
The NP-hardness of finding a directed acyclic graph

for regular resolution

Samuel R. Buss∗

Department of Mathematics
University of California, San Diego

La Jolla, CA 92093-0112, USA
sbuss@math.ucsd.edu

Jan Hoffmann†

Department of Mathematics
University of California, San Diego

La Jolla, CA 92093-0112, USA
hoffmann@cip.ifi.lmu.de

January 13, 2008

Abstract

Let R be a resolution refutation, given as a sequence of clauses
without explicit description of the underlying dag. Then, it is NP-
complete to decide whether R is a regular resolution refutation.

1 Introduction

A resolution refutation of a set Γ of clauses is usually defined as a sequence
of clauses; each clause must either be a member of Γ (an initial clause), or
be derived from two earlier clauses by a resolution inference. Alternatively,
the refutation may be described as a directed acyclic graph (dag). These
two representations are p-equivalent in the usual sense that a proof specified
by either representation may be easily transformed into a proof in the other
representation by a polynomial time algorithm. However, in general, there
can be more than one way to convert a sequence of clauses into a dag.

Many widely studied properties of refutations, including the notions
of regular resolution, unit resolution, input resolution, linear resolution,
and ordered resolution, depend on the choice of the dag structure for the
refutation. In particular, these notions are not immediately applicable to

∗Supported in part by NSF grants DMS-0400848 and DMS-0700533.
†Supported in part by the Studienstiftung des deutschen Volkes (German National

Merit Foundation) while visiting UCSD. Permanent address: Institut for Informatik,
Ludwig-Maximilians Universität, D-80538 München, Germany.

1

sequence-like proofs unless a dag structure is imposed. The present paper
considers primarily regular resolution and the hardness of deciding whether
a sequence-like resolution is regular. If a refutation is specified as a sequence
rather than a dag, then the definition of regularity is not well-specified. In
fact, it is easy to find a sequence-like refutation that admits multiple dag’s,
some of which are regular and some of which are not. In this paper, we prove
a stronger fact. Namely, it is NP-complete to decide whether a sequence-like
refutation admits a dag representation which makes it regular.

Lower bounds for the complexity of regular refutations have been exten-
sively studied already by [13, 6, 7, 4, 10, 2]. Several conditional lower bounds
for the difficulty of finding resolution proofs have been given by Alekhnovich
et al. [1], Iwama [8], and Alekhnovich and Razborov [3]. In a different
direction, Iwama and Miyano [9] and Szeider [12] gave NP-hardness results
on the difficulty of deciding whether formulas have resolution refutations in
the read-once and literal-once fragments of resolution. The present paper,
however, studies a different type of problem. Rather than considering the
hardness of finding a refutation or of determining if a refutation exists, we
assume that a refutation is already given and give a lower bound on the
hardness of determining if it is regular.

2 Regular refutations

Resolution is a propositional refutation system that uses variables a, b, c, . . .
intended to range over the values True and False. The negation of a
variable a is denoted a. A literal ` is either a variable or a negated variable. A
clause C = {`1, . . . , `k} is a a finite set of literals and denotes the disjunction
`1 ∨ `2 ∨ · · · ∨ `k. A set Γ of clauses is interpreted as the conjunction of its
clauses, that is, as a formula in conjunctive normal form.

A resolution refutation can be used to prove a set Γ to be unsatisfiable.
A (sequence-like) resolution refutation consists of a sequence of clauses
C1, . . . , Cm such that Cm is the empty clause and such that each Ci is
either an initial clause from Γ or is derived by a resolution inference from
two clauses Cj and Ck that appear earlier in the refutation. A resolution
inference is any inference of the form

D ∪ {x} E ∪ {x}
D ∪ E

.

For sequence-like refutations, we always assume that the set Γ of initial
clauses is explicitly specified, so that there is a polynomial time procedure
to decide which clauses are valid initial clauses.

2

A dag-like refutation is a sequence-like refutation in which each clause Ci

either is labelled as an initial clause or is labeled with the indices j and k
of the clauses from which it is inferred: a dag can be defined by taking the
clauses in the refutation as nodes and letting there be directed edges from
any non-initial clause to each of the two clauses from which it is inferred.
The clauses labelled as initial clauses must be in Γ. Note, however, that it is
permitted that a clause in Γ appear in the dag as a non-initial clause. That
is, a clause in Γ can be (re)derived in the refutation. A dag-like refutation
is rooted provided that, for each Ci, there is a directed path from Cm = ∅
to Ci.

A dag-like refutation is regular if there does not exist any directed path π
in the refutation with a variable x used twice as the resolution variable along
the path. A sequence-like refutation is defined to be regular provided there
exists some way to label the clauses with indices so as to make the refutation
into a regular dag-like refuation.

Theorem 1 The set of regular sequence-like refutations is NP-complete.

An immediate consequence of Theorem 1 is that, assuming P 6= NP ,
the regular sequence-like proofs are not polynomial time recognizable and
thus do not form a proof system in the sense of Cook and Reckhow [5].

Theorem 1 is proved by a reduction from the well-known NP-complete
Vertex Cover problem. An instance of Vertex Cover is a graph G = (V, E)
and an integer k; the problem is to determine whether there is a set of k
vertices from V (k pebbles) such that each edge e ∈ E has at least one of
its vertices in the set (that is, has a pebbled vertex).

Given G = (V, E), we construct a sequence-like refutation R. R will
be regular if and only if G has a vertex cover of size ≤ k. The refutation
will have two stages: One stage ensures that at most k vertices are pebbled,
and the other ensures that each edge is covered by at least one vertex.
R uses variables vi that correspond to vertices in V . R will contain each
unit clause {vi}, and this is derived by a resolution either with a variable
pj (indicating that the i-th vertex is covered by the j-th pebble) or with
a variable qi (indicating that the i-th vertex is uncovered). In the second
stage, variables ei ensure that the i-th edge has at least one vertex pebbled.
We construct the refutation R below; Figure 1 also shows the clauses in R.

The first stage of R consists of the following clauses. As initial clauses,
the first clauses in R are the unit clauses {pj}, {qi} and {ui}, for i =
1, . . . , |V | and j = 1, . . . , k. There is also an initial clause {v0}: here v0 does
not correspond to any vertex of V , but rather helps with the base case. Then,

3

for each i = 1, 2, . . . , |V |, R contains the k +1 initial clauses {vi−1, vi, qi, ui}
and {vi−1, vi, pj , ui} for 1 ≤ j ≤ k, followed the k + 3 non-initial clauses
{vi, pj , ui}, {vi, qi, ui}, {vi, ui}, and {vi}. The clause {vi} can be derived by
an inference of the form

{vi−1} {vi−1, vi, x, ui}
{vi, x, ui} {x}

{vi, ui} {ui}
{vi}

where x is one of p1, . . . , pk or qi. Then, for y ∈ {p1, . . . , pk, qi} \ {x}, the
clauses {vi, y, ui} are derived by resolving {vi−1, ui} and {vi−1, vi, y}. These
clauses {vi, y, ui} are unused in R (but see the refined construction below).

There are k + 1 possible ways of deriving {vi, ui}, but the intent is that
{vi, ui} is derived with the aid of resolving on the variable pj as x, if the j-th
pebble is placed on the i-th vertex. If, however, resolution with qi is used
to derive {vi, ui}, then the i-th vertex is unpebbled. Since the {vi, ui}’s are
derived sequentially, any dag-like regular refutation formed from R can use
resolution with each fixed pj only once: this corresponds to the fact that
the j-th pebble can be placed on at most one vertex.

Since the clause {vi} must be inferred from {vi, ui}, each clause {vi}
will have been derived either with the aid of resolving on pj (corresponding
to the j-th pebble being on vertex i), or with the aid of resolving on qi

(corresponding to the j-th vertex being unpebbled).
The second stage of R is designed so that it can be regular if and only if

all edges have a pebbled vertex. Let the s-th edge in E join the i-th and i′-th
vertices. Then, R includes two initial clauses {es, vi, qi} and {es, vi′ , qi′}, and
the three non-initial clauses {es, qi}, {es, qi′}, and {es}. The intent is that,
when the i-th vertex is pebbled, the inference structure for these five clauses
is as follows (using the clauses {vi} and {vi′} derived in the first stage of R):

{es, vi, qi} {vi}
{es, qi} {qi}

{es}
{es, vi′ , qi′} {vi′}

{es, qi′}

Note that this leaves the clause {es, qi′} unused in R. If the i-th vertex is
pebbled then the resolution on qi that is used to derive {es} is a regular
inference, but otherwise it is not. If only the i′-th vertex is pebbled then the
intent is the inference structure in R should be as above but with the roles
of i and i′ interchanged.

4

For j = 1, . . . , k,
{pj}. - initial clause.

For i = 1, . . . , |V |,
{qi}. - initial clause.
{ui}. - initial clause.

{v0}. - initial clause.
For each i = 1, . . . , |V |,

{vi−1, vi, qi, ui}. - initial clause.
{vi−1, vi, pj , ui}, for j = 1, . . . , k - initial clauses.
{vi, qi, ui}.
{vi, pj , ui}, for j = 1, . . . , k.
{vi, ui}.
{vi}.

For each edge s = {i, i′},
{es, vi, qi}. - initial clause
{es, vi′ , qi′}. - initial clause
{es, qi}.
{es, qi′}.
{es}.

{e1, e2, . . . , e|E|}. - initial clause.
For m = 2, . . . , |E|,

{em, em+1, . . . , e|E|}.
∅.

Figure 1: The refutation constructed in the proof of Theorem 1.

The refutation R ends with one further initial clause

{e1, e2, . . . , e|E|}

and then concludes with resolution inferences using the clauses {ei}, i =
1, . . . , |E|, to obtain the empty clause.

It is not hard to verify that R can be given a dag-structure that makes
it regular if and only if the graph G has a vertex cover of size k. First,
as we remarked earlier, each variable pj can be used only once to derive a
clause {vi, ui}. Thus, all but at most k of the clauses {vi} were derived with
the use of resolution on qi. Second, an edge clause {es} cannot be derived
if both of its endpoint clauses {vi} and {vi′} were derived using resolution
on qi and qi′ (respectively), that is to say, it cannot be derived unless one of
its endpoints was pebbled. Thus, the refutation can be made regular if and
only if the graph has a vertex cover of size k. This completes the proof of
Theorem 1.

5

A refined reduction. The above proof of Theorem 1 is formally correct,
but has the disconcerting feature that the refuation R admitted only non-
rooted dags; that is to say, some clauses were not needed for the refutation.
In particular, if the vi-vertex is not pebbled then the clauses {vi, pj , ui} and
{es, qi} are not used in R. On the other hand, if the i-th vertex is pebbled
by the j-th pebble, then the clauses {vi, qi, ui}, {vi, pj′ , ui} for j′ 6= j, and
possibly {es, qi} and {vi} are not used in R. A slightly more complicated
construction, outlined below, can overcome this. For this, we describe a
refutation R∗ that does not have any unused clauses.

First, we make a small modification to R that eliminates some problems
with handling the clauses {es, qi} in the case where the i-th vertex is not
pebbled. The problem is that in this case the clause {es, qi} is derived with
the aid of resolution with respect to the variable qi, as that was used to
derive {vi} in this situation. This would make it impossible to remove the
variable qi from the clause with regular resolution since it is not allowed to
resolve on the variable qi again. (This is not a problem for the clauses {vi},
{vi, qi, ui}, and {vi, pj , ui}, since these are not derived using resolution on
any variable appearing in the clause.) For each s and each i, R is modified
by inserting two new initial clauses {es, qi, z} and {es, qi, z}. The purpose
is to add an alternate method of deriving {es, qi}. We also modify R by
replacing the clause {e1, . . . , e|E|} with the clause

{e1, e2, . . . , e|E|, z}.
The subsequent clauses at the end of R are modified by adding the variable z.
This transforms the final (empty) clause into the unit clause {z}. Finally,
two clauses are added to the end of R: a new initial clause {z} and the
empty clause.

The point of adding the extra clauses at the end of the refutation is that,
by resolving with respect to the variable z to obtain the empty clause, we
prevent the use of a clause {es, qi} that was earlier obtained by resolving
with respect to the variable z. Thus, adding the new initial clauses {es, qi, z}
and {es, qi, z} will not create an unwanted dag-like proof structure.

Let R′ be the refutation just constructed; the next claim is easily checked.

Claim G has a vertex cover of size k if and only if R′ has a dag structure
which makes it a regular refutation such that, for every clause C in R′ and
every literal ` ∈ C, ` is not used as a resolution literal on any directed path
starting from C in R′.

We now construct a sequence-like R∗ from R′ such that the empty clause
is reachable from each clause in R∗. First add a new variable w to all the

6

clauses of R′ and let the resulting clauses be C1, . . . , Cm, so that Cm = {w}.
For t = 1, . . . , m, let yt be a new variable and let `t,i denote the i-th literal
in Ct. For each clause Ct, add to the end of R∗ new initial clauses {yt, `t,i}
and, then the non-initial clauses that arise when repeatedly resolving with
clause Ct to derive the clause {yt}. Then add, as a new initial clause at the
end of R∗, the clause

{y1, y2, . . . , ym−1}.
and then add, as non-initial clauses, the clauses that are obtained by re-
solving repeatedly with the clauses {yt} to yield the empty clause. This
completes the construction of R∗.

Theorem 2 If G = (V, E) has a vertex cover of size ≤ k, then R∗ has a
regular, rooted dag-structure. If G does not have a vertex cover of size k,
then R∗ is not regular.

To prove this, note that since the first m clauses of R∗ are the same as in R′

except for the addition of the variable w, it is clear that the dag structures
that can be put on the first m clauses R∗ are exactly the same as the dag
structures that can be put on R′. Furthermore, there is a simple way to put
a dag structure on the remaining part of R∗ that preserves regularity since
the property of the claim holds. It follows that R′ admits a dag that makes
R′ a regular proof if and only there is a dag-like structure that makes R∗

both regular and rooted. This proves Theorem 2.

Corollary 3 The set of sequence-like refutations that admit a regular,
rooted dag structure is NP-complete.

One consequence of our theorems is that there is no good method for
defining regular refutations without referring to the underlying dag. It is
interesting to ask how this compares to other common forms of resolution,
such as unit resolution, input resolution, linear resolution, and tree resolu-
tion. A unit clause is a clause that contains a single literal; a unit resolution
refutation is one in which every inference has a unit clause as one of its
hypotheses. An input refutation is one in which every inference has an
initial clause as one of its hypotheses. A linear refutation is a refutation
C1, . . . , Cm that has a subsequence Ct1 , . . . , Ctn such that (a) each clause
Cj is an initial clause if and only if j /∈ {t1, . . . , tn}, (b) Ct1 is inferred from
two initial clauses, (c) for each i > 1, Cti is inferred from Cti−1 and some
other earlier clause, and (d) tn = m (thus Ctn is the empty clause).

7

Theorem 4 There is a polynomial time algorithm which, given a sequence-
like refutation R which is either unit, input, or linear, produces a dag-like
refutation G which is (respectively) unit, input, or linear. Furthermore, G is
obtained by finding a dag-structure on R and letting G be the dag obtained
from the component of the dag containing the empty clause.

Theorem 4 is easy to prove for unit and input refutations; namely, one
builds the dag by arbitrarily choosing for each non-initial clause C, two
earlier clauses D and E such that C is the resolvent of D and E and such
that E is a unit clause (respectively, an initial clause). The proof is similar
for linear resolutions: first, the clauses Cti are identified in polynomial time
(which is possible by our assumption that initial clauses are polynomial
time recognizable), then one picks, for each Cti+1 a clause E earlier in the
refutation such that Cti+1 is the resolvent of Cti and E.

Note the proof of Theorem 1 shows that Theorem 4 fails for regular
resolution, even for the case where the algorithm’s runtime is bounded by a
polynomial of the size of the tree-like version of the regular refutation.

Unfortunately, the algorithms of Theorem 4 do not determine whether
the sequence-like proofs can be converted into rooted dags. A similar issue
arose in our proof of Theorem 1, but this was handled by the “refined”
construction. For unit, input, and tree refutations, we have not been able to
adequately determine the computational complexity of recognizing rooted
dag refutations. For linear refutations, Van Gelder [private communication]
has given a polynomial time algorithm for recognizing linear refutations
which admit a rooted dag linear refutation.

We conclude with some conjectures about the tree case. A dag-like
refutation is a tree provided it is rooted and all clauses other than the root
are used exactly once as a hypothesis (that is, have in-degree one). Thus,
in a tree, if any clause (including any initial clause) is used more than once,
it must appear in the refutation more than once.

Conjecture 5 The following problem is NP-complete: Given a sequence-
like resolution proof, does it have a compatible dag structure which is a tree?

The best we have proved so far is that it is NP-complete to determine
whether a sequence-like proof contains a subsequence which is a valid tree
refutation.

A more general form of the conjecture, which may be easier to prove,
can be formulated by abstracting away from refutations. Consider the finite
set [n] = {1, . . . , n} with n odd, and suppose that, for each i, the set Pi

is either empty or is some set of unordered pairs Pi = {{ck, dk}}k with

8

1 ≤ ck < dk < i. We say this collection {Pi}i admits a tree structure if there
is some tree with nodes [n] such that each leaf node i has Pi = ∅ and such
that for each internal node i, the set of its children is a member of Pi.

Conjecture 6 It is NP-complete to determine if a collection {Pi}i admits
a tree structure.

Acknowledgement. We thank Nicolas Rachinsky for suggesting the prob-
lem of converting sequence-like proofs to dag-like proofs. We also thank the
two anonymous referees for helpful suggestions, and especially A. Van Gelder
for many comments, including a correction to the proof of Theorem 1.

References

[1] M. Alekhnovich, S. Buss, S. Moran, and T. Pitassi, Minimum
propositional proof length is NP-hard to linearly approximate. To appear
in the Journal of Symbolic Logic. An extended abstract appeared in
Mathematical Foundations of Computer Science (MFCS’98), Springer-
Verlag Lecture Notes in Computer Science #1450, 1998, pp. 176-184.

[2] M. Alekhnovich, J. Johannsen, T. Pitassi, and A. Urquhart,
An exponential separation between regular and general resolution, in
Proc. 34th Annual ACM Symposium on Theory of Computing, 2002,
pp. 448–456.

[3] M. Alekhnovich and A. A. Razborov, Resolution is not automatiz-
able unless W [P] is tractable, in Proc. 42nd IEEE Conf. on Foundations
of Computer Science (FOCS), 2001, pp. 210–219.

[4] M. L. Bonet, J. L. Esteban, N. Galesi, and J. Johannsen,
On the relative complexity of resolution refinements and cutting planes
systems, SIAM Journal on Computing, 30 (2000), pp. 1462–1484.

[5] S. A. Cook and R. A. Reckhow, The relative efficiency of proposi-
tional proof systems, Journal of Symbolic Logic, 44 (1979), pp. 36–50.

[6] Z. Galil, On the complexity of regular resolution and the David-
Putnam procedure, Theoretical Computer Science, 4 (1977), pp. 23–46.

[7] A. Goerdt, Regular resolution versus unrestricted resolution, SIAM
Journal on Computing, 22 (1993), pp. 661–683.

9

[8] K. Iwama, Complexity of finding short resolution proofs, in Mathemat-
ical Foundations of Computer Science 1997, I. Pŕıvara and P. Ruzicka,
eds., Lecture Notes in Computer Science #1295, Springer-Verlag, 1997,
pp. 309–318.

[9] K. Iwama and E. Miyano, Intractibility of read-once resolution, in
Proceedings of the Tenth Annual Conference on Structure in Complex-
ity Theory, Los Alamitos, California, 1995, IEEE Computer Society,
pp. 29–36.

[10] T. Pitassi and R. Raz, Regular resolution lower bounds for the weak
pigeonhole principle, in Proc. 33rd Annual ACM Symposium on Theory
of Computing, 2001, pp. 347–355.

[11] J. Siekmann and G. Wrightson, Automation of Reasoning,
vol. 1&2, Springer-Verlag, Berlin, 1983.

[12] S. Szeider, NP-completeness of refutability by literal-once resolution,
in Automated Reasoning: First International Joint Conference, (IJ-
CAR), Springer Verlag, 2001, pp. 168–181.

[13] G. S. Tsejtin, On the complexity of derivation in propositional
logic, Studies in Constructive Mathematics and Mathematical Logic,
2 (1968), pp. 115–125. Reprinted in: [11, vol 2], pp. 466-483.

10

