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Abstract
This paper presents a new approach for automatically deriving worst-
case resource bounds for C programs. The described technique
combines ideas from amortized analysis and abstract interpretation
in a unified framework to address four challenges for state-of-
the-art techniques: compositionality, user interaction, generation
of proof certificates, and scalability. Compositionality is achieved
by incorporating the potential method of amortized analysis. It
enables the derivation of global whole-program bounds with local
derivation rules by naturally tracking size changes of variables in
sequenced loops and function calls. The resource consumption
of functions is described abstractly and a function call can be
analyzed without access to the function body. User interaction is
supported with a new mechanism that clearly separates qualitative
and quantitative verification. A user can guide the analysis to
derive complex non-linear bounds by using auxiliary variables and
assertions. The assertions are separately proved using established
qualitative techniques such as abstract interpretation or Hoare
logic. Proof certificates are automatically generated from the local
derivation rules. A soundness proof of the derivation system with
respect to a formal cost semantics guarantees the validity of the
certificates. Scalability is attained by an efficient reduction of bound
inference to a linear optimization problem that can be solved by
off-the-shelf LP solvers. The analysis framework is implemented
in the publicly-available tool C4B. An experimental evaluation
demonstrates the advantages of the new technique with a comparison
of C4B with existing tools on challenging micro benchmarks and
the analysis of more than 2900 lines of C code from the cBench
benchmark suite.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Verification, Reliability

Keywords Quantitative Verification, Resource Bound Analysis,
Static Analysis, Amortized Analysis, LP Solving, Program Logic
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1. Introduction
In software engineering and software verification, we often would
like to have static information about the quantitative behavior of
programs. For example, stack and heap-space bounds are important
to ensure the reliability of safety-critical systems [30]. Static energy
usage information is critical for autonomous systems and has
applications in cloud computing [15, 16]. Worst-case time bounds
can help create constant-time implementations that prevent side-
channel attacks [7, 28]. Loop and recursion-depth bounds are
used to ensure the accuracy of programs that are executed on
unreliable hardware [12] and complexity bounds are needed to
verify cryptographic protocols [6]. In general, quantitative resource
information can provide useful feedback for developers.

Available techniques for automatically deriving worst-case re-
source bounds fall into two categories. Techniques in the first cate-
gory derive impressive bounds for numerical imperative programs,
but are not compositional. This is problematic if one needs to derive
global whole-program bounds. Techniques in the second category
derive tight whole-program bounds for programs with regular loop
or recursion patterns that decrease the size of an individual variable
or data structure. They are highly compositional, scale for large
programs, and work directly on the syntax. However, they do not
support multivariate interval-based resource bounds (e.g., x ´ y)
which are common in C programs. Indeed, it has been a long-time
open problem to develop compositional resource analysis techniques
that can work for typical imperative code with non-regular iteration
patterns, signed integers, mutation, and non-linear control flow.

Tools in the first category include SPEED [20], KoAT [11],
PUBS [1], Rank [3], and LOOPUS [31]. They lack compositionality
in at least two ways. First, they all base their analysis on some form
of ranking function or counter instrumentation that is linked to a
local analysis. As a result, loop bounds are arithmetic expressions
that depend on the values of variables just before the loop. This
makes it hard to give a resource bound on a sequence of loops and
function calls in terms of the input parameters of a function. Second,
while all popular imperative programming languages provide a
function or procedure abstraction, available tools are not able to
abstract resource behavior; instead, they have to inline the procedure
body to perform their analysis.

Tools in the second category originate form the potential method
of amortized analysis and type systems for functional programs [24,
25]. It has been shown that class definitions of object-oriented pro-
grams [26] and data-structure predicates of separation logic [5] can
play the role of the type system in imperative programs. However, a
major weakness of existing potential-based techniques is that they
can only associate potential with individual program variables or
data structures. For C programs, this fails for loops as simple as
for(i=x;i<y;i++) where y ´ i decreases, but not |i|.

A general problem with existing tools (in both categories) is
user interaction. When a tool fails to find a resource bound for a
program, there is no possibility for sound user interaction to guide



the tool during bound derivation. For example, there is no concept
of manual proofs of resource bounds; and no framework can support
composition of manually derived bounds with automatically inferred
bounds.

This paper presents a new compositional framework for automat-
ically deriving resource bounds on C programs. This new approach
is an attempt to unify the two aforementioned categories: It solves
the compositionality issues of techniques for numerical imperative
code by adapting amortized-analysis–based techniques from the
functional world. Our automated analysis is able to infer resource
bounds on C programs with mutually-recursive functions and inte-
ger loops. The resource behavior of functions can be summarized in
a functional specification that can be used at every call site without
accessing the function body. To our knowledge this is the first tech-
nique based on amortized analysis that is able to derive bounds that
depend on negative numbers and differences of variables. It is also
the first resource analysis technique for C that deals naturally with
recursive functions and sequenced loops, and can handle resources
that may become available during execution (e.g., when freeing
memory). Compared to more classical approaches based on rank-
ing functions, our tool inherits the benefits of amortized reasoning.
Using only one simple mechanism, it handles:

• interactions between sequential loops or function calls through
size changes of variables,
• nested loops that influence each other with the same set of

modified variables,
• and amortized bounds as found, for example, in the Knuth-

Morris-Pratt algorithm for string search.

The main innovations that make amortized analysis work on imper-
ative languages are to base the analysis on a Hoare-like logic and
to track multivariate quantities instead of program variables. This
leads to precise bounds expressed as functions of sizes |rx, ys| “
maxp0, y ´ xq of intervals. A distinctive feature of our analysis
system is that it reduces linear bound inference to a linear optimiza-
tion problem that can be solved by off-the-shelf LP solvers. This
enables the efficient inference of global bounds for larger programs.
Moreover, our local inference rules automatically generate proof
certificates that can be easily checked in linear time.

The use of the potential method of amortized analysis makes
user interaction possible in different ways. For one thing, we can
directly combine the new automatic analysis with manually derived
bounds in a previously-developed quantitative Hoare logic [13] (see
Section 7). For another thing, we describe a new mechanism that
allows the separation of quantitative and qualitative verification
(see Section 6). Using this mechanism, the user can guide the
analysis by using auxiliary variables and logical assertions that
can be verified by existing qualitative tools such as Hoare logic or
abstract interpretation. In this way, we can benefit from existing
automation techniques and provide a middle-ground between fully
automatic and fully manual verification for bound derivation. This
enables the semi-automatic inference of non-linear bounds, such as
polynomial, logarithmic, and exponential bounds.

We have implemented the analysis system in the tool C4B and
experimentally evaluated its effectiveness by analyzing system code
and examples from the literature. C4B has automatically derived
global resource bounds for more than 2900 lines of C code from the
cBench benchmark suite. The extended version of this article [14]
contains more than 30 challenging loop and recursion patterns that
we collected from open source software and the literature. Our
analysis can find asymptotically tight bounds for all but one of these
patterns, and in most cases the derived constant factors are tight.
To compare C4B with existing techniques, we tested our examples
with tools such as KoAT [11], Rank [3], and LOOPUS [31]. Our

experiments show that the bounds that we derive are often more
precise than those derived by existing tools. Only LOOPUS [31],
which also uses amortization techniques, is able to achieve a similar
precision.

Examples from cBench and micro benchmarks demonstrate the
practicality and expressiveness of the user guided bound inference.
For example, we derive a logarithmic bound for a binary search
function and a bound that amortizes the cost of k increments to a
binary counter (see Section 6).

In summary, we make the following contributions.

• We develop the first automatic amortized analysis for C pro-
grams. It is naturally compositional, tracks size changes of vari-
ables to derive global bounds, can handle mutually-recursive
functions, generates resource abstractions for functions, derives
proof certificates, and handles resources that may become avail-
able during execution.
• We show how to automatically reduce the inference of linear

resource bounds to efficient LP solving.
• We describe a new method of harnessing existing qualitative

verification techniques to guide the automatic amortized analysis
to derive non-linear resource bounds with LP solving.
• We prove the soundness of the analysis with respect to a

parametric cost semantics for C programs. The cost model can
be further customized with function calls (tickpnq) that indicate
resource usage.
• We implemented our resource bound analysis in the publicly-

available tool C4B.
• We present experiments with C4B on more than 2900 lines of

C code. A detailed comparison shows that our prototype is the
only tool that can derive global bounds for larger C programs
while being as powerful as existing tools when deriving linear
local bounds for tricky loop and recursion patterns.

2. The Potential Method
The idea that underlies the design of our framework is amortized
analysis [32]. Assume that a program S executes on a starting state
σ and consumes n resource units of some user-defined quantity. We
denote that by writing pS, σq ón σ1 where σ1 is the program state
after the execution. The basic idea of amortized analysis is to define
a potential function Φ that maps program states to non-negative
numbers and to show that Φpσq ě n if σ is a program state such
that pS, σq ón σ1. Then Φpσq is a valid resource bound.

To obtain a compositional reasoning we also have to take into
account the state resulting from a program’s execution. We thus use
two potential functions, one that applies before the execution, and
one that applies after. The two functions must respect the relation
Φpσq ě n` Φ1pσ1q for all states σ and σ1 such that pS, σq ón σ1.
Intuitively, Φpσq must provide enough potential for both, paying for
the resource cost of the computation and paying for the potential
Φ1pσ1q on the resulting state σ1. That way, if pσ, S1q ón σ1 and
pσ1, S2q óm σ2, we get Φpσq ě n ` Φ1pσ1q and Φ1pσ1q ě
m`Φ2pσ2q. This can be composed as Φpσq ě pn`mq`Φ2pσ2q.
Note that the initial potential function Φ provides an upper bound
on the resource consumption of the whole program. What we have
observed is that, if we define tΦuS tΦ1u to mean

@σ nσ1. pσ, Sq ón σ
1
ùñ Φpσq ě n` Φ1pσ1q ,

then we get the following familiar looking rule

tΦuS1 tΦ
1
u tΦ1uS2 tΦ

2
u

tΦuS1;S2 tΦ
2
u .



t¨; 0` T
K
¨|rx, ys|u

while (x+K<=y) {

tx`K ď y; 0` T
K
¨|rx, ys|u

x=x+K;

tx ď y; T ` T
K
¨|rx, ys|u

tick(T);

tx ď y; 0` T
K
¨|rx, ys|u

}

tx ě y; 0` T
K
¨|rx, ys|u

Figure 1. Derivation of a tight bound on the number of ticks for
a standard for loop. The parameters K ą 0 and T ą 0 are not
program variables but denote concrete constants.

This rule already shows a departure from classical techniques that are
based on ranking functions. Reasoning with two potential functions
promotes compositional reasoning by focusing on the sequencing of
programs. In the previous rule, Φ gives a bound for S1;S2 through
the intermediate potential Φ1, even though it was derived on S1 only.
Similarly, other language constructs lead to rules for the potential
functions that look very similar to Hoare logic or effect system rules.
These rules enable reasoning about resource usage in a flexible and
compositional way, which, as a side effect, produces a certificate for
the derived resource bound.

The derivation of a resource bound using potential functions is
best explained by example. If we use the tick metric that assigns
cost n to the function call tickpnq and cost 0 to all other operations
then the cost of the following example can be bounded by |rx, ys| “
maxpy´x, 0q.

while (x<y) { x=x+1; tick(1); } (Example 1)

To derive this bound, we start with the initial potential Φ0 “ |rx, ys|,
which we also use as the loop invariant. For the loop body we have
(like in Hoare logic) to derive a triple tΦ0u x “ x` 1; tickp1q tΦ0u.
We can only do so if we utilize the fact that x ă y at the beginning
of the loop body. The reasoning then works as follows. We start
with the potential |rx, ys| and the fact that |rx, ys| ą 0 before
the assignment. If we denote the updated version of x after the
assignment by x1 then the relation |rx, ys| “ |rx1, ys| ` 1 between
the potential before and after the assignment x “ x` 1 holds. This
means that we have the potential |rx, ys| ` 1 before the statement
tickp1q. Since tickp1q consumes one resource unit, we end up with
potential |rx, ys| after the loop body and have established the loop
invariant again.

Figure 1 shows a derivation of the bound T
K
¨|rx, ys| on the

number of ticks for a generalized version of Example 1 in which we
increment x by a constant K ą 0 and consume T ą 0 resources
in each iteration. The reasoning is similar to the one of Example 1
except that we obtain the potential K¨ T

K
after the assignment. In

the figure, we separate logical assertions from potential functions
with semicolons. Note that the logical assertions are only used in
the rule for the assignment x “ x` K.

To the best of our knowledge, no other implemented tool for C is
currently capable of deriving a tight bound on the cost of such a loop.
For T “ 1 (many systems focus on the number of loop iterations
without a cost model) and K “ 10, KoAT computes the bound
|x| ` |y| ` 10, Rank computes the bound y ´ x´ 7, and LOOPUS
computes the bound y´x´9. Only PUBS computes the tight bound
0.1py ´ xq if we translate the program into a term-rewriting system
by hand. We will show in the following sections that the potential
method makes automatic bound derivation straightforward.

The concept of a potential function is a generalization of the
concept of a ranking function. A potential function can be used like

a ranking function if we use the tick metric and add the statement
tickp1q to every back edge of the program (loops and function calls).
However, a potential function is more flexible. For example, we can
use a potential function to prove that Example 2 does not consume
any resources in the tick metric.

while (x<y) {tick(-1); x=x+1; tick(1)} (Example 2)

while (x<y) { x=x+1; tick(10); } (Example 3)

Similarly we can prove that Example 3 can be bounded by 10|rx, ys|.
In both cases, we reason exactly like in the first version of the while
loop to prove the bound. Of course, such loops with different tick
annotations can be seamlessly combined in a larger program.

3. Compositional Resource-Bound Analysis
In this section we describe the high-level design of the automatic
amortized analysis that we implemented in C4B. Examples explain
and motivate our design decisions.

Linear Potential Functions. To find resource bounds automati-
cally, we first need to restrict our search space. In this work, we fo-
cus on the following form of potential functions, which can express
tight bounds for many typical programs and allows for inference
with linear programming.

Φpσq “ q0 `
ÿ

x,yPdompσq^x‰y

qpx,yq ¨ |rσpxq, σpyqs| .

Here σ : pLocals Ñ Zq ˆ pGlobals Ñ Zq is a simplified
program state that maps variable names to integers, |ra, bs| “
maxp0, b ´ aq, and qi P Q`0 . To simplify the references to the
linear coefficients qi, we introduce an index set I . This set is
defined to be t0u Y tpx, yq | x, y P Var ^ x ‰ yu. Each index
i corresponds to a base function fi in the potential function: 0
corresponds to the constant function σ ÞÑ 1, and px, yq corresponds
to σ ÞÑ |rσpxq, σpyqs|. Using these notations we can rewrite the
above equality as Φpσq “

ř

iPI qifipσq.We often write xy to
denote the index px, yq. This allows us to uniquely represent any
linear potential function Φ as a quantitative annotationQ “ pqiqiPI ,
that is, a family of non-negative rational numbers where only a finite
number of elements are not zero.

In the potential functions, we treat constants as global variables
that cannot be assigned to. For example, if the program contains the
constant 1988 then we have a variable c1988 and σpc1988q “ 1988.
We assume that every program state includes the constant c0.

Abstract Program State. In addition to the quantitative annota-
tions, our automatic amortized analysis needs to maintain a minimal
abstract state to justify certain operations on quantitative annotations.
For example when analyzing the code x Ð x` y, it is helpful to
know the sign of y to determine which intervals will increase or
decrease. The knowledge needed by our rules can be inferred by
local reasoning (i.e. in basic blocks without recursion and loops)
within usual theories (e.g. Presburger arithmetic or bit vectors).

The abstract program state is represented as logical contexts in
the derivation system used by our automated tool. Our implementa-
tion finds these logical contexts using abstract interpretation with
the domain of linear inequalities. We observed that the rules of the
analysis often require only minimal local knowledge. This means
that it is not necessary for us to compute precise loop invariants and
only a rough fixpoint (e.g. keeping only inequalities on variables
unchanged by the loop) is sufficient to obtain good bounds.

Challenging Loops. One might think that our set of potential
functions is too simplistic to be able to express and prove bounds
for realistic programs. Nevertheless, we can handle challenging
example programs without special tricks or techniques. Examples



while (n>x) {
tnąx; |rx, ns|`|ry,ms|u
if (m>y)
tmąy; |rx, ns|`|ry,ms|u
y=y+1;
t¨; 1`|rx, ns|`|ry,ms|u

else
tnąx; |rx, ns|`|ry,ms|u
x=x+1;
t¨; 1`|rx, ns|`|ry,ms|u

t¨; 1`|rx, ns|`|ry,ms|u
tick(1);

} t¨; |rx, ns|`|ry,ms|u

|rx, ns| ` |ry,ms|

speed 1

while (x<n) {
txăn; |rx, ns|`|rz, ns|u
if (z>x)
txăn; |rx, ns|`|rz, ns|u
x=x+1;
t¨; 1`|rx, ns|`|rz, ns|u

else
tzďx, xăn; |rx, ns|`|rz, ns|u
z=z+1;
t¨; 1`|rx, ns|`|rz, ns|u

t¨; 1`|rx, ns|`|rz, ns|u
tick(1);

} t¨; |rx, ns|`|rz, ns|u

|rx, ns| ` |rz, ns|

speed 2

while (z-y>0) {
tyăz; 3.1|ry, zs|`0.1|r0, ys|u
y=y+1;
t¨; 3`3.1|ry, zs|`0.1|r0, ys|u
tick(3);
t¨; 3.1|ry, zs|`0.1|r0, ys|u

}
t¨; 3.1|ry, zs|`0.1|r0, ys|u
while (y>9) {
tyą9; 3.1|ry, zs|`0.1|r0, ys|u
y=y-10;
t¨; 1`3.1|ry, zs|`0.1|r0, ys|u
tick(1);

} t¨; 3.1|ry, zs|`0.1|r0, ys|u

3.1|ry, zs| ` 0.1|r0, ys|

t08a

while (n<0) {
tnă0; P pn, yqu
n=n+1;
t¨; 59`P pn, yqu
y=y+1000;
t¨; 9`P pn, yqu
while (y>=100 && *){
tyą99; 9`P pn, yqu
y=y-100;
t¨; 14`P pn, yqu
tick(5);

} t¨; 9`P pn, yqu
tick(9);

} t¨; P pn, yqu

59|rn, 0s|`0.05|r0, ys|

t27

Figure 2. Derivations of bounds on the number of ticks for challenging examples. Examples speed 1 and speed 2 (from [20]) use tricky
iteration patterns, t08a contains sequential loops so that the iterations of the second loop depend on the first, and t27 contains interacting
nested loops. In Example t27, we use the abbreviation P pn, yq :“ 59|rn, 0s|`0.05|r0, ys|.

void c_down (int x,int y) {
if (x>y) {tick(1); c_up(x-1,y);}

}
void c_up (int x, int y) {

if (y+1<x) {tick(1); c_down(x,y+2);}
}

0.33` 0.67|ry, xs| (c downpx, yq)
0.67|ry, xs| (c uppx, yq)

t39

for (; l>=8; l-=8)
/* process one block */
tick(N);

for (; l>0; l--)
/* save leftovers */
tick(1);

N
8
|r0, ls| if N ě 8

7 8´N
8
` N

8
|r0, ls| if N ă 8

t61

for (;;) {
do { l++; tick(1); }

while (l<h && *);
do { h--; tick(1); }

while (h>l && *);
if (h<=l) break;
tick(1); /* swap elems. */ }

2` 3|rl, hs|

t62

Figure 3. Example t39 shows two mutually-recursive functions with the computed tick bounds. Example t61 and t62 demonstrate the unique
compositionality of our system. In t61, N ě 0 is a fixed but arbitrary constant.

speed 1 and speed 2 in Figure 2, which are taken from previous
work [20], demonstrate that our method can handle tricky iteration
patterns. The SPEED tool [20] derives the same bounds as our
analysis but requires heuristics for its counter instrumentation. These
loops can also be handled with inference of disjunctive invariants,
but in the abstract interpretation community, these invariants are
known to be notoriously difficult to generate. In Example speed 1
we have one loop that first increments variable y up to m and
then increments variable x up to n. We derive the tight bound
|rx, ns| ` |ry,ms|. Example speed 2 is even trickier, and we found
it hard to find a bound manually. However, using potential transfer
reasoning as in amortized analysis, it is easy to prove the tight bound
|rx, ns| ` |rz, ns|.

Nested and Sequenced Loops. Example t08a in Figure 2 shows
the ability of the analysis to discover interaction between sequenced
loops through size change of variables. We accurately track the size
change of y in the first loop by transferring the potential 0.1 from
|ry, zs| to |r0, ys|. Furthermore, t08a shows again that we do not
handle the constants 1 or 0 in any special way. In all examples we
could replace 0 and 1 with other constants like in the second loop
and still derive a tight bound. Example t27 in Figure 2 shows how
amortization can be used to handle interacting nested loops. In the
outer loop we increment the variable n until n “ 0. In each of the
|rn, 0s| iterations, we increment the variable y by 1000. Then we
non-deterministically (expressed by ˚) execute an inner loop that
decrements y by 100 until y ă 100. The analysis discovers that

only the first execution of the inner loop depends on the initial value
of y. We again derive tight constant factors.

Mutually Recursive Functions. As mentioned, the analysis also
handles advanced control flow like break and return statements, and
mutual recursion. Example t39 in Figure 3 contains two mutually-
recursive functions with their automatically derived tick bounds.
The function c down decrements its first argument x until it reaches
the second argument y. It then recursively calls the function c up,
which is dual to c down. Here, we count up y by 2 and call c down.
C4B is the only available system that computes a tight bound.

Compositionality. With two concrete examples from open-source
projects we demonstrate that the compositionality of our method is
indeed crucial in practice.

Example t61 in Figure 3 is typical for implementations of block-
based cryptographic primitives: Data of arbitrary length is consumed
in blocks and the leftover is stored in a buffer for future use when
more data is available. It is present in all the block encryption
routines of PGP and also used in performance critical code to unroll
a loop. For example we found it in a bit manipulating function of the
libtiff library and a CRC computation routine of MAD, an MPEG
decoder. This looping pattern is handled particularly well by our
method. If N ě 8, C4B infers the bound N

8
|r0, ls|, but if N ă 8,

it infers 7 8´N
8
` N

8
|r0, ls|. The selection of the block size (8) and

the cost in the second loop (tickp1q) are random choices and C4B
would also derive tight bound for other values.



To understand the resource bound for the case N ă 8, first note
that the cost of the second loop is |r0, ls|. After the first loop, we
still have N

8
|r0, ls| potential available from the invariant. So we

have to raise the potential of |r0, ls| from N
8

to 1, that is, we must
pay 8´N

8
|r0, ls|. But since we got out of the first loop, we know

that l ă 8, so it is sound to only pay 7 8´N
8

potential units instead.
This level of precision and compositionality is only achieved by our
novel analysis, no other available tool derives the aforementioned
tight bounds.

Example t62 (Figure 3) is the inner loop of a quick sort imple-
mentation in cBench. More precisely, it is the partitioning part of the
algorithm. This partition loop has linear complexity, and feeding it
to our analysis gives the worst-case bound 2` 3|rl, hs|. This bound
is not optimal but it can be refined by rewriting the program. To
understand the bound, we can reason as follows. If h ě l initially,
the cost of the loop is 2. Otherwise, the cost of each round (at most
3) can be payed using the potential of rl, hs by the first increment
to l because we know that l ă h. The two inner loops can also use
rl, hs to pay for their inner costs. KoAT fails to find a bound and
LOOPUS derives the quadratic bound ph´ l ´ 1q2. Following the
classical technique, these tools try to find one ranking function for
each loop and combine them multiplicatively or additively.

In the extended version [14] is a list of more than 30 classes of
challenging programs that we can automatically analyze. Section 8
contains a more detailed comparison with other tools.

4. Derivation System
In the following we describe the local and compositional derivation
rules of the automatic amortized analysis.

Cost Aware Clight. We present the rules for a subset of Clight.
Clight is the first intermediate language of the CompCert com-
piler [29]. It is a subset of C with a unified looping construct and
side-effect free expressions. We reuse most of CompCert’s syntax
but instrument the semantics with a resource metricM that accounts
for the cost (an arbitrary rational number) of each step in the oper-
ational semantics. For example, Mepexpq is the cost of evaluating
the expression exp. The rationals Mf and Mr account respectively
for the cost of a call to the function f and the cost of returning from
it. More details are provided in Section 7.

In the rules, assignments are restricted to the form x Ð y or
xÐ x˘ y. In the implementation, a Clight program is converted
into this form prior to analysis without changing the resource cost.
This is achieved by using a series of cost-free assignments that do
not result in additional cost in the semantics. Non-linear operations
such as x Ð z ˚ y or x Ð arys are handled by assigning 0 to
coefficients like qxa and qax that contain x after the assignment.
This sound treatment ensures that no further loop bounds depend on
the result of the non-linear operation.

Judgements. The derivation system for the automatic amortized
analysis is defined in Figure 4. The derivation rules derive judge-
ments of the form

pΓB ;QBq, pΓR;QRq $ tΓ;QuS tΓ1;Q1u.

The part tΓ;QuS tΓ1;Q1u of the judgement can be seen as a
quantitative Hoare triple. All assertions are split into two parts,
the logical part and the quantitative part. The quantitative part
Q represents a potential function as a collection of non-negative
numbers qi indexed by the index set I . The logical part Γ is left
abstract but is enforced by our derivation system to respect classic
Hoare logic constraints. The meaning of this basic judgment is as
follows: If S is executed with starting state σ, the assertions in Γ
hold, and at least Qpσq resources are available then the evaluation

does not run out of resources and, if the execution terminates in state
σ1, there are at least Q1pσ1q resources left and Γ1 holds for σ1.

The judgement is a bit more involved since we have to take into
account the early exit statements break and return. This is similar
to classical Hoare triples in the presence of non-linear control flow.
In the judgement, pΓB ;QBq is the postcondition that holds when
breaking out of a loop using break. Similarly, pΓR;QRq is the
postcondition that holds when returning from a function call.

As a convention, if Q and Q1 are quantitative annotations we
assume that Q “ pqiqiPI and Q1 “ pq1iqiPI . The notation Q ˘ n
used in many rules defines a new context Q1 such that q10 “ q0 ˘ n
and @i ‰ 0. q1i “ qi. In all the rules, we have the implicit side
condition that all rational coefficients are non-negative. Finally, if
a rule mentions Q and Q1 and leaves the latter undefined at some
index i we assume that q1i “ qi.

Function Specifications. During the analysis, function specifica-
tions are quadruples pΓf ;Qf ,Γ

1
f ;Q1f q where Γf ;Qf depend on

~args , and Γ1f ;Q1f depend on ret . These parameters are instantiated
by appropriate variables on call sites. A distinctive feature of our
analysis is that it respects the function abstraction: when deriving a
function specification it generates a set of constraints and the above
quadruple; once done, the constraint set can readily be reused for
every call site and the function need not be analyzed multiple times.
Therefore, the derivation rules are parametric in a function context
∆ that we leave implicit in the rules presented here. More details
can be found in the extended version.

Derivation Rules. The rules of our derivation system must serve
two purposes. They must attach potential to certain program vari-
able intervals and use this potential, when it is allowed, to pay for
resource consuming operations. These two purposes are illustrated
on the Q:SKIP rule. This rule reuses its precondition as postcon-
dition, it is explained by two facts: First, no resource is consumed
by the skip operation, thus no potential has to be used to pay for
the evaluation. Second, the program state is not changed by the
execution of a skip statement. Thus all potential available before the
execution of the skip statement is still available after.

The rules Q:INCP, Q:DECP, and Q:INC describe how the
potential is distributed after a size change of a variable. The rule
Q:INCP is for increments xÐ x`y and Q:DECP is for decrements
x Ð x ´ y. They both apply only when we can deduce from the
logical context Γ that y ě 0. Of course, there are symmetrical rules
Q:INCN and Q:DECN (not presented here) that can be applied if
y is negative. The rules are all equivalent in the case where y “ 0.
The rule Q:INC can be applied if we cannot find the sign of y.

To explain how rules for increment and decrement work, it is
sufficient to understand the rule Q:INCP. The others follow the same
idea and are symmetrical. In Q:INCP, the program updates a variable
x with x ` y where y ě 0. Since x is changed, the quantitative
annotation must be updated to reflect the change of the program state.
We write x1 for the value of x after the assignment. Since x is the
only variable changed, only intervals of the form ru, xs and rx, us
will be resized. Note that for any u, rx, us will get smaller with the
update, and if x1 P rx, us we have |rx, us| “ |rx, x1s| ` |rx1, us|.
But |rx, x1s| “ |r0, ys| which means that the potential q10y in
the postcondition can be increased by qxu under the guard that
x1 P rx, us. Dually, the interval rv, xs can get bigger with the update.
We know that |rv, x1s| ď y ` |rv, xs|. So we decrease the potential
of r0, ys by qvx to pay for this change. The rule ensures this only
for v R U because x ď v otherwise, and thus |rv, xs| “ 0.

The rule Q:LOOP is a cornerstone of our analysis. To apply it on
a loop body, one needs to find an invariant potential Q that will pay
for the iterations. At each iteration, Ml resources are spent to jump
back. This explains the postcondition Q`Ml. Since the loop can
only be exited with a break statement, the postcondition tΓ1;Q1u for



B,R $ tΓ;Qu skip tΓ;Qu
(Q:SKIP)

B,R $ tΓ;Q`Mau assert e tΓ^e;Qu
(Q:ASSERT)

B,R $ tΓ;Q`Mtpnqu tickpnq tΓ;Qu
(Q:TICK)

pΓ;QBq, R $ tΓ;QB`Mbu break tΓ1;Q1u
(Q:BREAK)

P “ QRrret{xs Γ “ ΓRrret{xs @i P dompP q. pi “ qi

B, pΓR;QRq $ tΓ;Qu return x tΓ1;Q1u
(Q:RETURN)

pΓ1;Q1q, R $ tΓ;QuS tΓ;Q`Mlu

B,R $ tΓ;Qu loop S tΓ1;Q1u
(Q:LOOP)

B,R $ tΓ;QuS1 tΓ
1;Q1`Msu B,R $ tΓ1;Q1uS2 tΓ

2;Q2u

B,R $ tΓ;QuS1;S2 tΓ
2;Q2u

(Q:SEQ)

B,R $ tΓ^e;Q´M1
c quS1 tΓ

1;Q1u
B,R $ tΓ^ e;Q´M2

c uS2 tΓ
1;Q1u

B,R $ tΓ;Q`Mepequ ifpeq S1 else S2 tΓ
1;Q1u

(Q:IF)

Γ |ù y ě 0 U “ tu | Γ |ù x` y P rx, usu
q10y “ q0y `

ř

uPU qxu ´
ř

vRU qvx

B,R $ tΓrx{x`ys;Q`Mu`Mepx`yquxÐ x` y tΓ;Q1u
(Q:INCP)

M “Mu `Mepx˘yq
q10y “ q0y ´

ř

v qvx q1y0 “ qy0 ´
ř

v qxv

B,R $ tΓrx{x˘ys;Q`MuxÐ x˘ y tΓ;Q1u
(Q:INC)

q1xy , q
1
yx P Q`0

@u.pqyu “ q1xu ` q
1
yu ^ quy “ q1ux ` q

1
uyq

B,R $ tΓrx{ys;Q`Mu`MepyquxÐ y tΓ;Q1u
(Q:SET)

Γ |ù y ě 0 U “ tu | Γ |ù x´ y P ru, xsu
q1y0 “ qy0 `

ř

uPU qux ´
ř

vRU qxv

B,R $ tΓrx{x´ys;Q`Mu`Mepx´yquxÐ x´ y tΓ;Q1u
(Q:DECP)

pΓf ;Qf ,Γ
1
f ;Q1f q P ∆pfq Loc “ LocalspQq @i ‰ j. xi ‰ xj c P Q`0 Q “ P ` S Q1 “ P 1 ` S U “ Qf r ~args{~xs

U 1 “ Q1f rret{rs @i P dompUq. pi “ ui @i P dompU 1q. p1i “ u1i @i R dompU 1q. p1i “ 0 @i R Loc. si “ 0

B,R $ tΓf r ~args{~xs^ΓLoc;Q`c`Mf u r Ð fp~xq tΓ1f rret{rs^ΓLoc;Q
1`c´Mru

(Q:CALL)

Σf “ p~y, Sf q
B, pΓ1f ;Q1f q $ tΓf r ~args{~ys;Qf r ~args{~ysuSf tΓ

1;Q1u

pΓf ;Qf ,Γ
1
f ;Q1f q P ∆pfq

(Q:EXTEND)

B,R $ tΓ2;Q2uS tΓ
1
2;Q12u Γ1 |ù Γ2

Q1 ľΓ1
Q2 Γ12 |ù Γ11 Q12 ľΓ1

2
Q11

B,R $ tΓ1;Q1uS tΓ
1
1;Q11u

(Q:WEAK)

L “ txy | DlxyPN .Γ |ù lxy ď |rx, ys|u U “ txy | DuxyPN .Γ |ù |rx, ys| ď uxyu
@i P U . q1i ě qi ´ ri @i P L. q1i ě qi ` pi @i R UYLYt0u. q1i ě qi q10 ě q0`

ř

iPU uiri ´
ř

iPL lipi

Q1 ľΓ Q
(RELAX)

Figure 4. Inference rules of the quantitative analysis.

the statement loop S is used as break postcondition in the derivation
for S.

Another interesting rule is Q:CALL. It needs to account for the
changes to the stack caused by the function call, the arguments/re-
turn value passing, and the preservation of local variables. We can
sum up the main ideas of the rule as follows.

• The potential in the pre- and postcondition of the function
specification is equalized to its matching potential in the callee’s
pre- and postcondition.
• The potential of intervals |rx, ys| is preserved across a function

call if x and y are local.
• The unknown potentials after the call (e.g. |rx, gs|, with x local

and g global) are set to zero in the postcondition.

If x and y are local variables and fpx, yq is called, Q:CALL splits
the potential of |rx, ys| in two parts. One part to perform the
computation in the function f and one part to keep for later use after
the function call. This splitting is realized by the equations Q “

P`S and Q1 “ P 1`S1. Arguments in the function precondition
pΓf ;Qf q are named using a fixed vector ~args of names different
from all program variables. This prevents name conflicts and ensures
that the substitution r ~args{~xs is meaningful. Symmetrically, we use
the unique name ret to represent the return value in the function’s
postcondition pΓ1f ;Q1f q.

The rule Q:WEAK is the only rule that is not syntax directed. We
could integrate weakenings into every syntax directed rule but, for
the sake of efficiency, the implementation uses a simple heuristic
instead. The high-level idea of Q:WEAK is the following: If we

have a sound judgement, then it is sound to add more potential to
the precondition and remove potential from the postcondition. The
concept of more potential is formalized by the relation Q1 ľΓ Q
that is defined in the rule RELAX. This rule also deals with the
important task of transferring constant potential (represented by q0)
to interval sizes and vice versa. If we can deduce from the logical
context that the interval size |rx, ys| ě ` is larger than a constant `
then we can turn the potential qxy¨|rx, ys| form the interval into the
constant potential `¨qxy and guarantee that we do not gain potential.
Conversely, if |rx, ys| ď u for a constant u then we can transfer
constant potential u¨qxy to the interval potential qxy¨|rx, ys| without
gaining potential.

5. Automatic Inference via LP Solving
We separate the search of a derivation in two steps. As a first step we
go through the functions of the program and apply inductively the
derivation rules of the automatic amortized analysis. This is done in
a bottom-up way for each strongly connected component (SCC) of
the call graph. During this process our tool uses symbolic names for
the rational coefficients qi in the rules. Each time a linear constraint
must be satisfied by these coefficients, it is recorded in a global list
for the SCC using the symbolic names. We reuse the constraint list
for every call from outside the SCC.

We then feed the collected constraints to an off-the-shelf LP
solver (currently CLP [17]). If the solver successfully finds a
solution, we know that a derivation exists and extract the values for
the initial Q from the solver to get a resource bound for the program.
To get a full derivation, we extract the complete solution from the



pxă10;Bdeq $ txě10;Qdeu x “ x´ 10 t¨;P deu
(Q:DECP)

pxă10;Bweq $ txě10;Qweu x “ x´ 10 t¨;Pweu
(Q:WEAK)

pxă10;Btiq $ t¨;Qtiu tickp5q t¨;P tiu
(Q:TICK)

pxă10;Bsqq $ txě10;Qsqu x “ x´ 10; tickp5q t¨;P squ
(Q:SEQ)

pxă10;Bifq $ txě10;Qifu x “ x´ 10; tickp5q t¨;P ifu
(Q:WEAK)

¨
¨
¨
¨
¨
¨
¨

pxă10;Bbrq $ txă10;Qbru break tK;P bru
(Q:BREAK)

pxă10;Belq $ txă10;Qelu break t¨;P elu
(Q:WEAK)

pxă10;Bloq $ t¨;Qlou if px ě 10q px “ x´ 10; tickp5qq else break t¨;P lou
(Q:IF)

p¨;Bq $ t¨;Qqu loop if px ě 10q px “ x´ 10; tickp5qq else break txă10;P u
(Q:LOOP)

Constraints:

P“Blo ^Q“Qlo“P lo Bel“Bif“Blo ^Qel“Qif“Qlo ^ P el“P if“P lo Bel“Bbr ^Qel ľpxă10q Q
br ^ P br ľp¨q P

el

Bbr“Qbr Bif“Bsq ^Qif ľpxă10q Q
sq ^ P sq ľp¨q P

if Bsq“Bwe“Bti ^Qsq“Qwe ^ Pwe“Qti ^ P ti“P sq

Qti“P ti ` 5 Bwe“Bde ^Qwe ľpxă10q Q
de ^ P de ľp¨q P

we pde
0,10“q

de
0,10 ` q

de
0,x ^ p

de
0 “q

de
0 ^ @pα, βq ‰ p0, 10q. pde

α,β“q
de
α,β

Linear Objective Function: 1¨qx,0 ` 10000¨q0,x ` 11¨qx,10 ` 9990¨q10,x Constant Objective Function: 1¨q0 ` 11¨q0,10

Figure 5. An example derivation as produced C4B. The constraints are resolved by an off-the-shelf LP solver.

solver and apply it to the symbolic names qi of the coefficients in
the derivation. If the LP solver fails to find a solution, an error is
reported.

Figure 5 contains an example derivation as produced by C4B.
The upper case letters (with optional superscript) such as Qde are
families of variables that are later part of the constraint system
that is passed to the LP solver. For example Qde stands for the
potential function qde

0 `q
de
x,0|rx, 0s|`q

de
0,x|r0, xs|`q

de
x,10|rx, 10s|`

qde
10,x|r10, xs| ` qde

0,10|r0, 10s|, where the variables such as qde
x,10 are

yet unknown and later instantiated by the LP solver.
In general, the weakening rule can be applied after every syntax

directed rule. However, it can be left out in practice at some places
to increase the efficiency of the tool. The weakening operation ľΓ is
defined by the rule RELAX. It is parameterized by a logical context
that is used to gather information on interval sizes. For example,

P de
ľp¨q P

we
” pwe

0,10 ď pde
0,10 ` u0,10 ´ v0.10

^ pwe
0 ď pde

0 ´ 10¨u0,10 ` 10¨v0.10

^ @pα, βq ‰ p0, 10q. pwe
α,β ď pde

α,β .

The other rules are syntax directed and applied inductively. For
example, the outermost expression is a loop, so we use the rule
Q:Loop at the root of the derivation tree. At this point, we do
not know yet whether a loop invariant exists. But we produce the
constraints Qlo

“ P lo. These constraints express the fact that the
potential functions before and after the loop body are equal and thus
constitute an invariant.

After the constraint generation, the LP solver is provided with
an objective function to be minimized. We wish to minimize the
initial potential, which is a resource bound on the whole program.
Here it is given by Q. Moreover, we would like to express that
minimization of linear potential such as q10,x|r10, xs| takes priority
over minimization of constant potential such as q0,10|r0, 10s|.

To get a tight bound, we use modern LP solvers that allow
constraint solving and minimization at the same time: First we
consider our initial constraint set as given in Figure 5 and ask the
solver to find a solution that satisfies the constraints and minimizes
the linear expression 1¨qx,0 ` 10000¨q0,x ` 11¨qx,10 ` 9990¨q10,x.
The penalties given to certain factors are used to prioritize certain
intervals. For example, a bound with r10, xs will be preferred to
another with r0, xs because |r10, xs| ď |r0, xs|. The LP solver now
returns a solution of the constraint set and an objective value. The
solver also memorizes the optimization path that led to the optimal

solution. In this case, the objective value would be 5000 since the LP
solver assigns q0,x “ 0.5 and q˚ “ 0 otherwise. We now add the
constraint 1¨qx,0 ` 10000¨q0,x ` 11¨qx,10 ` 9990¨q10,x ď 5000
to our constraint set and ask the solver to optimize the objective
function q0 ` 11¨q0,10. This happens in almost no time in practice.
The final solution is q0,x “ 0.5 and q˚ “ 0 otherwise. Thus the
derived bound is 0.5|r0, xs|.

A notable advantage of the LP-based approach compared to SMT-
solver–based techniques is that a satisfying assignment is a proof
certificate instead of a counter example. To provide high-assurance
bounds, this certificate can be checked in linear time by a simple
validator.

6. Logical State and User Interaction
While complete automation is desirable, it is not always possible
since the problem of bound derivation is undecidable. In this section
we present a new technique to derive complex resource bounds semi-
automatically by leveraging our automation. Our goal is to develop
an interface between bound derivation and established qualitative
verification techniques.

When the resource bound of a program depends on the contents
of the heap, or is non-linear (e.g. logarithmic, exponential), we in-
troduce a logical state using auxiliary variables. Auxiliary variables
guide C4B during bound derivation but they do not change the
behavior of the program.

More precisely, the technique consists of the following steps.
First, a program P that fails to be analyzed automatically is enriched
by auxiliary variables ~x and assertions to form a program Plp~xq.
Second, an initial value ~Xpσq for the logical variables is selected to
satisfy the proposition:

@nσ σ1. pσ, Plp ~Xpσqqq ón σ
1
ùñ Dn1ďn. pσ, P q ón1 σ1. (*)

Since the annotated program and the original one are usually
syntactically close, the proof of this result goes by simple induction
on the resource-aware evaluation judgement. Third, using existing
automation tools, a bound Bp~xq for Plp~xq is derived. Finally this
bound, instantiated with ~X , gives the final resource bound for the
program P .

This idea is illustrated by the program in Figure 6. The parts
of the code in blue are annotations that were added to the original
program text. The top-level loop increments a binary counter k
times. A naive analysis of the algorithm yields the quadratic bound
k ¨N . However, the algorithm is in fact linear and its cost is bounded



1 logical state invariant tna “ #1paqu
2 while (k > 0) {
3 x=0;
4 while (x < N && a[x] == 1) {
5 assert(na > 0);
6 a[x]=0; na--;
7 tick(1); x++; }
8 if (x < N) { a[x]=1; na++; tick(1); }
9 k--;

10 }

Figure 6. Assisted bound derivation using logical state. We write
#1paq for #ti | 0ďiăN^aris“1u and use the tick metric. The
derived bound is 2|r0, ks| ` |r0, nas|.

1 logical state invariant tlg ą log2ph´ lqu
2 bsearch(x,l,h,lg) {
3 if (h-l > 1) {
4 assert(lg > 0);
5 m = l + (h-l)/2;
6 lg--; if (a[m]>x) h=m; else l=m;
7 tick(Mbsearch);
8 l = bsearch(x,l,h,lg);
9 tick(´Mbsearch);

10 } else return l;
11 }

Figure 7. Assisted bound derivation using logical state. We write
log2pxq for the integer part of logarithm of x in base 2. The semi-
automatically derived bound is |r0, lgs|.

by 2k `#1paq where #1paq denotes the number of one entries in
the array a. Since this number depends on the heap contents, no
tool available for C is able to derive the linear bound. However,
it can be inferred by our automated tool if a logical variable na
is introduced. This logical variable is a reification of the number
#1paq in the program. For example, on line 6 of the example we
are setting a[x] to 0 and because of the condition we know that
this array entry was 1. To reflect this change on #1paq, the logical
variable na is decremented. Similarly, on line 8, an array entry
which was 0 becomes 1, so na is incremented. To complete the step
2 of the systematic procedure described above, we must show that
the extra assertion na > 0 on line 5 cannot fail. We do it by proving
inductively that na “ #1paq and remarking that since a[x] == 1 is
true, we must have #1paqą0, thus the assertion na > 0 never fails.

Another simple example is given in Figure 7 where a logarithmic
bound on the stack consumption of a binary search program is
proved using logical variable annotations. Once again, annotations
are in blue in the program text. In this example, to ease the proof
of equivalence between the annotated program and the original one,
we use the inequality lg ą log2ph´ lq as invariant. This allows a
simpler proof because, when working with integer arithmetic, it is
not always the case that log2px´ x{2q “ log2pxq ´ 1.

Generally, we observed that because the instrumented program
is structurally same as the original one, it is enough to prove that the
added assertions never fail in order to show the two programs satisfy
the proposition (*). This can usually be piggybacked on standard
static-analysis tools.

7. Soundness Proof
The soundness of the analysis builds on a new cost semantics for
Clight and an extended quantitative logic. Using these two tools, the
soundness of the automatic analysis described in Section 3 is proved
by a translation morphism to the logic.

The main parts of the soundness proof are formalized with Coq
and available for download. The full definitions of the cost semantics
and the quantitative Hoare logic, and more details on the soundness
proof can be found in the extended version of this article.

Cost Semantics for Clight. To base the soundness proof on a
formal ground, we start by defining a new cost-aware operational
semantics for Clight. Clight’s operational semantics is based on
small-step transitions and continuations. Expressions—which do
not have side effects—are evaluated in a big-step fashion.

A program state σ “ pθ, γq is composed of two maps from
variable names to integers. The first map, θ : Locals Ñ Z, assigns
integers to local variables of a function, and the second map,
γ : Globals Ñ Z, gives values to global variables of the program.
In this article, we assume that all values are integers but in the
implementation we support all data types of Clight. The evaluation
function J¨K maps an expression e P E to a value JeKσ P Z in the
program state σ. We write σpxq to obtain the value of x in program
state σ. Similarly, we write σrx ÞÑ vs for the state based on σ where
the value of x is updated to v.

The small-step semantics is standard, except that it tracks the
resource consumption of a program. The semantics is parametric
in the resource of interest for the user of our system. We achieve
this independence by parameterizing evaluations with a resource
metric M ; a tuple of rational numbers and two maps. Each of
these parameters indicates the amount of resource consumed by
a corresponding step in the semantics. Resources can be released by
using a negative cost. Two sample rules for update and tick follow.

σ1 “ σrx ÞÑ JeKσs
pσ, xÐ e,K, cq Ñ

pσ1, skip,K, c´Mu´Mepeqq

(U)
pσ, tickpnq,K, cq Ñ
pσ, skip,K, c´Mtpnqq

(T)

The rules have as implicit side condition that c is non-negative. This
makes it possible to detect a resource crash as a stuck configuration
where c ă 0.

Quantitative Hoare Logic. To prove the soundness of C4B we
found it useful to go through an intermediate step using a quantitative
Hoare logic. This logic is at the same time a convenient semantic
tool and a clean way to interface manual proofs with our automation.
We base it on a logic for stack usage [13], add support for arbitrary
resources, and simplify the handling of auxiliary state.

We define quantitative Hoare triples as B;R $L tQuS tQ
1
u

where B, R, Q, and Q1 are maps from program states to an element
of Q`0 Y t8u that represents an amount of resources available. The
assertionsB andR are postconditions for the case in which the block
S exits by a break or return statement. Additionally, R depends on
the return value of the current function. The meaning of the triple
tQuS tQ1u is as follows: If S is executed with starting state σ, the
empty continuation, and at least Qpσq resource units available then
the evaluation does not run out of resources and there are at least
Q1pσ1q resources left if the evaluation terminates in σ1. The logic
rules are similar to the ones in previous work and generalized to
account for the cost introduced by our cost-aware semantics.

Finally, we define a strong compositional continuation-based
soundness for triples and prove the validity of all the rules in Coq.
The full version of this paper [14], provides explanations for the
rules and a thorough overview of our soundness proof.

The Soundness Theorem. We use the quantitative logic as the
target of a translation function for the automatic derivation system.
This reveals two orthogonal aspects of the proof: on one side, it
relies on amortized reasoning (the quantitative logic rules), and on
the other side, it uses combinatorial properties of our linear potential
functions (the automatic analysis rules).

Technically, we define a translation function T such that if a
judgement J in the automatic analysis is derivable, T pJq is deriv-



t09 t19 t30 t15 t13
i=1; j=0;
while (j<x) {

j++;
if (i>=4)

i=1, tick(40);
else i++;
tick(1); }

while (i>100) {
i--; tick(1);

} i += k+50;
while (i>=0) {

i--; tick(1);
}

while (x>0) {
x--;
t=x, x=y, y=t;
tick(1);

}

assert(y>=0);
while (x > y) {

x -= y+1;
for (z=y; z>0; z--)

tick(1);
tick(1);

}

while (x>0) {
x--;
if (*) y++;
else

while (y>0)
y--, tick(1);

tick(1); }

C4B 11|r0, xs| 50`|r´1, is|`|r0, ks| |r0, xs|`|r0, ys| |r0, xs| 2|r0, xs|`|r0, ys|

Rank 23¨x´ 14 54` k ` i — 2` 2x´ y 0.5¨y2`yx . . .

LOOPUS 41 maxpx, 0q
maxpi´100, 0q

`maxpk`i`51, 0q
— — 2 maxpx, 0q

`maxpy, 0q

Figure 8. Comparison of resource bounds derived by different tools on several examples with linear bounds.

able in the quantitative logic. By using T to translate derivations of
the automatic analysis to derivations in the quantitative logic we can
directly obtain a certified resource bound for the analyzed program.

The translation of an assertion pΓ;Qq in the automatic analysis
is defined by

T pΓ;Qq :“ λσ.Γpσq ` ΦQpσq,

where we write ΦQ for the unique linear potential function defined
by the quantitative annotation Q. The logical context Γ is implicitly
lifted to a quantitative assertion by mapping a state σ to 0 if Γpσq
holds and to 8 otherwise. These definitions let us translate the
judgement J :“ B,R $ tP uS tP 1u by

T pJq :“ T pBq; T pRq $L tT pP quS tT pP 1qu.
The soundness of the automatic analysis can now be stated formally
with the following theorem.

Theorem 1 (Soundness of the automatic analysis). If J is a judge-
ment derived by the automatic analysis, then T pJq is a quantitative
Hoare triple derivable in the quantitative logic.

The proof of this theorem is constructive and maps each rule of the
automatic analysis directly to its counterpart in the quantitative logic.
The trickiest parts are the translations of the rules for increments and
decrements and the rule Q:WEAK for weakening because they make
essential use of the algebraic properties of the potential functions.

8. Experimental Evaluation
We have experimentally evaluated the practicality of our automatic
amortized analysis with more than 30 challenging loop and recursion
patterns from open-source code and the literature [18–20]. A full
list of examples is given in the extended version [14].

Figure 8 shows five representative loop patterns from the evalu-
ation. Example t09 is a loop that performs an expensive operation
every 4 steps.C4B is the only tool able to amortize this cost over the
input parameter x. Example t19 demonstrates the compositionality
of the analysis. The program consists of two loops that decrement
a variable i. In the first loop, i is decremented down to 100 and
in the second loop i is decremented further down to ´1. However,
between the loops we assign i += k+50. So in total the program
performs 52` |r´1, is| ` |r0, ks| ticks. Our analysis finds this tight
bound because our amortized analysis naturally takes into account
the relation between the two loops. Example t30 decrements both
input variables x and y down to zero in an unconventional way. In
the loop body, first x is decremented by one, then the values of the
variables x and y are switched using the local variable t as a buffer.
Our analysis infers the tight bound |r0, xs| ` |r0, ys|. Sometimes
we need some assumptions on the inputs in order to derive a bound.
Example t15 is such a case. We assume here that the input variable y
is non-negative and write assert(y>=0). The assignment x -= y+1

in the loop is split in x-- and x -= y. If we enter the loop then we

Table 1. Comparison of C4B with other automatic tools.

KoAT Rank LOOPUS SPEED C4B
#bounds 9 24 20 14 32

#lin. bounds 9 21 20 14 32
#best bounds 0 0 11 14 29

#tested 14 33 33 14 33

know that x ą 0, so we can obtain constant potential from x--.
Then we know that x ě y ě 0, as a consequence we can share the
potential of |r0, xs| between |r0, xs| and |r0, ys| after x -= y.

Example t13 shows how amortization can be used to find linear
bounds for nested loops. The outer loop is iterated |r0, xs| times.
In the conditional, we either (the branching condition is arbitrary)
increment the variable y or we execute an inner loop in which y
is counted back to 0. C4B computes a tight bound. The extended
version also contains a discussion of the automatic bound derivation
for the Knuth-Morris-Pratt algorithm for string search. C4B finds
the tight linear bound 1` 2|r0, ns|.

To compare our tool with existing work, we focused on loop
bounds and use a simple metric that counts the number of back edges
(i.e., number of loop iterations) that are followed in the execution
of the program because most other tools only bound this specific
cost. In Figure 8, we show the bounds we derived (C4B) together
with the bounds derived by LOOPUS [31] and Rank [3]. We also
contacted the authors of SPEED but have not been able to obtain
this tool. KoAT [11] and PUBS [1] currently cannot operate on C
code and the examples would need to be manually translated into
a term-rewriting system to be analyzed by these tools. For Rank it
is not completely clear how the computed bound relates to the C
program since the computed bound is for transitions in an automaton
that is derived from the C code. For instance, the bound 2` y ´ x
that is derived for t08 only applies to the first loop in the program.

Table 1 summarizes the results of our experiments presented in
Appendix A. It shows for each tool the number of derived bounds
(#bounds), the number of asymptotically tight bounds (#lin. bounds),
the number of bounds with the best constant factors in comparison
with the other tools (#best bounds), and the number of examples
that we were able to test with the tool (#tested). Since we were
not able to run the experiments for KoAT and SPEED, we simply
used the bounds that have been reported by the authors of the
respective tools. The results show that our automatic amortized
analysis outperforms the existing tools on our example programs.
However, this experimental evaluation has to be taken with a grain
of salt. Existing tools complement C4B since they can derive
polynomial bounds and support more features of C. We were
particularly impressed by LOOPUS which is very robust, works
on large C files, and derives very precise bounds.

Table 2 contains a compilation of the results of our experiments
with the cBench benchmark suite. It shows a representative list of
automatically derived function bounds. In total we analyzed more



Table 2. Derived bounds for functions from cBench.
Function LoC Bound Time (s)

adpcm coder 145 1` |r0,Ns| 0.6
adpcm decod 130 1` |r0,Ns| 0.2
BF cfb64 enc 151 1` 2|r´1,Ns| 0.7

BF cbc enc 180 2` 0.25|r´8,Ns| 1.0
mad bit crc 145 61.19`0.19|r´1,Ns| 0.4

mad bit read 65 1` 0.12|r0,Ns| 0.05
MD5Update 200 133.95`1.05|r0,Ns| 1.0

MD5Final 195 141 0.22
sha update 98 2` 3.55|r0,Ns| 1.2

PackBitsDecode 61 1` 65|r´129, ccs| 0.6
KMPSearch 20 1` 2|r0, ns| 0.1

ycc rgb conv 66 nr ¨ nc 0.1
uv decode 31 log2pUV NVSq ` 1 0.1

than 2900 lines of code. In the LoC column we not only count the
lines of the analyzed function but also the ones of all the function it
calls. We analyzed the functions using a metric that assigns a cost 1
to all the back-edges in the control flow (loops, and function calls).
The bounds for the functions ycc rgb conv and uv decode have
been inferred with user interaction as described in Section 6. The
most challenging functions forC4B have unrolled loops where many
variables are assigned. This stresses our analysis because the number
of LP variables has a quadratic growth in program variables. Even
on these stressful examples, the analysis could finish in less than
2 seconds. For example, the sha update function is composed of
one loop calling two helper functions that in turn have 6 and 1 inner
loops. In the analysis of the SHA algorithm, the compositionality
of our analysis is essential to get a tight bound since loops on the
same index are sequenced 4 and 2 times without resetting it. All
other tools derive much larger constant factors.

With our formal cost semantics, we can run our examples for
different inputs and measure the cost to compare it to our derived
bound. Figure 9 shows such a comparison for Example t08, a variant
of t08a from Section 3. One can see that the derived constant factors
are the best possible if the input variable x is non-negative.

9. Limitations
Our implementation does not currently support all of Clight. Pro-
grams with function pointers, goto statements, continue statements,
and pointers to stack-allocated variables cannot be analyzed automat-
ically. While these limitations concern the current implementation,
our technique is in principle capable to handle them.

For the sake of simplicity, the automated system described here
is restricted to finding only linear bounds. However, the amortized
analysis technique was shown to work with polynomial bounds [23];
we leave this extension of our system as future work.

Even certain linear programs cannot be analyzed automatically
by C4B, it is usually the case for programs that rely on heap
invariants (like nul-terminated C strings), for programs in which
resource usage depends on the result of non-linear operations (like
% or ˚) in a non-trivial way, or for programs whose termination can
only be proved by complex path-sensitive reasoning.

10. Related Work
Our work has been inspired by type-based amortized resource
analysis for functional programs [21, 24, 25]. Here, we present
the first automatic amortized resource analysis for C. None of the
existing techniques can handle the example programs we describe
in this work. The automatic analysis of realistic C programs is
enabled by two major improvements over previous work. First, we
extended the analysis system to associate potential with not just
individual program variables but also multivariate intervals and,
more generally, auxiliary variables. In this way, we solved the long-
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Figure 9. The automatically derived bound 1.33|rx, ys| `
0.33|r0, xs| (blue lines) and the measured runtime cost (red crosses)
for Example t08. For x ě 0 the bound is tight.

standing open problem of extending automatic amortized resource
analysis to compute bounds for programs that loop on (possibly
negative) integers without decreasing one individual number in each
iteration. Second, for the first time, we have combined an automatic
amortized analysis with a system for interactively deriving bounds.
In particular, recent systems [22] that deal with integers and arrays
cannot derive bounds that depend on values in mutable locations,
possibly negative integers, or on differences between integers.

A recent project [13] has implemented and verified a quantitative
logic to reason about stack-space usage, and modified the verified
CompCert C compiler to translate C level bound to x86 stack bounds.
This quantitative logic is also based on the potential method but has
very rudimentary support for automation. It is not based on efficient
LP solving and cannot automatically derive symbolic bounds. In
contrast, our main contribution is an automatic amortized analysis
for C that can derive parametric bounds for loops and recursive
functions fully automatically. We use a more general quantitative
Hoare logic that is parametric over the resource of interest.

There exist many tools that can automatically derive loop and
recursion bounds for imperative programs such as SPEED [18, 20],
KoAT [11], PUBS [1], Rank [3], ABC [8] and LOOPUS [31, 33].
These tools are based on abstract interpretation–based invariant
generation and/or term rewriting techniques, and they derive impres-
sive results on realistic software. The importance of amortization to
derive tight bounds is well known in the resource analysis commu-
nity [4, 27, 31]. Currently, the only other available tools that can be
directly applied to C code are Rank and LOOPUS. As demonstrated,
C4B is more compositional than the aforementioned tools. Our
technique, is the only one that can generate resource specifications
for functions, deal with resources like memory that might become
available, generate proof certificates for the bounds, and support
user guidance that separates qualitative and quantitative reasoning.

There are techniques [10] that can compute the memory require-
ments of object oriented programs with region-based garbage collec-
tion. These systems can handle loops but not recursive or composed
functions. We are only aware of two verified quantitative analysis
systems. Albert et al. [2] rely on the KeY tool to automatically verify
previously inferred loop invariants, size relations, and ranking func-
tions for Java Card programs. However, they do not have a formal
cost semantics and do not prove the bounds correct with respect to a
cost model. Blazy et al. [9] have verified a loop bound analysis for
CompCert’s RTL intermediate language. However, this automatic
bound analysis does not compute symbolic bounds.

11. Conclusion
We have developed a novel analysis framework for compositional
and certified worst-case resource bound analysis for C programs.
The framework combines ideas from existing abstract interpretation–



based techniques with the potential method of amortized analysis. It
is implemented in the publicly available tool C4B. To the best of our
knowledge, C4B is the first tool for C programs that automatically
reduces the derivation of symbolic bounds to LP solving.

We have demonstrated that our approach improves the state-of-
the-art in resource bound analysis for C programs in three ways.
First, our technique is naturally compositional, tracks size changes
of variables, and can abstractly specify the resource cost of functions
(Section 3). Second, it is easily combinable with established qualita-
tive verification to guide semi-automatic bound derivation (Section
6). Third, we have shown that the local inference rules of the deriva-
tion system automatically produce easily checkable certificates for
the derived bounds (Section 7). Our system is the first amortized
resource analysis for C programs. It addresses the long-standing
open problem of extending automatic amortized resource analysis
to compute bounds for programs that loop on signed integers and to
deal with non-linear control flow.

This work is the starting point for several projects that we plan
to investigate in the future, such as the extension to concurrency,
better integration of low-level features like memory caches, and
the extension of the automatic analysis to multivariate resource
polynomials [23].
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A. Complete Experimental Results for the Tool Comparison

Table 3. Comparison of the bounds generated by KoAT, Rank, LOOPUS, SPEED, and our tool C4B on several challenging linear examples.
Results for KoAT and SPEED were extracted from previous publications [18–20, 31] because KoAT cannot take C programs as input in its
current version and SPEED is not available. Entries marked with ? indicate that we cannot test the respective example with the tool. Entries
marked with — indicate that the tool failed to produce a result. We write mxpa, bq for the maximum of a and b. Functions with names of the
form tXX are challenging tests that we designed during the development of C4B. The source code for all functions is available in the extended
version [14].

Function KoAT Rank LOOPUS SPEED C4B

gcd ? ppp2`1q . . . Opnq — ? |r0, xs|`|r0, ys|
kmp ? ppp2`pn` . . . Opn2q mxpn, 0q . . . Opnq ? 1`2|r0, ns|

qsort ? — — ? 1`2|r0, lens|
speed pldi09

fig4 2
— ppp2`nq . . . Opnq — n

m
` n 1`2|r0, ns|

speed pldi09
fig4 4

— ppp2`p´1 . . . Opnq — n
m
`m |r0, ns|

speed pldi09
fig4 5

28d`
7g ` 27

Opnq ppp2`p´1 . . . Opnq — mxpn, n´mq —

speed pldi10
ex1

— — — n |r0, ns|

speed pldi10
ex3

— ppp2`p´1 . . . Opnq 2¨mxpn, 0q Opnq n |r0, ns|

speed pldi10
ex4

110a`
33

Opnq — — n` 1 1`2|r0, ns|

speed popl10
fig2 1

9a`
9b` . . .

Opnq pp2`pp´y . . . Opnq
mxp0, n´xq `
mxp0,m´yq

Opnq
mxp0, n´xq `
mxp0,m´yq

|rx, ns|`|ry,ms|

speed popl10
fig2 2

6a`9b`
3c` 5

Opnq pp2´x . . . Opnq
mxp0, px`
1´zq . . .

Opnq
mxp0, n´xq `
mxp0, n´zq

|rx, ns|`|rz, ns|

speed popl10
nested multiple

— pp2´x`n . . . Opn2q
mxp0,m´yq `

mxp0, n´xq
Opnq

mxp0, n´xq `
mxp0,m´yq

|rx, ns|`|ry,ms|

speed popl10
nested single

48b` 16 Opnq ppp1´x`n . . . Opnq mxp0,n´1q . . . Opnq n |r0, ns|

speed popl10
sequential single

21b` 6 Opnq pp2´ x`n . . . Opnq 2¨mxpn, 0q Opnq n |r0, ns|

speed popl10
simple multiple

9c`
10d` 7

Opnq pp2´y`m. . . Opnq
mxpn, 0q `
mxpm, 0q

Opnq n`m |r0,ms|`|r0, ns|

speed popl10
simple single2

20d`
12c` 17

Opnq — mxpn, 0q `
mxpm, 0q

Opnq n`m |r0, ns|`|r0,ms|

speed popl10
simple single

4b` 6 Opnq pp2´x`n . . . Opnq mxpn, 0q Opnq n |r0, ns|

t07 ? 2` x Opnq mxpx, 0q . . . Opnq ? 1`3|r0, xs|`|r0, ys|

t08 ? pp2`z´y . . . Opnq mxp0,y´2q . . . Opnq ?
1.33|ry, zs|`0.33|r0, ys|

t10 ? pp2´y`x . . . Opnq mxp0, x´yq Opnq ? |ry, xs|

t11 ? pp2´y`m. . . Opnq
mxp0, n´xqq`
mxp0,m´yq

Opnq ? |rx, ns|`|ry,ms|

t13 ? ppp1`y2{2 . . . Opn2q
2¨mxpx, 0q `

mxpy, 0q
Opnq ? 2|r0, xs|`|r0, ys|

t15 ? pp1`x . . . Opnq — ? |r0, xs|
t16 ? pp´99¨y . . . Opnq — ? 101|r0, xs|

t19 ? pp153`k . . . Opnq
mxp0,i´102q`

mxp0,k`i`51q
Opnq ? 50`|r´1, is|`|r0, ks|

t20 ? p2´y`x . . . Opnq
2¨mxp0,y´xq`

mxp0,x´yq
Opnq ? |rx, ys|`|ry, xs|

t27 ? — 103mxp0,
´nq. . .

Opnq ?
0.01|rn, ys|`11|rn, 0s|

t28 ? pp1´y`x . . . Opnq
103 mxp0, x´

yq . . .
Opnq ? |rx, 0s|`|r0, ys|

`1002|ry, xs|
t30 ? — — ? |r0, xs|`|r0, ys|
t37 ? — — ? 3`2|r0, xs|`|r0, ys|
t39 ? — — ? 1.33`0.67|rz, ys|
t46 ? — — ? |r0, ys|
t47 ? 4` n Opnq 1`mxpn, 0q Opnq ? 1`|r0, ns|


