
Weak Parity Games and Language Containment
of Weak Alternating Parity Automata

Jan Hoffmann
Institut für Informatik

LMU München

March 13, 2006

1 Introduction

Optimisations of the state space of weak alternating parity automata (WAPA)
are needed for example to speed up µTL model-checking algorithms which in-
volve WAPA. It is assumed that deciding language containment for WAPA is
helpful to perform such optimisations. In this paper the problem of language
containment is reduced to the problem of computing winning sets in weak parity
games. For the latter a linear time algorithm is presented.

This section gives some notes on previous work on language containment
and optimisations of finite automata on finite and infinite words as well as an
overview of the text.

In the second section one finds the definition of parity games and weak parity
games as well as an algorithm that computes the winning sets in weak parity
games in linear time. This matches the best known algorithms for deciding
winning sets in this games. An algorithm that computes winning set in arbi-
trary parity games can be found in [Jur00]. As a special case the algorithm of
Jurdzinski ([Jur00]) solves weak parity games in linear time too but it is not as
intuitive and easy too implement as the algorithm which is presented here.

In the third section the definition of WAPA is repeated and some notes on
the optimisation of the state space with the help of language containment in
this automata are made.

The last section describes two different reductions of language containment
of WAPA into deciding winning sets in weak parity games which delivers a poly-
nomial time algorithm for language containment that is sound but not compete
and a PSPACE algorithm for language containment that is sound and complete.
The algorithms have been implemented in the µSabre project of Martin Lange
and Jan Johannsen at the University of Munich.

It is well known that the problem to decide weather L(A1) is a subset of
L(A2) or not for given deterministic finite automaton (DFA) A1 and A2 is quite
easy. One only has to construct a DFA for the language L(A1)∩L(A2) and test
if there is a final state reachable from the initial state. In fact this can be done
in time O(n2). An algorithm is for example given in [Hop02].

A generalisation to nondeterministic finite automaton (NFA) makes the lan-
guage containment problem quite difficult: language containment for NFA is

1

NP-complete (see [Hop02] for a proof). Therefore it is not surprising that the
language containment problem for Büchi automata and for weak alternating
parity automata are not easy either: PSPACE-complete [Sis87].

There have been efforts to reduce the state space in Büchi automata effi-
ciently [Hen97, Hen00] with the help of algorithms for language containment.
Thereby the notions of fair and direct simulation have turned out to be helpful.
The best known algorithms for fair and direct simulation in Büchi automata
run in cubic time [Ete01]. In these terms this paper introduces a fair simulation
algorithm for WAPA which runs in polynomial time. A similar algorithm for
that purpose has been given in [Fri05, Fri02] before.

2 Parity Games and Winning Sets

A parity game is a directed graph in which the vertices are labeled with two
values: an integer which is the priority of the vertex and a value p ∈ {0, 1} that
represents the player of the vertex. This graph can be thought of as an infinite
game of two players.

Definition 1 (Parity Game) A parity game Γ = (V, E, p, (V0, V1)) consists
of a directed graph (V,E) in which every vertex v ∈ V has an outgoing edge
(v, u) ∈ E, a priority function p : V → N and a partition (V0, V1) of V (i.e.
V = V0 ∪ V1 and V0 ∩ V1 = ∅).

A parity game is played by to players P0, P1 as follows: The play starts at
a fixed vertex v0 ∈ V . If the play has reached a vertex v ∈ Vi then player Pi

chooses a vertex w ∈ V with (v, w) ∈ E and the play is continued at w. This
leads to an infinite path π = v0v1v2... of vertices which is called a play in Γ.

Write Inf(π) for the set of vertices which occur infinitely often in π. If
min{p(v) | v ∈ Inf(π)} is even then P0 wins π else P1 wins π.

A strategy for a player P in a parity game is a function that is defined for all
vertices on wich it is P ’s turn and that returns a successor of the input vertex.
If a player P who follows a strategy wins every game that starts from a fixed
vertex v then the strategy is a winning strategy for P from v.

Definition 2 (Winning Strategy) Let Γ = (V, E, p, (V0, V1)) be a parity game
and π = v0v1v2... a play in Γ.

σ : Vi → V is called a strategy for player Pi if (v,σ(v)) ∈ E for all v ∈ Vi. π
is consistent with σ if vk+1 = σ(vk) for all vk ∈ Vi.

σ is a winning strategy for Pi from W ⊆ V if every play that starts at a
vertex in W and that is consistent with σ is won by Pi.

As a result of the following theorem for a given Vertex v in a parity game
exactly one player has a winning strategy from v.

Theorem 1 (Memoryless Determinacy [Eme91, Mos91]) For every par-
ity game, there is a unique partition (W0, W1) (the winning sets) of the set of
vertices of its game graph, such that there is a winning strategy for player P0

form W0 and a winning strategy for player P1 from W1.

The problem of computing winning sets in parity games has an interesting
status from the point of view of structural complexity theory. On the one hand

2

it is very unlikely that the problem is NP-complete because it is known to be in
NP ∩ co-NP ([Eme91]). On the other hand no polynomial time algorithm for
the problem is known.

As mentioned in the introduction there exist algorithms to compute the
winning sets in parity games. By now the best known approach is the algorithm
of Jurdzinski ([Jur00]) which runs in space O(dn) and time

O

(
dm ·

(
n

'd/2(

)!d/2"
)

,

where n is the number of vertices, m is the number of edges and d is the number
of priorities of the parity game.

The reduction from language containment in WAPA to deciding winning
sets, presented in the last section, requires only a fragment of the parity games:
weak Büchi games. These are games which consist only of vertices with two
priorities that satisfie a structural restriction to the game graph.

Component1

Component2 Component3

Component4

Component5

Component6

Component7 Component8

Component9 Component10

--16--
(1) [P1]

--9--
(0) [P1]

--11--
(0) [P1]

--6--
(0) [P0]

--14--
(0) [P0]

--4--
(1) [P1]

--1--
(0) [P0]

--18--
(1) [P0]

--17--
(0) [P1]

--13--
(1) [P0]

--7--
(1) [P1]

--12--
(1) [P1]

--8--
(1) [P0]

--3--
(0) [P0]

--2--
(1) [P1]

--5--
(0) [P1]

--15--
(0) [P1]

--10--
(0) [P0]

Figure 1: A weak Büchi game with winning positions.

Definition 3 Let Γ = (V, E, p, (V0, V1)) be a parity game. Γ is called Büchi
game if p(v) ≤ 1 for all v ∈ V . Γ is called a weak Büchi game if Γ is a Büchi
game and for every game π in Γ it holds that p(u) = p(v) for all u, v ∈ Inf(π).

3

Example 1 Figure 1 shows a weak Büchi game with V = {1, 2, ..., 18}. Vertices
that belong to V0 are diamonds and labeled with [P0]. Vertices that belong to V1

are rectangles and labeled with [P1]. The priorities are given in round brackets,
e.g. (0). Player P0 has a winning strategy from the vertices 5,6,10,14 and
15 which are blue and player 1 has a winning strategy from the red vertices
1,2,3,4,5,7,8,9,11,12,13,17 and 18.

Lemma 1 Let Γ = (V, E, p, (V0, V1)) be a weak Büchi game. Let C be a strongly
connected component of G=(V,E). Then it holds that p(v) = p(u) for all vertices
u, v ∈ C.

Proof Let u, v ∈ C. Assume that p(v) *= p(u). Because v and u are in the
same component there exist a path µ = uu1u2...unv from u to v and a path
ν = vv1v2...vku from v to u. Therefor one can construct an infinite game
π = µνµνµ.... By the assumption it follows that Inf(π) = {0, 1}. This is a
contradiction to the fact that Γ is finally monotone.!

The algorithm of Jurdzinski can compute winning sets in weak parity games
in time O(m·n) and space O(n). The proof of the following theorem contains an
algorithm that computes winning sets in weak Büchi games in time and space
O(m).

Theorem 2 The winning sets for a given weak Büchi game can be computed
in time and space O(m) where m is the number of edges in the game graph.

Proof Let Γ = (V, E, p, (V0, V1)) be a weak Büchi game and G = (V, E) the
game graph of Γ.

The following algorithm computes a value S[v] for each v ∈ V such that
S[v] = i if and only if player Pi has a winning strategy from v in Γ. For each
v ∈ V , c[v] is an integer which indicates the number edges (v, u) ∈ E with
S[u] *= S[v].

If C1, ..., Cn is the decomposition of G into its strongly connected components
and v ∈ V is a vertex then comp[v] ∈ {1, ..., n} denotes the component of v.
Let Li, i ∈ N, be a FIFO list with the following operations: ’get(Li)’ is the first
element of Li, ’put(v,i)’ puts v into the first position of Li. At the beginning of
the algorithm all Li are empty. For v ∈ V , deg[v] denotes the out-degree of v.

WinningSets(Γ)
1 Decompose G=(V,E) into its strongly connected components
2 C1 < ... < Cn with the topological ordering ’<’ on the Ci.
3 for each v ∈ V do
4 c[v] ← 0
5 S[v] ← −1
9 for i=n to 1 do
10 while Li $= ∅ do
11 v ← get(Li)
12 Lift(v)
13 for each v ∈ Ci with S[v] = −1 do
14 S[v] ← p(v)
15 Lift’(v)

4

Lift(v)
1 for each (u, v) ∈ E with S[u] = −1 do
2 if u ∈ VS[v] then
3 S[u] ← S[v]
4 put(u,comp[u])
5 else
6 c[u] ← c[u] + 1
7 if c[u] = deg[u] then
8 S[u] ← S[v]
9 put(u,comp[u])

The call of Lift’(v) in line 15 of WinningSets means a call of Lift (v)
with line 1 replaced with

1’ for each (u, v) ∈ E with S[u] = −1 and comp[u] < comp[v] do

The decomposition of a graph into its strongly connected components can
be done in time O(|V |+ |E|) by two DFS searches as e.g. described in [Cor01].
This algorithm can be easily changed to additionally determine a topological
ordering without increasing the running time.

It is easy to see that a vertex v is only put into a list Li if S[v] = −1 and
then S[v] is changed to a value k *= −1. Therefore each vertex is put at most
once into a list and the lines 11-12 of WinningSets are executed at most |V |
many times. Obviously the lines 4-5 and 14-15 are repeated at most |V | times
too.

By the discussion above it is also clear that Lift(v) is called exactly once
for each v ∈ V . For that reason the lines 2-9 of Lift are executed at most |E|
times.

Together this yields the upper bound O(|V | + |E|) on the running time of
WinningSets. Except for some counters for the loops the only thing that has
to be stored in a run of the algorithm is the array c which consists of a counter
c[v] for each vertex v ∈ V . Since c[v] ≤ deg[v] for every v ∈ V , c can be stored
in space O(|V | + |E|). Because of the assumption that every vertex has an
outgoing edge it holds that O(|V | + |E|) = O(|E|). That is why O(|E|) is a
bound on the time and space needed by WinningSets.

To show the correctness of the algorithm it is sufficient to show that in
every case the assignment ”S[v] ← i” is correct. First one sees easily that
the algorithm sets S[v] in the reversed topological order, i.e. if an assignment
S[v] ← i is made for a vertex v ∈ Ck then for every k < j ≤ n and for all u ∈ Cj

the value S[u] has been already set.
Suppose now for a given u ∈ Ck the assignment S[u] ← i is made. If k = n

then S[u] is set in the first run of the outer loop of WinningSets. Therefore it
holds that i = p(u) and the correctness follows by Lemma 1. If k < n then we
can assume by induction hypothesis that all values which were set before have
been correct. There are two cases in which i could be assigned to S[u]:

• In a call of Lift(v): Then there is an edge (u, v) ∈ E and i = S[v]. Recall
that Lift(v) is only called if S[v] ← j already has been set.
If S[u] is assigned in line 3 then u is in VS[v]. So if a play is at position u
then player SS[v] can chose v to be the next position. By ind. hyp. player
SS[v] has a winning strategy from v. Therefore the other player can not

5

have a winning strategy from u and then it follows by Theorem 1 that
SS[v] has one.

If S[u] is assigned in line 8 then u is not in VS[v]. But then it follows by
ind. hyp. and an induction over deg[u] that SS[v] has a winning strategy
from all successors of u. By a similar argument as above SS[v] therefore
has a winning strategy from u.

• In line 14 of WinningSets: Then i = p(u). If u ∈ Vp(u) then there must
be a successor w of u in Ck with S[w] = −1. By Lemma 1 it follows that
p(w) = p(u). If u is not in Vp(u) then it must hold for all successors w of
u that either S[w] = p(u) or w ∈ Ck and S[w] = −1 (recall that S[v] has
been set already for all vertices in topological higher components). That is
why one can use Theorem 1 to see that there must be a winning strategy
for player Sp(u) for all u ∈ Ck with S[u] = −1.

Because all assignments ”S[v] ← i” are made if and only if player Si has a
winning strategy from v, WinningSets is correct. !

3 Optimisation of Weak Alternating Parity Au-
tomata

Since J. R. Büchi has introduced finite automata on infinite words to decide
monadic second order logic ([Büc62]) a lot of similar automata have been pre-
sented. One of these automata models are weak alternating parity automata
(WAPA) which have been analysed at first in a work of Muller, Saoudi and
Schupp ([Mul86]). Weak alternating parity automata are interesting because
they define acceptance only in terms of reachability but nevertheless have the
same expressive power than Büchi automata, i.e. they are able to describe the
ω-regular properties ([Kup01]).

Apart from other advantages they allow a simple complementation ([Löd00])
and are closely related to the linear time µ-calculus ([Lan04]). Since there are
efficient translation from the linear time µ-calculus to weak alternating parity
automaton they are being used in model-checking tools for regular properties
([Lan04],[µSabre]).

In this section the definition of weak alternating parity automata is given.
Afterwards some notes on problems that occur in optimisation of the state space
with the help of language containment are made.

3.1 Weak Alternating Parity Automata

Alternating parity automata allow both universal and existential states which
occur e.g. in Büchi automata. The intuition of a run of an automaton on a
word is as follows: If the automaton reaches an existential state it has to follow
one of the edges given in the transition function. If it reaches an universal state
it has to follow all edges given in the transition function.

Here we do not distinguish between universal and existential states but gen-
eralise the idea with the help of positive boolean formulas in which “∧” indicates
an universal branching and “∨” indicates an existential branching.

6

Definition 4 Let Q be a set. The set B+(Q) of positive Boolean formulas over
Q is the smallest set which satisfies

1. Q ⊆ B+(Q) and

2. if ϕ,ψ ∈ B+(Q) then ϕ ∨ ψ ∈ B+(Q) and ϕ ∧ ψ ∈ B+(Q).

Given ϕ ∈ B+(Q) we inductively define St(f) as St(q) := {q} for each q ∈ Q,
and St(ψ1 ∨ ψ2) = St(ψ1 ∧ ψ2) := St(ψ1) ∪ St(ψ2).

A simple positive Boolean formula is of the form q, p ∨ q or p ∧ q for some
p, q ∈ Q.

Definition 5 Let Q be a set, ϕ ∈ B+(Q). The set Sub(ϕ) of sub-formulas of a
is

1. {q} if ϕ = q for some q ∈ Q

2. {ϕ} ∪ Sub(ψ1) ∪ Sub(ψ2) if ϕ = ψ1Θψ2 for some ψ1,ψ2 ∈ B+(M) and
Θ ∈ {∨,∧}

The word weak in the name WAPA refers to the accepting condition of this
kind of automata. A WAPA accepts a word if the lowest priority on every path
in the run of the automaton is even. It does not have to visit a state with
an even priority (or a final state like in Büchi automata) infinitely often as in
alternating parity automaton to accept a word. That is why acceptance is a
reachability problem.

To obtain the expressive power of Büchi automata the universal branching
is needed.

Definition 6 (WAPA) A weak alternating parity automaton (WAPA) is a 5-
tuple A = (Q,Σ, q0, δ,Ω) where

• Q is a finite set (of states)

• Σ is a finite alphabet

• q0 ∈ Q is the initial state

• δ : Q × Σ→ B+(Q) is the transition function

• Ω : Q → N maps the states to their priorities.

A run of A on a word w = a0a1a2... ∈ Σω is a tree whose vertices are labeled
with elements of Q such that

• the root is labeled with q0

• if a vertex v on level n is labeled with q then its sons on level n + 1 form
a minimal model of δ(q, an)

A run is called accepting if the smallest priority of the labels on every path is
even. A accepts w, denoted w ∈ L(A), if there is an accepting run of A on w.

For every q ∈ Q let A [q] := (Q,Σ, q, δ,Ω) be the WAPA that results from A
by changing the starting state to q.

7

!! !"#$%&'(q 2
0

a,b

∧
"" ##

!"#$%&'(q 1
1

a

$$

b !! !"#$%&'(q 0
2

a,b
%%

Figure 2: The WAPA given in example 2.

Finally, we define a relation |=A between words w ∈ Σω and positive Boolean
formulas ϕ ∈ B+(Q).

w |= q iff w ∈ L(A [q])
w |= ϕ ∨ ψ iff w |= ϕ or w |= ψ

w |= ϕ ∧ ψ iff w |= ϕ and w |= ψ

For the later discussion it is helpful to define a relation ”≤” on states of a
given automaton.

Definition 7 Let A = (Q,Σ, q0, δ,Ω) be a WAPA and p, q ∈ Q. Write p ≤ q iff
L(A [p]) ⊆ L(A [q]). Write p ≡ q iff p ≤ q and q ≤ p.

Here is an example of a simple WAPA.

Example 2 Let A = ({q0, q1, q2}, {a, b}, q0, δ,Ω) where

• δ(q0, a) = δ(q0, b) = q0 ∧ q1

• δ(q1, a) = q1, δ(q1, b) = q2

• δ(q2, a) = δ(q2, b) = q2

• Ω(q0) = 2, Ω(q1) = 1, Ω(q2) = 0

A is shown in figure 2. It holds that L(A) = L(A [q0]) = {w | w contains
infinitely many b’s } ⊆ L(A [q1]) = {w | w contains at least one b } and that is
why q0 ≤ q1.

When a WAPA A visits a state q during a run on a word then the acceptance
of the word depends on the priorities of the states that A will visit in the
future as well as on the priorities of the states which A has already seen. This
behaviour is impractical and defers from the behaviour of other (non-weak)
automata like Büchi automata in which acceptance depends only on the infinite
behaviour of the automaton. Fortunately such a behaviour could be achieved
by a normalisation of weak parity automata. One just has to remember the
lowest priority seen on a path, which can be encoded in the state space of the
WAPA.

Definition 8 A WAPA A = (Q,Σ, q0, δ,Ω) is called normalised if for all p, q ∈
Q and all a ∈ Σ: if p ∈ St(δ(q, a)) then Ω(p) ≤ Ω(q).

A is called simple if for all q ∈ Q and all a ∈ Σ: δ(q, a) is a simple positive
Boolean formula.

8

Theorem 3 ([Löd00]) For every WAPA A there is a simple and normalised
WAPA B with L(A) = L(B) and |B| = O(|A|2).

While normalisation is needed in the following notes on optimisation, sim-
plicity is not. In the last section that deals with language containment of WAPA,
normalisation is needed too.

3.2 Optimisation with Language Containment

In this part the following problem is analysed: Given a WAPA A, and the
relation “≤” on the state space of A. What algorithms can be used to reduce
the complexity of the transition function and the cardinality of the state space
efficiently without changing L(A)?

At first the problem of reducing the state space of an WAPA is discussed.
The obvious way to reduce the state space is to merge two states q1, q2 of the
WAPA into one state q12 so that every occurrence of q1, q2 on the right side of
the transition function is replaced by q12 and δ(q12) = δ(q1) ∨ δ(q2).

One can show that there is no unique possibility to merge states with differ-
ent priorities, i.e. the following procedures don’t work:

• the new state receives the greater priority of the input states

• the new state receives the smaller priority of the input states

• the new state receives the even priority if one of the input states has an
odd priority

• the new state receives the odd priority if one of the input states has an
even priority

• the new state receives the smaller priority of the input states if both states
are odd

• the new state receives the smaller priority of the input states if both states
are even

Since the acceptance of a WAPA depends on both, the previous states as
well as the following states in a run, p ≡ q cannot be a sound criterion for a
merging of p and q. This is shown by the following counterexample.

!"#$%&'(q 3
1 a,b

!! !"#$%&'(q 0
3

a,b
&&

!! !"#$%&'(q 1
0

a ''

b !! !"#$%&'(q 3
2 a,b

!! !"#$%&'(q 2
4

a,b

((

!"#$%&'(q 0
3

a,b
&&

!! !"#$%&'(q 1
0

a,b
!!)*+,-./0q 3

1,2 a,b
!!

a,b ''

!"#$%&'(q 2
4

a,b

((

Figure 3: Example 3 before and after the merging of q1 and q2.

9

Example 3 Let A = ({q0, q1, q2, q3, q4}, {a, b}, q0, δ,Ω) be a WAPA with

• δ(q0, a) = q1, δ(q0, b) = q2

• δ(q1, a) = δ(q1, b) = q3

• δ(q2, a) = δ(q2, b) = q4

• δ(q3, a) = δ(q3, b) = q3

• δ(q4, a) = δ(q4, b) = q4

• Ω(q0) = 1, Ω(q1) = 3, Ω(q2) = 3, Ω(q3) = 0, Ω(q4) = 2

It holds that q1 ≡ q2 since L(A [q1]) = L(A [q2]) = {a, b}ω. But merging q1 and
q2 delivers a WAPA B with L(B) = {a, b}ω *= L(A) = { aw | w ∈ {a, b}ω } as
shown in Figure 3.

It seems to be clear that the problem does not occur in normalised WAPA.
But the equivalence criterion is not sound for normalised WAPA either as the
next counterexample shows.

!"#$%&'(q 2
1

b

))

a
∧

** ++ !"#$%&'(q 1
4

a
&&

b
,,

!! !"#$%&'(q 2
0

a --

b
..

!"#$%&'(q 0
3 a,b

//!"#$%&'(q 2
2

a

((

b ∧
"" 00

!"#$%&'(q 1
5

b

((

a

11

∧

22

++ !"#$%&'(q 1
4

a
&&

b
,,

!! !"#$%&'(q 2
0

a,b

$$)*+,-./0q 2
1,2

a,b

33

a

b

!"#$%&'(q 0
3 a,b

//

∧

44

00

!"#$%&'(q 1
5

b

((

a

11

Figure 4: Example 4 before and after the merging of q1 and q2.

Example 4 Let A = ({q0, q1, q2, q3, q4, q5}, {a, b}, q0, δ,Ω) be a WAPA with

• δ(q0, a) = q1, δ(q0, b) = q2

• δ(q1, a) = q1 ∧ q4, δ(q1, b) = q2

• δ(q2, a) = q1, δ(q2, b) = q2 ∧ q5

• δ(q3, a) = δ(q3, b) = q3

• δ(q4, a) = q4, δ(q4, b) = q3

• δ(q5, a) = q3, δ(q5, b) = q5

• Ω(q0) = 2, Ω(q1) = 2, Ω(q2) = 2, Ω(q3) = 0, Ω(q4) = 1, Ω(q5) = 1

Here is q1 ≡ q2 because L(A [q1]) = L(A [q2]) = L(A) and L(A) = {w | w *=
bω and w *= aω}. But merging q1 and q2 delivers a WAPA B with L(B) =
{a, b}ω *= L(A) as shown in Figure 4.

10

One may have the idea to optimize the transition function of a normalised
WAPA A in the following way: If there are states q1, q2, q with q1 ≤ q2 and a
transition δ(q,) = q1 ∨ q2 in A then it can be optimised to δ(q,) = q2. If there
are states q1, q2, q with q1 ≤ q2 and a transition δ(q,) = q1 ∧ q2 in A then it
can be optimised to δ(q,) = q1.

Here are counterexamples for both cases.

Example 5 Let A = ({q0, q1, q2, }, {a, b}, q0, δ,Ω) be a WAPA with

• δ(q0, a) = q0, δ(q0, b) = q0 ∨ q1

• δ(q1, a) = q2, δ(q1, b) = q1

• δ(q2, a) = δ(q2, b) = q2

• Ω(q0) = 3, Ω(q1) = 2, Ω(q2) = 1

For A it holds that q1 ≤ q0 because L(A [q1]) = L(bω) ⊆ L(A [q0]) = L(A) =
L((a|b)∗bω). An optimisation of δ(q0, b) = q0 ∨ q1 leads to a WAPA B =
({q0}, {a, b}, δ,Ω) with δ(q0, a) = δ(q0, b) = q0 and Ω(q0) = 3. That is why
L(B) = ∅ *= L(A).

!! !"#$%&'(q 2
0

a,b

∧
"" ##

!"#$%&'(q 1
1

a

$$

b !! !"#$%&'(q 0
2

a,b
%% !! !"#$%&'(q 2

0

a,b

**

Figure 5: The WAPA A and B given in example 6.

Example 6 Let A = ({q0, q1, q2, }, {a, b}, q0, δ,Ω) be a WAPA with

• δ(q0, a) = δ(q0, b) = q0 ∧ q1

• δ(q1, a) = q1, δ(q1, b) = q2

• δ(q2, a) = δ(q2, b) = q2

• Ω(q0) = 2, Ω(q1) = 1, Ω(q2) = 0

For that WAPA one have L(A [q0]) = L(A) = {w | w contains infinitely many
b’s } and L(A [q1]) = {w | w contains at least one b}. Therefore an optimisation
of δ(qo, b) = q0 ∧ q1 leads to a WAPA B = ({q0}, {a, b}, δ,Ω) with δ(q0, a) =
δ(q0, b) = q0 and Ω(q0) = 2. That is why L(B) = {{a, b}ω} *= L(A). See Figure
5.

4 Simulation Games

In this section two different algorithms that compute the relation “≤” on the
state space of a given WAPA are presented. Both reduce the problem to the
problem of computing winning set in weak parity games and use the algorithm
introduced in section 2.

11

4.1 Small Simulation Game

With the small simulation game one can not compute “≤” as defined above but
a relation ≤s ⊆ ≤. As tests have shown in practice it often holds that nearly
≤s = ≤. The size of the weak Büchi game obtained from a given WAPA A is
polynomial in the size of A. That is why the algorithm that computes ≤s has
a polynomial running time at all.

The intuition behind the small simulation game is the following: the game
is played by two players on two copies of A. One player tries to show that the
first copy does not accept a word that the second copy accepts while the other
play tries to prevent this.

(∀1)
(f1 ∨ f2, g, n, m)

(fi, g, n, m) ∀i ∈ {1, 2} (∀2)
(f, g1 ∧ g2, n, m)

(f, gi, n, m) ∀i ∈ {1, 2}

(∀3)
(q1, q2, n, m)

(δ(q1, a), δ(q2, a), n, m) ∀a ∈ Σ

(∃1)
(q, g1 ∨ g2, n, m)

(q, gi, n, m) ∀i ∈ {1, 2} (∃2)
(f1 ∧ f2, q, n, m)

(fi, q, n, m) ∀i ∈ {1, 2}

(∃3)
(f1 ∧ f2, g1 ∨ g2, n, m)

(fi, g1 ∨ g2, n, m) ∀i ∈ {1, 2}

Figure 6: The rules of the small simulation game.

Definition 9 (Small Simulation Game) Let A = (Q,Σ, q0, δ,Ω) be a WAPA.
Define B+(A) = {f | f ∈ Sub(g), g ∈ Im(δ)} ∪ {q0

0 , q
1
0}. The small simulation

game for A and p, q ∈ Q is defined as SGA(p, q) = (V, E, p, (V0, V1)), where

• V = B+(A)2 × Im(p)2

• the edges E are given by the game rules in figure 6.

• p(f, g, n, m) = (m · (1 − n)) mod 2

• V0 = { v | v is of the form (f1∧f2, g1∨g2, n, m), (f1∧f2, q, n, m) or (q, g1∨
g2, n, m) for some q ∈ Q, fi, gi ∈ B+(A), n, m ∈ Im(p) }

• V1 = V − V0

Now one can prove that winning positions in simulation games for WAPA
induce language containment of this WAPA in the following way.

Theorem 4 Let A0 = (Q,Σ, q0, δ,Ω) be WAPA and p, q ∈ Q. Then it holds:
if P0 has a winning strategy from position (p, q,Ω(p),Ω(q)) in SGA(p, q) then
p ≤ q.

12

!"#$%&'(q 2
1

b
55

a

++ !"#$%&'(q 0
6

a,b
&&

!! !"#$%&'(q 4
0

a
66

b

77

!"#$%&'(q 1
5 a,b

//
!"#$%&'(q 2

4

b

,,

a

88

!"#$%&'(q 2
2

a

b

99

∨

::

;;

!"#$%&'(q 2
3

b

<<

a

==

Figure 7: The Small Simulation Game cannot simulate q1 with q2.

A very similar result is shown in [Fri05, Fri02]. See there for a proof.
The following example shows that the other direction of Theorem 4 does not

hold. That is why the algorithm for language containment which uses the small
game is not complete.

Example 7 Let A = ({q0, q1, q2, q3, q4, q5, q6}, {a, b}, q0, δ,Ω) be a WAPA with

• δ(q0, a) = q1, δ(q0, b) = q2

• δ(q1, a) = q6, δ(q1, b) = q5

• δ(q2, a) = q6, δ(q2, b) = q3 ∨ q4

• δ(q3, a) = q5, δ(q3, b) = q6

• δ(q4, a) = q5, δ(q4, b) = q6

• δ(q5, a) = δ(q5, b) = q5

• δ(q6, a) = δ(q6, b) = q6

• Ω(q0) = 4, Ω(q1) = Ω(q2) = Ω(q3) = Ω(q4) = 2, Ω(q5) = 1, Ω(q6) = 0

A is shown in Fig. 7. It is q1 ≡ q2 because L(A [q1]) = L(A [q2]) = {aw | w ∈
{a, b}ω}. Figure 8 shows the part of SGA(q1, q2) that is reachable from (q1, q2, 2, 2).
As one can see there player P1 has a winning strategy from the vertex (q1, q2, 2, 2).
But nevertheless it holds that q1 ≤ q2.

Together with Theorem 2, Theorem 4 delivers an O(|Σ| · p4 · 22b · n2b) time
optimization algorithm for WAPA where p is the number of priorities, n is the
number of states and b is the maximum size of boolean formulas that occur
in the transition function. If f is the number of sub-formulas that occur in
the image of the transition function one can also bound the running time by
O(|Σ| · p4 · f4) (note that i.g. f 3 #states).

13

Component1

Component2 Component3

Component4 Component5

Component6

Component7

--(State q5,1,State q5,1)--
(0) [P1]

--(State q6,0,State q5,1)--
(1) [P1]

--(State q6,0,State q6,0)--
(0) [P1]

--(State q6,0,State q4,2)--
(0) [P1]

--(State q6,0,State q3,2)--
(0) [P1]

--(State q6,0,State q3 ||| State q4,2)--
(0) [P0]

--(State q1,2,State q2,2)--
(0) [P1]

Figure 8: A Part of the small simulation game form the WAPA in figure 7.

4.2 Complete Simulation Game

The complete simulation for a given WAPA A can compute exactly the relation
“≤” on the state space.

Again a weak Büchi game is defined for a A. But this time the size of the
game is exponential in the space of the WAPA. All in all one receives a PSPACE
algorithm for language containment.

Definition 10 Let A = (Q,Σ, q0, δ,Ω) be a normalised WAPA. The complete
simulation game CGA(p, q) is played between players ∃ and ∀ on the game board
P(Q)2. A configuration C is written

p1, . . . , pn 4 q1, . . . , qm

and its intended meaning is: for all w ∈ Σω: w |=
∧n

i=1 pi implies w |=
∨m

j=1 qj .
Its size, |C| is n + m in this case.

Every play in CGA(p, q) starts in the configuration p 4 q. On every game
position player ∀ chooses the vertex to visit next, i.e. V0 = V and V1 = ∅. There

14

exist an edge between p1, . . . , pn 4 q1, . . . , qm and Φ 4 Ψ if there exists an a ∈ Σ
so that

δ(p1, a), . . . , δ(pn, a) 4 δ(q1, a), . . . , δ(qm, a) =⇒∗ Φ 4 Ψ
for the simplify relation =⇒ that is defined by the following rules.

ϕ1 ∨ ϕ2,Φ 4 Ψ =⇒ ϕi,Φ 4 Ψ ∀i ∈ {1, 2}
Φ 4 ψ1 ∨ ψ2,Ψ =⇒ Φ 4 ψ1,ψ2,Ψ
Φ 4 ψ1 ∧ ψ2,Ψ =⇒ Φ 4 ψi,Ψ ∀i ∈ {1, 2}
ϕ1 ∧ ϕ2,Φ 4 Ψ =⇒ ϕ1,ϕ2,Φ 4 Ψ

The priority of a configuration C = Φ 4 Ψ is defined inductively over the
structure of positive Boolean formulas as follows.

val(q) :=

{
0, if Ω(q) even
1, o.w.

val(ϕ ∨ ψ) := min{val(ϕ), val (ψ)}
val(ϕ ∧ ψ) := max{val(ϕ), val (ψ)}

val (C) :=

{
0, if val(

∧
Φ) = 1 or val(

∨
Ψ) = 0

1, o.w.

Player ∃ wins the play C0, C1, . . . if there is a k ∈ N, s.t. for all i ≥ k: val(Ci) =
0. Player ∀ wins the play C0, C1, . . . if there is a k ∈ N, s.t. for all i ≥ k:
val(Ci) = 1.

We say that player p wins the game CGA(p, q) if she has a winning strategy
for this game.

As shown in section 2 every play has a unique winner.

Remark 1 Let A be a normalised WAPA. Player ∃ wins the game CGA(p, q)
iff p ≤ q.

This theorem is intuitive clear but the proof is technical and long and there-
fore not given here.

References

[Ete01] K. Etessami, R. Schuller, T. Wilke. Fair Simulation Relations, parity
games, and state space reduction for Büchi automata. Automata,
Languages and Programming (ICALP 2001), vol. 1877 of LNCS,
pages 694-707, 2001.

[Hen97] T. Henziger, O. Kupferman, S. Rajamani. Fair simulation. Proc. of
9th Int. Conf. on Concurrence Theory, number 1243 in LNCS, pages
290-301. Springer-Verlag, 2000.

[Hen00] T. Henziger, S. Rajamani. Fair bisimulation. TACAS, 2000.

[Kup01] O. Kupferman, M. Y. Vardi. Weak alternating automata are not that
weak. ACM Transactions on Computitional Logic, 2(3), pages 408-
429, 2001.

15

[Jur00] M. Jurdzinski. Small progress measures for solving parity games.
STACS 2000, 17th Symp. on Theoretical Aspects of Computer Sci-
ence, volume 1770 of LNCS, pages 290-301, Springer-Verlag, 2000.

[Mos91] A. W. Mostowski. Games with forbidden positions. Technical Report
78, University of Gdansk, 1991.

[Cor01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction
to Algorithms MIT Press, pages 525-553, 2001.

[Eme93] E. A. Emerson, C. S. Jutla, A. P. Sistla. On model-checking for frag-
ments of µ-calculus. Computer Aided Verification, 5th Intern. Con-
ference, CAV’93, vol. 697 of LNCS, pages 385-963, Springer-Verlag,
1993.

[Büc62] J. R. Büchi. On a decision method in restricted second order arith-
metic. In Proc. of Congress on Logic, Method, and Philosophy of
Science, pages 1-12, Stanford University Press, 1962.

[Löd00] C. Löding, W. Thomas. Alternating automata and logics over infinite
words. In Prac. IFIP Int. Conf. on Theoretical Computer Scimes,
IFIP TCS2000, vol. 1872 of LNCS, pages 521-534, Springer-Verlag,
2000.

[Mul86] D. E. Muller, A. Saoudi, P. E. Schupp. Alternating automata, the
weak monadic theory of the tree and its complexity. In Proc. of 13th
ICALP, LNCS 227, pages 275-283, 1986.

[Sis87] A. P. Sistla, M. Y. Vardi, P. Wolper. The Complementation Problem
for Büchi Automata with Applications to Temporal Logic. Theoret-
ical Computer Science, vol. 49, pages 217-237, 1987.

[Eme91] E. A. Emerson, C. S. Jutla. Tree Automata, µ-Calculus and Deter-
minacy. In Proc. of 32nd Symp. on Foundations of Computer Science,
pages, 368-377, IEEE, 1991.

[Lan04] M. Lange. Weak Automata for the Linear Time µ-Calculus In Proc.of
6th Int. Conf. on Verification, Model Checking and Abstract Inter-
pretation, VMCAI’05, vol 3385 of LNCS, pages 267-281, 2005.

[Hop02] J. Hopcroft, J. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation, Addison-Wesley, 1980.

[Fri05] C. Fritz, T. Wilke. Simulation Relations for Alternating Büchi Au-
tomata. TCS 1-3, vol 338, 2005.

[Fri02] C. Firtz, T. Wilke. State Space Reductions for Alternating Büchi
Automata. In Proc. of 22nd Int. Conf. on Foundations of Software,
vol. 2556 of LNCS, pages 157-168, 2002.

[µSabre] http://www.tcs.ifi.lmu.de/musabre.

16

