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Abstract

A common thread in the social sciences is to identify sets of alternatives that satisfy certain
notions of stability according to some binary dominance relation. Examples can be found
in areas as diverse as voting theory, game theory, and argumentation theory. Brandt and
Fischer [1] proved that it is NP-hard to decide whether an alternative is contained in some
inclusion-minimal unidirectional (i.e., either upward or downward) covering set. For both
problems, we raise this lower bound to the Θ

p
2 level of the polynomial hierarchy and provide a

Σ
p
2 upper bound. Relatedly, we show that a variety of other natural problems regarding mini-

mal or minimum-size unidirectional covering sets are hard or complete for either of NP, coNP,
and Θ

p
2 . An important consequence of our results is that neither minimal upward nor mini-

mal downward covering sets (even when guaranteed to exist) can be computed in polynomial
time unless P = NP. This sharply contrasts with Brandt and Fischer’s result that minimal
bidirectional covering sets are polynomial-time computable.

1. Introduction

A common thread in the social sciences is to identify sets of alternatives that satisfy cer-
tain notions of stability according to some binary dominance relation. Applications range
from cooperative to non-cooperative game theory, from social choice theory to argumentation
theory, and from multi-criteria decision analysis to sports tournaments (see, e.g., [3, 1] and the
references therein).

In settings of social choice, the most common dominance relation is the pairwise majority
relation, where an alternative x is said to dominate another alternative y if the number of in-
dividuals preferring x to y exceeds the number of individuals preferring y to x. McGarvey [4]
proved that every asymmetric dominance relation can be realized via a particular preference
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profile, even if the individual preferences are linear. The dominance graph shown in Figure 1
may for example result from the individual preferences of six voters given in the following
table where each column represents a number of voters with preferences given in decreas-
ing order. For example, the first column represents two voters who rank the alternatives in
alphabetical order.

2 1 1 1 1

a d c b d
b a d c a
c b b d c
d c a a b

A well-known paradox due to the Marquis de Condorcet [5] says that the majority rela-
tion may contain cycles and thus does not always admit maximal elements, even if all of the
underlying individual preferences do. This means that the concept of maximality is rendered
useless in most cases. For this reason, various alternative solution concepts that can be used in
place of maximality for nontransitive relations (see, e.g., [3]) have been proposed. In particu-
lar, concepts based on covering relations—transitive subrelations of the dominance relation at
hand—have turned out to be very attractive [6, 7, 8].

In this paper, we study the computational complexity of problems related to the notions of
upward and downward covering sets in dominance graphs. An alternative x is said to upward
cover another alternative y if x dominates y and every alternative dominating x also domi-
nates y. The intuition is that x “strongly” dominates y in the sense that there is no alternative
that dominates x but not y. Similarly, an alternative x is said to downward cover another al-
ternative y if x dominates y and every alternative dominated by y is also dominated by x. The
intuition here is that x “strongly” dominates y in the sense that there is no alternative domi-
nated by y but not by x. A minimal upward or minimal downward covering set is defined as
an inclusion-minimal set of alternatives that satisfies certain notions of internal and external
stability with respect to the upward or downward covering relation [8, 1].

Recent work in computational social choice has addressed the computational complex-
ity of most solution concepts proposed in the context of binary dominance (see, e.g.,
[9, 10, 11, 12, 1, 13]). In particular, Brandt and Fischer [1] have shown NP-hardness of
both the problem of deciding whether an alternative is contained in some minimal upward
covering set and the problem of deciding whether an alternative is contained in some minimal
downward covering set. For both problems, we improve on these results by raising their NP-
hardness lower bounds to the Θ

p
2 level of the polynomial hierarchy, and we provide an upper

bound of Σ
p
2 . Moreover, we will analyze the complexity of a variety of other problems related

to minimal and minimum-size upward and downward covering sets that have not been studied
before. In particular, we provide hardness and completeness results for the complexity classes
NP, coNP, and Θ

p
2 . Remarkably, these new results imply that neither minimal upward cover-

ing sets nor minimal downward covering sets (even when guaranteed to exist) can be found in
polynomial time unless P = NP. This sharply contrasts with Brandt and Fischer’s result that
minimal bidirectional covering sets are polynomial-time computable [1]. Note that, notwith-
standing the hardness of computing minimal upward covering sets, the decision version of this
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search problem is trivially in P: Every dominance graph always contains a minimal upward
covering set.

Our Θ
p
2 -hardness results apply Wagner’s method [14] that was useful also in other contexts

(see, e.g., [14, 15, 16, 17, 18]). To the best of our knowledge, our constructions for the first
time apply his method to problems defined in terms of minimality rather than minimum size
of a solution.

2. Definitions and Notation

In this section, we define the necessary concepts from social choice theory and complexity
theory.

Definition 2.1 (Covering Relations). Let A be a finite set of alternatives, let B ⊆ A, and let
� ⊆ A×A be a dominance relation on A, i.e., � is asymmetric and irreflexive.1 A dominance
relation � on a set A of alternatives can be conveniently represented as a dominance graph,
denoted by (A,�), whose vertices are the alternatives from A, and for each x, y ∈ A there is a
directed edge from x to y if and only if x � y.

For any two alternatives x and y in B, define the following covering relations (see, e.g.,
[6, 7, 19]):

• x upward covers y in B, denoted by x CB
u y, if x � y and for all z ∈ B, z � x implies z � y,

and

• x downward covers y in B, denoted by x CB
d y, if x � y and for all z ∈ B, y � z implies

x � z.

When clear from the context, we omit mentioning “in B” explicitly and simply write x Cu y
rather than x CB

u y, and x Cd y rather than x CB
d y.

Definition 2.2 (Uncovered Set). Let A be a set of alternatives, let B ⊆ A be any subset, let
� be a dominance relation on A, and let C be a covering relation on A based on �. The
uncovered set of B with respect to C is defined as

UCC(B) = {x ∈ B | y C x for no y ∈ B}.

For notational convenience, let UCx(B) = UCCx (B) for x ∈ {u, d}, and we call UCu(B) the
upward uncovered set of B and UCd(B) the downward uncovered set of B.

In the dominance graph (A,�) in Figure 1, b upward covers c in A, and a downward
covers b in A (i.e., b CA

u c and a CA
d b), so UCu(A) = {a, b, d} is the upward uncovered set

and UCd(A) = {a, c, d} is the downward uncovered set of A. For both the upward and the
downward covering relation (henceforth both will be called unidirectional covering relations),

1In general, � need not be transitive or complete. For alternatives x and y, x � y (equivalently, (x, y) ∈ �) is
interpreted as x being strictly preferred to y (and we say “x dominates y”), e.g., due to a strict majority of voters
preferring x to y.

3



d

a b

c

Figure 1: Dominance graph (A,�).

transitivity of the relation implies nonemptiness of the corresponding uncovered set for each
nonempty set of alternatives. The intuition underlying covering sets is that there should be no
reason to restrict the selection by excluding some alternative from it (internal stability) and
there should be an argument against each proposal to include an outside alternative into the
selection (external stability).

Definition 2.3 (Minimal Covering Set). Let A be a set of alternatives, let � be a dominance
relation on A, and let C be a covering relation based on �. A subset B ⊆ A is a covering set
for A under C if the following two properties hold:

• Internal stability: UCC(B) = B.

• External stability: For all x ∈ A − B, x < UCC(B ∪ {x}).

A covering set M for A under C is said to be (inclusion-)minimal if no M′ ⊂ M is a
covering set for A under C.

Every upward uncovered set contains one or more minimal upward covering sets, whereas
minimal downward covering sets may not always exist [1]. Dutta [8] proposed minimal cov-
ering sets in the context of tournaments, i.e., complete dominance relations. In tournaments,
both notions of covering coincide because the set of alternatives dominating a given alternative
x consists precisely of those alternatives not dominated by x. Minimal unidirectional covering
sets are one of several possible generalizations to incomplete dominance relations (for more
details, see [1]). Occasionally, it might be helpful to specify the dominance relation explicitly
to avoid ambiguity. In such cases we refer to the dominance graph used and write, e.g., “M
is an upward covering set for (A,�).” The unique minimal upward covering set for the dom-
inance graph shown in Figure 1 is {b, d}, and the unique minimal downward covering set is
{a, c, d}.

In addition to the (inclusion-)minimal unidirectional covering sets considered by Brandt
and Fischer [1], we also consider minimum-size covering sets, i.e., unidirectional covering sets
of smallest cardinality. For some of the computational problems we study, different complexi-
ties can be shown for the minimal and minimum-size versions of the problem (see Theorem 3.1
and Table 1). Specifically, we consider six types of computational problems, for both upward
and downward covering sets, and for each both their “minimal” (prefixed by MCu or MCd)
and “minimum-size” (prefixed by MSCu or MSCd) versions. We first define the six problem
types for the case of minimal upward covering sets:

1. MCu-Size: Given a set A of alternatives, a dominance relation � on A, and a positive
integer k, does there exist some minimal upward covering set for A containing at most
k alternatives?
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2. MCu-Member: Given a set A of alternatives, a dominance relation � on A, and a distin-
guished element d ∈ A, is d contained in some minimal upward covering set for A?

3. MCu-Member-All: Given a set A of alternatives, a dominance relation � on A, and a
distinguished element d ∈ A, is d contained in all minimal upward covering sets for A?

4. MCu-Unique: Given a set A of alternatives and a dominance relation � on A, does there
exist a unique minimal upward covering set for A?

5. MCu-Test: Given a set A of alternatives, a dominance relation � on A, and a subset
M ⊆ A, is M a minimal upward covering set for A?

6. MCu-Find: Given a set A of alternatives and a dominance relation � on A, find a minimal
upward covering set for A.

If we replace “upward” by “downward” above, we obtain the six corresponding
“downward covering” versions, denoted by MCd-Size, MCd-Member, MCd-Member-All,
MCd-Unique, MCd-Test, and MCd-Find. And if we replace “minimal” by “minimum-
size” in the twelve problems just defined, we obtain the corresponding “minimum-size”
versions: MSCu-Size, MSCu-Member, MSCu-Member-All, MSCu-Unique, MSCu-Test,
MSCu-Find, MSCd-Size, MSCd-Member, MSCd-Member-All, MSCd-Unique, MSCd-Test,
and MSCd-Find.

Note that the four problems MCu-Find, MCd-Find, MSCu-Find, and MSCd-Find are search
problems, whereas the other twenty problems are decision problems.

We assume that the reader is familiar with the basic notions of complexity theory, such
as polynomial-time many-one reducibility and the related notions of hardness and complete-
ness, and also with standard complexity classes such as P, NP, coNP, and the polynomial
hierarchy [20] (see also, e.g., the textbooks [21, 22]). In particular, coNP is the class of sets
whose complements are in NP. Σ

p
2 = NPNP, the second level of the polynomial hierarchy,

consists of all sets that can be solved by an NP oracle machine that has access (in the sense of
a Turing reduction) to an NP oracle set such as SAT. SAT denotes the satisfiability problem of
propositional logic, which is one of the standard NP-complete problems (see, e.g., Garey and
Johnson [23]) and is defined as follows: Given a boolean formula in conjunctive normal form,
does there exist a truth assignment to its variables that satisfies the formula?

Papadimitriou and Zachos [24] introduced the class of problems solvable in polynomial
time via asking O(log n) sequential Turing queries to NP. This class is also known as the Θ

p
2

level of the polynomial hierarchy (see Wagner [25]), and has been shown to coincide with the
class of problems that can be decided by a P machine that accesses its NP oracle in a parallel
manner (see [26, 27]). Equivalently, Θ

p
2 is the closure of NP under polynomial-time truth-table

reductions. It follows immediately from the definitions that P ⊆ NP ∩ coNP ⊆ NP ∪ coNP ⊆
Θ

p
2 ⊆ Σ

p
2 .

Θ
p
2 captures the complexity of various optimization problems. For example, the problem of

testing whether the size of a maximum clique in a given graph is an odd number, the problem
of deciding whether two given graphs have minimum vertex covers of the same size, and the
problem of recognizing those graphs for which certain heuristics yield good approximations
for the size of a maximum independent set or for the size of a minimum vertex cover each are

5



Problem Type MCu MSCu MCd MSCd

Size NP-complete NP-complete NP-complete NP-complete
Member Θ

p
2 -hard and in Σ

p
2 Θ

p
2 -complete Θ

p
2 -hard and in Σ

p
2 coNP-hard and in Θ

p
2

Member-All coNP-complete [1] Θ
p
2 -complete coNP-complete [1] coNP-hard and in Θ

p
2

Unique coNP-hard and in Σ
p
2 coNP-hard and in Θ

p
2 coNP-hard and in Σ

p
2 coNP-hard and in Θ

p
2

Test coNP-complete coNP-complete coNP-complete coNP-complete
Find not in polynomial not in polynomial not in polynomial not in polynomial

time unless P = NP time unless P = NP time unless P = NP time unless P = NP
(follows from [1])

Table 1: Overview of complexity results for the various types of covering set problems. As indicated, previously
known results are due to Brandt and Fischer [1]; all other results are new to this paper.

known to be complete for Θ
p
2 (see [14, 16, 18]). Hemaspaandra and Wechsung [17] proved

that the minimization problem for boolean formulas is Θ
p
2 -hard. In the field of computational

social choice, the winner problems for Dodgson [28], Young [29], and Kemeny [30] elections
have been shown to be Θ

p
2 -complete in the nonunique-winner model [15, 31, 32], and also in

the unique-winner model [33].

3. Results and Discussion

Results. Brandt and Fischer [1] proved that it is NP-hard to decide whether a given alterna-
tive is contained in some minimal unidirectional covering set. Using the notation of this paper,
their results state that the problems MCu-Member and MCd-Member are NP-hard. The ques-
tion of whether these two problems are NP-complete or of higher complexity was left open
in [1]. Our contribution is

1. to raise Brandt and Fischer’s NP-hardness lower bounds for MCu-Member and
MCd-Member to Θ

p
2 -hardness and to provide (simple) Σ

p
2 upper bounds for these prob-

lems, and

2. to extend the techniques we developed to apply also to the 22 other covering set prob-
lems defined in Section 2, in particular to the search problems.

Our results are stated in the following theorem.

Theorem 3.1. The complexity of the covering set problems defined in Section 2 is as shown
in Table 1.

The detailed proofs of the single results collected in Theorem 3.1 will be presented in
Section 5, and the technical constructions establishing the properties that are needed for these
proofs are given in Section 4.
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Discussion. We consider the problems of finding minimal and minimum-size upward and
downward covering sets (MCu-Find, MCd-Find, MSCu-Find, and MSCd-Find) to be particu-
larly important and natural.

Regarding upward covering sets, we stress that our result (see Theorem 5.7) that, assuming
P , NP, MCu-Find and MSCu-Find are hard to compute does not seem to follow directly from
the NP-hardness of MCu-Member in any obvious way. The decision version of MCu-Find
is: Given a dominance graph, does it contain a minimal upward covering set? However, this
question has always an affirmative answer, so the decision version of MCu-Find is trivially
in P. Note also that MCu-Find can be reduced in a “disjunctive truth-table” fashion to the
search version of MCu-Member (“Given a dominance graph (A,�) and an alternative d ∈ A,
find some minimal upward covering set for A that contains d”) by asking this oracle set about
all alternatives in parallel. So MCu-Find is no harder (with respect to disjunctive truth-table
reductions) than that problem. The converse, however, is not at all obvious. Brandt and Fis-
cher’s results only imply the hardness of finding an alternative that is contained in all minimal
upward covering sets [1]. Our reduction that raises the lower bound of MCu-Member from
NP-hardness to Θ

p
2 -hardness, however, also allows us to prove that MCu-Find and MSCu-Find

cannot be solved in polynomial time unless P = NP.
Regarding downward covering sets, the result that MCd-Find cannot be computed in poly-

nomial time unless P = NP is an immediate consequence of Brandt and Fischer’s result that it
is NP-complete to decide whether there exists a minimal downward covering set [1, Thm. 9].
We provide an alternative proof based on our reduction showing that MCd-Member is Θ

p
2 -hard

(see the proof of Theorem 5.13). In contrast to Brandt and Fischer’s proof, our proof shows
that MCd-Find is hard to compute even when the existence of a (minimal) downward cover-
ing set is guaranteed. As indicated in Table 1, coNP-completeness of MCu-Member-All and
MCd-Member-All was also shown previously by Brandt and Fischer [1].

As mentioned above, the two problems MCu-Member and MCd-Member were already
known to be NP-hard [1] and are here shown to be even Θ

p
2 -hard. One may naturally wonder

whether raising their (or any problem’s) lower bound from NP-hardness to Θ
p
2 -hardness gives

us any more insight into the problem’s inherent computational complexity. After all, P = NP
if and only if P = Θ

p
2 . However, this question is a bit more subtle than that and has been

discussed carefully by Hemaspaandra et al. [34]. They make the case that the answer to
this question crucially depends on what one considers to be the most natural computational
model. In particular, they argue that raising NP-hardness to Θ

p
2 -hardness potentially (i.e.,

unless longstanding open problems regarding the separation of the corresponding complexity
classes could be solved) is an improvement in terms of randomized polynomial time and in
terms of unambiguous polynomial time [34].

4. Constructions

In this section, we provide the constructions that will be used in Section 5 to obtain the
new complexity results for the problems defined in Section 2.

4.1. Minimal and Minimum-Size Upward Covering Sets
We start by giving the constructions that will be used for establishing results on the min-

imal and minimum-size upward covering set problems. Brandt and Fischer [1] proved the
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Figure 2: Dominance graph for Theorem 4.1, example for the formula (v1 ∨ ¬v2 ∨ v3) ∧ (¬v1 ∨ ¬v3).

following result. Since we need their reduction in Construction 4.7 and Section 5, we give a
proof sketch for Theorem 4.1.

Theorem 4.1 (Brandt and Fischer [1]). Deciding whether a designated alternative is con-
tained in some minimal upward covering set for a given dominance graph is NP-hard. That
is, MCu-Member is NP-hard.

Proof Sketch. NP-hardness is shown by a reduction from SAT. Given a boolean formula in
conjunctive normal form, ϕ(v1, v2, . . . , vn) = c1 ∧ c2 ∧ · · · ∧ cr, over the set V = {v1, v2, . . . , vn}

of variables, construct an instance (A,�, d) of MCu-Member as follows. The set of alternatives
is

A = {xi, xi, x′i , x
′
i | vi ∈ V} ∪ {y j | c j is a clause in ϕ} ∪ {d},

where d is the distinguished alternative whose membership in some minimal upward covering
set for A is to be decided, and the dominance relation � is defined by:

• For each i, 1 ≤ i ≤ n, there is a cycle xi � xi � x′i � x′i � xi;

• if variable vi occurs in clause c j as a positive literal, then xi � y j;

• if variable vi occurs in clause c j as a negative literal, then xi � y j; and

• for each j, 1 ≤ j ≤ r, we have y j � d.

As an example of this reduction, Figure 2 shows the dominance graph resulting from the
formula

(v1 ∨ ¬v2 ∨ v3) ∧ (¬v1 ∨ ¬v3),

which is satisfiable, for example via the truth assignment that sets each of v1, v2, and v3 to false.
Note that in this case the set {x1, x

′
1, x2, x

′
2, x3, x

′
3} ∪ {d} is a minimal upward covering set for A

corresponding to the satisfying assignment, so there indeed exists a minimal upward covering
set for A that contains the designated alternative d. In general, Brandt and Fischer [1] proved
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that there exists a satisfying assignment for ϕ if and only if d is contained in some minimal
upward covering set for A. q

As we will use this reduction to prove results for both MCu-Member and some of the other
problems stated in Section 2, we now analyze the minimal and minimum-size upward cov-
ering sets of the dominance graph constructed in the proof sketch of Theorem 4.1. Brandt
and Fischer [1] showed that each minimal upward covering set for A contains exactly two of
the four alternatives corresponding to any of the variables, i.e., either xi and x′i , or xi and xi

′,
1 ≤ i ≤ n. We now assume that if ϕ is not satisfiable then for each truth assignment to the
variables of ϕ, at least two clauses are unsatisfied (which can be ensured, if needed, by adding
two dummy variables). It is easy to see that every minimal upward covering set for A not
containing alternative d must consist of at least 2n + 2 alternatives where 2n alternatives are
from the variables and at least two, from the unsatisfied clauses. And every minimal upward
covering set for A containing d consists of exactly 2n + 1 alternatives, where again 2n alter-
natives are from the variables, none from the clauses and alternative d. Thus, ϕ is satisfiable
if and only if every minimum-size upward covering set consists of 2n + 1 alternatives. These
minimum-size upward covering sets always include alternative d.

We now provide another construction that transforms a given boolean formula into a dom-
inance graph with quite different properties.

Construction 4.2 (for coNP-hardness of upward covering set problems). Given a
boolean formula in conjunctive normal form, ϕ(w1,w2, . . . ,wk) = f1 ∧ f2 ∧ · · · ∧ f`, over the
set W = {w1,w2, . . . ,wk} of variables, we construct a set of alternatives A and a dominance
relation � on A. Without loss of generality, we may assume that if ϕ is satisfiable then it
has at least two satisfying assignments. This can be ensured, if neeeded, by adding dummy
variables.

The set of alternatives is A = {ui, ui, u′i , u
′
i | wi ∈ W} ∪ {e j, e′j | f j is a clause in ϕ} ∪

{a1, a2, a3}, and the dominance relation � is defined by:

• For each i, 1 ≤ i ≤ k, there is a cycle ui � ui � u′i � u′i � ui;

• if variable wi occurs in clause f j as a positive literal, then ui � e j, ui � e′j, e j � ui, and
e′j � ui;

• if variable wi occurs in clause f j as a negative literal, then ui � e j, ui � e′j, e j � ui, and
e′j � ui;

• if variable wi does not occur in clause f j, then e j � u′i and e′j � u′i;

• for each j, 1 ≤ j ≤ `, we have a1 � e j and a1 � e′j; and

• there is a cycle a1 � a2 � a3 � a1.

Figure 3 shows some parts of the dominance graph that results from the given boolean
formula ϕ. In particular, Figure 3(a) shows that part of this graph that corresponds to some
variable wi occurring in clause f j as a positive literal; Figure 3(b) shows that part of this graph
that corresponds to some variable wi occurring in clause f j as a negative literal; and Figure 3(c)
shows that part of this graph that corresponds to some variable wi not occurring in clause f j.
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u′i

ui

e j e′j

ui

u′i

(a) wi occurs in f j as a positive literal

u′i

ui

e j e′j

ui

u′i

(b) wi occurs in f j as a negative literal

u′i

ui

e j e′j

ui

u′i

(c) wi does not occur in f j

Figure 3: Parts of the dominance graph defined in Construction 4.2.

As a more complete example, Figure 4 shows the entire dominance graph that corresponds
to the concrete formula (¬w1∨w2)∧(w1∨¬w3), which can be satisfied by setting, for example,
each of w1, w2, and w3 to true. A minimal upward covering set for A corresponding to this
assignment is M = {u1, u′1, u2, u′2, u3, u′3, a1, a2, a3}. Note that neither e1 nor e2 occurs in M, and
none of them occurs in any other minimal upward covering set for A either. For alternative e1
in the example shown in Figure 4, this can be seen as follows. If there were a minimal upward
covering set M′ for A containing e1 (and thus also e′1, since they both are dominated by the
same alternatives) then neither u1 nor u2 (which dominate e1) must upward cover e1 in M′, so
all alternatives corresponding to the variables w1 and w2 (i.e., {ui, ui, u′i , u

′
i | i ∈ {1, 2}}) would

also have to be contained in M′. Due to e1 � u′3 and e′1 � u′3, all alternatives corresponding to
w3 (i.e., {u3, u3, u′3, u

′
3}) are in M′ as well. Note that, e2 and e′2 are no longer upward covered

and must also be in M′. The alternatives a1, a2, and a3 are contained in every minimal upward
covering set for A. But then M′ is not minimal because the upward covering set M, which
corresponds to the satisfying assignment stated above, is a strict subset of M′. Hence, e1
cannot be contained in any minimal upward covering set for A.

We now show some properties of the dominance graph created by Construction 4.2 in
general. We will need these properties for the proofs in Section 5. The first property, stated in
Claim 4.3, has already been seen in the example above.

Claim 4.3. Consider the dominance graph (A,�) created by Construction 4.2, and fix any j,
1 ≤ j ≤ `. For each minimal upward covering set M for A, if M contains the alternative e j
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u′1 u′2

u2 u2

u′2 u′3

u3 u3

u′3

e1 e′1

e2 e′2

a1

a3a2

Figure 4: Dominance graph from Construction 4.2, example for the formula (¬w1 ∨ w2) ∧ (w1 ∨ ¬w3).

then all other alternatives are contained in M as well (i.e., A = M).

Proof. To simplify notation, we prove the claim only for the case of j = 1. However, since
there is nothing special about e1 in our argument, the same property can be shown by an
analogous argument for each j, 1 ≤ j ≤ `.

Let M be any minimal upward covering set for A, and suppose that e1 ∈ M. First note
that the dominators of e1 and e′1 are always the same (albeit e1 and e′1 may dominate different
alternatives). Thus, for each minimal upward covering set, either both e1 and e′1 are contained
in it, or they both are not. Thus, since e1 ∈ M, we have e′1 ∈ M as well.

Since the alternatives a1, a2, and a3 form an undominated three-cycle, they each are con-
tained in every minimal upward covering set for A. In particular, {a1, a2, a3} ⊆ M. Further-
more, no alternative e j or e′j, 1 ≤ j ≤ `, can upward cover any other alternative in M, because
a1 ∈ M and a1 dominates e j and e′j but none of the alternatives that are dominated by either
e j or e′j. In particular, no alternative in any of the k four-cycles ui � ui � u′i � u′i � ui can be
upward covered by any alternative e j or e′j, and so they each must be upward covered within
their cycle. For each of these cycles, every minimal upward covering set for A must contain at
least one of the sets {ui, u′i} and {ui, u

′
i}, since at least one is needed to upward cover the other
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one. 2

Since e1 ∈ M and by internal stability, we have that no alternative from M upward cov-
ers e1. In addition to a1, the alternatives dominating e1 are ui (for each i such that wi occurs as
a positive literal in f1) and ui (for each i such that wi occurs as a negative literal in f1).

First assume that, for some i, wi occurs as a positive literal in f1. Suppose that {ui, u′i} ⊆ M.
If u′i < M then e1 would be upward covered by ui, which is impossible. Thus u′i ∈ M. But then
ui ∈ M as well, since ui, the only alternative that could upward cover ui, is itself dominated
by u′i . For the latter argument, recall that ui cannot be upward covered by any e j or e′j. Thus,
we have shown that {ui, u′i} ⊆ M implies {ui, u

′
i} ⊆ M. Conversely, suppose that {ui, u

′
i} ⊆ M.

Then u′i is no longer upward covered by ui and hence must be in M as well. The same holds
for the alternative ui, so {ui, u

′
i} ⊆ M implies {ui, u′i} ⊆ M. Summing up, if e1 ∈ M then

{ui, u′i , ui, u
′
i} ⊆ M for each i such that wi occurs as a positive literal in f1.

By symmetry of the construction, an analogous argument shows that if e1 ∈ M then
{ui, u′i , ui, u

′
i} ⊆ M for each i such that wi occurs as a negative literal in f1.

Now, consider any i such that wi does not occur in f1. We have e1 � u′i and e′1 � u′i . Again,
none of the sets {ui, u′i} and {ui, u

′
i} alone can be contained in M, since otherwise either ui or u′i

would remain upward uncovered. Thus, e1 ∈ M again implies that {ui, u′i , ui, u
′
i} ⊆ M.

Now it is easy to see that, since
⋃

1≤i≤k{ui, u′i , ui, u
′
i} ⊆ M and since a1 cannot upward

cover any of the e j and e′j, 1 ≤ j ≤ `, external stability of M enforces that
⋃

1< j≤`{e j, e′j} ⊆ M.
Summing up, we have shown that if e1 is contained in any minimal upward covering set M
for A, then M = A. q

Claim 4.4. Consider Construction 4.2. The boolean formula ϕ is satisfiable if and only if
there is no minimal upward covering set for A that contains any of the e j, 1 ≤ j ≤ `.

Proof. It is enough to prove the claim for the case j = 1, since the other cases can be proven
analogously.

From left to right, suppose there is a satisfying assignment α : W → {0, 1} for ϕ. Define
the set

Bα = {a1, a2, a3} ∪ {ui, u′i | α(wi) = 1} ∪ {ui, u
′
i | α(wi) = 0}.

Since every upward covering set for A must contain {a1, a2, a3} and at least one of the sets
{ui, u′i} and {ui, u

′
i} for each i, 1 ≤ i ≤ k, Bα is a (minimal) upward covering set for A. Let M

be an arbitrary minimal upward covering set for A. By Claim 4.3, if e1 were contained in M,
we would have M = A. But since Bα ⊂ A = M, this contradicts the minimality of M. Thus
e1 < M.

From right to left, let M be an arbitrary minimal upward covering set for A and suppose
e1 < M. By Claim 4.3, if any of the e j, 1 < j ≤ `, were contained in M, it would follow that
e1 ∈ M, a contradiction. Thus, {e j | 1 ≤ j ≤ `} ∩ M = ∅. It follows that each e j must be

2The argument is analogous to that used in the construction of Brandt and Fischer [1] in their proof of Theorem 4.1.
However, in contrast with their construction, which implies that either {xi, x′i } or {xi, x′i }, 1 ≤ i ≤ n, but not both, must
be contained in any minimal upward covering set for A (see Figure 2), our construction also allows for both {ui, u′i }
and {ui, u′i } being contained in some minimal upward covering set for A. Informally stated, the reason is that, unlike
the four-cycles in Figure 2, our four-cycles ui � ui � u′i � u′i � ui also have incoming edges.
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upward covered by some alternative in M. It is easy to see that for each j, 1 ≤ j ≤ `, and for
each i, 1 ≤ i ≤ k, e j is upward covered in M ∪ {e j} ⊇ {ui, u′i} if wi occurs in f j as a positive
literal, and e j is upward covered in M ∪ {e j} ⊇ {ui, u

′
i} if wi occurs in e j as a negative literal. It

can never be the case that all four alternatives, {ui, u′i , ui, u
′
i}, are contained in M, because then

either e j would no longer be upward covered in M or the resulting set M was not minimal.
Now, M induces a satisfying assignment for ϕ by setting, for each i, 1 ≤ i ≤ k, α(wi) = 1 if
ui ∈ M, and α(wi) = 0 if ui ∈ M. q

Note that in Construction 4.2 every minimal upward covering set for A obtained from any
satisfying assignment for ϕ contains exactly 2k+3 alternatives, and there is no minimal upward
covering set of smaller size for A when ϕ is unsatisfiable.

Claim 4.5. Consider Construction 4.2. The boolean formula ϕ is not satisfiable if and only if
there is a unique minimal upward covering set for A.

Proof. Recall that we assumed in Construction 4.2 that if ϕ is satisfiable then it has at least
two satisfying assignments.

From left to right, suppose there is no satisfying assignment for ϕ. By Claim 4.4, there
must be a minimal upward covering set for A containing one of the e j, 1 ≤ j ≤ `, and by
Claim 4.3 this minimal upward covering set for A must contain all alternatives. By reason of
minimality, there cannot be another minimal upward covering set for A.

From right to left, suppose there is a unique minimal upward covering set for A. Due
to our assumption that if ϕ is satisfiable then there are at least two satisfying assignments, ϕ
cannot be satisfiable, since if it were, there would be two distinct minimal upward covering
sets corresponding to these assignments (as argued in the proof of Claim 4.4). q

Wagner provided a sufficient condition for proving Θ
p
2 -hardness that was useful in various

other contexts (see, e.g., [14, 15, 16, 17, 18]) and is stated here as Lemma 4.6.

Lemma 4.6 (Wagner [14]). Let S be some NP-complete problem and let T be any set. If
there exists a polynomial-time computable function f such that, for all m ≥ 1 and all strings
x1, x2, . . . , x2m satisfying that if x j ∈ S then x j−1 ∈ S , 1 < j ≤ 2m, we have

‖{i | xi ∈ S }‖ is odd ⇐⇒ f (x1, x2, . . . , x2m) ∈ T, (4.1)

then T is Θ
p
2 -hard.

We will apply Lemma 4.6 as well. In contrast with those previous results, however,
one subtlety in our construction is due to the fact that we consider not only minimum-size
but also (inclusion-)minimal covering sets. To the best of our knowledge, our Construc-
tion 4.7 and Construction 4.17, which will be presented later, for the first time apply Wag-
ner’s technique [14] to problems defined in terms of minimality/maximality rather than mini-
mum/maximum size of a solution:3 In Construction 4.7 below, we define a dominance graph

3For example, recall Wagner’s Θ
p
2 -completeness result for testing whether the size of a maximum clique in a given

graph is an odd number [14]. One key ingredient in his proof is to define an associative operation on graphs, ./, such
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based on Construction 4.2 and the construction presented in the proof sketch of Theorem 4.1
such that Lemma 4.6 can be applied to prove MCu-Member Θ

p
2 -hard (see Theorem 5.2), mak-

ing use of the properties established in Claims 4.3, 4.4, and 4.5.

Construction 4.7 (for applying Lemma 4.6 to upward covering set problems). We apply
Wagner’s Lemma with the NP-complete problem S = SAT and construct a dominance graph.
Fix an arbitrary m ≥ 1 and let ϕ1, ϕ2, . . . , ϕ2m be 2m boolean formulas in conjunctive normal
form such that if ϕ j is satisfiable then so is ϕ j−1, for each j, 1 < j ≤ 2m. Without loss of
generality, we assume that for each j, 1 ≤ j ≤ 2m, the first variable of ϕ j does not occur in all
clauses of ϕ j. Furthermore, we require ϕ j to have at least two unsatisfied clauses if ϕ j is not
satisfiable, and to have at least two satisfying assignments if ϕ j is satisfiable. It is easy to see
that if ϕ j does not have this property, it can be transformed into a formula that does have it,
without affecting the satisfiability of the formula.

We now define a polynomial-time computable function f , which maps the given 2m
boolean formulas to a dominance graph (A,�) with useful properties for upward covering
sets. Define A =

⋃2m
j=1 A j and the dominance relation � on A by 2m⋃

j=1

� j

 ∪
 m⋃

i=1

{
(u′1,2i, d2i−1), (u′1,2i, d2i−1)

} ∪  m⋃
i=2

{(d2i−1, z) | z ∈ A2i−2}

 ,
where we use the following notation:

1. For each i, 1 ≤ i ≤ m, let (A2i−1,�2i−1) be the dominance graph that results from the
formula ϕ2i−1 according to Brandt and Fischer’s construction [1] given in the proof
sketch of Theorem 4.1. We use the same names for the alternatives in A2i−1 as in that
proof sketch, except that we attach the subscript 2i − 1. For example, alternative d
from the proof sketch of Theorem 4.1 now becomes d2i−1, x1 becomes x1,2i−1, y1 becomes
y1,2i−1, and so on.

2. For each i, 1 ≤ i ≤ m, let (A2i,�2i) be the dominance graph that results from the formula
ϕ2i according to Construction 4.2. We use the same names for the alternatives in A2i as
in that construction, except that we attach the subscript 2i. For example, alternative a1
from Construction 4.2 now becomes a1,2i, e1 becomes e1,2i, u1 becomes u1,2i, and so on.

3. For each i, 1 ≤ i ≤ m, connect the dominance graphs (A2i−1,�2i−1) and (A2i,�2i) as
follows. Let u1,2i, u1,2i, u′1,2i, u

′
1,2i ∈ A2i be the four alternatives in the cycle correspond-

ing to the first variable of ϕ2i. Then both u′1,2i and u′1,2i dominate d2i−1. The resulting
dominance graph is denoted by (Bi,�

B
i ).

4. Connect the m dominance graphs (Bi,�
B
i ), 1 ≤ i ≤ m, as follows: For each i, 2 ≤ i ≤ m,

d2i−1 dominates all alternatives in A2i−2.

that for any two graphs G and H, the size of a maximum clique in G ./ H equals the sum of the sizes of a maximum
clique in G and one in H. This operation is quite simple: Just connect every vertex of G with every vertex of H. In
contrast, since minimality for minimal upward covering sets is defined in terms of set inclusion, it is not at all obvious
how to define a similarly simple operation on dominance graphs such that the minimal upward covering sets in the
given graphs are related to the minimal upward covering sets in the connected graph in a similarly useful way.
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Figure 5: Dominance graph from Construction 4.7. Most alternatives, and all edges between pairs of alternatives, in
A j, 1 ≤ j ≤ 2m, have been omitted. All edges between alternatives in Ai and alternatives in A j for i , j are shown.
An edge incident to a set of alternatives represents an edge incident to each alternative in the set.

The dominance graph (A,�) is sketched in Figure 5. Clearly, (A,�) is computable in
polynomial time.

Before we use this construction to obtain Θ
p
2 -hardness results for some of our upward

covering set problems in Section 5, we again show some useful properties of the dominance
graph constructed, and we first consider the dominance graph (Bi,�

B
i ) (see Step 3 in Construc-

tion 4.7) separately,4 for any fixed i with 1 ≤ i ≤ m. Doing so will simplify our argument for
the whole dominance graph (A,�). Recall that (Bi,�

B
i ) results from the formulas ϕ2i−1 and ϕ2i.

Claim 4.8. Consider Construction 4.7. Alternative d2i−1 is contained in some minimal upward
covering set for (Bi,�

B
i ) if and only if ϕ2i−1 is satisfiable and ϕ2i is not satisfiable.

Proof. Distinguish the following three cases.

Case 1: ϕ2i−1 ∈ SAT and ϕ2i ∈ SAT. Since ϕ2i is satisfiable, it follows from the proof of
Claim 4.4 that for each minimal upward covering set M for (Bi,�

B
i ), either {u1,2i, u′1,2i} ⊆

M or {u1,2i, u
′
1,2i} ⊆ M, but not both, and that none of the e j,2i and e′j,2i is in M. If u′1,2i ∈ M

but u′1,2i < M, then d2i−1 < UCu(M), since u′1,2i upward covers d2i−1 within M. If
u′1,2i ∈ M but u1,2i < M, then d2i−1 < UCu(M), since u′1,2i upward covers d2i−1 within M.
Hence, by internal stability, d2i−1 is not contained in M.

Case 2: ϕ2i−1 < SAT and ϕ2i < SAT. Since ϕ2i−1 < SAT, it follows from the proof of The-
orem 4.1 that each minimal upward covering set M for (Bi,�

B
i ) contains at least one

alternative y j,2i−1 (corresponding to some clause of ϕ2i−1) that upward covers d2i−1. Thus
d2i−1 cannot be in M, again by internal stability.

4Our argument about (Bi,�
B
i ) can be used to show, in effect, DP-hardness of upward covering set problems, where

DP is the class of differences of any two NP sets [35]. Note that DP is the second level of the boolean hierarchy over
NP (see Cai et al. [36, 37]), and it holds that NP ∪ coNP ⊆ DP ⊆ Θ

p
2 . Wagner [14] proved appropriate analogs of

Lemma 4.6 for each level of the boolean hierarchy. In particular, the analogous criterion for DP-hardness is obtained
by using the wording of Lemma 4.6 except with the value of m = 1 being fixed.
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Case 3: ϕ2i−1 ∈ SAT and ϕ2i < SAT. Since ϕ2i−1 ∈ SAT, it follows from the proof of The-
orem 4.1 that there exists a minimal upward covering set M′ for (A2i−1,�2i−1) that cor-
responds to a satisfying truth assignment for ϕ2i−1. In particular, none of the y j,2i−1 is
in M′. On the other hand, since ϕ2i < SAT, it follows from Claim 4.5 that A2i is the only
minimal upward covering set for (A2i,�2i). Define M = M′ ∪ A2i. It is easy to see that
M is a minimal upward covering set for (Bi,�

B
i ), since the only edges between A2i−1

and A2i are those from u′1,2i and u′1,2i to d2i−1, and both u′1,2i and u′1,2i are dominated by
elements in M not dominating d2i−1.

We now show that d2i−1 ∈ M. Note that u′1,2i, u′1,2i, and the y j,2i−1 are the only alternatives
in Bi that dominate d2i−1. Since none of the y j,2i−1 is in M, they do not upward cover
d2i−1. Also, u′1,2i doesn’t upward cover d2i−1, since u1,2i ∈ M and u1,2i dominates u′1,2i
but not d2i−1. On the other hand, by our assumption that the first variable of ϕ2i does not
occur in all clauses, there exist alternatives e j,2i and e′j,2i in M that dominate u′1,2i but not
d2i−1, so u′1,2i doesn’t upward cover d2i−1 either. Thus d2i−1 ∈ M.

Note that, by our assumption on how the formulas are ordered, the fourth case (i.e., ϕ2i−1 <
SAT and ϕ2i ∈ SAT) cannot occur. Thus, the proof is complete. q

Claim 4.9. Consider Construction 4.7. For each i, 1 ≤ i ≤ m, let Mi be a minimal upward
covering set for (Bi,�

B
i ) according to the cases in the proof of Claim 4.8. Then each of the

sets Mi must be contained in every minimal upward covering set for (A,�).

Proof. The minimal upward covering set Mm for (Bm,�
B
m) must be contained in every min-

imal upward covering set for (A,�), since no alternative in A − Bm dominates any alternative
in Bm. On the other hand, for each i, 1 ≤ i < m, no alternative in Bi can be upward covered by
d2i+1 (which is the only element in A−Bi that dominates any of the elements of Bi), since d2i+1
is dominated within every minimal upward covering set for Bi+1 (and, in particular, within
Mi+1). Thus, each of the sets Mi, 1 ≤ i ≤ m, must be contained in every minimal upward
covering set for (A,�). q

Claim 4.10. Consider Construction 4.7. It holds that

‖{i | ϕi ∈ SAT}‖ is odd⇐⇒ d1 is contained in some minimal upward covering set M for A.
(4.2)

Proof. To show (4.2) from left to right, suppose ‖{i | ϕi ∈ SAT}‖ is odd. Recall that for
each j, 1 < j ≤ 2m, if ϕ j is satisfiable then so is ϕ j−1. Thus, there exists some i, 1 ≤ i ≤ m,
such that ϕ1, . . . , ϕ2i−1 ∈ SAT and ϕ2i, . . . , ϕ2m < SAT. In Case 3 in the proof of Claim 4.8
we have seen that there is some minimal upward covering set for (Bi,�

B
i )—call it Mi—that

corresponds to a satisfying assignment of ϕ2i−1 and that contains all alternatives of A2i. Note
that, Mi contains d2i−1. For each j , i, 1 ≤ j ≤ m, let M j be some minimal upward covering
set for (B j,�

B
j ) according to Case 1 (if j < i) and Case 2 (if j > i) in the proof of Claim 4.8.

In Case 1 in the proof of Claim 4.8 we have seen that d2i−3 is upward covered either
by u′1,2i−3 or by u′1,2i−3. This is no longer the case, since d2i−1 is in Mi and it dominates all
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alternatives in A2i−2 but not d2i−3. By assumption, ϕ2i−3 is satisfiable, so there exists a minimal
upward covering set, which contains d2i−3 as well. Thus, setting

M = {d1, d3, . . . , d2i−1} ∪
⋃

1≤ j≤m

M j,

it follows that M is a minimal upward covering set for (A,�) containing d1.
To show (4.2) from right to left, suppose that ‖{i | ϕi ∈ SAT}‖ is even. For a contradiction,

suppose that there exists some minimal upward covering set M for (A,�) that contains d1.
If ϕ1 < SAT then we immediately obtain a contradiction by the argument in the proof of
Theorem 4.1. On the other hand, if ϕ1 ∈ SAT then our assumption that ‖{i | ϕi ∈ SAT}‖ is
even implies that ϕ2 ∈ SAT. It follows from the proof of Claim 4.3 that every minimal upward
covering set for (A,�) (thus, in particular, M) contains either {u1,2i, u′1,2i} or {u1,2i, u

′
1,2i}, but

not both, and that none of the e j,2i and e′j,2i is in M. By the argument presented in Case 3 in the
proof of Claim 4.8, the only way to prevent d1 from being upward covered by an element of M,
either u′1,2 or u′1,2, is to include d3 in M as well.5 By applying the same argument m − 1 times,
we will eventually reach a contradiction, since d2m−1 ∈ M can no longer be prevented from
being upward covered by an element of M, either u′1,2m or u′1,2m. Thus, no minimal upward
covering set M for (A,�) contains d1, which completes the proof of (4.2). q

Furthermore, it holds that ‖{i | ϕi ∈ SAT}‖ is odd if and only if d1 is contained in all
minimum-size upward covering sets for A. This is true since the minimal upward covering
sets for A that contain d1 are those that correspond to some satisfying assignment for all
satisfiable formulas ϕi, and as we have seen in the analysis of Construction 4.2 and the proof
sketch of Theorem 4.1, these are the minimum-size upward covering sets for A.

4.2. Minimal and Minimum-Size Downward Covering Sets
Turning now to the constructions used to show complexity results about

minimal/minimum-size downward covering sets, we again start by giving a proof sketch of a
result due to Brandt and Fischer [1], since the following constructions and proofs are based
on their construction and proof.

Theorem 4.11 (Brandt and Fischer [1]). Deciding whether a designated alternative is con-
tained in some minimal downward covering set for a given dominance graph is NP-hard (i.e.,
MCd-Member is NP-hard), even if a downward covering set is guaranteed to exist.

Proof Sketch. NP-hardness of MCd-Member is again shown by a reduction from SAT.
Given a boolean formula in conjunctive normal form, ϕ(v1, v2, . . . , vn) = c1∧c2∧· · ·∧cr, over
the set V = {v1, v2, . . . , vn} of variables, construct a dominance graph (A,�) as follows. The
set of alternatives is

A = {xi, xi, x′i , x
′
i , x
′′
1 , x

′′
i | vi ∈ V} ∪ {y j, z j | c j is a clause in ϕ} ∪ {d},

where the membership of alternative d in a minimal downward covering set is to be decided.
The dominance relation � is defined as follows:

5This implies that d1 is not upward covered by either u′1,2 or u′1,2, since d3 dominates them both but not d1.
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Figure 6: Dominance graph for Theorem 4.11, example for the formula (v1 ∨ ¬v2 ∨ v3) ∧ (¬v1 ∨ ¬v3).

• For each i, 1 ≤ i ≤ n, there is a cycle xi � xi � x′i � x′i � x′′i � x′′i � xi with two nested
three-cycles, xi � x′i � x′′i � xi and xi � x′i � x′′i � xi;

• if variable vi occurs in clause c j as a positive literal, then y j � xi;

• if variable vi occurs in clause c j as a negative literal, then y j � xi;

• for each j, 1 ≤ j ≤ r, we have d � y j and z j � d; and

• for each i and j with 1 ≤ i, j ≤ r and i , j, we have zi � y j.

Brandt and Fischer [1] showed that there is a minimal downward covering set containing d
if and only if ϕ is satisfiable. An example of this reduction is shown in Figure 6 for the boolean
formula (v1 ∨ ¬v2 ∨ v3) ∧ (¬v1 ∨ ¬v3). The set {x1, x′1, x

′′
1 , x2, x′2, x

′′
2 , x3, x

′
3, x
′′
3 , y1, y2, z1, z2, d}

is a minimal downward covering set for the dominance graph shown in Figure 6. This set
corresponds to the truth assignment that sets v1 and v2 to true and v3 to false, and it contains
the designated alternative d. q

Regarding their construction sketched above, Brandt and Fischer [1] showed that every
minimal downward covering set for A must contain exactly three alternatives for every variable
vi (either xi, x′i , and x′′i , or xi, x′i , and x′′i ), and the undominated alternatives z1, . . . , zr. Thus,
each minimal downward covering set for A consists of at least 3n + r alternatives and induces
a truth assignment α for ϕ. The number of alternatives contained in any minimal downward
covering set for A corresponding to an assignment α is 3n + r + k, where k is the number of
clauses that are satisfied if α is an assignment not satisfying ϕ, and where k = r + 1 if α is a
satisfying assignment for ϕ. As a consequence, minimum-size downward covering sets for A
correspond to those assignments for ϕ that satisfy the least possible number of clauses of ϕ.6

6This is different from the case of minimum-size upward covering sets for the dominance graph constructed in
the proof sketch of Theorem 4.1. The construction in the proof sketch of Theorem 4.11 cannot be used to obtain
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Next, we provide a different construction to transform a given boolean formula into a
dominance graph. This construction will later be merged with the construction from the proof
sketch of Theorem 4.11 so as to apply Lemma 4.6 to downward covering set problems.

Construction 4.12 (for NP- and coNP-hardness of downward covering set problems).
Given a boolean formula in conjunctive normal form, ϕ(w1,w2, . . . ,wk) = f1 ∧ f2 ∧ · · · ∧ f`,
over the set W = {w1,w2, . . . ,wk} of variables, we construct a dominance graph (A,�). The
set of alternatives is

A = A1 ∪ A2 ∪ {̂a | a ∈ A1 ∪ A2} ∪ {b, c, d}

with A1 = {xi, x′i , x
′′
i , xi, x

′
i , x
′′
i , zi, z′i , z

′′
i | wi ∈ W} and A2 = {y j | f j is a clause in ϕ}, and the

dominance relation � is defined by:

• For each i, 1 ≤ i ≤ k, there is, similarly to the construction in the proof of Theorem 4.11,
a cycle xi � xi � x′i � x′i � x′′i � x′′i � xi with two nested three-cycles, xi � x′i � x′′i � xi

and xi � x′i � x′′i � xi, and additionally we have z′i � zi � xi, z′′i � zi � xi, z′i � xi,
z′′i � xi, and d � zi;

• if variable wi occurs in clause f j as a positive literal, then xi � y j;

• if variable wi occurs in clause f j as a negative literal, then xi � y j;

• for each a ∈ A1 ∪ A2, we have b � â, a � â, and â � d;

• for each j, 1 ≤ j ≤ `, we have d � y j; and

• c � d.

An example of this construction is shown in Figure 7 for the boolean formula (¬w1 ∨

w2 ∨ w3) ∧ (¬w2 ∨ ¬w3), which can be satisfied by setting for example each of w1, w2, and
w3 to false. A minimal downward covering set corresponding to this assignment is M =

{b, c} ∪ {xi, x
′
i , x
′′
i , z
′
i , z
′′
i | 1 ≤ i ≤ 3}. Obviously, the undominated alternatives b, c, z′i , and z′′i ,

1 ≤ i ≤ 3, are contained in every minimal downward covering set for the dominance graph
constructed. The alternative d, however, is not contained in any minimal downward covering
set for A. This can be seen as follows. If d were contained in some minimal downward
covering set M′ for A then none of the alternatives â with a ∈ A1 ∪ A2 would be downward
covered. Hence, all alternatives in A1∪A2 would necessarily be in M′, since they all dominate
a different alternative in M′. But then M′ is no minimal downward covering set for A, since
the minimal downward covering set M for A is a strict subset of M′.

We now show some properties of Construction 4.12 in general.

Claim 4.13. Minimal downward covering sets are guaranteed to exist for the dominance
graph defined in Construction 4.12.

complexity results for minimum-size downward covering sets in the same way as the construction in the proof sketch
of Theorem 4.1 was used to obtain complexity results for minimum-size upward covering sets.
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Figure 7: Dominance graph resulting from the formula (¬w1∨w2∨w3)∧(¬w2∨¬w3) according to Construction 4.12.
An edge incident to a set of alternatives represents an edge incident to each alternative in the set. The dashed edge
indicates that a � â for each a ∈ A1 ∪ A2.

Proof. The set A of all alternatives is a downward covering set for itself. Hence, there
always exists a minimal downward covering set for the dominance graph defined in Construc-
tion 4.12. q

Claim 4.14. Consider the dominance graph (A,�) created by Construction 4.12. For each
minimal downward covering set M for A, if M contains the alternative d then all other alter-
natives are contained in M as well (i.e., A = M).

Proof. If d is contained in some minimal downward covering set M for A, then {a, â} ⊆ M
for every a ∈ A1 ∪ A2. To see this, observe that for an arbitrary a ∈ A1 ∪ A2 there is no
a′ ∈ A with a′ � â and a′ � d or with a′ � a and a′ � â. Since the alternatives c and b are
undominated, they are also in M, so M = A. q

Claim 4.15. Consider Construction 4.12. The boolean formula ϕ is satisfiable if and only if
there is no minimal downward covering set for A that contains d.
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Proof. For the direction from left to right, consider a satisfying assignment α : W → {0, 1}
for ϕ, and define the set

Bα = {b, c} ∪ {xi, x′i , x
′′
i | α(wi) = 1} ∪ {xi, x

′
i , x
′′
i | α(wi) = 0} ∪ {z′i , z

′′
i | 1 ≤ i ≤ k}.

It is not hard to verify that Bα is a minimal downward covering set for A. Thus, there exists a
minimal downward covering set for A that does not contain d. If there were a minimal down-
ward covering set M for A that contains d, Claim 4.14 would imply that M = A. However,
since Bα ⊂ A = M, this contradicts minimality, so no minimal downward covering set for A
can contain d.

For the direction from right to left, assume that no minimal downward covering set for A
contains d. Since by Claim 4.13 minimal downward covering sets are guaranteed to exist for
the dominance graph defined in Construction 4.12, there exists a minimal downward covering
set B for A that does not contain d, so B , A. It holds that {zi | wi is a variable in ϕ} ∩ B = ∅

and {y j | f j is a clause in ϕ} ∩B = ∅, for otherwise a contradiction would follow by observing
that there is no a ∈ A with a � d and a � zi, 1 ≤ i ≤ k, or with a � d and a � y j, 1 ≤ j ≤ `.
Furthermore, we have xi < B or xi < B, for each variable wi ∈ W. By external stability, for
each clause f j there must exist an alternative a ∈ B with a � y j. By construction and since
d < B, we must have either a = xi for some variable wi that occurs in f j as a positive literal, or
a = xi for some variable wi that occurs in f j as a negative literal. Now define α : W → {0, 1}
such that α(wi) = 1 if xi ∈ B, and α(wi) = 0 otherwise. It is readily appreciated that α is a
satisfying assignment for ϕ. q

Claim 4.16. Consider Construction 4.12. The boolean formula ϕ is not satisfiable if and only
if there is a unique minimal downward covering set for A.

Proof. We again assume that if ϕ is satisfiable, it has at least two satisfying assignments.
If ϕ is not satisfiable, there must be a minimal downward covering set for A that contains
d by Claim 4.15, and by Claim 4.14 there must be a minimal downward covering set for A
containing all alternatives. Hence, there is a unique minimal downward covering set for A.
Conversely, if there is a unique minimal downward covering set for A, ϕ cannot be satisfiable,
since otherwise there would be at least two distinct minimal downward covering sets for A,
corresponding to the distinct truth assignments for ϕ, which would yield a contradiction. q

In the dominance graph created by Construction 4.12, the minimal downward covering sets
for A coincide with the minimum-size downward covering sets for A. If ϕ is not satisfiable,
there is only one minimal downward covering set for A, so this is also the only minimum-size
downward covering set for A, and if ϕ is satisfiable, the minimal downward covering sets for
A correspond to the satisfying assignments of ϕ. As we have seen in the proof of Claim 4.15,
these minimal downward covering sets for A always consist of 5k + 2 alternatives. Thus, they
each are also minimum-size downward covering sets for A.

Merging the construction from the proof sketch of Theorem 4.11 with Construction 4.12,
we again provide a reduction applying Lemma 4.6, this time to downward covering set prob-
lems.
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Construction 4.17 (for applying Lemma 4.6 to downward covering set problems). We
again apply Wagner’s Lemma with the NP-complete problem S = SAT and construct a dom-
inance graph. Fix an arbitrary m ≥ 1 and let ϕ1, ϕ2, . . . , ϕ2m be 2m boolean formulas in
conjunctive normal form such that the satisfiability of ϕ j implies the satisfiability of ϕ j−1, for
each j ∈ {2, . . . , 2m}. Without loss of generality, we assume that for each j, 1 ≤ j ≤ 2m, ϕ j has
at least two satisfying assignments, if ϕ is satisfiable.

We now define a polynomial-time computable function f , which maps the given 2m
boolean formulas to a dominance graph (A,�) that has useful properties for our downward
covering set problems. The set of alternatives is

A =

 2m⋃
i=1

Ai

 ∪
 m⋃

i=1

{ri, si, ti}

 ∪ {c∗, d∗},
and the dominance relation � on A is defined by 2m⋃

i=1

�i

∪
 m⋃

i=1

{(ri, d2i−1), (ri, d2i), (si, ri), (si, d2i−1), (ti, ri), (ti, d2i)}

∪
 k⋃

i=1

{(d∗, ri)}

∪{(c∗, d∗)},
where we use the following notation:

1. For each i, 1 ≤ i ≤ m, let (A2i−1,�2i−1) be the dominance graph that results from the
formula ϕ2i−1 according to Brandt and Fischer’s construction given in the proof sketch
of Theorem 4.11. We again use the same names for the alternatives in A2i−1 as in that
proof sketch, except that we attach the subscript 2i − 1.

2. For each i, 1 ≤ i ≤ m, let (A2i,�2i) be the dominance graph that results from the formula
ϕ2i according to Construction 4.12. We again use the same names for the alternatives
in A2i as in that construction, except that we attach the subscript 2i.

3. For each i, 1 ≤ i ≤ m, the dominance graphs (A2i−1,�2i−1) and (A2i,�2i) are connected
by the alternatives si, ti, and ri (which play a similar role as the alternatives zi, z′i , and
z′′i for each variable in Construction 4.12). The resulting dominance graph is denoted
by (Bi,�

B
i ).

4. Connect the m dominance graphs (Bi,�
B
i ), 1 ≤ i ≤ m (again similarly as in Construc-

tion 4.12). The alternative c∗ dominates d∗, and d∗ dominates the m alternatives ri,
1 ≤ i ≤ m.

This construction is illustrated in Figure 8. Clearly, (A,�) is computable in polynomial time.

Claim 4.18. Consider Construction 4.17. For each i, 1 ≤ i ≤ 2m, let Mi be a minimal
downward covering set for (Ai,�i). Then each of the sets Mi must be contained in every
minimal downward covering set for (A,�).

Proof. For each i, 1 ≤ i ≤ 2m, the only alternative in Ai dominated from outside Ai is di.
Since di is also dominated by the undominated alternative z1,i ∈ Ai for odd i, and by the
undominated alternative ci ∈ Ai for even i, it is readily appreciated that internal and external
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Figure 8: Dominance graph from Construction 4.17.

stability with respect to elements of Ai only depends on the restriction of the dominance graph
to Ai. q

Claim 4.19. Consider Construction 4.17. It holds that

‖{i | ϕi ∈ SAT}‖ is odd

⇐⇒ d∗ is contained in some minimal downward covering set M for A. (4.3)

Proof. For the direction from left to right in (4.3), assume that ‖{i | ϕi ∈ SAT}‖ is
odd. Thus, there is some j ∈ {1, . . . ,m} such that ϕ1, ϕ2, . . . , ϕ2 j−1 are each satisfiable and
ϕ2 j, ϕ2 j+1, . . . , ϕ2m are each not. Define

M =

 2m⋃
i=1

Mi

 ∪
 m⋃

i=1

{si, ti}

 ∪ {r j, c∗, d∗
}
,

where for each i, 1 ≤ i ≤ 2m, Mi is some minimal downward covering set of the restriction of
the dominance graph to Ai, satisfying that di ∈ Mi if and only if

1. i is odd and ϕi is satisfiable, or

2. i is even and ϕi is not satisfiable.

Such sets Mi exist by the proof sketch of Theorem 4.11 and by Claim 4.15. In particular,
ϕ2 j−1 is satisfiable and ϕ2 j is not, so {d2 j−1, d2 j} ⊆ M. There is no alternative that dominates
d2 j−1, d2 j, and r j. Thus, r j must be in M. The other alternatives ri, 1 ≤ i ≤ m and i , j, are
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downward covered by either si if d2i−i < M, or ti if d2i < M. Finally, d∗ cannot be downward
covered, because d∗ � r j and no alternative dominates both d∗ and r j. Internal and external
stability with respect to the elements of Mi, as well as minimality of

⋃2k
i=1 Mi, follow from

the proofs of Theorem 4.11 and Claim 4.15. All other elements of M are undominated and
thus contained in every downward covering set. We conclude that M is a minimal downward
covering set for A that contains d∗.

For the direction from right to left in (4.3), assume that there exists a minimal downward
covering set M for A with d∗ ∈ M. By internal stability, there must exist some j, 1 ≤ j ≤ k,
such that r j ∈ M. Thus, d2 j−1 and d2 j must be in M, too. It then follows from the proof sketch
of Theorem 4.11 and Claim 4.15 that ϕ2 j−1 is satisfiable and ϕ2 j is not. Hence, ‖{i | ϕi ∈ SAT}‖
is odd. q

By the remark made after Theorem 4.11, Construction 4.17 cannot be used straightfor-
wardly to obtain complexity results for minimum-size downward covering sets.

5. Proof of Theorem 3.1

In this section, we prove Theorem 3.1 by applying the constructions and the properties of
the resulting dominance graphs presented in Section 4. We start with the results on minimal
and minimum-size upward covering sets.

5.1. Minimal and Minimum-Size Upward Covering Sets
Theorem 5.1. It is NP-complete to decide, given a dominance graph (A,�) and a positive
integer k, whether there exists a minimal/minimum-size upward covering set for A of size at
most k. That is, both MCu-Size and MSCu-Size are NP-complete.

Proof. This result can be proven by using the construction of Theorem 4.1. Let ϕ be a given
boolean formula in conjunctive normal form, and let n be the number of variables occurring
in ϕ. Setting the bound k for the size of a minimal/minimum-size upward covering set to 2n+1
proves that both problems are hard for NP. Indeed, as we have seen in the paragraph after the
proof sketch of Theorem 4.1, there is a size 2n + 1 minimal upward covering set (and hence
a minimum-size upward covering set) for A if and only if ϕ is satisfiable. Both problems are
NP-complete, since they can obviously be decided in nondeterministic polynomial time. q

Theorem 5.2. Deciding whether a designated alternative is contained in some minimal up-
ward covering set for a given dominance graph is hard for Θ

p
2 and in Σ

p
2 . That is, MCu-Member

is hard for Θ
p
2 and in Σ

p
2 .

Proof. Θ
p
2 -hardness follows directly from Claim 4.10. For the upper bound, let (A,�) be

a dominance graph and d a designated alternative in A. First, observe that we can verify in
polynomial time whether a subset of A is an upward covering set for A, simply by checking
whether it satisfies internal and external stability. Now, we can guess an upward covering set
B ⊆ A with d ∈ B in nondeterministic polynomial time and verify its minimality by checking
that none of its subsets is an upward covering set for A. This places the problem in NPcoNP

and consequently in Σ
p
2 . q
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Theorem 5.3. 1. It is Θ
p
2 -complete to decide whether a designated alternative is con-

tained in some minimum-size upward covering set for a given dominance graph. That
is, MSCu-Member is Θ

p
2 -complete.

2. It is Θ
p
2 -complete to decide whether a designated alternative is contained in

all minimum-size upward covering sets for a given dominance graph. That is,
MSCu-Member-All is Θ

p
2 -complete.

Proof. By the remark made after Claim 4.10, both problems are hard for Θ
p
2 .

To see that MSCu-Member is contained in Θ
p
2 , let (A,�) be a dominance graph and d a

designated alternative in A. Obviously, in nondeterministic polynomial time we can decide,
given (A,�), x ∈ A, and some positive integer ` ≤ ‖A‖, whether there exists some upward
covering set B for A such that ‖B‖ ≤ ` and x ∈ B. Using this problem as an NP oracle, in Θ

p
2

we can decide, given (A,�) and d ∈ A, whether there exists a minimum-size upward covering
set for A containing d as follows. The oracle is asked whether for each pair (x, `), where x ∈ A
and 1 ≤ ` ≤ ‖A‖, there exists an upward covering set for A of size bounded by ` that contains
the alternative x. The number of queries is polynomial (more specifically in O(‖A‖2)), and all
queries can be asked in parallel. Having all the answers, determine the size k of a minimum-
size upward covering set for A, and accept if the oracle answer to (d, k) was yes, otherwise
reject.

To show that MSCu-Member-All is in Θ
p
2 , let (A,�) be a dominance graph and d a des-

ignated alternative in A. We now use as our oracle the set of all (x, `), where x ∈ A is an
alternative, and ` ≤ ‖A‖ a positive integer, such that there exists some upward covering set
B for A with ‖B‖ ≤ ` and x < B. Clearly, this problem is also in NP, and the size k of a
minimum-size upward covering set for A can again be determined by asking O(‖A‖2) queries
in parallel (if all oracle answers are no, it holds that k = ‖A‖). Now, the Θ

p
2 machine accepts

its input ((A,�), d) if the oracle answer for the pair (d, k) is no, and otherwise it rejects. q

Theorem 5.4. 1. (Brandt and Fischer [1]) It is coNP-complete to decide whether a des-
ignated alternative is contained in all minimal upward covering sets for a given domi-
nance graph. That is, MCu-Member-All is coNP-complete.

2. It is coNP-complete to decide whether a given subset of the alternatives is a minimal
upward covering set for a given dominance graph. That is, MCu-Test is coNP-complete.

3. It is coNP-hard and in Σ
p
2 to decide whether there is a unique minimal upward covering

set for a given dominance graph. That is, MCu-Unique is coNP-hard and in Σ
p
2 .

Proof. It follows from Claim 4.5 that ϕ is not satisfiable if and only if the entire set of
alternatives A is a (unique) minimal upward covering set for A. Furthermore, if ϕ is satisfiable,
there exists more than one minimal upward covering set for A and none of them contains e1
(provided that ϕ has more than one satisfying assignment, which can be ensured, if needed, by
adding a dummy variable such that the satisfiability of the formula is not affected). This proves
coNP-hardness for all three problems. MCu-Member-All and MCu-Test are also contained
in coNP, as they can be decided in the positive by checking whether there does not exist an
upward covering set that satisfies certain properties related to the problem at hand, so they
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both are coNP-complete. MCu-Unique can be decided in the positive by checking whether
there exists an upward covering set M such that all sets that are not strict supersets of M are
not upward covering sets for the set of all alternatives. Thus, MCu-Unique is in Σ

p
2 . q

The first statement of Theorem 5.4 was already shown by Brandt and Fischer [1]. However,
their proof—which uses essentially the reduction from the proof of Theorem 4.1, except that
they start from the coNP-complete problem Validity (which asks whether a given formula is
valid, i.e., true under every assignment [21])—does not yield any of the other coNP-hardness
results in Theorem 5.4.

Theorem 5.5. It is coNP-complete to decide whether a given subset of the alternatives is
a minimum-size upward covering set for a given dominance graph. That is, MSCu-Test is
coNP-complete.

Proof. This problem is in coNP, since it can be decided in the positive by checking whether
the given subset M of alternatives is an upward covering set for the set A of all alternatives
(which is easy) and all sets of smaller size than M are not upward covering sets for A (which
is a coNP predicate), and coNP-hardness follows directly from Claim 4.5. q

Theorem 5.6. Deciding whether there exists a unique minimum-size upward covering set for
a given dominance graph is hard for coNP and in Θ

p
2 . That is, MSCu-Unique is coNP-hard

and in Θ
p
2 .

Proof. It is easy to see that coNP-hardness follows directly from the coNP-hardness of
MCu-Unique (see Theorem 5.4). Membership in Θ

p
2 can be proven by using the same oracle

as in the proof of the first part of Theorem 5.3. We ask for all pairs (x, `), where x ∈ A and
1 ≤ ` ≤ ‖A‖, whether there is an upward covering set B for A such that ‖B‖ ≤ ` and x ∈ B.
Having all the answers, determine the minimum size k of a minimum-size upward covering
set for A. Accept if there are exactly k distinct alternatives x1, . . . , xk for which the answer for
(xi, k), 1 ≤ i ≤ k, was yes, otherwise reject. q

An important consequence of the proofs of Theorems 5.4 and 5.6 (and of Construc-
tion 4.2 that underpins these proofs) regards the hardness of the search problems MCu-Find
and MSCu-Find.

Theorem 5.7. Assuming P , NP, neither minimal upward covering sets nor minimum-size
upward covering sets can be found in polynomial time. That is, neither MCu-Find nor
MSCu-Find are polynomial-time computable unless P = NP.

Proof. Consider the problem of deciding whether there exists a nontrivial
minimal/minimum-size upward covering set, i.e., one that does not contain all alterna-
tives. By Construction 4.2 that is applied in proving Theorems 5.4 and 5.6, there exists
a trivial minimal/minimum-size upward covering set for A (i.e., one containing all alter-
natives in A) if and only if this set is the only minimal/minimum-size upward covering
set for A. Thus, the coNP-hardness proof for the problem of deciding whether there is a
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unique minimal/minimum-size upward covering set for A (see the proofs of Theorems 5.4
and 5.6) immediately implies that the problem of deciding whether there is a nontrivial
minimal/minimum-size upward covering set for A is NP-hard. However, since the latter
problem can easily be reduced to the search problem (because the search problem, when
used as a function oracle, yields the set of all alternatives if and only if this set is the only
minimal/minimum-size upward covering set for A), it follows that the search problem cannot
be solved in polynomial time unless P = NP. q

5.2. Minimal and Minimum-Size Downward Covering Sets
Theorem 5.8. It is NP-complete to decide, given a dominance graph (A,�) and a positive
integer k, whether there exists a minimal/minimum-size downward covering set for A of size at
most k. That is, MCd-Size and MSCd-Size are both NP-complete.

Proof. Membership in NP is obvious, since we can nondeterministically guess a subset
M ⊆ A of the alternatives with ‖M‖ ≤ k and can then check in polynomial time whether M
is a downward covering set for A. NP-hardness of MCd-Size and MSCd-Size follows from
Construction 4.12, the proof of Claim 4.15, and the comments made after Claim 4.16: If ϕ is a
given formula with n variables, then there exists a minimal/minimum-size downward covering
set of size 5n + 2 if and only if ϕ is satisfiable. q

Theorem 5.9. MSCd-Member, MSCd-Member-All, and MSCd-Unique are coNP-hard and
in Θ

p
2 .

Proof. It follows from Claim 4.16 that ϕ is not satisfiable if and only if the entire set A
of all alternatives is the unique minimum-size downward covering set for itself. Moreover,
assuming that ϕ has at least two satisfying assignments, if ϕ is satisfiable, there are at least two
distinct minimum-size downward covering sets for A. This shows that each of MSCd-Member,
MSCd-Member-All, and MSCd-Unique is coNP-hard. For all three problems, membership
in Θ

p
2 is shown similarly to the proofs of the corresponding minimum-size upward covering

set problems. However, since downward covering sets may fail to exist, the proofs must be
slightly adapted. For MSCd-Member and MSCd-Unique, the machine rejects the input if the
size k of a mininum-size downward covering set cannot be computed (simply because there
doesn’t exist any such set). For MSCd-Member-All, if all oracle answers are no, it must be
checked whether the set of all alternatives is a downward covering set for itself. If so, the
machine accepts the input, otherwise it rejects. q

Theorem 5.10. It is coNP-complete to decide whether a given subset is a minimum-size down-
ward covering set for a given dominance graph. That is, MSCd-Test is coNP-complete.

Proof. This problem is in coNP, since its complement (i.e., the problem of deciding whether
a given subset of the set A of alternatives is not a minimum-size downward covering set for A)
can be decided in nondeterministic polynomial time. Hardness for coNP follows directly from
Claim 4.16. q

27



Theorem 5.11. Deciding whether a designated alternative is contained in some minimal
downward covering set for a given dominance graph is hard for Θ

p
2 and in Σ

p
2 . That is,

MCd-Member is hard for Θ
p
2 and in Σ

p
2 .

Proof. Membership in Σ
p
2 can be shown analogously to the proof of Theorem 5.2, and Θ

p
2 -

hardness follows directly from Claim 4.19. q

Theorem 5.12. 1. (Brandt and Fischer [1]) It is coNP-complete to decide whether a des-
ignated alternative is contained in all minimal downward covering sets for a given
dominance graph. That is, MCd-Member-All is coNP-complete.

2. It is coNP-complete to decide whether a given subset of the alternatives is a minimal
downward covering set for a given dominance graph. That is, MCd-Test is coNP-
complete.

3. It is coNP-hard and in Σ
p
2 to decide whether there is a unique minimal downward cov-

ering set for a given dominance graph. That is, MCd-Unique is coNP-hard and in Σ
p
2 .

Proof. It follows from Claim 4.16 that ϕ is not satisfiable if and only if the entire set of
alternatives A is a unique minimal downward covering set for A. Furthermore, if ϕ is satis-
fiable, there exists more than one minimal downward covering set for A and none of them
contains d (provided that ϕ has more than one satisfying assignment, which can be ensured, if
needed, by adding a dummy variable such that the satisfiability of the formula is not affected).
This proves coNP-hardness for all three problems. MCd-Member-All and MCd-Test are also
contained in coNP, because they can be decided in the positive by checking whether there
does not exist a downward covering set that satisfies certain properties related to the problem
at hand. Thus, they are both coNP-complete. MCd-Unique can be decided in the positive by
checking whether there exists a downward covering set M such that all sets that are not strict
supersets of M are not downward covering sets for the set of all alternatives. This shows that
MCd-Unique is in Σ

p
2 . q

The first statement of Theorem 5.12 was already shown by Brandt and Fischer [1]. How-
ever, their proof—which uses essentially the reduction from the proof of Theorem 4.11, ex-
cept that they start from the coNP-complete problem Validity—does not yield any of the other
coNP-hardness results in Theorem 5.12.

An important consequence of the proofs of Theorems 5.9 and 5.12 regards the hardness
of the search problems MCd-Find and MSCd-Find. (Note that the hardness of MCd-Find also
follows from a result by Brandt and Fischer [1, Thm. 9], see the discussion in Section 3.)

Theorem 5.13. Assuming P , NP, neither minimal downward covering sets nor minimum-
size downward covering sets can be found in polynomial time (i.e., neither MCd-Find nor
MSCd-Find are polynomial-time computable unless P = NP), even when the existence of a
downward covering set is guaranteed.
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Proof. Consider the problem of deciding whether there exists a nontrivial
minimal/minimum-size downward covering set, i.e., one that does not contain all alter-
natives. By Construction 4.12 that is applied in proving Theorems 5.9 and 5.12, there
exists a trivial minimal/minimum-size downward covering set for A (i.e., one containing all
alternatives in A) if and only if this set is the only minimal/minimum-size downward covering
set for A. Thus, the coNP-hardness proof for the problem of deciding whether there is a
unique minimal/minimum-size downward covering set for A (see the proofs of Theorems 5.9
and 5.12) immediately implies that the problem of deciding whether there is a nontrivial
minimal/minimum-size downward covering set for A is NP-hard. However, since the latter
problem can easily be reduced to the search problem (because the search problem, when
used as a function oracle, yields the set of all alternatives if and only if this set is the only
minimal/minimum-size downward covering set for A), it follows that the search problem
cannot be solved in polynomial time unless P = NP. q
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