
Finding a Tree Structure in a Resolution Proof is

NP-complete

Jan Hoffmann∗

Institut für Informatik

Ludwig-Maximilians Universität

D-80538 München, Germany

jan.hoffmann@ifi.lmu.de

January 22, 2009

Abstract

The resolution tree problem is to decide whether a given sequence-
like resolution refutation admits a tree structure. This paper shows the
NP-completeness of both the resolution tree problem and a natural gen-
eralization of the resolution tree problem that does not involve resolution.

1 Introduction

In the context of propositional proof complexity, a proof system is a polynomial-
time decidable relation R such that a propositional formula φ has a proof π
with R(φ, π) if and only if φ is unsatisfiable. A proof system R is polynomially
bounded if there is a polynomial p such that every unsatisfiable formula φ has
a proof π with |π| < p(|φ|) and R(φ, π).

It is an open question whether a polynomially bounded propositional proof
system exists, but it is not hard to see that such a proof system exists if and
only if the complexity classes NP and coNP are equal, which is widely believed
to be unlikely among experts. This relation to computational complexity was
in fact a main motivation of Cook and Reckhow, who introduced the concept of
a proof system [8], and it is the origin of a research enterprise to separate NP
and coNP that is often called Cook’s program. It asks to find lower bounds for
more and more particular proof systems until the developed techniques can be
applied to prove a lower bound for all proof systems and therefore NP 6= coNP.

One of the most extensively studied propositional proof systems is resolution
that is based on the resolution inference rule. It is common to define a resolution
refutation for a set of clauses Γ as a sequence of clauses such that each clause

∗Supported by the DFG Graduiertenkolleg 1480 (PUMA).

1

is a member of Γ or can be derived from two earlier clauses by a resolution
inference.

Alternatively, a resolution refutation can be viewed as a directed acyclic
graph (dag) in which every node has either two or zero predecessors. Many
well-known resolution refinements refer to the dag-description of a refutation,
including unit resolution, regular resolution, linear resolution, input resolution
and tree-like resolution. A refutation is, for example, tree-like if its dag is a
tree.

There has been a lot of work on proving superpolynomial lower bounds on
the sizes of resolution refutations and its refinements, as well as on comparing
the strength of the refinements in terms of proof sizes [12, 9, 5, 4, 2]. Moreover,
different conditional lower bounds for finding a resolution proof have been given
[1, 3, 10]. These results became increasingly popular since resolution refinements
are closely related to proof search procedures that are used in SAT solvers that
are highly successful in practice [7].

This paper proves a result that reveals an inaccuracy in some papers that
define a tree-like resolution proof to be a sequence of clauses. It is based on
the observation that it is not well-defined to call a sequence-like refutation tree-
like if its underlying dag is a tree since the underlying dag of a sequence-like
resolution refutation is not unique. We show that it is in fact NP-complete to
decide whether a sequence-like resolution proof admits some dag that is a tree.
The NP-hardness of the problem is shown by a non-trivial reduction from the
exact cover problem.

A consequence of this result is that there is no polynomial time algorithm
that decides for a given set of clauses Γ and a sequence of clauses whether the se-
quence is a tree-like refutation for Γ unless P = NP. Hence it is doubtful whether
some notions of tree-like resolution that appear in the literature define a proof
system in the sense of Cook and Reckhow. Although none of the existing results
on tree-like resolution are affected by the issue, authors should nevertheless be
aware of the problem and define tree-like resolution in an appropriate way.

In a previous work we showed some related results: On the one hand it is also
NP-complete to decide whether a sequence-like refutation admits a regular dag
[6]. On the other hand it is decidable in polynomial time for a given sequence-like
refutation whether it admits a dag that is a unit resolution, a linear resolution
or an input resolution [6].

The present paper also describes a generalized purely-combinatorial version
of the tree-structure problem that does not involve resolution. This problem is
also shown to be NP-complete.

2 Preliminaries

Resolution Refutations By x, y, z, we denote variables that range over
the values True and False. An assignment is a mapping from the variables to
{True, False}. A literal l is a variable x or a negated variable x. An assignment
α satisfies x if x α(x) = True. α satisfies x if α(x) = False. A clause C is a

2

(possibly empty) set of literals. The empty clause is denoted by �. C is satisfied
by an assignment α if α satisfies at least one literal of C.

A propositional formula in conjunctive normal form (CNF) is a set of clauses.
A CNF Γ is satisfied by an assignment α if α satisfies every clause in Γ. If
there is an assignment that satisfies Γ, we say Γ is satisfiable. Otherwise Γ is
unsatisfiable.

A resolution inference is an inference of the form

C1 ∪ {x} C2 ∪ {x}
C1 ∪ C2

We say that the clause C = C1 ∪ C2 is derived by resolution on x from D1 =
C1 ∪ {x} and D2 = C2 ∪ {x} and write D1, D2 ` C.

A (sequence-like) resolution proof of Cm from a CNF Γ is a sequence S
of clauses C1, . . . , Cm such that for every Ck 6∈ Γ there are 1 ≤ i < j < k
with Ci, Cj ` Ck. If Cm = � is the empty clause then S is called a resolution
refutation of Γ. Clauses Ck ∈ Γ are called input clauses. A resolution refutation
for Γ shows that Γ is unsatisfiable.

We always assume that input clauses in a resolution refutation are marked.
Sometimes we define resolution refutations without defining a CNF Γ that is
proved to be unsatisfiable by the refutation. In that case Γ is implicitly given
through the set of the marked input clauses in the refutation.

Exact Cover Let U = {u1, . . . , um} be a finite set and and let X = (Xk : k =
1, . . . , n) be a family of subsets of U . The problem Exact Cover for (U,X)
is to decide whether there is a subset A ⊆ {1, . . . , n} such that the subfamily
(Xk : k ∈ A) is a partition of U , i.e.,

⋃
k∈AXk = U and Xk ∩ Xi = ∅ for all

distinct i, k ∈ A. Such an A is called an exact cover for (U,X).
Exact set cover is one of Karp’s 21 NP-complete problems [11].

Theorem 1 (Karp 1972). Exact Cover is NP-complete.

Sequences For two sequences S1 = s1, . . . , sn and S2 = t1, . . . lm we write
S1, S2 to denote the sequence s1, . . . , sn, t1, . . . , tm. Similarly, S1, t1 denotes the
sequence s1, . . . , sn, t1.

3 The Resolution Tree Problem

This section gives a proof for the NP-completeness of the problem of finding a
tree structure for a sequence-like resolution refutation. The main part of the
proof is a reduction from Exact Cover and it turned out that it is easier to
reduce Exact Cover to a more general problem that we call Resolution
Forest. A reduction from Resolution Forest is then used to show the
NP-hardness of the original problem.

Let S = C1, . . . , Cm be a resolution proof of Cm and let D1, . . . , Dn be a
subsequence of S. We say that S admits a forest with roots D1, . . . , Dn if there
exist disjoint binary trees T1, . . . , Tn with nodes C1, . . . , Cm such that

3

{a}

{c}{a, c}

{b, c}

{a, b, c}{a, b, c}

{a, b}

{c}

{a}{a, c}

{a, b, c}{a, b}

Figure 1: A resolution forest with roots {a}, {c} for the resolution proof S.

• Di is the root of Ti for i ∈ {1, . . . , n},

• if Ck is a leaf of some Ti then Ck is marked as an input clause in S and

• if Ck is an inner node of some Tl with children Ci, Cj then i < j < k and
Ci, Cj ` Ck.

We say that S admits a tree structure if S admits a forest with a single root
D1 = Cm.

Note that T1, . . . , Tn have exactly m nodes, i.e., each Ck occurs exactly once
in the forest.

The problem Resolution Forest is to decide for a given resolution proof
S = C1, . . . , Cm with Ck 6= � for all 1 ≤ k ≤ m and a subsequence R of S
whether S admits a forest with roots R.

The problem Resolution Tree is to decide for a given resolution refutation
whether it admits a tree structure.

Before we prove the hardness of Resolution Forest we give a short ex-
ample of the problem. Consider the sequence of clauses

S1 = {a, b, c}, {a, b, c}, {a, b}, {a, b, c}, {a, b}, {a}, {c}

and let
S = S1, {b, c}, {a, c}, {a, c}, {a}, {c}

be a resolution proof in which exactly the clauses in S1 are input clauses. Fig-
ure 1 shows that S admits a resolution forest with roots {a}, {c}. To demon-
strate that a resolution forest for a sequence is not unique Figure 2 shows that
S also admits a different resolution forest.

Note that S contains the clause {a, c} twice. The resolution proof S′ =
S1, {b, c}, {a, c}, {a}, {c} that contains {a, c} only once does not admit a reso-
lution forest with roots {a}, {c} since the number of nodes of two binary trees
must be even but the number of clauses in S′ is odd. The following lemma
shows that counting does not always help to decide Resolution Forest.

Lemma 2. Resolution Forest is NP-hard.

4

{c}

{a}{a, c}

{a, b, c}{b, c}

{a, b}{a, b, c}

{a}

{c}{a, c}

{a, b}{a, b, c}

Figure 2: Another resolution forest with roots {a}, {c} for the proof S.

Proof. We give a polynomial-time reduction from Exact Cover. Let therefore
(U,X) be an instance of Exact Cover. We construct a resolution proof S =
S1, S2, S3, S4, S5 such that S admits a resolution forest with roots S2, S4, S5 if
and only if (U,X) admits an exact cover. S = S1, . . . , S5 will be defined step
by step starting with S1 and S2.

For k ∈ {1, . . . , n} let Xk = {uk,1, . . . , uk,mk
} ⊆ U . The clauses in S will

then use the following variables.

u1, . . . , um, x1,1, . . . , x1,m1 , . . . , xn,1, . . . , xn,mn , a, d, b1, . . . , bm

We define three sequences for each Xk ∈ X :

σ(Xk) ={uk,1, xk,1}, {xk,1, uk,2}, {uk,2, xk,2}, . . . ,
{uk,mk

, xk,mk
}, {xk,mk

, uk,1} (input clauses)
υ(Xk) ={uk,1, uk,2}, {uk,2, uk,3}, . . . , {uk,mk

, uk,1} (non-input)
ξ(Xk) ={xk,1, xk,2}, {xk,2, xk,3}, . . . , {xk,mk

, xk,1} (non-input)

Note that if we define a clause like {uk,1, uk,2} then this is the clause {ui, uj} ⊆ U
such that uk,1 = ui and uk,2 = uj . Thus sometimes uk,i and uk′,j denote the
same variable for k 6= k′. On the other hand the xk,i and xk′,j are always
distinct variables for k′ 6= k. The three sequences allow the following two types
of inferences (here i+ 1 denotes 1 if i = mk).

{uk,i, xk,i} {xk,i, uk,i+1}
{uk,i, uk,i+1}

{xk,i, uk,i+1} {uk,i+1, xk,i+1}
{xk,i, xk,i+1}

We will define S in such a way that from the clauses in σ(Xk), the only derivable
clauses are in ξ(Xk) or are identical to one of the clauses in υ(Xk) (recall that
a clause can occur several times a sequence and here the clauses in υ(Xk) can
also occur in a υ(Xk′)). Thus, a resolution forest for S must either use all C
in σ(Xk) to derive all clauses in ξ(Xk) or it must use all C to derive clauses
that are identical to the clauses in υ(Xk). The intuition is that deriving υ(Xk)
means to use Xk for a partition of U and deriving ξ(Xk) means not to use Xk.

5

Since we can not derive both ξ(Xk) and υ(Xk) from σ(Xk) in a tree structure,
we have to provide additional input clauses that can be picked in a forest. We
set

α(Xk) ={a, uk,1}, {a, uk,1}, . . . , {a, uk,mk
}, {a, uk,mk

} (input)

δ(Xk) ={d, xk,1}, {d, xk,1}, . . . , {d, xk,mk
}, {d, xk,mk

} (input)
S1 =σ(X1), α(X1), δ(X1), . . . , σ(Xn), α(Xn), δ(Xn)
S2 =ξ(X1), υ(X1), . . . , ξ(Xn), υ(Xn)

Now we can use the clauses α(Xk) to derive the clauses in υ(Xk) and the clauses
in δ(Xk) to derive the clauses in ξ(Xk):

{a, uk,i} {a, uk,i+1}
{uk,i, uk,i+1}

{d, xk,i} {d, xk,i+1}
{xk,i, xk,i+1}

Hence we have too many input clauses to build a forest. S3, S4 and S5 will
therefore provide alternate clauses that can be derived by the ones in α(Xk)
and δ(Xk).

Note that in υ(Xk) there is exactly one clause that contains ui and exactly
one clause that contains ui for each ui ∈ Xk. Our next goal is to force every
tree structure to use the clauses in σ(X1), . . . , σ(Xn) to derive exactly one clause
with ui and one clause with ūi for every ui ∈ U . That would already mean to
use the clauses in the same Xk for both the clause with ui and the clause with
ui in tree structure. To achieve this goal, we define S3 such that for each ui ∈ U
one {a, ui} and one {a, ui} has to be used in S3.

S3 ={u1, b1}, {u1, b1}, . . . , {um, bm}, {um, bm}, (input)
{a, b1}, {a, b1}, . . . , {a, bm}, {a, bm} (non-input)

S4 ={b1}, . . . , {bm} (non-input)

For every i ∈ {1, . . . ,m} we have the following derivation.

{a, ui} {ui, bi}
{a, bi}

{a, ui} {ui, bi}
{a, bi}

{bi}
A forest for S1, S2, S3 can now use all clauses that appear in a σ(Xk) or in a
α(Xk) as well as 2|U | = 2m clauses from the δ(Xk) (if an exact cover exists
then they are used to derive the clauses in ξ(Xk) for the Xk that are part of the
partition). It follows that r = 2 · (

∑
k=1,...nmk −m) clauses that are elements

of a δ(Xk) remain unused. We use them to derive the clauses {d, d} in S5:

{d, xk,i} {d, xk,i}
{d, d}

6

S5 = {d, d}, . . . , {d, d}︸ ︷︷ ︸
r times

(non-input)

This completes the construction of S. To prove its correctness it has to be
shown that S admits a tree structure with roots S2, S4, S5 if and only if (U,X)
has an exact cover.

To see the implication from right to left let A ⊆ {1, . . . , n} be an exact cover
for (U,X). Given the explanations in the construction of S, it is easy to use
A to construct a forest F for S. F uses the clauses in σ(Xk) to derive the
clauses in υ(Xk), i.e., as u-children, if k ∈ A and it uses the clauses in σ(Xk) to
derive the clauses in ξ(Xk) otherwise. By following the description of the above
construction of S it is straightforward to build the forest F .

To prove the left to right direction let F = T1, . . . , Tt be a forest for S. We
call the clauses of the form {ui, uj} that occur in the sequences υ(Xk) u-clauses.
Children of a u-clause in F are called u-children.

Let k ∈ {1, . . . , n} and let σ(Xk) = C1, . . . , C2mk
. We first prove that

if one clause in σ(Xk) is a u-child then all clauses in σ(Xk)
are u-children.

(1)

To prove (1) we show that if Cj is a u-child then Cj+1 is also a u-child for all
1 ≤ j ≤ 2mk (let j+ 1 be 1 if j = 2mk). There are two cases. Assume first that
j = 2i− 1 is odd. Let again i+ 1 be 1 if i = mk. Then Cj = {uk,i, xk,i} and it
is clear that Cj+1 = {xk,i, uk,i+1} is also a u-child since the only way to derive
a u-clause with Cj in S is by the inference

{uk,i, xk,i} {xk,i, uk,i+1}
{uk,i, uk,i+1}

Assume now that j = 2i is even. Then Cj = {xk,i, uk,i+1} and we have to show
that Cj+1 = {uk,i+1, xk,i+1} is a u-clause. If Cj+1 would not be a u-clause it
would be used as a child of a non-u-clause somewhere in F . The only possible
inference in S that uses Cj+1 without inferring a u-clause is

{xk,i, uk,i+1} {uk,i+1, xk,i+1}
{xk,i, xk,i+1}

But this inference cannot be used in F since Cj = {xk,i, uk,i+1} is used already
to derive a u-clause and cannot be used twice in F . Thus Cj+1 must be a
u-clause. This completes the proof of (1).

It follows directly from (1) and from the definition of σ(Xk) that if a ui

occurs in a u-clause with children in σ(Xk) then ui occurs in a u-clause with
children in σ(Xk) too. We say that ui is Xk-derived in that case. We now show
for each i ∈ {1, . . . ,m} that

ui is Xk-derived for exactly one Xk. (2)

7

To prove (2), fix a ui and let x(i) be the number of Xk’s that contain ui. S has
exactly x(i) u-clauses that contain ui (ui respectively) and x(i) clauses {a, ui}
({a, ui} resp.). The sequence S3 is defined such that the clause {bi} can only be
derived in the way described during the construction. So one {a, ui} and one
{a, ui} have to be used in F to derive the clause {bi}. Thus there is exactly one
u-clause that contains ui and one u-clause that contains ui that are not derived
by a clause {a, ui} or {a, ui}, respectively. These clauses (maybe it is only one
clause) must be Xk-derived for some k.

From (1) and (2) it follows immediately that the family (Xk : there is an i
such that ui is Xk-derived) is a partition of U . �

Theorem 3. Resolution Tree is NP-complete.

Proof. To see that Resolution Tree is a member of NP, consider the following
NP-algorithm for a given sequence S = C1, . . . , Cn. First compute the set Pk

of pairs of possible children for each Ck. This can be done by a deterministic
algorithm in quadratic time. Then non-deterministically guess for every k ∈
{1, . . . , l} a pair of children {Ci, Cj} ∈ Pk or decide that Ck is a leaf in the tree.
Finally verify that every Ck with k < l has been picked exactly once as a child
and that every leaf is an input-clause.

Now the NP-hardness of Resolution Tree is shown by a reduction from
Resolution Forest. Let S = C1, . . . , Cm be a resolution proof with Ci 6= �
for all 1 ≤ i ≤ m and let D1, . . . , Dn be a subsequence of S. We will construct
a resolution refutation R = S,R1, R2 such that R admits a tree structure if and
only if S admits a forest with roots D1, . . . , Dn. The idea is that every clause in
R1, R2 has exactly one pair of possible predecessors (if we identify equal Dk’s)
and that every Dk occurs exactly once among these predecessors such that it is
possible to build a tree structure from the sequence D1, . . . , Dn, R1, R2.

Let k ∈ {1, . . . n}, Dk = {lk,1, . . . , lk,mk
} and let dk be a new variable. Define

σ(Dk) ={lk,1, dk}, . . . , {lk,mk
, dk}, (input)

{lk,2, . . . lk,mk
, dk}, . . . , {lk,mk

, dk}, {dk} (non-input)
R1 =σ(D1), . . . , σ(Dn)

Since dk is a new variable σ(Dk) can only be used in R as shown in the following
inference (recall that Dk 6= �).

Dk {lk,1, dk}
{lk,2, . . . lk,mk

, dk} {lk,2, dk}
{lk,3, . . . lk,mk

, dk}
...

{lk,mk
, dk} {lk,mk

, dk}
{dk}

8

Now we define R2 such that it can be used to connect the {dk} to a single tree.

R2 ={d1, . . . , dn}, (input)

{d2, . . . , dn}, . . . , {dn},� (non-input)

The non-input clauses in R2 are inferred as follows.

{d1, . . . , dn} {d1}
{d2, . . . , dn}

...
{dn} {dn}

�

This completes the construction of R. It is easy to see that R admits a tree
structure if and only if S admits a forest with roots D1, . . . , Dn. �

4 The Tree Structure Problem

In this section we define the abstract combinatorial problem Tree Structure
which is a generalization of Resolution Tree that neither involves resolution
nor the notion of a proof. It follows from the results in the previous section that
Tree Structure is also NP-complete.

The problem Tree Structure is mentioned for two reasons. On the one
hand it has been conjectured to be NP-complete in an earlier work [6]. On the
other hand it shows that the hardness of finding a tree structure for a sequence
is not specific to resolution but may also apply to different proof systems or to
problems in a completely different context.

Let S = s1, . . . , sl be a sequence and let for each k ∈ {1, . . . , l} Pk be a
(possibly empty) set of unordered pairs {si, sj} with 1 ≤ i < j < k. Let
P = (Pk : k = 1, . . . l).

(S, P) admits a tree structure if there is a binary tree T with nodes {s1, . . . , sl}
such that

• if sk is a leaf of T then Pk = ∅ and

• if sk is an inner node of T with children si, sj then {si, sj} ∈ Pk.

The problem Tree Structure is to decide whether (S, P) admits a tree
structure.

Theorem 4. Tree Structure is NP-complete.

Proof. It easy to see that Tree Structure is a member of NP by adapting
the algorithm that is given in the proof of Theorem 3.

But it is also clear that Tree Structure is NP-hard since Resolution
Tree is NP-hard and an instance S = C1, . . . , Cm of Resolution Tree can be
transformed into an instance of Tree Structure by defining Pk = {{Ci, Cj} |
Ci, Cj ` Ck, i < j < k}. �

9

Acknowledgments I thank Martin Hofmann and Jan Johannsen for helpful
discussions and for suggesting many improvements to the presentation of this
work. I also appreciate the remarks of the anonymous reviewers.

References

[1] Michael Alekhnovich, Samuel R. Buss, Shlomo Moran, and Toniann Pitassi.
Minimum propositional proof length is NP-hard to linearly approximate.
J. Symb. Log., 66(1):171–191, 2001.

[2] Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair
Urquhart. An exponential separation between regular and general reso-
lution. Theory of Computing, 3(1):81–102, 2007.

[3] Michael Alekhnovich and Alexander A. Razborov. Resolution is not au-
tomatizable unless W[P] is tractable. In 45th Symposium on Foundations
of Computer Science, pages 210–219, 2001.

[4] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal
separation of tree-like and general resolution. Combinatorica, 24(4):585–
603, 2004.

[5] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow - resolution
made simple. J. ACM, 48(2):149–169, 2001.

[6] Samuel R. Buss and Jan Hoffmann. The NP-hardness of finding a directed
acyclic graph for regular resolution. Theor. Comput. Sci., 396(1-3):271–276,
2008.

[7] Samuel R. Buss, Jan Hoffmann, and Jan Johannsen. Resolution trees with
lemmas: Resolution refinements that characterize DLL algorithms with
clause learning. LMCS-4, 4:13, 2008.

[8] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propo-
sitional proof systems. J. Symb. Log., 44(1):36–50, 1979.

[9] Armin Haken. The intractability of resolution. Theor. Comput. Sci.,
39:297–308, 1985.

[10] Kazuo Iwama. Complexity of finding short resolution proofs. In Igor
Pŕıvara and Peter Ruzicka, editors, Mathematical Foundations of Computer
Science, 22nd International Symposium, volume 1295 of Lecture Notes in
Computer Science, pages 309–318. Springer, 1997.

[11] Richard M. Karp. Reducibility among combinatorial problems. In R. E.
Miller and J. W. Thatcher, editors, Complexity of Computer Computations,
pages 85–103. Plenum Press, 1972.

10

[12] G.S. Tseitin. On the complexity of derivation in propositional calcu-
lus. Studies in Constructive Mathematics and Mathematical Logic, Part
2, pages 115–125, 1968.

11

