
Automatic Static Cost Analysis for Parallel Programs

Jan Hoffmann Zhong Shao
Yale University

Abstract
Static analysis of the evaluation cost of programs is an extensively
studied problem that has many important applications. However,
most automatic methods for static cost analysis are limited to
sequential evaluation while programs are increasingly evaluated
on modern multicore and multiprocessor hardware.

This article introduces the first automatic analysis for deriving
bounds on the worst-case evaluation cost of parallel first-order
functional programs. The analysis is performed by a novel type
system for amortized resource analysis. The main innovation is a
technique that separates the reasoning about sizes of data structures
and evaluation cost within the same framework. The cost semantics
of parallel programs is based on call-by-value evaluation and the
standard cost measures work and depth. A soundness proof of
the type system establishes the correctness of the derived cost
bounds with respect to the cost semantics. The derived bounds
are multivariate resource polynomials which depend on the sizes of
the arguments of a function. Type inference can be reduced to linear
programming and is fully automatic. A prototype implementation of
the analysis system has been developed to experimentally evaluate
the effectiveness of the approach. The experiments show that the
analysis infers bounds for realistic example programs such as quick
sort for lists of lists, matrix multiplication, and an implementation
of sets with lists. The derived bounds are often asymptotically tight
and the constant factors are close to the optimal ones.

1. Introduction
Static analysis of the resource cost of programs is a classical subject
of computer science. Recently, there has been an increased interest
in formally proving cost bounds since they are essential in the
verification of safety-critical real-time and embedded systems. As
you might recall from books such as Knuth’s The Art of Computer
Programming, it is tedious and error-prone to manually reason
about the exact resource cost of programs, as formally defined by a
cost semantics. As a result, machine support for statically deriving
resource bounds for programs has been extensively studied.

For sequential functional programs there exist many automatic
and semi-automatic analysis systems that can statically infer cost
bounds. Most of them are based on sized types [34], recurrence
relations [14], and amortized resource analysis [24, 31]. The goal
of these systems is to automatically compute easily-understood
arithmetic expressions in the sizes of the inputs of a program that
bound resource cost such as time or space usage. Even though an
automatic computation of cost bounds is undecidable in general,
novel analysis techniques are able to efficiently compute tight time
and space bounds for many non-trivial programs [16, 2, 22, 9, 32].

For functional programs that are evaluated in parallel, on the
other hand, no such analysis system exists to support programmers
with computer-aided derivation of cost bounds. In particular, there
are no type systems that derive cost bounds for parallel programs.
This is unsatisfying because parallel evaluation is becoming increas-

ingly important on modern hardware and referential transparency
makes functional programs ideal for parallel evaluation.

This article introduces an automatic type-based resource analysis
for the derivation of cost bounds for parallel first-order functional
programs. Automatic cost analysis for sequential programs is al-
ready challenging and it might seem to be a long shot to develop
an analysis for parallel evaluation that takes into account low-level
features of the underlying hardware such as the number of proces-
sors. Fortunately, it has been shown [7, 8] that the cost of parallel
functional programs can be analyzed in two steps. First, we derive
cost bounds at a high abstraction level where we assume to have an
unlimited number of processors at our disposal. Second, we prove
once and for all how the cost on the high abstraction level relates to
the actual cost on a specific system with limited resources.

In this work, we derive bounds on an abstract cost model that
consists of the work and the depth of an evaluation of a program [7].
Work measures the evaluation time of sequential evaluation and
depth measures the evaluation time of parallel evaluation assuming
an unlimited number of processors. It is well-known [17] that a
program that evaluates to a value using work w and depth d can
be evaluated on a shared-memory multiprocessor (SMP) system
with p processors in time Opmaxpw{p, dqq (see Section 2.3). The
mechanism that is used to prove this result is comparable to a
scheduler in an operating system.

Technically, the analysis computes two separate typing deriva-
tions, one for the work and one for the depth. To derive a bound on
the work, we use multivariate amortized resource analysis for se-
quential programs [21]. To derive a bound on the depth, we develop
a novel multivariate amortized resource analysis for programs that
are evaluated in parallel. The main challenge in the design of this
novel parallel analysis is to ensure the same high compositionality
as in the sequential analysis. The design and implementation of
this novel analysis for bounds on the depth of evaluations is the
main contribution of our work. The technical innovation that en-
ables compositionality is an analysis method that separates the static
tracking of size changes of data structures from the cost analysis
while using the same framework. We envision that this technique
will find further applications in the analysis of other non-additive
cost such as stack-space usage and recursion depth.

A novelty in the cost semantics in this paper is the definition
of work and depth for terminating and non-terminating evaluations.
Intuitively, the non-deterministic big-step evaluation judgement that
is defined in Section 2 expresses that there is a (possibly partial)
evaluation with work n and depthm. This statement is used to prove
that a typing derivation for bounds on the depth or for bounds on
the work ensures termination. Bounds on parallel evaluation also
prove termination of the sequential evaluation.

We describe the new type analysis for parallel evaluation for a
simple first-order language with lists, pairs, pattern matching, and
sequential and parallel composition. This is already sufficient to
study the cost analysis of parallel programs. However, we imple-
mented the analysis system in Resource Aware ML (RAML), which

also includes other inductive data types and conditionals [23]. To
demonstrate the universality of the approach, we also implemented
NESL’s [6] parallel list comprehensions as a primitive in RAML
(see Section 6). Similarly, we can define other parallel sequence
operations of NESL as primitives and correctly specify their work
and depth. RAML is currently extended to include higher-order
functions, arrays, and user-defined inductive types. This work is
orthogonal to the treatment of parallel evaluation.

To evaluate the practicability of the proposed technique, we
performed an experimental evaluation of the analysis using the
prototype implementation in RAML. Note that the analysis com-
putes worst-case bounds instead of average-case bounds and that
the asymptotic behavior of many of the classic examples of Blel-
loch et al. [7] does not differ in parallel and sequential evaluations.
For instance, the depth and work of quick sort are both quadratic
in the worst-case. Therefore, we focus on examples that actually
have asymptotically different bounds for the work and depth. This
includes quick sort for lists of lists in which the comparisons of the
inner lists can be performed in parallel, matrix multiplication where
matrices are lists of lists, a function that computes the maximal
weight of a (continuous) sublist of an integer list, and the standard
operations for sets that are implemented as lists. The experimental
evaluation can be easily reproduced and extended: RAML and the
example programs are publicly available for download and through
an user-friendly online interface [1].

In summary we make the following contributions.

1. We introduce the first automatic static analysis for deriving
bounds on the depth of parallel functional programs. Being based
on multivariate resource polynomials and type-based amortized
analysis, the analysis is highly compositional. The computed
type derivations are easily checkable certificates of the bound.

2. We prove the soundness of the type-based amortized analysis
with respect to an operational big-step semantics that models the
work and depth of terminating and non-terminating programs.
This allows us to prove that work and depth bounds ensure
termination. Our inductively defined big-step semantics is an
interesting alternative to coinductive big-step semantics.

3. We implemented the proposed analysis in RAML, an OCaml-
like functional language. In addition to the language constructs
like lists and pairs that are formally described in this article, the
implementation includes binary trees, natural numbers, tuples,
Booleans, and NESL’s parallel list comprehensions. RAML is
publically available for download and through an easy-to-use
web interface [1].

4. We evaluated the practicability of the implemented analysis
by performing reproducible experiments with typical example
programs. Our results show that the analysis is efficient and
works for a wide range of examples. The derived bounds are
usually asymptotically tight if the tight bound is expressible as a
resource polynomial.

The remainder of the article is organized as follows. In Section 2
we define work and depth and discuss its relation to the evaluation of
programs on realistic systems. In Section 3 we informally introduce
amortized resource analysis and explain the main idea of the novel
analysis for the depth. Section 4 introduces multivariate resource
polynomials which form the foundation of our analysis. Section 5
contains the type system for the cost analysis of parallel evaluation
and the proof of the soundness of the type system with respect to the
cost semantics. The implementation and the experimental evaluation
are described in Section 7. Finally, we discuss related work (Section
8) and conclude (Section 9).

2. Cost Semantics for Parallel Programs
In this section, we introduce a first-order functional language with
parallel and sequential composition. We then define a big-step
operational semantics that formalizes the cost measures work and
depth for terminating and non-terminating evaluations. Finally, we
prove properties of the cost semantics and discuss the relation of
work and depth to the run time on hardware with limited resources.

2.1 Expressions and Programs
Expressions are given in let-normal form. This means that term
formers are applied to variables only when this does not restrict the
expressivity of the language. Expressions are formed by integers,
variables, function applications, lists, pairs, pattern matching, and
sequential and parallel composition.

e, e1, e2 ::“ n | x | fpxq | nil | conspx1, x2q | px1, x2q

| matchxwith xnil ñ e1 ~ conspx1, x2q ñ e2y

| matchxwith px1, x2q ñ e | letx “ e1 in e2

| par x1 “ e1 andx2 “ e2 in e

The parallel composition par x1 “ e1 andx2 “ e2 in e is used to
evaluate e1 and e2 in parallel and bind the resulting values to the
names x1 and x2 for use in the evaluation of e.

In the prototype, we have implemented other inductive types
such as trees, natural numbers, and tuples. Additionally, there
are operations for primitive types such as Booleans and integers,
and NESL’s parallel list comprehensions [6]. Expressions are also
transformed automatically into let normal form before the analysis.
In the examples in this paper, we use the syntax of our prototype
implementation to improve readability.

In the following, we define a standard type system for expres-
sions and programs. Data types A,B and function types F are
defined as follows.

A,B ::“ int | LpAq | A ˚B
F ::“ AÑ B

Let A be the set of data types and let F be the set of function types.
A signature Σ : FID á F is a partial finite mapping from function
identifiers to function types. A context is a partial finite mapping
Γ : Var á A from variable identifiers to data types. A simple
type judgement Σ; Γ $ e : A states that the expression e has type
A in the context Γ under the signature Σ. The definition of typing
rules for this judgement is standard and we omit the rules. Basically,
the rules are obtained by erasing the potential annotations of the
syntax-directed rules in Section 5.

A (well-typed) program consists of a signature Σ and a family
pef , yf qfPdompΣq of expressions ef with a distinguished variable
identifier yf such that Σ; yf :A $ ef :B if Σpfq “ AÑ B.

2.2 Big-Step Operational Semantics
We now formalize the resource cost of evaluating programs with a
big-step operational semantics. The focus of this paper is on time
complexity and we only define the cost measures work and depth.
Intuitively, the work measures the time that is needed in a sequential
evaluation. The depth measures the time that is needed in a parallel
evaluation. In the semantics, time is parameterized by a metric that
assigns a non-negative cost to each evaluation step.

Motivation A distinctive feature of our big-step semantics is that it
models terminating, failing, and diverging evaluations by inductively
describing finite subtrees of (possibly infinite) evaluation trees.
By using an inductive judgement for diverging and terminating
computations while avoiding intermediate states, it combines the
advantages of big-step and small-step semantics. This has two
benefits compared to standard big-step semantics.

V,H M e ó ρ | pw, dq For stack V and heap H , e evaluates to ρ with work w and depth d in a fixed program pef , yf qfPdompΣq.

n P Z H 1 “ H, ` ÞÑ n

V,H M n ó p`,H 1q | pM const,M constq
(E:CONST)

ryf ÞÑ V pxqs, H M ef ó ρ | pw, dq

V,H M fpxq ó ρ | pMapp`w,Mapp`dq
(E:APP)

HpV pxqq “ p`1, `2q V rx1 ÞÑ `1, x2 ÞÑ `2s, H
M e ó ρ | pw, dq

V,H M matchxwith px1, x2q ñ e ó ρ | pMmatP`w,MmatP`dq
(E:MATP)

H 1 “ H, ` ÞÑ pV px1q, V px2qq

V,H M
px1, x2q ó p`,H

1q | pMpair,Mpairq
(E:PAIR)

HpV pxqq “ nil V,H M e1 ó ρ | pw, dq

V,H M matchxwith xnil ñ e1 ~ conspx1, x2q ñ e2y ó ρ | pM
matN`w,MmatN`dq

(E:MATN)
V,H M e ó ˝ | p0, 0q

(E:ABORT)

HpV pxqq “ pcons, `1, `2q V rx1 ÞÑ `1, x2 ÞÑ `2s, H
M e2 ó ρ | pw, dq

V,H M matchxwith xnil ñ e1 ~ conspx1, x2q ñ e2y ó ρ | pM
matL`w,MmatL`dq

(E:MATC)
H 1 “ H, ` ÞÑ nil

V,H M nil ó p`,H 1q | pMnil,Mnilq
(E:NIL)

V,H M e1 ó ˝ | pw, dq

V,H M letx “ e1 in e2 ó ˝ | pM
let`w,M let`dq

(E:LET1)
H 1 “ H, ` ÞÑ pcons, V px1q, V px2qq

V,H M conspx1, x2q ó p`,H
1q | pM cons,M consq

(E:CONS)

V,H M e1 ó p`,H
1q | pw1, d1q V rx ÞÑ `s, H 1 M e2 ó ρ | pw2, d2q

V,H M letx “ e1 in e2 ó ρ | pM
let`w1`w2,M

let`d1`d2q
(E:LET2)

V pxq “ `

V,H M x ó p`,Hq | pMvar,Mvarq
(E:VAR)

V,H M e1 ó ρ1 | pw1, d1q V,H M e2 ó ρ2 | pw2, d2q ρ1 “ ˝ _ ρ2 “ ˝

V,H M par x1 “ e1 andx2 “ e2 in e ó ˝ | pMPar`w1`w2,M
Par`maxpd1, d2qq

(E:PAR1)

V,H M e1 ó p`1, H1q | pw1, d1q V,H M e2 ó p`2, H2q | pw2, d2q V rx1 ÞÑ`1, x2 ÞÑ`2s, H1ZH2
M e ó p`,H 1q | pw, dq

V,H 1 M par x1 “ e1 andx2 “ e2 in e ó p`,H 1q | pMPar`w1`w2`w,M
Par`maxpd1, d2q`dq

(E:PAR2)

Figure 1: Rules of the operational big-step semantics.

1. We can model the resource consumption of diverging programs
and prove that bounds hold for terminating and diverging pro-
grams. (In some cost metrics, diverging computations can have
finite cost.)

2. For a cost metric in which all diverging computations have
infinite cost we are able to show that bounds imply termination.

Note that we cannot achieve this by step-indexing a standard big-step
semantics. The available alternatives to our approach are small-step
semantics and coinductive big-step semantics. However, it is unclear
how to prove the soundness of our type system with respect to
these semantics. Small-step semantics is difficult to use because
our type-system models an intentional property that goes beyond
the classic type preservation: After performing a step, we have to
obtain a refined typing that corresponds to a (possibly) smaller
bound. Coinductive derivations are hard to relate to type derivations
because type derivations are defined inductively.

Our inductive big-step semantics can not only be used to formal-
ize resource cost of diverging computations but also for other effects
such as event traces. It is therefore an interesting alternative to
recently proposed coinductive operational big-step semantics [11].

Semantic Judgements We formulate the big-step semantics with
respect to a stack and a heap. Let Loc be an infinite set of locations
modeling memory addresses on a heap. The set of values Val is
defined as follows.

v ::“ n | p`1, `2q | pcons, `1, `2q | nil

A value v P Val is either an integer n P Z, a pair of locations
p`1, `2q, a node pcons, `1, `2q of a list, or nil.

A heap is a finite partial mapping H : Loc á Val that maps
locations to values. A stack is a finite partial mapping V : Var á
Loc from variable identifiers to locations. Thus we have boxed
values. It is not important for the analysis whether values are boxed.

The big-step evaluation rules in Figure 1 are formulated with
respect to a resource metricM . They define the evaluation judgment

V,H M e ó ρ | pw, dq where ρ ::“ p`,Hq | ˝ .

It expresses the following. In a fixed program pef , yf qfPdompΣq, if
the stack V and the initial heap H are given then the expression e
evaluates to ρ. Under the metric M , the work of the evaluation of e
is w and the depth of the evaluation is d. Unlike standard big-step
operational semantics, ρ can be either a pair of a location and a new
heap, or ˝ (pronounced busy) indicating that the evaluation is not
finished yet.

It might be sometimes handy to also include the possibility of ρ
being a failure value K to have an explicit judgement for evaluations
that go wrong. However, this is not necessary here since we are
mainly concerned with resource consumption rather than safety.

A resource metric M : K Ñ Q`0 defines the resource con-
sumption in each evaluation step of the big-step semantics with a
non-negative rational number. We define

K“tconst, var, app, cons, nil,matN,matC, pair,matP, let, paru.

We write Mk for Mpkq.
An intuition for the judgement V,H M e ó ˝ | pw, dq is that

there is a partial evaluation of e that runs without failure, has work
w and depth d, and has not yet reached a value. This is similar to a
small-step judgement.

Rules The rules of the big-step operational semantics are given
in Figure 1. For a heap H , we write H, ` ÞÑ v to express that
` R dompHq and to denote the heap H 1 such that H 1pxq “ Hpxq
if x P dompHq and H 1p`q “ v. In the rule E:PAR2, we write
H1 Z H2 to indicate that H1 and H2 agree on the values of
locations in dompH1q X dompH2q and to define the heap H with

x ÞÑ `, ` ÞÑ 0 M ωpxq ó ˝ | p0, 0q
(E:ABORT)

x ÞÑ `, ` ÞÑ 0 M ωpxq ó ˝ | pMapp,Mappq
(E:APP)

x ÞÑ `, ` ÞÑ 0 M ωpxq ó ˝ | p0, 0q
(E:ABORT)

x ÞÑ `, ` ÞÑ 0 M ωpxq ó ˝ | pMapp,Mappq
(E:APP)

x ÞÑ `, ` ÞÑ 0 M ωpxq ó ˝ | p2Mapp, 2Mappq
(E:APP)

Figure 2: Two example derivations for the diverging function call
ωpxq where ω is defined through ωpxq “ ωpxq.

dompHq “ dompH1q Y dompH2q such that

Hpxq “

$

&

%

H1pxq if x P dompH1qXdompH2q ^H1pxq“H2pxq
H1pxq if x P dompH1qzdompH2q

H2pxq if x P dompH2qzdompH1q

We assume that the locations that are allocated in parallel evaluations
are disjoint. That is easily achievable in an implementation.

The most interesting rules of the semantics are E:ABORT, and
the rules for sequential and parallel composition. They allow us to
approximate infinite evaluation trees for non-terminating evaluations
with finite subtrees. The rule E:ABORT states that we can partially
evaluate every expression by doing zero steps. The work w and
depth d are then both zero (i.e., w “ d “ 0).

To obtain an evaluation judgement for a sequential composition
letx “ e1 in e2 we have two options. We can use the rule E:LET1
to partially evaluate e1 using work w and depth d. Alternatively, we
can use the rule E:LET2 to evaluate e1 until we obtain a location
and a heap p`,H 1q using work w1 and depth d1. Then we evaluate
e2 using work w2 and depth d2. The total work and depth is then
given by M let

`w1`w2 and M let
`d1`d2, respectively.

Similarly, we can derive evaluation judgements for a parallel
composition par x1 “ e1 andx2 “ e2 in e using the rules E:PAR1
and E:PAR2. In the rule E:PAR1, we partially evaluate e1 or e2

with evaluation cost pw1, d1q and pw2, d2q. The total work is then
MPar

`w1`w2 (the cost for the evaluation of the parallel binding
plus the cost for the sequential evaluation of e1 and e2). The total
depth is MPar

`maxpd1, d2q (the cost for the evaluation of the
binding plus the maximum of the cost of the depths of e1 and e2).
The rule E:PAR2 handles the case in which e1 and e2 are fully
evaluated. It is similar to E:LET2 and the cost of the evaluation of
the expression e is added to both the cost and the depth since e is
evaluated after e1 and e2.

Figure 2 shows two example derivations for the diverging ex-
pressions ωpxq in the program pωpxq, xqω , that is, the function
ω is defined through ωpxq “ ωpxq. We can derive x ÞÑ `, ` ÞÑ

0 M ωpxq ó ˝ | pn¨M app, n¨M app
q for every n P N.

An interesting observation is that depth and work form semirings
with the operations (`,`) and (`,max), respectively. In general,
resource consumption of parallel programs can be described by
a semiring in the same way resource consumption of sequential
programs can be described by a monoid.

2.3 Properties of the Cost-Semantics
A convenient property of the semantics is that heap-cells are only
allocated but never deallocated during evaluation. This is not re-
quired for the soundness proof nor for parallel evaluation. However,
it simplifies the soundness proof. The following proposition follows
directly from an inspection of the evaluation rules.

Proposition 1. If V,H M e ó p`1, H 1q | pw, dq then H 1p`q “
Hp`q for all ` P dompHq.

H (` ÞÑ a :A In heap H , ` points to the sem. value a P JAK.

Hp`q“n n P Z
H (` ÞÑ n : int

(V:INT)
Hp`q “ nil

H (` ÞÑ rs : LpAq
(V:NIL)

Hp`q “ p`1, `2q H (`1 ÞÑ a : A H (`2 ÞÑ b : B

H (` ÞÑ pa, bq : A ˚B
(V:PAIR)

Hp`q “ pcons, `1, `2q
H (`1 ÞÑ a1 : A H (`2 ÞÑ ra2, . . . , ans : LpAq

H (` ÞÑ ra1, . . . , ans : LpAq
(V:CONS)

Figure 3: Relating heap cells to semantic values.

The main theorem of this section states that the resource cost of
a partial evaluation is less than or equal to the cost of an evaluation
of the same expression that terminates.

Theorem 1. If V,H M e ó p`,H 1q | pw, dq and V,H M e ó
˝ | pw1, d1q then w1 ď w and d1 ď d.

Theorem 1 can be proved by a straightforward induction on the
derivation of the judgement V,H M e ó p`,H 1q | pw, dq.

Provably Efficient Implementations While work is a realistic
cost-model for the sequential execution of programs, depth is not a
realistic cost-model for parallel execution. The main reason is that
it assumes that an infinite number of processors can be used for
parallel evaluation. However, it has been shown [7] that work and
depth are closely related to the evaluation time on more realistic
abstract machines.

For example, Brent’s Theorem [17] provides an asymptotic
bound on the number of execution steps on the shared-memory
multiprocessor (SMP) machine. It states that if V,H M e ó
p`,H 1q | pw, dq then e can be evaluated on a p-processor SMP
machine in time Opmaxpw{p, dqq. An SMP machine has a fixed
number p of processes and provides constant-time access to a
shared memory. The proof of Brent’s Theorem can be seen as the
description of a so-called provably efficient implementation, that is,
an implementation for which we can establish an asymptotic bound
that depends on the number of processors.

Classically, we are especially interested in non-asymptotic
bounds in resource analysis. It would thus be interesting to de-
velop a non-asymptotic version of Brent’s Theorem for a specific
architecture using more refined models of concurrency [8]. However,
such a development is not in the scope of this article.

Well-Formed Environments and Type Soundness For each data
type A we inductively define a set JAK of values of type A. Lists
are interpreted as lists and pairs are interpreted as pairs.

JintK “ Z
JA ˚BK “ JAKˆ JBK
JLpAqK “ tra1, . . . , ans | n P N, ai P JAKu

If H is a heap, ` is a location, A is a data type, and a P JAK then
we write H (` ÞÑ a :A to mean that ` defines the semantic value
a P JAK when pointers are followed in H in the obvious way. The
judgment is formally defined in Figure 3.

If we fix a simple type A and a heap H then there exists at most
one semantic value a such that H (` ÞÑ a :A.

Proposition 2. Let H be a heap, ` P Loc, and let A be a simple
type. If H (` ÞÑ a :A and H (` ÞÑ a1 :A then a “ a1.

Note that if H (` ÞÑ a :A then ` can point to a data structure
with aliasing, but circularity is not allowed since this would require
values a of infinite size. There is no way of generating such circular
values in the functional language we study here.

We write H (` :A to indicate that there exists a, necessarily
unique, semantic value a P JAK so that H (` ÞÑ a :A . A stack
V and a heap H are well-formed with respect to a context Γ if
H (V pxq : Γpxq holds for every x P dompΓq. We then write
H (V : Γ.

Theorem 2 shows that the terminating evaluation of a well-typed
expression in a well-formed environment results in a well-formed
environment.

Theorem 2 (Preservation). If Σ; Γ $ e : B and H (V : Γ and
V,H M e ó p`,H 1q | pw, dq then H 1 (V : Γ and H 1 (` : B.

The Cost-Free Metric A key aspect of the resource-aware type
system is based on the cost-free resource metric cf, that is, the metric
that assigns zero cost to all steps. We have

cfpxq “ 0 for every x P K .

In the cost-free metric, all evaluation judgements have zero work
and zero depth. In the type system we use cost-free judgements to
relate the sizes of the results of evaluations to the sizes of the values
in the context.

Proposition 3. If V,H cf e ó p`,H 1q | pw, dq then w “ d “ 0.

Simple Metrics and Progress In the reminder of this section, we
prove some properties of the evaluation judgement under a simple
metric. A simple metric M assigns the value 1 to every resource
constant, that is,

Mpxq “ 1 for every x P K .

With a simple metric, work counts the number of evaluation steps.
Lemma 1 shows that we can always make one partial evaluation
step for a well-typed expression in a well-formed environment. It is
used in the induction basis of the proof of Theorem 3.

Lemma 1. Let M be a simple metric. If Σ; Γ $ e : B and
H (V : Γ then V,H M e ó ρ | p1, 1q for some ρ.

Lemma 1 is proved by a simple case destination on syntactic
forms. For the composed forms such as let expressions we use the
rule E:ABORT for inner expressions.

Intuitively, Theorem 3 states that, in a well-formed environment,
well-typed expressions either evaluate to a value or the evaluation
uses unbounded work and depth.

Theorem 3 (Progress). Let M be a simple metric, Σ; Γ $ e : B,
and H (V : Γ. Then V,H M e ó p`,H 1q | pw, dq for some
w, d P N or for every n P N there exist x, y P N such that
V,H M e ó ˝ | px, nq and V,H M e ó ˝ | pn, yq.

To prove Theorem 3, we show by induction on n that if Σ; Γ $

e : B, H (V : Γ, V,H M e ó ρ | px, nq for an x then
ρ “ p`,H 1q or V,H M e ó ρ1 | px1, n` 1q for some ρ1, x1. We
then show the corresponding statement for the work.

A direct consequence of Theorem 3 is that bounds on the depth
of programs under a simple metric ensure termination.

3. Amortized Analysis and Parallel Programs
In this section, we give a short introduction into amortized resource
analysis for sequential programs (for bounding the work) and
then informally describe the main contribution of the article: a
multivariate amortized resource analysis for parallel programs (for
bounding the depth).

Amortized Resource Analysis Amortized resource analysis is a
type-based technique for deriving upper bounds on the resource cost
of programs [24]. The advantages of amortized resource analysis are
compositionality and efficient type inference that is based on linear
programming. The idea is that types are decorated with resource

annotations that describe a potential function. Such a potential
function maps the sizes of typed data structures to a non-negative
rational number. The typing rules ensure that the potential defined
by a typing context is sufficient to pay for the evaluation cost of the
expression that is typed under this context and for the potential of
the result of the evaluation.

The basic idea of amortized analysis is best explained by exam-
ple. Consider the function mult : int ˚ Lpintq Ñ Lpintq that takes
an integer and an integer list and multiplies each element of the list
with the integer. The function mult is implemented as follows.

mult(x,ys) = match ys with | nil Ñ nil
| (y::ys’) Ñ x*y::mult(x,ys’)

For simplicity, we assume a metric M˚ that only counts the number
of multiplications performed in an evaluation in this section. We
then have V,H M˚

multpx, ysq ó p`,H 1q | pn, nq for a well-
formed stack V and heap H in which ys points to a list of length n.
In short, the work and depth of the evaluation of multpx, ysq is |ys|.

To obtain a bound on the work in type-based amortized resource
analysis, we derive a type of the following form.

x:int, ys:Lpintq;Q M˚

multpx, ysq : pLpintq, Q1q

Here Q and Q1 are coefficients of multivariate resource polynomials
pQ : Jint ˚ LpintqK Ñ Q`0 and pQ1 : JLpintqK Ñ Q`0 that map
semantic values to non-negative rational numbers. The rules of the
type system ensure that for every evaluation context (V,H) that
maps x to a number m and ys to a list a, the potential pQpm,aq
is sufficient to cover the evaluation cost of multpx, ysq and the
potential pQ1pa1q of the returned list a1. More formally, we have
pQpm,aq ě w ` pQ1pa

1
q if V,H M˚

multpx, ysq ó p`,H 1q |
pw, dq and ` points to the list a1 in H 1.

In our type system we can for instance derive coefficients Q and
Q1 that represent the potential functions

pQpn, aq “ |a| and pQ1paq “ 0 .

The intuitive meaning is that we must have the potential |ys|
available when evaluating multpx, ysq. During the evaluation, the
potential is used to pay for the evaluation cost and we have no
potential left after the evaluation. The soundness theorem of the
type system (Theorem 4) states that |ys| is an upper bound on the
work of the evaluation of multpx, ysq.

To enable compositionality, we also have to be able to pass
potential to the result of an evaluation. Another possible instantiation
of Q and Q1 would for example result in the following potential
functions.

pQpn, aq “ 2¨|a| and pQ1paq “ |a|

The resulting typing can be read as follows. To evaluate multpx, ysq
we need the potential 2|ys| to pay for the cost of the evaluation.
After the evaluation there is the potential |multpx, ysq| left to pay for
future cost in a surrounding program. Such an instantiation would
be needed to type the inner function application in the expression
multpx,multpz, ysqq.

Technically, the coefficients Q and Q1 are families that are
indexed by sets of base polynomials. The set of base polynomials is
determined by the type of the corresponding data. For the type int ˚
Lpintq, we have for example Q “ tqp˚,rsq, qp˚,r˚sq, qp˚,r˚,˚sq, . . .u
and pQpn, aq “ qp˚,rsq ` qp˚,r˚sq¨|a| ` qp˚,r˚,˚sq¨

`

|a|
2

˘

` This
allows us to express multivariate functions such as m ¨ n for two
lists of length m and n.

The rules of our type system show how to describe the valid
instantiations of the coefficients Q and Q1 with a set of linear
inequalities. As a result, we can use linear programming to infer
resource bounds efficiently.

A more in-depth discussion can be found in the literature on
automatic amortized resource analysis [24, 18, 22].

Sequential Composition In a sequential composition letx “

e1 in e2, the initial potential, defined by a context and a correspond-
ing annotation pΓ, Qq, has to be used to pay for the work of the
evaluation of e1 and the work of the evaluation of e2. Let us consider
a concrete example again.

mult2(ys) = let xs = mult(496,ys) in
let zs = mult(8128,ys) in (xs,zs)

The work (and depth) of the evaluation of the expression mult2pysq
is 2|ys| in the metric M˚. In the type judgement, we express this
bound as follows. First, we type the two function applications of
mult as before using

x:int, ys:Lpintq;Q M˚

multpx, ysq : pLpintq, Q1q

where pQpn, aq “ |a| and pQ1paq “ 0. In the type judgement

ys:Lpintq;R M˚

mult2pysq : pLpintq ˚ Lpintq, R1q

we require that pRpaq ě pQpaq ` pQpaq, that is, the initial
potential (defined by the coefficients R) has to be shared in the two
sequential branches. Such a sharing can still be expressed with linear
constraints such as rr˚s ě qp˚,r˚sq ` qp˚,r˚sq. A valid instantiation
of R would thus correspond to the potential function pRpaq “ 2|a|.
With this instantiation, the previous typing reflects the bound 2|ys|
for the evaluation of mult2pysq.

A slightly more involved example is the function dyad : Lpintq˚
Lpintq Ñ LpLpintqq which computes the dyadic product of two
integer lists.

dyad (u,v) = match u with | nil Ñ nil
| (x::xs) Ñ let x’ = mult(x,v) in

let xs’ = dyad(xs,v) in x’::xs’;

Using the metric M˚ that counts multiplications, multivariate
resource analysis for sequential programs derives the bound |u|¨|v|.
In the cons branch of the pattern match, we have the potential
|xs|¨|v| ` |v| which is shared to pay for the cost |v| of multpx, vq
and the cost |xs|¨|v| of dyadpxs, vq.

Moving multivariate potential through a program is not trivial;
especially in the presence of nested data structures like trees of lists.
To give an idea of the challenges, consider the expression e that is
defined as follows.

let xs = mult(496,ys) in
let zs = append(ys,ys) in dyad(xs,zs)

The depth of evaluating e in the metric M˚ is bounded by |ys| `
2|ys|2. Like in the previous example, we express this in amortized
resource analysis with the initial potential |ys| ` 2|ys|2. This
potential has to be shared to pay for the cost of the evaluations
of multp496, ysq (namely |ys|) and dyadpxs, zsq (namely 2|ys|2).
However, the type of dyad requires the quadratic potential |xs|¨|zs|.
In this simple example, it is easy to see that |xs|¨|zs| “ 2|ys|2. But
in general, it is not straightforward to compute such a conversion
of potential in an automatic analysis system, especially for nested
data structures and super-linear size changes. The type inference for
multivariate amortized resource analysis for sequential programs
can analyze such programs efficiently [22].

Parallel Composition The insight of this paper is that the potential
method works also well to derive bounds on parallel evaluations. The
main challenge in the development of an amortized resource analysis
for parallel evaluations is to ensure the same high compositionality
as in sequential amortized resource analysis.

The basic idea of our new analysis system is to allow each branch
in a parallel evaluation to use all the available potential without

sharing. Consider for example the previously defined function mult2
in which we evaluate the two applications of mult in parallel.

mult2par(ys) = par xs = mult(496,ys)
and zs = mult(8128,ys) in (xs,zs)

Since the depth of multpn, ysq is |ys| for every n and the two
applications of mult are evaluated in parallel, the depth of the
evaluation of mult2parpysq is |ys| in the metric M˚.

In the type judgement, we type the two function applications of
mult as in the sequential case in which

x:int, ys:Lpintq;Q M˚

multpx, ysq : pLpintq, Q1q

such that pQpn, aq “ |a| and pQ1paq “ 0. In the type judgement

ys:Lpintq;R M˚

mult2parpysq : pLpintq ˚ Lpintq, R1q

for mult2par we require however only that pRpaq ě pQpaq. In this
way, we express that the initial potential defined by the coefficients
R has to be sufficient to cover the cost of each parallel branch.
Consequently, a possible instantiation of R corresponds to the
potential function pRpaq “ |a|.

In the function dyad, we can replace the sequential computation
of the inner lists of the result by a parallel computation in which
we perform all calls to the function mult in parallel. The resulting
function is dyad par.

dyad_par (u,v) = match u with | nil Ñ nil
| (x::xs) Ñ par x’ = mult(x,v)

and xs’ = dyad_par(xs,v)
in x’::xs’;

The depth of dyad par is |v|. In the type-based amortized analysis,
we hence start with the initial potential |v|. In the cons branch of the
pattern match, we can use the initial potential to pay for both, the cost
|v| of multpx, vq and the cost |v| of the recursive call dyadpxs, vq
without sharing the initial potential.

Unfortunately, the compositionality of the sequential system is
not preserved by this simple idea. The problem is that the naive reuse
of potential that is passed through parallel branches would break
the soundness of the system. To see why, consider the following
function.

mult4(ys) = par xs = mult(496,ys)
and zs = mult(8128,ys) in (mult(5,xs), mult(10,zs))

Recall, that a valid typing for xs “ multp496, ysq could take the
initial potential 2|ys| and assign the potential |xs| to the result. If we
would simply reuse the potential 2|ys| to type the second application
of mult in the same way then we would have the potential |xs|` |zs|
after the parallel branches. This potential could then be used to pay
for the cost of the remaining two applications of mult. We have now
verified the unsound bound 2|ys| on the depth of the evaluation of
the expression mult4pysq but the depth of the evaluation is 3|ys|.

The problem in the previous reasoning is that we doubled the
part of the initial potential that we passed on for later use in the two
parallel branches of the parallel composition. To fix this problem,
we need a separate analysis of the sizes of data structures and the
cost of parallel evaluations.

In this paper, we propose to use cost-free type judgements to
reason about the size changes in parallel branches. Instead of simply
using the initial potential in both parallel branches, we share the
potential between the two branches but analyze the two branches
twice. In the first analysis, we only pay for the resource consumption
of the first branch. In the second, analysis we only pay for resource
consumption of the second branch.

A cost-free type judgement is like any other type judgement in
amortized resource analysis but uses the cost-free metric cf that
assigns zero cost to every evaluation step. For example, a cost-
free typing of the function multpysq would express that the initial

potential can be passed to the result of the function. In the cost-free
typing judgement

x:int, ys:Lpintq;Q cf multpx, ysq : pLpintq, Q1q

a valid instantiation of Q and Q1 would correspond to the potential
functions

pQpn, aq “ |a| and pQ1paq “ |a| .

The intuitive meaning is that in a call zs “ multpx, ysq, the initial
potential |ys| can be transformed to the potential |zs| of the result.

Using this cost-free typing we can now correctly reason about the
depth of the evaluation of mult4. We start with the initial potential
3|ys| and have to consider two cases in the parallel binding. In the
first case, we have to pay only for resource cost of multp496, ysq.
So we share the initial potential and use 2|ys|: |ys| to pay the cost
of multp496, ysq and |ys| to assign the potential |xs| to the result
of the application. The reminder |ys| of the initial potential is used
in a cost-free typing of multp8128, ysq where we simply assign
the potential |zs| to the result of the function without paying any
evaluation cost. In the second case, we derive a similar typing in
which the roles of the two function applications are switched. In
both cases, we started with the potential 3|ys| and ended with the
potential |xs|` |zs|. We can use it to pay for the two remaining calls
of mult and have verified the correct bound.

In the univariate case, using the notation from [24, 18], we
could formulate the type rule for parallel composition as follows.
Here, the coefficients Q are not globally attached to a type or
context but appear locally at list types such as Lq

pintq. The sharing
operator Γ . pΓ1,Γ2,Γ3q requires the sharing of the potential in
the context Γ in the contexts Γ1,Γ2 and Γ3. For instance, we have
x:L6

pintq .px:L2
pintq, x:L3

pintq, x:L1
pintqq.

Γ .p∆1,Γ2,Γ
1
q Γ .pΓ1,∆2,Γ

1
q

Γ1
M

e1 : A1 ∆2
cf
e2 : A2 ∆1

cf
e1 : A1

Γ2
M

e2 : A2 Γ1, x1:A1, x2:A2
M

e : B

Γ
M

par x1 “ e1 andx2 “ e2 in e : B

In the rule, the initial potential Γ is shared twice using the sharing
operator .. First, to pay the cost of evaluating e2 and e, and to pass
potential to x1 using the cost-free type judgement ∆1

cf e1 : A1.
Second, to pay the cost of evaluation e1 and e, and to pass potential
to x2 via the judgement ∆2

cf e2 : A2.
In this work, we generalize the idea to multivariate resource poly-

nomials for which we also have to deal with mixed potential such as
|x1|¨|x2|. The approach features the same high compositionality as
the sequential version of the analysis. As the experiments in Section
7 show, the analysis works well for many typical example programs.

The use of cost-free typings to separate the reasoning about
size changes of data structures and resource cost in amortized
analysis has applications that go beyond parallel evaluations. Similar
problems arise in sequential (and parallel) programs when deriving
bounds for non-additive cost such as stack-space usage or recursion
depth. We envision that the developed technique can be used to
derive bounds for these cost measures too.

Other Forms of Parallelism The binary parallel binding is a
simple yet powerful form of parallelism. However, it is (for example)
not possible to directly implement NESL’s model of sequences that
allows to perform an operation for every element in the sequence
in constant depth. The reason is that the parallel binding would
introduce a linear overhead.

Nevertheless it is possible to introduce another binary parallel
binding that is semantically equivalent except that it has zero depth
cost. We can then analyze more powerful parallelism primitives by
translating them into code that uses this cost-free parallel binding. To

demonstrate such a translation, we implemented NESL’s [6] parallel
sequence comprehensions in RAML. For instance, the following
RAML expression computes the list that contains the squares of all
negative numbers in the list `.

tx ˚ x : x in ` | x ă 0 u

The work of the evaluation is linear in ` and the depth of the
evaluation is constant. The analysis automatically computes precise
bounds. More explanations can be found in Section 6.

4. Resource Polynomials and Annotated Types
In this section, we introduce multivariate resource polynomials
and annotated types. Our goal is to systematically describe the
potential functions that map data structures to non-negative rational
numbers. Multivariate resource polynomials are a generalization
of non-negative linear combinations of binomial coefficients. They
have properties that make them ideal for the generation of succinct
linear constraint systems in an automatic amortized analysis. The
presentation might appear quite low level but this level of detail is
necessary to describe the linear constraints in the type rules.

Two main advantages of resource polynomials are that they can
express more precise bounds than non-negative linear-combinations
of standard polynomials and that they can succinctly describe
common size changes of data that appear in construction and
destruction of data. More explanations can be found in the previous
literature on multivariate amortized resource analysis [21, 22].

4.1 Resource Polynomials
A resource polynomial maps a value of some data type to a
nonnegative rational number. Potential functions and thus resource
bounds are always resource polynomials.

Base Polynomials For each data typeA we first define a set PpAq
of functions p : JAK Ñ N that map values of type A to natural
numbers. These base polynomials form a basis (in the sense of
linear algebra) of the resource polynomials for type A. The resource
polynomials for type A are then given as nonnegative rational linear
combinations of the base polynomials. We define PpAq as follows.

Ppintq “ ta ÞÑ 1u

PpA1 ˚A2q “ tpa1, a2q ÞÑ p1pa1q ¨ p2pa2q | pi P PpAiqu

PpLpAqq “ tΣΠrp1, . . . , pks | k P N, pi P PpAqu

In the last clause we have

ΣΠrp1, . . . , pkspra1, . . . , ansq “
ÿ

1ďj1ă¨¨¨ăjkďn

ź

1ďiďk

pipajiq .

Every set PpAq contains the constant function v ÞÑ 1. For lists
LpAq this arises for k “ 0 (one element sum, empty product).

For example, the function ` ÞÑ
`

|`|
k

˘

is in PpLpAqq for every k P
N; simply take p1 “ . . . “ pk “ 1 in the definition of PpLpAqq.
The function p`1, `2q ÞÑ

`

|`1|
k1

˘

¨
`

|`2|
k2

˘

is in PpLpAq ˚ LpBqq for
every k1, k2 P N and r`1, . . . , `ns ÞÑ

ř

1ďiăjďn

`

|`i|
k1

˘

¨
`

|`j |

k2

˘

P

PpLpLpAqqq for every k1, k2 P N.

Resource Polynomials A resource polynomial p : JAK Ñ Q`0
for a data type A is a non-negative linear combination of base
polynomials, i.e.,

p “
ÿ

i“1,...,m

qi ¨ pi

for qi P Q`0 and pi P PpAq. We write RpAq for the set of resource
polynomials for A.

An instructive, but not exhaustive, example is given by Rn “

RpLpintq˚¨ ¨ ¨˚Lpintqq. The set Rn is the set of linear combinations

of products of binomial coefficients over variables x1, . . . , xn, that
is, Rn “ t

řm
i“1 qi

śn
j“1

`

xj

kij

˘

| qi P Q`0 ,m P N, kij P Nu.
Concrete examples that illustrate the definitions follow in the next
subsection.

4.2 Annotated Types
To relate type annotations in the type system to resource polynomi-
als, we introduce names (or indices) for base polynomials. These
names are also helpful to intuitively explain the base polynomials
of a given type.

Names For Base Polynomials To assign a unique name to each
base polynomial we define the index set IpAq to denote resource
polynomials for a given data type A. Essentially, IpAq is the
meaning of A with every atomic type replaced by the unit index ˝.

Ipintq “ t˝u
IpA1 ˚A2q “ tpi1, i2q | i1 P IpA1q and i2 P IpA2qu

IpLpAqq “ tri1, . . . , iks | k ě 0, ij P IpAqu
The degree degpiq of an index i P IpAq is defined as follows.

degp˝q “ 0

degpi1, i2q “ degpi1q ` degpi2q

degpri1, . . . , iksq “ k ` degpi1q ` ¨ ¨ ¨ ` degpikq

Let IkpAq “ ti P IpAq | degpiq ď ku. The indices i P IkpAq are
an enumeration of the base polyonomials pi P PpAq of degree at
most k. For each i P IpAq, we define a base polynomial pi P PpAq
as follows: If A “ int then

p˝pvq “ 1 .

If A “ pA1 ˚A2q is a pair type and v “ pv1, v2q then

ppi1,i2qpvq “ pi1pv1q ¨ pi2pv2q .

If A “ LpBq is a list type and v P JLpBqK then

pri1,...,imspvq “ ΣΠrpi1 , . . . , pim spvq .

We use the notation 0A (or just 0) for the index in IpAq such that
p0Apaq “ 1 for all a. We have 0int “ ˝ and 0pA1˚A2q “ p0A1 , 0A2q

and 0LpBq “ rs. If A “ LpBq for a data type B then the index
r0, . . . , 0s P IpAq of length n is denoted by just n. We identify the
index pi1, i2, i3, i4q with the index pi1, pi2, pi3, i4qqq.

For a list i “ ri1, . . . , iks we write i0 :: i to denote the list
ri0, i1, . . . , iks. Furthermore, we write ii1 for the concatenation of
two lists i and i1.

Lemma 2. If p, p1 P RpAq then p`p1, p ¨ p1 P RpAq, and degpp`
p1q “ maxtdegppq, degpp1qu and degpp ¨ p1q “ degppq` degpp1q.

By linearity it suffices to show this lemma for base polynomials.
This is done by induction on A.

Lemma 3. Let a P JAK and ` P JLpAqK. Let i0, . . . , ik P IpAq
and k ě 0. Then pri0,i1,...,iksprsq “ 0 and pri0,i1,...,ikspa :: `q “
pi0paq ¨ pri1,...,iksp`q ` p0paq ¨ pri0,i1,...,iksp`q.

To prove this, one decomposes the sum in the definition of
pri0,i1,...,ikspa :: `q into two summands, one corresponding to the
case where the first position j1 equals one, thus hits a and where it
is greater than one, thus a is not considered. Note that p0paq “ 1;
this factor is there to achieve the format of the resource polynomials
for types like A ˚ LpAq.

Lemma 4 characterizes concatenations of lists (written as juxta-
position) as they will occur in the construction of lists. Note that,
e.g., elemspnodepa, t1, t2qq “ a :: elemspt1q elemspt2q.

Lemma 4. Let `1, `2 P JLpAqK. Then it holds that `1`2 P JLpAqK
and pri1,...,iksp`1`2q “

řk
t“0 pri1,...,itsp`1q ¨ prit`1,...,iksp`2q.

This can be proved by induction on the length of `1 using Lemma
3 or else by a decomposition of the defining sum according to which
indices hit the first list and which ones hit the second.

Examples First consider the type int. The index set Ipintq “ t˝u
only contains the unit element because the only base polynomial
for the type int is the constant polynomial p˝ : Z Ñ N that maps
every integer to 1, that is, p˝pnq “ 1 for all n P Z. In terms of
resource-cost analysis this implies that the resource polynomials
can not represent cost that depends on the value of an integer.

Now consider the type Lpintq. The index set for lists of inte-
gers is IpLpintqq “ trs, r˝s, r˝, ˝s, . . .u, the set of lists of unit
indices ˝. The base polynomial prs : JLpintqK Ñ N is defined as
prspra1, . . . , ansq “ 1 (one element sum and empty product). More
interestingly, we have pr˝spra1, . . . , ansq “

ř

1ďjďn 1 “ n and
pr˝,˝spra1, . . . , ansq “

ř

1ďj1ăj2ďn 1 “
`

n
2

˘

. In general, if ik “
r˝, . . . , ˝s is as list with k unit indices then pik pra1, . . . , ansq “
ř

1ďj1ă¨¨¨ăjkďn 1 “
`

n
k

˘

. The intuition is that the base polynomial
pik pra1, . . . , ansq describes a constant resource cost that arises for
every ordered k-tuple paj1 , . . . , ajnq.

Finally, consider the type LpLpintqq of lists of lists of integers.
The corresponding index set is IpLpLpintqqq “ trsu Y tris |
i P IpLpintqqu Y tri1, i2s | i1, i2 P IpLpintqqu Y ¨ ¨ ¨ . Again
we have prs : JLpLpintqqK Ñ N and prspra1, . . . , ansq “ 1.
Moreover we also get the binomial coefficients again: If the index
ik “ rrs, . . . , rss is as list of k empty lists then pik pra1, . . . , ansq “
ř

1ďj1ă¨¨¨ăjkďn 1 “
`

n
k

˘

. This describes a cost that would arise in
a program that computes something of constant cost for tuples of
inner lists (e.g., sorting with respect to the smallest head elements).
However, the base polynomials can also refer to the lengths of
the inner lists. For instance, we have prr˝, ˝sspra1, . . . , ansq “
ř

1ďiďn

`

|ai|

2

˘

, which represents a quadratic cost for every inner list
(e.g, sorting the inner lists). This is not to be confused with the base
polynomial pr˝,˝spra1, . . . , ansq “

ř

1ďiăjďn |ai||aj |, which can
be used to account for the cost of the comparisons in a lexicographic
sorting of the outer list.

Annotated Types and Potential Functions We use the indices
and base polynomials to define type annotations and resource
polynomials. We then give examples to illustrate the definitions.

A type annotation for a data type A is defined to be a family

QA “ pqiqiPIpAq with qi P Q`0
We say QA is of degree (at most) k if qi “ 0 for every i P IpAq
with degpiq ą k. An annotated data type is a pair pA,QAq of a
data type A and a type annotation QA of some degree k.

Let H be a heap and let ` be a location with H (Þ̀Ña :A for a
data type A. Then the type annotation QA defines the potential

ΦHp`:pA,QAqq “
ÿ

iPIpAq

qi ¨ pipaq

If a P JAK and Q is a type annotation for A then we also write
Φpa : pA,Qqq for

ř

i qipipaq.
Let for example, Q “ pqiqiPLpintq be an annotation for the type

Lpintq and let qrs “ 2, qr˝s “ 2.5, qr˝,˝,˝s “ 8, and qi “ 0 for all
other i P IpLpintqq. The we have Φpra1, . . . , ans : pLpintq, Qqq “
2` 2.5n` 8

`

n
3

˘

.

Examples The simplest annotated types are those for atomic data
types like integers. The indices for int are Ipintq “ t˝u and thus
each type annotation has the form pint, q0q for a q0 P Q`0 . It defines
the constant potential function ΦHpv:pint, q0qq “ q0. Similarly,
tuples of atomic types feature a single index of the form p˝, . . . , ˝q
and a constant potential function defined by some qp˝,...,˝q P Q`0 .

More interesting examples are lists of atomic types like, for ex-
ample, Lpintq. The set of indices of degree k is then IkpLpintqq “

trs, r˝s, r˝, ˝s, . . . , r˝, ..., ˝su where the last list contains k unit el-
ements. Since we identify a list of i unit elements with the integer
i we have IkpLpintqq “ t0, 1, . . . , ku. Consequently, annotated
types have the form pLpintq, pq0, . . . , qkqq for qi P Q`0 . The de-
fined potential function is Φpra1, . . . , ans:pLpintq, pq0, . . . , qnqq “
ř

0ďiďk qi
`

n
i

˘

.
The next example is the type pLpintq ˚ Lpintqq of pairs of lists

of integers. The set of indices of degree k is IkpLpintq ˚ Lpintqq “
tpi, jq | i` j ď ku if we identify lists of units with their lengths as
usual. Annotated types are then of the from ppLpintq ˚ Lpintqq, Qq
for a triangular k ˆ k matrix Q with non-negative rational entries.
If `1 “ ra1, . . . , ans, `2 “ rb1, . . . , bms are two lists then the
potential function is Φpp`1, `2q, ppLpintq ˚ Lpintqq, pqpi,jqqqq “
ř

0ďi`jďk qpi,jq
`

n
i

˘`

m
j

˘

.

The Potential of a Context For use in the type system we need to
extend the definition of resource polynomials to typing contexts. We
treat a context like a tuple type.

Let Γ “ x1:A1, . . . , xn:An be a typing context and let k P N.
The index set IpΓq is defined through

IpΓq “ tpi1, . . . , inq | ij P IpAjqu.

The degree of i “ pi1, . . . , inq P IpΓq is defined through degpiq “
degpi1q`¨ ¨ ¨`degpinq. As for data types, we define IkpΓq “ ti P
IpΓq | degpiq ď ku. A type annotation Q for Γ is a family

Q “ pqiqiPIkpΓq with qi P Q`0 .
We denote a resource-annotated context with Γ;Q. Let H be a heap
and V be a stack with H (V : Γ where H (V pxjqÞÑaxj :
Γpxjq . The potential of Γ;Q with respect to H and V is

ΦV,HpΓ;Qq “
ÿ

pi1,...,inqPIkpΓq

q~ı

n
ź

j“1

pij paxj q

In particular, if Γ “ H then IkpΓq “ tpqu and ΦV,HpΓ; qpqq “ qpq.
We sometimes also write q0 for qpq.

5. Type System for Bounds on the Depth
In this section, we formally describe the novel resource-aware type
system. We focus on the type judgement and explain the rules that
are most important for handling parallel evaluation. .

The main theorem of this section proves the soundness of the
type system with respect to the depths of evaluations as defined
by the operational big-step semantics. The soundness holds for
terminating and non-terminating evaluations.

Type Judgments The typing rules in Figure 4 define a resource-
annotated typing judgment of the form

Σ; Γ; tQ1, . . . , Qnu
M e : pA,Q1q

where M is a metric, n P t1, 2u, e is an expression, Σ is a resource-
annotated signature (see below), pΓ;Qiq is a resource-annotated con-
text for every i P t1, . . . , nu, and pA,Q1q is a resource-annotated
data type. The intended meaning of this judgment is the following.
If there are more than ΦpΓ;Qiq resource units available for every
i P t1, . . . , nu then this is sufficient to pay for the depth of the
evaluation of e under the metric M . In addition, there are more than
Φpv:pA,Q1qq resource units left if e evaluates to a value v.

In outermost judgements, we are only interested in the case
where n “ 1 and the judgement is equivalent to the similar
judgement for sequential programs [22]. The form in which n “ 2
is introduced in the type rule E:PAR for parallel bindings and
eliminated by multiple applications of the sharing rule E:SHARE
(more explanations follow).

The type judgement is affine in the sense that every variable in a
context Γ can be used at most once in the expression e. Of course,

we have to also deal with expressions in which a variable occurs
more than once. To account for multiple variable uses we use the
sharing rule T:SHARE that doubles a variable in a context without
increasing the potential of the context.

As usual Γ1,Γ2 denotes the union of the contexts Γ1 and Γ2

provided that dompΓ1qX dompΓ2q “ H. We thus have the implicit
side condition dompΓ1q X dompΓ2q “ H whenever Γ1,Γ2 occurs
in a typing rule. Especially, writing Γ “ x1:A1, . . . , xk:Ak means
that the variables xi are pairwise distinct.

Programs with Annotated Types Resource-annotated first-order
types have the form pA,Qq Ñ pB,Q1q for annotated data types
pA,Qq and pB,Q1q. A resource-annotated signature Σ is a finite,
partial mapping of function identifiers to sets of resource-annotated
first-order types. A program with resource-annotated types for
the metric M consists of a resource-annotated signature Σ and
a family of expressions with variables identifiers pef , yf qfPdompΣq

such that Σ; yf :A;Q M ef : pB,Q1q for every function type
pA,Qq Ñ pB,Q1q P Σpfq.

Notations Families that describe type and context annotations are
denoted with upper case letters Q,P,R, We use the convention
that the elements of the families are the corresponding lower
case letters with corresponding superscripts, i.e., Q “ pqiqiPI ,
Q1 “ pq1iqiPI , and Qx

“ pqxi qiPI .
Let Q,P,R be annotations with the same index set I . We write

Q ď P if qi ď pi for every i P I . For c P Q we write Q “ Q1 ` c
to state that q~0 “ q1~0 ` c ě 0 and qi “ q1i for i ‰ ~0 P I .
Let Γ “ Γ1,Γ2 be a context, let i “ pi1, . . . , ikq P IpΓ1q and
j “ pj1, . . . , jlq P IpΓ2q . We write pi, jq to denote the index
pi1, . . . , ik, j1, . . . , jlq P IpΓq.

Let Q be an annotation for a context Γ1,Γ2. For j P IpΓ2q we
define the projection πΓ1

j pQq of Q to Γ1 to be the annotation Q1

with q1i “ qpi,jq. We use the same notation for projections to Γ2.

Proposition 4. Let Γ, x:A;Q be an annot. context,H (V : Γ, x:A,
and H (V pxqÞÑa :A . Then it is true that ΦV,HpΓ, x:A;Qq “
ř

jPIpAq ΦV,HpΓ;πΓ
j pQqq ¨ pjpaq.

Additive Shift A key notion in the type system is the additive shift
that is used to assign potential to typing contexts that result from
a pattern match or from the application of a constructor. We first
define the additive shift, then illustrate the definition with examples
and finally state the soundness of the operation.

Let Γ, y:LpAq be a context and let Q “ pqiqiPIpΓ,y:LpAqq be a
context annotation of degree k. The additive shift for lists CLpQq
of Q is an annotation CLpQq “ pq

1
iqiPIpΓ,x:A,xs:LpAqq of degree k

for a context Γ, x:A, xs:LpAq that is defined through

q1pi,j,`q “

"

qpi,j :: `q ` qpi,`q j “ 0
qpi,j :: `q j ‰ 0

The definition of the additive shift is essential for the type system.
It is explained and illustrated with examples in previous articles on
amortized resource analysis [18, 22].

Lemmas 5 states the soundness of the shift operation.

Lemma 5. Let Γ, `:LpAq;Q be an annotated context, H (V :
Γ, `:LpAq, Hp`q “ pv1, `

1
q and let V 1 “ V rxh ÞÑ v1, xt ÞÑ `1s.

Then H (V 1 : Γ, xh:A, xt:LpAq and ΦV,HpΓ, `:LpAq;Qq “
ΦV 1,HpΓ, xh:A, xt:LpAq;CLpQqq.

This is a consequence of Lemma 3. One takes the linear combina-
tion of instances of its second equation and regroups the right hand
side according to the base polynomials for the resulting context.

Sharing Let Γ, x1:A, x2:A;Q be an annotated context. The shar-
ing operation .Q defines an annotation for a context of the form
Γ, x:A. It is used when the potential is split between multiple occur-

Σ; Γ; tQ1, . . . , Qnu
M e : pA,Q1q

Under signature Σ and metric M , expression e has annotated type pA,Q1q in the annotated
contexts Γ;Q1, . . . ,Γ;Qn´1, and Γ;Qn.

Q “ Q1 `Mvar

Σ;x:A; tQu M x : pA,Q1q
(T:VAR)

n P Z Q “ Q1`M const

Σ; ¨ ; tQu M n : pint, Q1q
(T:CONST)

P `Mapp “ Q pA,P q Ñ pA1, Q1q P Σpfq

Σ;x:A; tQu M fpxq : pA1, Q1q
(T:APP)

Q “ Q1 `Mnil

Σ; ¨ ; tQu M nil : pLpAq, Q1q
(T:NIL)

Q “ CLpQ
1q `M cons

Σ;x1:A, x2:LpAq; tQu M conspx1, x2q : pLpAq, Q1q
(T:CONS)

Σ; Γ; tRu M e1 : pB,Q1q R`MmatN “ πΓ
0 pQq Σ; Γ, x1:A, x2:LpAq; tP u M e2 : pB,Q1q P`MmatL “ CLpQq

Σ; Γ, x:LpAq; tQu M matchxwith xnil ñ e1 ~ conspx1, x2q ñ e2y : pB,Q1q
(T:MATL)

Σ; Γ, x1:A1, x2:A2; tP u M e : pB,Q1q P `MmatP “ Q

Σ; Γ, x:A; tQu M matchxwith px1, x2q ñ e : pB,Q1q
(T:MATP)

Q “ Q1 `Mpair

Σ;x1:A1, x2:A2; tQu M
px1, x2q : pA1˚A2, Q

1q
(T:PAIR)

Σ; Γ1,Γ2;R M e1 Γ2, x:A;R1 Σ; Γ2, x:A; tR1u M e2 : pB,Q1q Q “ R`M let

Σ; Γ1,Γ2; tQu M letx “ e1 in e2 : pB,Q1q
(T:LET)

Σ; Γ1,Γ2,∆;Q M e1 Γ2,∆, x1:A1;Q1 Σ; Γ2,∆, x1:A1;Q1 cf e2 ∆, x1:A1, x2:A2;R

Σ; Γ1,Γ2,∆;P cf e1 Γ2,∆, x1:A1;P 1 Σ; Γ2,∆, x1:A1;P 1 M e2 ∆, x1:A1, x2:A2;R

Σ; ∆, x1:A1, x2:A2;R M e : pB,R1q

Σ; Γ1,Γ2,∆; tQ`MPar, P `MParu
M par x1 “ e1 andx2 “ e2 in e : pB,R1q

(T:PAR)

Σ; Γ, x1:A, x2:A; tP1, . . . , Pmu
M e : pB,Q1q @i Dj : Qj“.Pi

Σ; Γ, x:A; tQ1, . . . , Qnu
M erx{x1, x{x2s : pB,Q1q

(T:SHARE)

Σ; Γ; tP u M e : pB,P 1q QěP`c Q1ďP 1`c

Σ; Γ; tQu M e : pB,Q1q
(T:WEAK-A)

Σ; Γ; tP u M e : pB,P 1q @i P IpΓq: pi“qpi,0q
Σ; Γ, x:A; tQu M e : pB,Q1q

(T:WEAK-C)

˛ ˛ ˛

@j P Ip∆q: j“~0 ùñ Σ; Γ;πΓ
j pQq

M e : pA, πx:A
j pQ1qq j‰~0 ùñ Σj ; Γ;πΓ

j pQq
cf e : pA, πx:A

j pQ1qq

Σ; Γ,∆;Q M e ∆, x:A;Q1
(B:BIND)

Figure 4: Typing rules for annotated types and the binding rule for multivariate variable binding.

rences of a variable. The following lemma shows that sharing is a
linear operation that does not lead to any loss of potential.

Lemma 6. Let A be a data type. Then there are non-negative ratio-
nal numbers cpi,jqk for i, j, k P IpAq with degpkq ď degpi, jq such
that the following holds. For every context Γ, x1:A, x2:A;Q and ev-
ery H,V with H (V : Γ, x:A it holds that ΦV,HpΓ, x:A;Q1q “
ΦV 1,HpΓ, x1:A, x2:A;Qq where V 1 “ V rx1, x2 ÞÑ V pxqs and
q1p`,kq “

ř

i,jPIpAq c
pi,jq
k qp`,i,jq.

The coefficients cpi,jqk can be computed effectively and are
natural numbers. For a context Γ, x1:A, x2:A;Q we define . Q
to be the Q1 from Lemma 6.
Typing Rules Figure 4 shows the annotated typing rules for
expressions. The rules T:WEAK-A, T:SHARE, and T:WEAK-C
are structural rules that apply to every expression. The other rules
are syntax-driven and there is one rule for every construct of the
syntax. In the implementation we incorporated the structural rules
in the syntax-driven ones. The rule T:WEAK-A is integrated into
T:APP. The weakening rules T:WEAK-A and T:WEAK-C are used
to fork and join different branches in the rules T:MATP, T:MAT,
and T:PAR.Most of the rules are similar to the rules for multivariate
amortized analysis for sequential programs [21, 20]. The main
difference it that the rules here operate on annotations that are
singleton sets tQu instead of the usual context annotations Q.

T:CONS assigns potential to a lengthened list. The additive
shift CLpQ

1
q transforms the annotation Q1 for a list type into an

annotation for the context x1:A, x2:LpAq. Lemma 5 shows that

potential is neither gained nor lost by this operation. The potential
Q of the context has to pay for both the potential Q1 of the resulting
list and the resource cost M cons for list cons.

T:MATL shows how to treat pattern matching of lists. The initial
potential defined by the annotation Q of the context Γ, x:LpAq has
to be sufficient to pay the costs of the evaluation of e1 or e2 and
the potential defined by the annotation Q1 of the result type. To
type the expression e1 of the nil case we use the projection πΓ

0 pQq
that results in an annotation for the context Γ. Since the matched
list is empty in this case no potential is lost by the discount of the
annotations qpi,jq ofQwhere j ‰ 0. To type the expression e2 of the
cons case we rely on the shift operation CLpQq for lists that results
in an annotation for the context Γ, x1:A, x2:LpAq. Again there is no
loss of potential (see Lemma 5). The equalities relate the potential
before and after the evaluation of e1 or e2, to the potential before
the and after the evaluation of the match operation by incorporating
the respective resource cost for the matching.

In the binding rules T:LET and T:PAR, we bind the result of the
evaluation of an expression e to a variable x. The problem that arises
is that the resulting annotated context ∆, x:A,Q1 features potential
functions whose domain consists of data that is referenced by x as
well as data that is referenced by ∆. This potential has to be related
to data that is referenced by ∆ and the free variables in e.

To express the relations between mixed potentials before and
after the evaluation of e, we introduce a new auxiliary binding
judgement of the from

Σ; Γ,∆;Q M e ∆, x:A;Q1

in the rule B:BIND. The intuitive meaning of the judgement is
the following. Assume that e is evaluated in the context Γ,∆, that
FVpeq P dompΓq, and that e evaluates to a value that is bound
to the variable x. Then the initial potential ΦpΓ,∆;Qq is larger
than the cost of evaluating e in the metric M plus the potential
of the resulting context Φp∆, x:A;Q1q. Lemma 7 formalizes this
intuition.

Lemma 7. Let H (V :Γ,∆ and Σ; Γ,∆;Q M e
∆, x:A;Q1.

1. If V,H M e ó p`,H 1q | pw, dq then ΦV,HpΓ,∆;Qq ě
d` ΦV 1,H1p∆, x:A;Q1q where V 1 “ V rx ÞÑ `s.

2. If V,H M e ó ρ | pw, dq then d ď ΦV,HpΓ;Qq.

Formally, Lemma 7 is a consequence of the soundness of the
type system (Theorem 4). In the inductive proof of Theorem 4, we
use a weaker version of Lemma 7 in which the soundness of the
type judgements in Lemma 7 is an additional precondition.

The rule T:PAR for parallel bindings par x1 “ e1 andx2 “

e2 in e is the main novelty in the type system. The idea is that
we type the expressions e1 and e2 twice using the new binding
judgement. In the first group of bindings, we account for the cost
of e1 and derive a context Γ2,∆, x1:A1;P 11 in which the result of
the evaluation of e1 is bound to x1. This context is then used to
bind the result of evaluating e2 in the context ∆, x1:A1, x2:A2;R
without paying for the resource consumption. In the second group
of bindings, we also derive the context ∆, x1:A1, x2:A2;R but pay
for the cost of evaluating e2 instead of e1. The type annotations Q1

and Q2 for the initial context Γ “ Γ1,Γ2,∆ establish a bound
on the depth d of evaluating the whole parallel binding: If the
depth of evaluating e1 is larger than the depth of evaluating e2

then ΦpΓ;Q1q ě d. Otherwise we have ΦpΓ;Q2q ě d. If the
parallel binding evaluates to a value v then we have additionally that
maxpΦpΓ;Q1q,ΦpΓ;Q2qq ě d` Φpv:pB,Q1qq.

It is important that the annotations Q1 and Q2 of the initial
context Γ1,Γ2,∆ can defer. The reason is that we have to allow a
different sharing of potential in the two groups of bindings. If we
would require Q1 “ Q2 then the system would be too restrictive.
However, each type derivation has to establish the equality of the
two annotations directly after the use of T:PAR by multiple uses of
the sharing rule T:SHARE. Note that T:PAR is the only rule that can
introduce a non-singleton set tQ1, Qnu of context annotations.

A useful observation for the implementation is that the rule
T:PAR can be simplified for the cost-free metric cf. The two groups
of bindings in the premiss of the rule are actually equivalent for
cost-free type judgements. As a result, we can just use one group of
bindings.

T:SHARE has to be applied to expressions that contain a variable
twice (x in the rule). The sharing operation . P transfers the
annotation P for the context Γ, x1:A, x2:A into an annotation Q
for the context Γ, x:A without loss of potential (Lemma 6). This is
crucial for the accuracy of the analysis since instances of T:SHARE
are quite frequent in typical examples. The remaining rules are affine
in the sense that they assume that every variable occurs at most once
in the typed expression.

T:SHARE is the only rule whose premiss allows judgements that
contain a non-singleton set tP1, . . . , Pmu of context annotations.
It has to be applied to produce a judgement with singleton set tQu
before any of the other rules can be applied. The idea is that we
always have n ď m for the set tQ1, . . . , Qnu and the sharing
operation . i is used to unify the different Pi.

Soundness The operational big-step semantics with partial evalu-
ations makes it possible to state and prove a strong soundness result.
An annotated type judgment for an expression e establishes a bound
on the depth of all evaluations of e in a well-formed environment;

regardless of whether these evaluations diverge or fail. (Depending
on the metric M there can be diverging evaluations with bounded
depth.)

Moreover, the soundness theorem states also a stronger property
for terminating evaluations. If an expression e evaluates to a value
v in a well-formed environment then the difference between initial
and final potential is an upper bound on the depth of the evaluation.

Theorem 4 (Soundness). If H (V :Γ and Σ; Γ;Q $ e:pB,Q1q
then there exists a Q P Q such that the following holds.

1. If V,H M e ó p`,H 1q | pw, dq then d ď ΦV,HpΓ;Qq ´
ΦH1p`:pB,Q

1
qq.

2. If V,H M e ó ρ | pw, dq then d ď ΦV,HpΓ;Qq.

Theorem 4 is proved by a nested induction on the derivation of
the evaluation judgment and the type judgment Γ;Q $ e:pB,Q1q.
The inner induction on the type judgment is needed because of the
structural rules. There is one proof for all possible instantiations of
the resource constants.

The proof of most rules is very similar to the proof of the rules
for multivariate resource analysis for sequential programs [22]. The
main novelty is the treatment of parallel evaluation in the rule T:PAR
which we described previously.

If the metricM is simple (all constants are 1) then it follows from
Theorem 4 that the bounds on the depth also prove the termination
of programs.

Corollary 1. LetM be a simple metric. IfH (V :Γ and Σ; Γ;Q $
e:pA,Q1q then there are w P N and d ď ΦV,HpΓ;Qq such that
V,H M e ó p`,H 1q | pw, dq for some ` and H 1.

Type Inference. In principle, type inference consists of four steps.
First, we perform a classic type inference for the simple types such
as nat array. Second, we fix a maximal degree of the bounds and
annotate all types in the derivation of the simple types with variables
that correspond to type annotations for resource polynomials of
that degree. Third, we generate a set of linear inequalities, which
express the relationships between the added annotation variables as
specified by the type rules. Forth, we solve the inequalities with an
LP solver such as CLP. A solution of the linear program corresponds
to a type derivation in which the variables in the type annotations
are instantiated according to the solution.

In practice, the type inference is slightly more complex. Most
importantly, we have to deal with resource-polymorphic recursion
in many examples. This means that we need a type annotation in the
recursive call that differs from the annotation in the argument and
result types of the function. To infer such types we successively infer
type annotations of higher and higher degree. Details can be found in
previous work [19]. Moreover, we have to use algorithmic versions
of the type rules in the inference in which the non-syntax-directed
rules are integrated into the syntax-directed ones [22]. Finally,
we use several optimizations to reduce the number of generated
constraints.

An concrete example of a type derivation can be found in
previous work [22].

6. Nested Data Parallelism
The techniques that we describe in this work for a minimal func-
tion language scale to more advanced parallel languages such as
Blelloch’s NESL [6].

To describe the novel type analysis in this paper, we use a binary
binding construct to introduce parallelism. In NESL, parallelism is
introduced via built-in functions on sequences as well as parallel
sequence comprehension that is similar to Haskell’s list comprehen-
sion. The depth of all built-in sequence functions such as append
and sum is constant in NESL. Similarly, the depth overhead of the

parallel sequence comprehension is constant too. Of course, it is pos-
sible to define equivalent functions in RAML. However, the depth
would often be linear since we, for instance, have to sequentially
form the resulting list.

Nevertheless, the user definable resource metrics in RAML make
it easy to introduce built-in functions and language constructs with
customized work and depth. For instance we could implement
NESL’s append like the recursive append in RAML but use a metric
inside the function body in which all evaluation steps have depth
zero. Then the depth of the evaluation of appendpx, yq is constant
and the work is linear in |x|.

To demonstrate this ability of our approach, we implemented
parallel list comprehensions, NESL’s most powerful construct for
parallel computations. A list comprehension has the form

t e : x1 in e1 ; . . . ; xn in en | eb u

where e is an expression, e1, . . . , en are expressions of some list
type, and eb is a boolean expression. The semantics is that we
bind x1, . . . , xn successively to the elements of the lists e1, . . . , en
and evaluate eb and e under these bindings. If eb evaluates to true
under a binding then we include the result of e under that bind-
ing in the resulting list. In other words, the above list comprehen-
sion is equivalent to the Haskell expression r e | px1, . . . , xnq Ð
zipn e1 . . . en , eb s.

The work of evaluating t e : x1 in e1 ; . . . ; xn in en | eb u is
sum of the cost of evaluating e1, . . . , en´1 and en plus the sum of
the cost of evaluating eb and e with the successive bindings to the
elements of the results of the evaluation of e1, . . . , en. The depth
of the evaluation is sum of the cost of evaluating e1, . . . , en´1 and
en plus the maximum of the cost of evaluating eb and e with the
successive bindings to the elements of the results of the ei.

For instance, the following RAML expression computes the list
that contains the squares of all negative numbers in the list `.

tx ˚ x : x in ` | x ă 0 u

The work of the evaluation is linear in ` and the depth of the
evaluation is constant. The second example is an expression that
computes all pairs that one can form with the elements of an list `
so that the first element is less than the second.

t t px, yq : y in ` | x ă y u : x in ` u

The work of the evaluation is quadratic in ` and the depth is constant.
The automatic cost analysis of a parallel list comprehension is

achieved in RAML by a translation of the comprehension into a
recursive function in which the depth of certain operations such as
pattern matching and list construction is zero. For more examples
of parallel list comprehensions refer to the NESL manual [6].

7. Experimental Evaluation
We implemented the developed automatic depth analysis in Re-
source Aware ML (RAML). The implementation consists mainly
of adding the syntactic form for the parallel binding and the par-
allel list comprehensions together with the treatment in the parser,
the interpreter, and the resource-aware type system. RAML is pub-
lically available for download and through a user-friendly online
interface [1]. On the project web page you also find the source code
of all example programs and of RAML itself.

We used the implementation to perform an experimental evalua-
tion of the analysis on typical examples from functional program-
ming. In the compilation of our results we focus on examples that
have a different asymptotic worst-case behavior in parallel and se-
quential evaluation. In many other cases, the worst-case behavior
only differs in the constant factors. Also note that many of the classic
examples of Blelloch [7]—like quick sort—have a better asymptotic

average behavior in parallel evaluation but the same asymptotic
worst-case behavior in parallel and sequential cost.

Table 1 contains a representative compilation of our experimental
results. For each analyzed function, it shows the function type,
the computed bounds on the work and the depth, the run time of
the analysis in seconds and the actual asymptotic behavior of the
function. The experiments were performed on an iMac with a 3.4
GHz Intel Core i7 and 8 GB memory. The computed bounds are
simplified multivariate resource polynomials that are presented to
the user by RAML. Note that RAML also outputs the (unsimplified)
multivariate resource polynomials. The variables in the computed
bounds correspond to the sizes of different parts of the input. The
naming convention is that we use the order n,m, x, y, z, u of the
variables to name the sizes in a depth-first way: n is the size of the
first argument, m is the maximal size of the elements of the first
argument, x is the size of the second argument, etc.

All bounds are asymptotically tight if the tight bound is repre-
sentable by a multivariate resource polynomial. For example, the
exponential work bound for fib and the logarithmic bounds for
bitonic sort are not representable as a resource polynomial. Another
example is the loose depth bound for dyad all where we would need
the base function max1ďiďnmi but only have

ř

1ďiďnmi.

Matrix Operations To study programs that use nested data struc-
tures we implemented several matrix operations for matrices that are
represented by lists of lists of integers. The implemented operations
include, the dyadic product from Section 3 (dyad), transposition of
matrices (transpose, see [1]), addition of matrices (m add, see [1]),
and multiplication of matrices (m mult1 and m mult2).

Note that we needed to additionally represent the size of the inner
lists in the matrix with a natural number n in the functions m mult2,
m add, and transpose in order to get asymptotically tight bounds
for the depth. The reason is that we can only express bounds that are
multivariate resource polynomials. So we cannot have bounds such
as 8128¨n where n is the maximal length of the inner lists of xs.

To demonstrate the compositionality of the analysis, we have im-
plemented two more involved functions for matrices. The function

dyad all : LpLpintqq Ñ LpLpLpintqqq

computes the dyadic product (using dyad) of all ordered pairs of
the inner lists in the argument. The function

m mult pairs : LpLpLpintqqq ˚ LpLpLpintqqq Ñ LpLpLpintqqq

computes the products M1 ¨M2 (using m mult1) of all pairs of
matrices such that M1 is in the first list of the argument and M2 is
in the second list of the argument.

Sorting Algorithms The sorting algorithms that we implemented
include quick sort and bitonic sort for lists of integers (quicksort
and bitonic sort, see [1]).

The analysis computes asymptotically tight quadratic bounds for
the work and depth of quick sort. The asymptotically tight bounds for
the work and depth of bitonic sort are Opn lognq and Opn log2 nq,
respectively, and can thus not be expressed by polynomials. How-
ever, the analysis computes quadratic and cubic bounds that are
asymptotically optimal if we only consider polynomial bounds.

More interesting are sorting algorithms for lists of lists, where the
comparisons need linear instead of constant time. In these algorithms
we can often perform the comparisons in parallel. For instance, the
analysis computes asymptotically tight bounds for quick sort for
lists of lists of integers (quicksort list, see Table 1).

Set Operations We implemented sets as unsorted lists without
duplicates. Most list operations such as intersection (Table 1),
difference (see [1]), and union (see [1]) have linear depth and
quadratic work. The analysis finds these asymptotically tight bounds.

Function Name / Function Type Computed Depth Bound / Computed Work Bound Run Time Asym. Behav.

dyad 10m` 10n` 3 0.19 s Opn`mq
Lpintq˚Lpintq Ñ LpLpintqq 10mn` 17n` 3 0.20 s Opnmq
dyad all 1.6̄n3 ´ 4n2 ` 10nm` 14.6̄n` 5 1.66 s Opn2`mq
LpLpintqq Ñ LpLpLpintqqq 1.3̄n3`5n2m2`8.5n2m`4.5n2´5nm2´8.5nm`13.16̄n`3 0.96 s Opn3`n2m2q

m mult1 15xy ` 16x` 10n` 6 0.37 s Opxyq
LpLpintqq˚LpLpintqq Ñ LpLpintqq 15xyn` 16nm` 18n` 3 0.36 s Opxynq
m mult pairs 4n2 ` 15nmx` 10nm` 10n` 3 3.90 s O(nm + mx)
LpLpLpintqqq˚LpLpLpintqqq Ñ LpLpLpintqqq 7.5n2m2x`7n2m2`n2mx`9n2m`12.5n2´7.5nm2x` . . . 6.35 s Opn2m2xq
m mult2 35u` 10y ` 15x` 11n` 40 2.75 s Opz`x`nq
pLpLpintqq˚natq˚pLpLpintqq˚natqÑLpLpintqq 3.5u2y`uyz`14.5uy`2unx`13unm`19un`31u`6y` . . . 2.99 s Opnxpz`yqq
quicksort list 12n2 ` 16nm` 12n` 3 0.67 s Opn2`mq
LpLpintqq Ñ LpLpintqq 8n2m` 15.5n2 ´ 8nm` 13.5n` 3 0.51 s Opn2mq
intersection 10m` 12n` 3 0.49 s Opn`mq
Lpintq˚Lpintq Ñ Lpintq 10mn` 19n` 3 0.28 s Opnmq
product 8mn` 10m` 14n` 3 1.05 s Opnmq
Lpintq˚Lpintq Ñ Lpint˚intq 18mn` 21n` 3 0.71 s Opnmq
max weight 46n` 44 0.39 s Opnq
Lpintq Ñ int˚Lpintq 13.5n2 ` 65.5n` 19 0.30 s Opn2q

fib 13n` 4 0.09 s Opnq
nat ˚ nat Ñ nat ´´´ 0.12 s Op2nq

dyad comp 13 0.28 s Op1q
Lpintq˚Lpintq Ñ LpLpintqq 6mn` 5n` 2 0.13 s Opnmq
find 12m` 29n` 22 0.38 s Opm`nq
Lpintq˚Lpintq Ñ LpLpintqq 20mn` 18m` 9n` 16 0.41 s Opnmq

Table 1: The computed depth and work bounds, the actual worst-case time behavior, and the run time of the analysis in seconds. The variables
n,m, x, . . . in the bounds correspond to sizes of the arguments of the functions. For instance, in the case of dyad all, n is the maximal length
of the inner lists and m is the length of the list in the argument. The functions mult and find use parallel list comprehensions. The bounds
presented here are simplified multivariate resource polynomials as produced by the analysis.

The function product computes the Cartesian product of two
sets. Work and depth of product are both linear and the analysis
finds asymptotically tight bounds. However, as it is often the case,
the constant factors in the parallel evaluation are much smaller.

Miscellaneous The function max weight (Table 1) computes the
maximal weight of a (connected) sublist of an integer list. The
weight of a list is simply the sum of its elements. The work of the
algorithm is quadratic but the depth is linear.

Finally, there is a large class of programs that have non-
polynomial work but polynomial depth. Since the analysis can only
compute polynomial bounds we can only derive bounds on the depth
for such programs. A simple example in Table 1 is the function fib
that computes the Fibonacci numbers without memoization.

Parallel List Comprehensions The aforementioned examples are
all implemented without using parallel list comprehensions. As
described in Section 6, parallel list comprehensions have a better
asymptotic behavior than semantically-equivalent recursive func-
tions in RAML’s current resource metric for evaluation steps.

A simple example is the function dyad comp which is equivalent
to dyad and which is implemented as follows.

dyad_comp(xs,ys) = { { x * y : y in ys } : x in xs }

As listed in Table 1, the depth of dyad comp is constant while the
depth of dyad is linear. RAML computes tight boundson both work
on depth.

A more involved example is the function find that finds a given
integer list (needle) in another list (haystack). It returns the starting
indices of each occurrence of the needle in the haystack. The
algorithm is described by Blelloch [6] and cleverly uses parallel list
comprehensions to perform the search in parallel. RAML computes
asymptotically tight bounds on the work and depth.

Discussion Our experiments show that the range of the analysis
is not reduced when deriving bounds on the depth: The prototype
implementation can always infer bounds on the depth of a program
if it can infer bounds on the sequential version of the program. The
derivation of bounds for parallel programs is also almost as efficient
as the derivation of bounds for sequential programs.

We experimentally compared the derived worst-case bounds with
the measured work and depth of evaluations with different inputs. In
most cases, the derived bounds on the depth are asymptotically tight
and the constant factors are close or equal to the optimal ones. As a
representative example, Figure 5 presents our experiments for quick
sort for lists of lists. The left plot compares the measured depth
of manually identified worst-case inputs of different sizes with the
inferred depth bound for quicksort list. The right plot compares the
measured work with the inferred work bound. The constant factors
in the work bound are optimal and the constant factors in the depth
bound are very close to the optimal ones.

However, the analysis of the work is slightly more precise
then the analysis of the depth. The reason is that our multivariate
resource polynomials cannot express bounds like q¨

`

n
2

˘

where n
is the maximal length of the inner lists of a list. This is a general
limitation that also leads to imprecision for bounds on sequential
programs but such bounds are more common for depth than for
work in practice. Note however that this imprecision can only occur
in the analysis of functions with nested data structures in which the
resource cost depends on the sizes of the inner data structures.

8. Related Work
Automatic amortized resource analysis was introduced by Hofmann
and Jost for a strict first-order functional language [24]. The tech-
nique has been applied to higher-order functional programs [28],
to derive stack-space bounds for functional programs [10], to func-

Figure 5: Experimental evaluation of the quality of the bounds for the function quicksort list. The left plot compares the derived bound
(blue lines) on the depth with the measured depths of evaluations with manually identified worst-case input lists (red crosses). The right plot
compares the derived bound on the work with the measured work for the worst-case inputs. On the x-axes is the length of the outer list and on
the y-axes is maximal length of the inner lists.

tional programs with lazy evaluation [31], to object-oriented pro-
grams [25, 26], and to low-level code by integrating it with sepa-
ration logic [5]. All the aforementioned amortized-analysis–based
systems are limited to linear bounds. The polynomial potential func-
tions that we use in this paper were introduced by Hoffmann et
al. [18, 21, 22]. In contrast to this work, none of the previous works
on amortized analysis considered parallel evaluation. The main tech-
nical innovation of this work is the new rule for parallel composition
that is not straightforward. The smooth integration of this rule in the
existing framework of multivariate amortized resource analysis is
one of the main advantages of our work.

Type systems for inferring and verifying cost bounds for se-
quential programs have been extensively studied. Vasconcelos et
al. [35, 34] described an automatic analysis system that is based on
sized-types [27] and derives linear bounds for higher-order sequen-
tial functional programs. Dal Lago et al. [29, 30] introduced linear
dependent types to obtain a complete analysis system for the time
complexity of the call-by-name and call-by-value lambda calculus.
Crary and Weirich [12] presented a type system for specifying and
certifying resource consumption. Danielsson [13] developed a li-
brary, based on dependent types and manual cost annotations, that
can be used for complexity analyses of functional programs. We are
not aware of any type-based analysis systems for parallel evaluation.

Classically, cost analyses are often based on deriving and solving
recurrence relations. This approach was pioneered by Wegbreit [36]
and has been extensively studied for sequential programs written in
imperative languages [2, 4] and functional languages [15, 14].

In comparison, there has been little work done on the analysis
of parallel programs. Albert et al. [3] use recurrence relations to
derive cost bounds for concurrent object-oriented programs. Their
model of concurrent imperative programs that communicate over
a shared memory and the corresponding cost measure is however
quite different from the depth of functional programs that we study.

The only article on using recurrence relations for deriving bounds
on parallel functional programs that we are aware of is a technical
report by Zimmermann [37]. The programs that were analyzed in
this work are fairly simple and more involved programs such as
sorting algorithms seem to be beyond its scope. Additionally, the
used technique does not provide the compositionality of amortized
resource analysis.

Trinder et al. [33] give a survey of resource analysis techniques
for parallel and distributed systems. However, they focus on the us-
age of analyses for sequential programs to improve the coordination
in the parallel systems. Abstract interpretation based approaches to
resource analysis [16, 38] are limited to sequential programs.

Finally, there exists research that studies cost models to formally
analyze parallel programs. Blelloch and Greiner [7] pioneered the

cost measures work and depth that we use in this work. There are
more advanced cost models that take into account caches and IO
(see, e.g., Blelloch and Harper [8]), However, these works do not
provide machine support for deriving or proving static cost bounds.

9. Conclusion
We have introduced the first type-based cost analysis for deriving
bounds on the depth of evaluations of parallel function programs.
The derived bounds are multivariate resource polynomials that can
express a wide range of relations between different parts of the input.
As any type system, the analysis is naturally compositional.

The new analysis system has been implemented in Resource
Aware ML (RAML) [23]. We have performed a thorough and repro-
ducible experimental evaluation with typical examples from func-
tional programming that shows the practicability of the approach.

An extension of amortized resource analysis to handle non-
polynomial bounds such as max and log in a compositional way is
an orthogonal research question that we plan to address in the future.
Another orthogonal question that we plan to study is the extension
of the analysis to additional language features such as higher-order
functions, arrays, and user defined data structures. Neither additional
language features nor a larger set of potential functions would effect
the treatment of parallel bindings in the type system.

The development of our compositional cost analysis for parallel
programs is a first step towards a compositional cost analysis system
for concurrent programs that dynamically spawn threads.

References
[1] K. Aehlig, M. Hofmann, and J. Hoffmann. RAML Web Site.

http://raml.tcs.ifi.lmu.de, 2010-2014.

[2] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini.
Cost Analysis of Java Bytecode. In 16th Euro. Symp. on Prog.
(ESOP’07), pages 157–172, 2007.

[3] E. Albert, P. Arenas, S. Genaim, M. Gómez-Zamalloa, and
G. Puebla. Cost Analysis of Concurrent OO Programs. In
Prog. Langs. and Systems - 9th Asian Symposium (APLAS’11),
pages 238–254, 2011.

[4] D. E. Alonso-Blas and S. Genaim. On the limits of the
classical approach to cost analysis. In 19th Int. Static Analysis
Symposium (SAS’12), pages 405–421, 2012.

[5] R. Atkey. Amortised Resource Analysis with Separation Logic.
In 19th Euro. Symp. on Prog. (ESOP’10), pages 85–103, 2010.

[6] G. E. Blelloch. Nesl: A nested data-parallel language (version
3.1). Technical Report CMU-CS-95-170, CMU, 1995.

[7] G. E. Blelloch and J. Greiner. A Provable Time and Space
Efficient Implementation of NESL. In 1st Int. Conf. on Funct.
Prog. (ICFP’96), pages 213–225, 1996.

[8] G. E. Blelloch and R. Harper. Cache and I/O Efficent Func-
tional Algorithms. In 40th ACM Symp. on Principles Prog.
Langs. (POPL’13), pages 39–50, 2013.

[9] M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl.
Alternating Runtime and Size Complexity Analysis of Integer
Programs. In Tools and Alg. for the Constr. and Anal. of
Systems - 20th Int. Conf. (TACAS’14), pages 140–155, 2014.

[10] B. Campbell. Amortised Memory Analysis using the Depth
of Data Structures. In 18th Euro. Symp. on Prog. (ESOP’09),
pages 190–204, 2009.

[11] A. Charguéraud. Pretty-Big-Step Semantics. In 22nd Euro.
Symp. on Prog. (ESOP’13), pages 41–60, 2013.

[12] K. Crary and S. Weirich. Resource Bound Certification. In
27th ACM Symp. on Principles of Prog. Langs. (POPL’00),
pages 184–198, 2000.

[13] N. A. Danielsson. Lightweight Semiformal Time Complexity
Analysis for Purely Functional Data Structures. In 35th ACM
Symp. on Principles Prog. Langs. (POPL’08), pages 133–144,
2008.

[14] N. Danner, J. Paykin, and J. S. Royer. A Static Cost Analysis
for a Higher-Order Language. In 7th Workshop on Prog.
Languages Meets Prog. Verification (PLPV’13), pages 25–34,
2013.

[15] B. Grobauer. Cost Recurrences for DML Programs. In 6th Int.
Conf. on Funct. Prog. (ICFP’01), pages 253–264, 2001.

[16] S. Gulwani, K. K. Mehra, and T. M. Chilimbi. SPEED: Precise
and Efficient Static Estimation of Program Computational
Complexity. In 36th ACM Symp. on Principles of Prog. Langs.
(POPL’09), pages 127–139, 2009.

[17] R. Harper. Practical Foundations for Programming Languages.
Cambridge University Press, 2012. ISBN 9781107029576.

[18] J. Hoffmann and M. Hofmann. Amortized Resource Analysis
with Polynomial Potential. In 19th Euro, Symp. on Prog.
(ESOP’10), 2010.

[19] J. Hoffmann and M. Hofmann. Amortized Resource Analysis
with Polymorphic Recursion and Partial Big-Step Operational
Semantics. In Prog. Langs. and Systems - 8th Asian Symposium
(APLAS’10), 2010.

[20] J. Hoffmann and Z. Shao. Type-Based Amortized Resource
Analysis with Integers and Arrays. In 12th International Sym-
posium on Functional and Logic Programming (FLOPS’14),
2014.

[21] J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate Amor-
tized Resource Analysis. In 38th ACM Symp. on Principles of
Prog. Langs. (POPL’11), 2011.

[22] J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate
Amortized Resource Analysis. ACM Trans. Program. Lang.
Syst., 2012.

[23] J. Hoffmann, K. Aehlig, and M. Hofmann. Resource Aware
ML. In 24rd Int. Conf. on Computer Aided Verification
(CAV’12), 2012.

[24] M. Hofmann and S. Jost. Static Prediction of Heap Space
Usage for First-Order Functional Programs. In 30th ACM
Symp. on Principles of Prog. Langs. (POPL’03), pages 185–
197, 2003.

[25] M. Hofmann and S. Jost. Type-Based Amortised Heap-Space
Analysis. In 15th Euro. Symp. on Prog. (ESOP’06), pages
22–37, 2006.

[26] M. Hofmann and D. Rodriguez. Automatic Type Inference
for Amortised Heap-Space Analysis. In 22nd Euro. Symp. on
Prog. (ESOP’13), pages 593–613, 2013.

[27] J. Hughes, L. Pareto, and A. Sabry. Proving the Correctness of
Reactive Systems Using Sized Types. In 23th ACM Symp. on
Principles of Prog. Langs. (POPL’96), pages 410–423, 1996.

[28] S. Jost, K. Hammond, H.-W. Loidl, and M. Hofmann. Static
Determination of Quantitative Resource Usage for Higher-
Order Programs. In 37th ACM Symp. on Principles of Prog.
Langs. (POPL’10), pages 223–236, 2010.

[29] U. D. Lago and M. Gaboardi. Linear Dependent Types and
Relative Completeness. In 26th IEEE Symp. on Logic in
Computer Science (LICS’11), pages 133–142, 2011.

[30] U. D. Lago and B. Petit. The Geometry of Types. In 40th ACM
Symp. on Principles Prog. Langs. (POPL’13), pages 167–178,
2013.

[31] H. R. Simões, P. B. Vasconcelos, M. Florido, S. Jost, and
K. Hammond. Automatic Amortised Analysis of Dynamic
Memory Allocation for Lazy Functional Programs. In 17th Int.
Conf. on Funct. Prog. (ICFP’12), pages 165–176, 2012.

[32] M. Sinn, F. Zuleger, and H. Veith. A Simple and Scalable
Approach to Bound Analysis and Amortized Complexity Anal-
ysis. In Computer Aided Verification - 26th Int. Conf. (CAV’14),
page 743–759, 2014.

[33] P. W. Trinder, M. I. Cole, K. Hammond, H.-W. Loidl, and
G. Michaelson. Resource Analyses for Parallel and Distributed
Coordination. Concurrency and Computation: Practice and
Experience, 25(3):309–348, 2013.

[34] P. Vasconcelos. Space Cost Analysis Using Sized Types. PhD
thesis, School of Computer Science, University of St Andrews,
2008.

[35] P. B. Vasconcelos and K. Hammond. Inferring Costs for Re-
cursive, Polymorphic and Higher-Order Functional Programs.
In Int. Workshop on Impl. of Funct. Langs. (IFL’03), pages
86–101. Springer-Verlag LNCS, 2003.

[36] B. Wegbreit. Mechanical Program Analysis. Commun. ACM,
18(9):528–539, 1975.

[37] W. Zimmermann. Automatic Worst Case Complexity Analysis
of Parallel Programs. Technical Report TR-90-066, University
of California, Berkeley, 1990.

[38] F. Zuleger, M. Sinn, S. Gulwani, and H. Veith. Bound Analysis
of Imperative Programs with the Size-change Abstraction. In
18th Int. Static Analysis Symposium (SAS’11), 2011.

