC(~p)(A), . . . , xd:TC(~p)(A)
p1+K

consT

0 consT(x0, . . . , xd):T ~p(A)

(T:Cons-T)

We will discuss trees in more detail in a subsequent work.
As an example consider the function trans that is defined below. For a tree

t of degree 2 the expression trans(t,[]) evaluates to a list l such that (x, y) is in l
if and only if x is an ancestor of y in t. In other words trans(t,[]) computes the
transitive closure of t.

attach(y,t ,acc) = match t with | nilT → acc
| consT(x,t1,t2) → let acc1 = attach(y,t1,acc) in

let acc2 = attach(y,t2,acc1) in (y,x ):: acc2

attach: (int, T (p+2)(int), Lp(int))−−→c/c Lp(int)

trans(t ,acc) = match t with | nilT → acc
| consT(x,t11,t21) → let acc1 = attach(x,t12,acc) in

let acc2 = attach(x,t22,acc1) in
let acc3 = trans(t13,acc2) in
trans(t23,acc3)

attach: (T (0,p+2)(int), Lp(int))−−→c/c Lp(int)

acc1,acc2,acc3:Lp(int) t11,t21:T (p+2,p+2)(int) t12,t22:T (p+2)(int) t13,t23:T (0,p+2)(int)

13 Conclusion and Related Work

We have extended amortized resource analysis for first-order functional programs
from linear bounds to polynomial bounds.

The main technical innovations of our paper are as follows: 1) the repre-
sentations of resource bounds as non-negative linear combinations of binomial
coefficients enabling a simple and local typing rule for pattern matching; 2) the
derivation of constraints solvable by linear programming in spite of the super-
linear bounds; 3) the inference of size information on the output of functions
and the use of this information to improve amortized analysis.

Most closely related is of course [15] which we extend to polynomial bounds.
Other resource analyses that can in principle obtain polynomial bounds are
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approaches based on recurrences pioneered by Grobauer [10] and Flajolet [8]. In
those systems, an a priori unknown resource bounding function is introduced for
each function in the code; by a straightforward intraprocedural analysis a set of
recurrence equations or inequations for these functions is then derived. A type-
based extraction of such recurrences has been given in [7]. Even for relatively
simple programs the resulting recurrences are quite complicated and difficult
to solve with standard methods. In the COSTA project [2] progress has been
made with the solution of those recurrences. Still, we find that amortization
yields better results in cases where resource usage of intermediate functions
depends on factors other than input size, e.g., sizes of partitions in QuickSort.
Also compositions of functions seem to be better dealt with by amortization.

A successful method to estimate time bounds for C++ procedures with loops
and recursion was recently developed by Gulwani et al. [12, 11] in the SPEED
project. They annotate programs with counters and use automatic invariant
discovery between their values using off-the-shelf program analysis tools which
are based on abstract interpretation. If the loops iterate over data-structures
then the user needs to define numerical “quantitative functions” for the data-
structures. In contrast our method is fully automatic. A methodological differ-
ence is that we infer (using linear programming) an abstract potential function
which indirectly yields a resource-bounding function. As explained in the in-
troduction the potential-based approach may be favorable in the presence of
compositions and data scattered over different locations (partitions in Quick-
Sort). Indeed, the examples from loc. cit. suggest that the two approaches are
complementary in the sense that the method of Gulwani et al. works well for
programs with little or no recursion but intricate interaction of linear arithmetic
with loops. Our method, on the other hand, does not model the interaction of
integer arithmetic with resource usage, but is particularly good for analyzing
recursive programs involving inductive data types. As any type system, our ap-
proach is naturally compositional and lends itself to the smooth integration of
components whose implementation is not available. Moreover, type derivations
can be seen as certificates and can be automatically translated into formalized
proofs in program logic [3].

However, we find the possibility of incorporating existing program analyses
to be a particularly attractive feature of the SPEED approach. It would be
interesting to investigate to what extent such analyses could also be harnessed
for our method. Another pragmatic but interesting aspect is the use of slicing
techniques to eliminate large code portions that do not contribute to the resource
being analyzed.

Another related approach is the use of sized types [17, 16, 5, 6] which provide
a general framework to represent the size of the data in its type. Sized types
are a very important concept and we also employ them indirectly. Our method
adds a certain amount of data dependency and dispenses with the explicit ma-
nipulation of symbolic expressions in favour of numerical potential annotations.
As we have demonstrated, there is a fruitful interaction between sized types and
amortization.
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Polynomial resource bounds have also been studied in [20]. Interestingly, the
motivation of that paper is to extend amortized analysis to super-linear bounds;
however loc. cit. only addresses the derivation of polynomial size bounds which
is identified there as a necessary precursor to amortized analysis. Moreover, the
analysis is restricted to functions whose exact growth rate is polynomial, and
efficiency of inference remains unclear.
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