
An Algebraic Theory of Polymorphic Temporal Media

Research Report RR-1259

Paul Hudak
Department of Computer Science

Yale University
New Haven, CT 06520-8285

paul.hudak@yale.edu

ABSTRACT
Temporal media is information that is directly consumed by
a user, and that varies with time. Examples include music,
digital sound files, computer animations, and video clips. In
this paper we present a polymorphic data type that captures
a broad range of temporal media. We study its syntactic,
temporal, and semantic properties, leading to an algebraic
theory of polymorphic temporal media that is valid for un-
derlying media types that satisfy specific constraints. The
key technical result is an axiomatic semantics for polymor-
phic temporal media that is shown to be both sound and
complete.

Categories and Subject Descriptors
D.G.1 [Programming Languages]: Formal Definitions and
Theory

General Terms
Media, multimedia, polymorphism, temporal, algebra, for-
mal semantics, axiomatic semantics, soundness and com-
pleteness, functional programming.

1. INTRODUCTION
The advent of the personal computer has focussed atten-

tion on the consumer, the person who buys and makes use
of the computer. Our interest is in the consumer as a per-
son who consumes information. This information takes on
many forms, but it is usually dynamic and time-varying,
and ultimately is consumed mostly through our visual and
aural senses. We use the term temporal media to refer to
this time-varying information. We are interested in how
to represent this information at an abstract level; how to
manipulate these representations; how to assign a meaning,
or interpretation, to them; and how to reason about such
meanings.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright Paul Hudak 2003.

To achieve these goals, we define a polymorphic repre-
sentation of temporal media that allows combining media
values in generic ways, independent of the underlying media
type. We describe three types of operations on and proper-
ties of temporal media: (a) syntactic operations and prop-
erties, that depend only on the structural representation of
the media, (b) temporal operations and properties, that ad-
ditionally depend on time, and (c) semantic operations and
properties, that depend on the meaning, or interpretation, of
the media. The latter development leads to an axiomatic se-
mantics for polymorphic temporal media that is both sound
and complete.

Examples of temporal media include music, digital sound
files, computer animations, and video clips. It also includes
representations of some other concepts, such as dance [10]
and a language for humanoid robot motion [5]. In this pa-
per we use two running examples throughout: an abstract
representation of music (analogous to our previous work
on Haskore and MDL, DSLs for computer music [9, 6, 7,
8]), and an abstract representation of continuous anima-
tions (analogous to our previous work on Fran and FAL [4,
3, 7]). We briefly address other media types in Section 8.

The key new ideas in the current work are the polymorphic
nature of the media type, the exploration of syntactic and
temporal properties of this media type that parallel those
for lists, the casting of the semantics in a formal algebraic
framework, the definition of a normal form for polymorphic
temporal media, and a completeness result for the axiomatic
semantics. The completeness result relies on a new axiom
for swapping terms in a serial/parallel construction.

The results in this paper shed interesting light on the na-
ture of temporal media, and cast into a rigorous framework
commonalities that have been intuitively noted between lan-
guages designed for seemingly different domains.

We present all of our results using Haskell [12] syntax
that, in most cases, is executable. Haskell’s type classes
are particularly useful in specifying constraints, via implicit
laws, that constituent types must obey. Proof details of the
simpler theorems are omitted in this extended abstract.

2. POLYMORPHIC MEDIA
We represent temporal media by a polymorphic data type:

data Media a = Prim a

| Media a :+: Media a

| Media a :=: Media a

We refer to T in Media T as the base media type. Intuitively,
for values x :: T and m1, m2 :: Media T, a value of type
Media T is either a primitive value Prim x, a sequential com-
position m1 :+: m2, or a parallel composition m1 :=: m2.
Although simple in structure, this data type is rich enough
to capture quite a number of useful media types.

Example 1 (Music): Consider this definition of an ab-
stract notion of a musical note:

data Note = Rest Dur

| Note Pitch Dur

type Dur = Real

type Pitch = (NoteName, Octave)

type Octave = Int

data NoteName = Cf | C | Cs | Df | D | Ds | Ef

| E | Es | Ff | F | Fs | Gf | G

| Gs | Af | A | As | Bf | B | Bs

In other words, a Note is either a pitch paired with a du-
ration, or a Rest that has a duration but no pitch. Dur is
a measure of time (duration), which ideally would be a real
number; in a practical implementation a suitable approxi-
mation such as Float, Double, or Ratio Int would be used.
A Pitch is a pair consisting of a note name and an octave,
where an octave is just an integer. The note name Cf is
read as “C-flat” (normally written as C[), Cs as “C-sharp”
(normally written as C]), and so on.1

Then the type:

type Music = Media Note

is a temporal media for music. In particular, a value
Prim (Rest d) is a rest of duration d, Prim (Note p d)

is a note with pitch p played for duration d, m1 :+: m2 is
the music value m1 followed sequentially in time by m2, and
m1 :=: m2 is m1 played simultaneously with m2. This repre-
sentation of music is a simplified version of that used in the
Haskore computer music library [9, 6], which has been used
successfully in several computer music applications. As a
simple example:

let dMinor = Note (D,3) 1 :=: Note (F,3) 1

:=: Note (A,3) 1

gMajor = Note (G,3) 1 :=: Note (B,3) 1

:=: Note (D,4) 1

cMajor = Note (C,3) 2 :=: Note (E,3) 2

:=: Note (G,3) 2

in dMinor :+: gMajor :+: cMajor

is a ii-V-I chord progression in C major.
Example 2 (Animation): Consider this definition of a

base media type for continuous animations:

1This representation corresponds well to that used in music
theory, except that in music theory note names are called
pitch classes.

type Anim = (Dur, Time -> Picture)

type Dur = Real

type Time = Real

data Picture = EmptyPic

| Circle Radius Point

| Square Length Point

| Polygon [Point]

type Point = (Real, Real)

A Picture is either empty, a circle or square of a given
size and located at a particular point, or a polygon having a
specific set of vertices. An Anim value (d, f) is a continuous
animation whose image at time 0 ≤ t ≤ d is the Picture

value f t.
Then the type:

type Animation = Media Anim

is a temporal media for continuous animations. This repre-
sentation is a simplified version of that used in Fran [4, 3]
and FAL [7]. As a simple example:

let ball1 = (10, \t -> Circle t origin)

ball2 = (10, \t -> Circle (10-t) origin

box = (20, \t -> Square 1 (t,t))

in (ball1 :+: ball2) :=: box

is a box sliding diagonally across the screen, together with
a ball located at the origin that first grows for 10 seconds
and then shrinks.

3. SYNTACTIC PROPERTIES
Before studying semantic properties, we first define vari-

ous operations on the structure (i.e. syntax) of polymorphic
temporal media values, many of which are analogous to op-
erations on lists (and thus we borrow similar names when
the analogy is strong). We also explore various laws that
these operators obey, laws that are also analogous to those
for lists [2, 7].

Map. For starters, it is easy to define a polymorphic map
on temporal media, which we do by declaring Media to be
an instance of the Functor class:

instance Functor Media where

fmap f (Prim n) = Prim (f n)

fmap f (m1 :+: m2) = fmap f m1 :+: fmap f m2

fmap f (m1 :=: m2) = fmap f m1 :=: fmap f m2

fmap shares many properties with map defined on lists, most
notably the standard laws for the Functor class:

Theorem 3.1. For any finite m :: Media T1 and func-
tions f, g :: T1 -> T2:

fmap (f . g) = fmap f . fmap g

fmap id = id

Proof. By a straightforward structural induction on the
second argument to fmap.

fmap allows us to define many useful operations on specific
media types, thus obviating the need for a richer data type
as used, for example, in our previous work on Haskore, MDL,
Fran, and Fal. The following examples demonstrate this.

Example 1 (Music): We define a function in terms of
fmap that alters the tempo of a Music value:

tempo :: Dur -> Music -> Music

tempo r = fmap (temp r)

where temp r (Rest d) = Rest (r*d)

temp r (Note p d) = Note p (r*d)

and one that transposes a Music value by a given interval:

trans :: Int -> Music -> Music

trans i = fmap (tran i)

where tran i (Rest d) = Rest d

tran i (Note p d) = Note p’ d

where p’ = transPitch i p

where transPitch i p translates pitch p by interval i (straight-
forward definition omitted). These two functions obviate the
need for the Tempo and Trans constructors used in Haskore
and MDL [9, 6, 7].

Using Theorem 3.1 we can show that tempo is multiplica-
tive and trans is additive; in addition, they commute with
respect to themselves and to each other:

Corollary 3.1. For any r1,r2 :: Dur and i1,i2 :: Int:

tempo r1 . tempo r2 = tempo (r1*r2)

trans i1 . trans i2 = trans (i1+i2)

tempo r1 . tempo r2 = tempo r2 . tempo r1

trans i1 . trans i2 = trans i2 . trans i1

tempo r1 . trans i1 = trans i1 . tempo r1

Example 2 (Animation): We define a function to scale
in size and translate in space an Animation value:

scale :: Real -> Real -> Animation -> Animation

scale s (dx,dy) = fmap (\(d,f) -> (d, scal . f))

where

scal EmptyPic = EmptyPic

scal (Square l p) = Square (s*l) (scalePt p)

scal (Circle r p) = Circle (s*r) (scalePt p)

scal (Polygon vs) = Polygon (map scalePt vs)

scalePt (x,y) = (s*x+dx,s*y+dy)

This function obviates the need for the Scale and Translate

constructors used in Fran and Fal [4, 3, 7]. In a similar way,
a function rate can be defined such that rate r a shifts the
framerate of animation a by r.

Using Theorem 3.1 it is then straightforward to show:

Corollary 3.2. For any s1,s2,dx1,dx2,dy1,dy2 ::

Real:

scale s1 (dx1,dy1) . scale s2 (dx2,dy2)

= scale (s1*s2) (dx1+dx2,dy1+dy2)

scale s1 p1 . scale s2 p2

= scale s2 p2 . scale s1 p1

Fold (i.e. catamorphism).A fold-like function can be de-
fined for media values, and will play a critical role in our
subsequent development of the semantics of temporal me-
dia:

foldM :: (a->b) -> (b->b->b) -> (b->b->b)

-> Media a -> b

foldM f g h (Prim x) = f x

foldM f g h (m1 :+: m2) =

foldM f g h m1 ‘g‘ foldM f g h m2

foldM f g h (m1 :=: m2) =

foldM f g h m1 ‘h‘ foldM f g h m2

Lemma 3.1. For any f :: T1 -> T2:

foldM (Prim . f) (:+:) (:=:) = fmap f

foldM Prim (:+:) (:=:) = id

Proof. For the first equation, by a straightforward struc-
tural induction. The second equation then follows from the
first and Theorem 3.1.

More interestingly, we can also state a fusion law for
foldM:

Theorem 3.2. (Fusion Law)
For f :: T1 -> T2, g, h :: T2 -> T2 -> T2, k ::

T2 -> T3, and g’, h’ :: T1 -> T3, if:

f’ x = k (f x)

g’ (k x) (k y) = k (g x y)

h’ (k x) (k y) = k (h x y)

then:

k . foldM f g h = foldM f’ g’ h’

Proof. By induction. Base case:

k (foldM f g h (Prim x)) unfold foldM

= k (f x) assumption

= f’ x fold foldM

= foldM f’ g’ h’ (Prim x)

Induction step:

k (foldM f g h (m1 :+: m2)) unfold foldM

= k (g (foldM f g h m1) (foldM f g h m2))

assumption

= g’ (k (foldM f g h m1)) (k (foldM f g h m2))

induction hypothesis

= g’ (foldM f’ g’ h’ m1) (foldM f’ g’ h’ m2)

fold foldM

= foldM f’ g’ h’ (m1 :+: m2)

Similarly for (:=:).

The following fold-map fusion law is a special case of the
above.

Corollary 3.3. (Fold-Map Fusion Law)
For all f :: T1 -> T2, g, h :: T2 -> T2 -> T2, and
j :: T0 -> T1:

foldM f g h . fmap j = foldM (f . j) g h

Proof. Directly from the fusion law by validating the
three constraints on f, g, and h.

Example: In the discussion below a reverse function,
and in Section 4 a duration function, are defined as cata-
morphisms. In addition, in Section 5 we define the standard
interpretation, or semantics, of temporal media as a cata-
morphism.

Reverse.We would like to define a function reverseM that
reverses, in time, any temporal media value. However, this
will only be possible if the base media type is itself reversible,
a constraint that we enforce using type classes:

class Reverse a where

reverseM :: a -> a

instance Reverse a => Reverse (Media a) where

reverseM (Prim a) = Prim (reverseM a)

reverseM (m1 :+: m2) =

reverseM m2 :+: reverseM m1

reverseM (m1 :=: m2) =

reverseM m1 :=: reverseM m2

Note that reverseM can be defined more succinctly as a
catamorphism:

instance Reverse a => Reverse (Media a) where

reverseM =

foldM (Prim . reverseM) (flip (:+:)) (:=:)

Analogous to a similar property on lists, we have:

Theorem 3.3. For all finite m, if the following law holds
for reverseM :: T -> T, then it also holds for reverseM ::

Media T -> Media T:

reverseM (reverseM m) = m

We take the constraint in this theorem to be a law for all
valid instances of a base media type T in the class Reverse.

Proof. It is straightforward to prove this result using
structural induction. However, we can carry out an induc-
tionless proof by using the fusion law of Theorem 3.2, as
follows. Let k = reverseM. Thus:

(reverseM . reverseM) m

= (k . foldM (Prim . reverseM)

(flip (:+:)) (:=:)) m fusion law

= foldM Prim (:+:) (:=:) m lemma 3.1

= m

Use of the fusion law is valid because its three conditions
are met as shown below:

Prim x assumption

= Prim (reverseM (reverseM x)) fold (.)

= (Prim . reverseM) (reverseM x) fold k

= k (Prim (reverseM x)) fold (.)

= k ((Prim . reverseM) x)

(:+:) (k x) (k y)

= flip (:+:) (k y) (k x) fold flip

= k (y :+: x) fold k

= k (flip (:+:) x y) fold flip

(:=:) (k x) (k y)

= k (x :=: y) unfold k

reverseM also interacts nicely with fmap, just as reverse
interacts with map on lists:

Theorem 3.4. For any f :: T -> T, if f . reverseM =

reverseM . f, then:

fmap f . reverseM = reverseM . fmap f

Proof. Using both fusion laws (Theorem 3.2 and Corol-
lary 3.3) (details omitted).

Finally, we can prove the following theorem, which is anal-
ogous to this well-known law about lists:

foldr op e xs = foldl (flip op) e (reverse xs)

Theorem 3.5. For all finite m :: Media T, functions
g,h :: T -> T -> T, and f,f’ :: T -> T such that
f = f’ . reverseM:

foldM f g h m = foldM f’ (flip g) h (reverse m)

Proof. By structural induction (details omitted).

Example 1 (Music): We declare Note to be an instance
of class Reverse:

instance Reverse Note where

reverseM = id

In other words, a note is the same whether played backwards
or forwards. The constraint in Theorem 3.3 is therefore
trivially satisfied, and it thus holds for music media.2

Furthermore:

Corollary 3.4. (to Theorem 3.4)

reverseM . tempo r = tempo r . reverseM

reverseM . trans i = trans i . reverseM

Corollary 3.5. (to Theorem 3.5)

foldM f g h m = foldM f (flip g) h (reverse m)

Example 2 (Animation): We declare Anim to be an
instance of class Reverse:

instance Reverse Animation where

reverseM (d, f) = (d, \t -> f (d-t))

Note that:

reverseM (reverseM (d, f))

= reverseM (d, \t -> f (d-t))

= (d, \t’ -> (\t -> f (d-t)) (d-t’))

= (d, \t’ -> f (d-(d-t’)))

= (d, \t’ -> f t’)

= (d, f)

Therefore the constraint in Theorem 3.3 is satisfied, and the
theorem thus holds for continuous animations. Furthermore:

Corollary 3.6. (to Theorem 3.4)

reverseM . scale s d = scale s d . reverseM

2The reverse of a musical passage is called its retrograde.
Used sparingly by traditional composers (two notable ex-
amples being J.S. Bach’s “Crab Canons” and Franz Joseph
Haydn’s Piano Sonata No. 26 in A Major (Menueto al
Rovescio)), it is a standard construction in modern twelve-
tone music.

4. TEMPORAL PROPERTIES
As a data structure, the Media type is fairly straightfor-

ward. Complications arise, however, when interpreting tem-
poral media. The starting point for such an interpretation
is an understanding of temporal properties, the most basic
of which is duration. Of particular concern is the meaning
of the parallel composition m1 :=: m2 when the durations of
m1 and m2 are different. There are at least four possibilities:

1. m1 and m2 begin at the same time, and when the longer
one finishes, the entire construction finishes.

2. m1 and m2 begin at the same time, and when the shorter
one finishes, the entire construction finishes (thus trun-
cating the longer one).

3. m1 and m2 are “centered” in time, so that the shorter
one begins after one-half of the difference between their
durations.

4. This situation is disallowed: i.e. m1 and m2 must have
the same duration in a well-formed Media value.

The first option is what we used in the design of Haskore and
MDL [9, 6, 7]. The second option is similar to what Haskell’s
zip function does with lists. The third option is what we
used in a recent paper emphasizing algebraic properties of
music [8].

In the present treatment, however, we shall adopt the
fourth option. Doing so simplifies the presentation, and does
not lack in generality, as long as the primitive type is able
to express the absence of media for a specified duration (for
example a value Rest d in Music), which we enforce us-
ing type classes. Anything expressed using one of the other
three options can be expressed using option four by inserting
suitable “rests” in appropriate places.

Duration. To compute the duration of a temporal media
value we first need a way to compute the duration of the
underlying media type, which we enforce as before using
type classes:

class Temporal a where

dur :: a -> Dur

none :: Dur -> a

instance Temporal a => Temporal (Media a) where

dur = foldM dur (+) max

none = Prim . none

The none method allows one to express the absence of media
for a specified duration, as discussed earlier.

We take the constraint in the following lemma to be a law
for any valid instance of a base media type T in the class
Temporal:

Lemma 4.1. If the property dur (none d) = d holds for
dur :: T -> Dur, then it also holds for
dur :: Media T -> Dur.

Proof. (Straightforward and omitted.)

Note that, for generality, the duration of a parallel com-
position is defined as the maximum of the durations of its
arguments. However, as discussed earlier, we wish to re-
strict parallel coompositions to those whose two argument
durations are the same. Thus we define:

Definition 4.1. A well-formed temporal media value
m :: Media T is one that is finite, and for which each paral-
lel composition m1 :=: m2 has the property that dur m1 =

dur m2.

Note that dur is analogous to the length operator on
lists, and obeys a law analogous to length l1 + length l2

= length (l1 ++ l2).
Example 1 (Music): We declare Note to be Temporal:

instance Temporal Note where

dur (Rest d) = d

dur (Note p d) = d

none d = Rest d

Thus dur :: Music -> Dur determines the duration of a
Music value.

Example 2 (Animation): We declare Anim to be Temporal:

instance Temporal Anim where

dur (d, f) = d

none d = (d, const EmptyPic)

Thus dur :: Animation -> Dur determines the duration of
an Animation value.

Take and Drop.We now define two functions takeM and
dropM that are analogous to Haskell’s take and drop func-
tions for lists. The difference is that instead of being pa-
rameterized by a number of elements, takeM and dropM are
parameterized by time. As with other operators we have
considered, this requires the ability to take and drop por-
tions of the base media type, so once again we use type
classes to structure the design. The expression takeM d m

is a media value corresponding to the first d seconds of m.
Similarly, dropM d m is all but the first d seconds. Both of
these are very useful in practice.

class Take a where

takeM :: Dur -> a -> a

dropM :: Dur -> a -> a

instance (Take a, Temporal a) =>

Take (Media a) where

takeM d m | d <= 0 = none 0

takeM d (Prim x) = Prim (takeM d x)

takeM d (m1 :+: m2) =

let d1 = dur m1

in if d <= d1 then takeM d m1

else m1 :+: takeM (d-d1) m2

takeM d (m1 :=: m2) = takeM d m1 :=: takeM d m2

dropM d m | d <= 0 = m

dropM d (Prim x) = Prim (dropM d x)

dropM d (m1 :+: m2) =

let d1 = dur m1

in if d <= d1 then dropM d m1 :+: m2

else dropM (d-d1) m2

dropM d (m1 :=: m2) = dropM d m1 :=: dropM d m2

Since we are only interested in the take and drop of well-
formed media values, the case for parallel composition is
quite simple.

We take the constraint in the following lemma to be a law
for any valid instance of a base media type T in the class
Temporal:

Lemma 4.2. If the following laws hold for any finite m :: T,
then they also hold for any finite well-formed m :: Media T:

takeM d m | d <= 0 = none 0

takeM d m | d >= dur m = m

dropM d m | d <= 0 = m

dropM d m | d >= dur m = none 0

Proof. By structural induction on m.

Lemma 4.3. For all finite well-formed m :: Media a and
d :: Dur <= dur m, if the following law holds for
takeM, dropM :: Dur -> T -> T, then it also holds for
takeM, dropM :: Dur -> Media T -> Media T:

dur (takeM d m) = d

dur (dropM d m) = dur m - d

Proof. By structural induction on m.

Perhaps surprisingly, takeM and dropM also share many
properties analogous to their list counterparts, except that
indexing is done in time, not in the number of elements.
This is captured by the following key theorem:

Theorem 4.1. For all non-negative d1, d2 :: Dur, if the
following laws hold for takeM, dropM :: Dur -> T -> T,
then they also hold for takeM, dropM :: Dur -> Media T ->

Media T:

takeM d1 . takeM d2 = takeM (min d1 d2)

dropM d1 . dropM d2 = dropM (d1+d2)

takeM d1 . dropM d2 = dropM d2 . takeM (d1+d2)

dropM d1 . takeM d2 = takeM (d2-d1) . dropM d1

-- if d2>=d1

Proof. See Appendix A.1.

There is one other theorem that we would like to hold,
whose corresponding version for lists in fact does hold:

Theorem 4.2. For all finite well-formed m :: Media a

and non-negative d :: Dur <= dur m, if the following law
holds for takeM, dropM :: Dur -> T -> T, then it also holds
for takeM, dropM :: Dur -> Media T -> Media T:

takeM d m :+: dropM d m = m

However, this theorem is false; in fact it does not hold for
the base case:

takeM d (Prim x) :+: dropM d (Prim x)

= Prim (takeM d x) :+: Prim (dropM d x)

/= Prim x

We cannot even state this as a constraint on the base media
type, because it involves an interpretation of (:+:). We will
return to this issue in a later section.

Finally, we note that takeM and dropM are functionally
related by the following theorem:

Theorem 4.3. For all finite well-formed m :: Media a

and d :: Dur <= dur m, if the following laws hold for
takeM, dropM :: Dur -> T -> T, then they also hold for
takeM, dropM :: Dur -> Media T -> Media T:

dropM d m =

reverseM (takeM (dur m - d) (reverseM m))

takeM d m =

reverseM (dropM (dur m - d) (reverseM m))

Proof. Left as an exercise.

Example 1 (Music): We declare Note to be an instance
of Take:

instance Take Note where

takeM d1 (Rest d2) = Rest (min d1 d2)

takeM d1 (Note p d2) = Note p (min d1 d2)

dropM d1 (Rest d2) = Rest (max 0 (d2-d1))

dropM d1 (Note p d2) = Note p (max 0 (d2-d1))

The constraints on Theorems 4.1 and 4.3 hold for this in-
stance, and thus the theorems hold for Music values.

Example 2 (Animation): We declare Anim to be an
instance of Take:

instance Take Anim where

takeM d1 (d2, f) = (max 0 (min d1 d2), f)

dropM d1 (d2, f) = (d2 - max 0 (min d1 d2),

f . (d1+))

The constraints on Theorems 4.1 and 4.3 hold for this in-
stance, and thus the theorems hold for Animation values.

5. SEMANTIC PROPERTIES
Temporal properties of polymorphic media go beyond struc-

tural properties, but do not go far enough. For example,
intuitively speaking, we would expect these two media frag-
ments:

m1 :+: (m2 :+: m3)

(m1 :+: m2) :+: m3

to be equivalent; i.e. to deliver precisely the same informa-
tion to the observer (for visual information they should look
the same, for aural information they should sound the same,
and so on).

In order to capture this notion of equivalence we must
provide an interpretation of the media that properly cap-
tures its “meaning” (i.e. how it looks, how it sounds, and so
on). And we would like to do this in a generic way. So once
again we use type classes to constrain the design:

class Combine b where

concatM :: b -> b -> b

merge :: b -> b -> b

zero :: Dur -> b

class Temporal a, Temporal b, Combine b =>

Meaning a b where

meaning :: a -> b

instance Meaning a b =>

Meaning (Media a) b where

meaning = foldM meaning concatM merge

Intuitively speaking, an instance Meaning T1 T2 means that
T1 can be given meaning in terms of T2. More specifically,
Media T1 can be given meaning in terms of T2, and ex-
pressed as a catamorphism, as long as we can give meaning
to the base media type T1 in terms of T2.

As laws for the class Meaning, we require that:

meaning . none = zero

dur . meaning = dur

Also, in anticipation of the axiomatic semantics that we
develop in Section 7, we requre that the following laws be
valid for any instance of Combine:

b1 ‘concatM‘ (b2 ‘concatM‘ b3)

= (b1 ‘concatM‘ b2) ‘concatM‘ b3

b1 ‘merge‘ (b2 ‘merge‘ b3)

= (b1 ‘merge‘ b2) ‘merge‘ b3

b1 ‘merge‘ b2 = b2 ‘merge‘ b1

zero 0 ‘concatM‘ b = b

b ‘concatM‘ zero 0 = b

zero d1 ‘concatM‘ zero d2 = zero (d1+d2)

zero d ‘merge‘ b = b, if d = dur b

(b1 ‘concatM‘ b2) ‘merge‘ (b3 ‘concatM‘ b4)

= (b1 ‘merge‘ b3) ‘concatM‘ (b2 ‘merge‘ b4),

if dur b1 = dur b3

and dur b2 = dur b4

We then define a notion of equivalence:

Definition 5.1. m1, m2 :: Media T are equivalent, writ-
ten m1 === m2, if and only if meaning m1 = meaning m2.

Example 1 (Music): We take the meaning of music
to be a pair: the duration of the music, and a sequence of
events, where each event marks the start-time, pitch, and
duration of a single note:

data Event = Event Time Pitch Dur

type Time = Real

type Performance = (Dur, [Event])

Except for the outermost duration, the interpretation of
Music as a Performance corresponds well to low-level mu-
sic representations such as MIDI [1] and csound [14]. The
presence of the outermost duration in a Performance al-
lows us to distinguish rests of unequal length; for exam-
ple, Prim (Rest d1) and Prim (Rest d2), where d1 /= d2.
Without the durations, these phrases would both denote an
empty sequence of events, and would be indistinguishable.
More generally, this allows us to distinguish phrases that end
with rests of unequal length, such as m :+: Prim (Rest d1)

and m :+: Prim (Rest d2).
Three instance declarations complete our interpretation

of music:

instance Combine Performance where

concatM (d1, evs1) (d2, evs2) =

(d1 + d2, evs1 ++ map shift evs2)

where shift (Event t p d) = Event (t+d1) p d

merge (d1, evs1) (d2, evs2) =

(d1 ‘max‘ d2, sort (evs1 ++ evs2))

zero d = (d, [])

instance Temporal Performance where

dur (d, _) = d

none = zero

instance Meaning Note Performance where

meaning (Rest d) = (d, [])

meaning (Note p d) = (d, [Event 0 p d])

Note that, although the arguments to (:=:) in well-formed
temporal media have equal duration, we take the max of

the durations of the two arguments for increased generality.
Also, note that the event sequences in a merge are concate-
nated and then sorted. A more efficient (O(n) instead of
O(n log n)) but less concise way to express this is to define
a time-ordered merge function.

We can show that the two laws for class Meaning, as well
as the eight for class Combine, hold for these instances, and
thus they are valid.

Example 2 (Animation): We take the meaning of an-
imation to be a pair: the duration of the animation, and a
sequence of images sampled at some frame rate r:

type Rendering = (Dur, [Image])

-- abstract Image operations

picToImage :: Picture -> Image

combineImage :: Image -> Image -> Image

emptyImage :: Image

Details of the Image operations are omitted.
This interpretation of animation is consistent with stan-

dard representations of videos/movies, whether digitized, on
analog tape, or on film.

Three instance declarations complete our interpretation
of continuous animation:

instance Combine Rendering where

concatM (d1, is1) (d2, is2) =

(d1 + d2, is1 ++ is2)

merge (d1, is1) (d2, is2) =

(d1 ‘max‘ d2, zipWith’ combineImage is1 is2)

zero d = (d, take (truncate (d*r))

[EmptyPic ..])

instance Temporal Rendering where

dur (d, _) = d

none = zero

instance Meaning Animation Rendering where

meaning (d, f) =

(d, map (picToImage . f)

(take (truncate (d*r))

[0, 1/r ..]))

r :: Real

r = 30 -- frame rate, in Hertz

zipWith’ is just like Haskell’s zipWith, except that it does
not truncate the result to the shorter of its two arguments.

Unfortunately, not all of the laws for classes Meaning and
Combine hold for these instances. The problem stems from
discretization. For example, suppose the frame rate r = 10.
Then:

z1 = zero 1.06

= (1.06, take 10 [EmptyPic ..])

z2 = zero 2.12

= (2.12, take 21 [EmptyPic ..])

However, note that:

z1 ‘concatM‘ z1

= (2.12, take 20 [EmptyPic ..])

which is not the same as z2. So the Combine law:

zero d1 ‘concatM‘ zero d2 = zero (d1+d2)

does not hold.
This problem can be remedied by requiring that all Anim

durations be integral multiples of the frame rate r. We
say that such animations are integral. With the additional
assumption that the image operator combineImage is asso-
ciative and commutative, it is then straighforward to show
that all of the laws for classes Combine and Meaning hold,
and thus the above are valid instances for integral anima-
tions.

Finally, returning to the motivating example in this sec-
tion, we can show that:

m1 :+: (m2 :+: m3) === (m1 :+: m2) :+: m3

In other words, (:+:) is associative. Indeed, there are sev-
eral other such equivalences, each of which contributes to an
axiomatic semantics of polymorphic temporal media. We
discuss this in detail in Section 7, and thus delay the proof
of the above axiom until then.

6. ALGEBRAIC STRUCTURE
In the previous section we defined a standard interpre-

tation of, or a semantics for, polymorphic temporal me-
dia, using the semantic function meaning :: Combine b =>

Media a -> b. In this section we place this semantics in
a formal algebraic framework, which will be useful in our
development of an axiomatic semantics in Section 7.

(In what follows we take some liberty in mixing math-
ematical notation with Haskell syntax; the context should
make the meaning clear.)

An algebraic structure (or just algebra) <S,op1,op2,...>
consists of a non-empty carrier set (or sort) S together with
one or more n-ary operations op1, op2, ..., on that set [13].
We define an algebra of well-formed temporal media over
type T as <Media T,:+:,:=:>. The Haskell algebraic data
type definition for Media can be seen as the generator of the
elements of this algebra, but with the additional constraint
of well-formedness discussed in Section 4. We also define an
interpretation as an algebra <I,concatM,merge> for some
type I (for example, Performance in the case of music, and
Rendering in the case of animation).

Theorem 6.1. The semantic function meaning is a ho-
momorphism from <Media T,:+:,:=:,none> to
<I,concatM,merge,zero>.

Proof. We must show that:

meaning (m1:+:m2) =

meaning m1 ‘concatM‘ meaning m2

meaning (m1:=:m2) =

meaning m1 ‘merge‘ meaning m2

meaning (none d) = zero d

This is easily done by unfolding the definition of meaning.

Theorem 6.2. (===) is a congruence relation on the al-
gebra <Media,:+:,:=:>.

Proof. We must show that, if m1 === m2 and m3 === m4,
then:

m1 :+: m3 === m2 :+: m4

m1 :=: m3 === m2 :=: m4

<Media T,:+:,:=:>
meaning - <I,concatM,merge>

@
@

@
@

g
R

<Media T/(===),:+:,:=:>

h

6

h−1

?

Figure 1: The Structure of Interpretation

This is easily done by unfolding the definition of meaning

and appealing to the assumed properties of concatM and
merge.

Definition 6.1. Let [[m]] denote the equivalence class
(induced by (===)) that contains m. Let Media T/(===) de-
note the quotient set of such equivalence classes over base
media type T, and let <Media T/(===),:+:,:=:> denote the
quotient algebra, also called the initial algebra. The func-
tion:

g :: Media T -> Media T/(===)

g m = [[m]]

is called the natural homomorphism from <Media T,:+:,:=:>

to <Media T/(===),:+:,:=:> [13]. Also define:

h :: Media T/(===) -> I

h [[m]] = meaning m

which is an isomorphism, whose inverse is:

h
−1

p = [[m]], if p = meaning m

That h is an isomorphism follows from the fact that g is the
natural homomorphism induced by (===).

Theorem 6.3. The diagram in Figure 1 commutes.

Proof. In the direction of h:

h (g m) = h ([[m]]) = meaning m

In the direction of h−1:

h
−1

(meaning m) = [[m]] = g m

7. AXIOMATIC SEMANTICS
In Section 5 we noted that (:=:) was associative. Indeed,

we can treat this as one of the axioms in an axiomatic se-
mantics for polymorphic temporal media. The full set of
axioms is given in the following definition:

Definition 7.1. The axiomatic semantics A for well-formed
polymorphic temporal media consists of the eight axioms
shown in Figure 2, as well as the usual reflexive, symmetric,
and transitive laws that arise from (===) being an equiv-
alence relation, and the substitution laws that arise from
(===) being a congruence relation. We write A ` m1 = m2

iff m1 === m2 can be established from the axioms of A.

For any finite well-formed m, m1, m2 :: Media T, and non-
negative d :: Dur:

1. (:+:) is associative:
m1 :+: (m2 :+: m3) === (m1 :+: m2) :+: m3

2. (:=:) is associative:
m1 :=: (m2 :=: m3) === (m1 :=: m2) :=: m3

3. (:=:) is commutative:
m1 :=: m2 === m2 :=: m1

4. none 0 is a left (sequential) zero:
none 0 :+: m === m

5. none 0 is a right (sequential) zero:
m :+: none 0 === m

6. none d is a left (parallel) zero:
none d :=: m === m, if d = dur m

7. none is additive:
none d1 :+: none d2 === none (d1+d2)

8. serial/parallel swap:
(m1 :+: m2) :=: (m3 :+: m4) ===

(m1 :=: m3) :+: (m2 :=: m4),
if dur m1 = dur m3 and dur m2 = dur m4

Note that none d is also a right zero for (:=:), but that fact
is derivable from (3) and (6).

Figure 2: The Axioms of A

7.1 Soundness

Theorem 7.1. (Soundness) The axiomatic semantics A is
sound. That is, for all well-formed m1, m2 :: Media T:

A ` m1 = m2 ⇒ m1 === m2

Proof. Each of the axioms can be shown to be true by
straightforward equational reasoning, using the laws of class
Combine. The overall proof then follows by a simple induc-
tion over any derivation of equivalence between m1 and m2,
and the transitivity of equivalence.

As an example of a non-trivial theorem that can be proven
from these axioms, recall Theorem 4.2 from Section 4, which
we pointed out was false. By changing the equality in that
theorem to one of equivalence as defined in this section, we
can state a valid theorem as follows:

Theorem 7.2. For all finite x :: T and non-negative
d :: Dur <= dur m, if

takeM d (Prim x) :+: dropM d (Prim x) === Prim x

then for all finite well-formed m :: Media T,

takeM d m :+: dropM d m === m

Proof. See Appendix A.2.

This theorem provides confidence that takeM and dropM take
apart and put back together media values in a “meaningful”
way.

Example 1 (Music): Theorem 7.2, which holds for lists,
does not hold for Music, since, for example, if m =

Prim (Note p 2), then:

takeM 1 m :+: dropM 1 m

= Prim (Note p 1) :+: Prim (Note p 1)

which is not equivalent to m = Prim (Note p 2).
Example 2 (Animation): Theorem 7.2 does hold for

Animation, since, if d2>d1, then:

meaning (takeM d1 (Prim (d2,f))

:+: dropM d1 (Prim (d2,f)))

= meaning ((d1,f) :+: (d2-d1, f . (d1+)))

= (d1, map (picToImage . f)

(take (truncate (d1*r)) [0,1/r ..]))

‘concatM‘

(d2-d1, map (picToImage . f . (d1+))

(take (truncate ((d2-d1)*r)) [0,1/r ..]))

= (d1, map (picToImage . f)

(take (truncate (d1*r)) [0,1/r ..]))

‘concatM‘

(d2-d1, map (picToImage . f)

(take (truncate ((d2-d1)*r)) [d1,1/r ..]))

= (d1+d2-d1,

map (picToImage . f)

(take (truncate (d1*r)) [0,1/r ..]))

++

map (picToImage . f)

(take (truncate ((d2-d1)*r)) [d1,1/r ..]))

= (d2,

map (picToImage . f)

((take (truncate (d1*r)) [0,1/r ..]))

++

(take (truncate ((d2-d1)*r)) [d1,1/r ..]))

= (d2, map (picToImage . f)

(take (truncate (d2*r)) [0,1/r ..]))

= meaning (d2,f)

= meaning (Prim (d2,f))

A similar argument holds when d1>d2.
Although Theorem 7.2 holds for animation, this is not

necessarily a good thing, as we will see in the next section.

7.2 Completeness
Soundness of A tells us that if we can prove two media

values are equivalent using the axioms, then in fact they
are equivalent. We are also interested in the converse: if
two media values are in fact equivalent, can we prove the
equivalence using only the axioms? If so, the axiomatic
semantics A is also complete.

Completeness results of any kind are usually much more
difficult to establish than soundness results. The key to
doing so in our case is the notion of a normal form for poly-
morphic temporal media values. Recall from the previous
section the isomorphism between the algebras
<P,concatM,merge> and <Media T/(===),:+:,:=:>. What
we need to do first is identify a canonical representation of
each equivalence class in Media T/(===):

normalize :: (Ord (Media a), Temporal a) =>

Media a -> Media a

normalize m = sortM (norm (dur m) 0 m)

norm :: (Ord (Media a), Temporal a) =>

Dur -> Dur -> Media a -> Media a

norm d t m | isNone m = m

norm d t (Prim x) =

none t :+: Prim x :+: none (d-t-dur x)

norm d t (m1 :+: m2) =

norm d t m1 :=: norm d (t+dur m1) m2

norm d t (m1 :=: m2) =

norm d t m1 :=: norm d t m2

Figure 3: Normalization Function

Definition 7.2. A well-formed media term m :: Media T

is in normal form iff it is of the form:

none d, d ≥ 0
or

(none d11 :+: Prim x1 :+: none d12) :=:

(none d21 :+: Prim x2 :+: none d22) :=:

· · ·
(none dn1 :+: Prim xn :+: none dn2), n ≥ 1,
∧ ∀ (1 ≤ i ≤ n),

di1 + di2 + dur xi = dur m,
∧ ∀ (1 ≤ i < n),

(di1, xi, di2) ≤ (d(i+1)1, x(i+1), d(i+1)2)

To be completely rigorous, we assume that the operators
(:+:) and (:=:) are right associative. We denote the set of
media normal-forms over type T as MediaNF T.

The latter inequality above is defined lexicographically left-
to-right. Note that it orders the media values in time, and
also establishes an ordering on simultaneous media values.

Defining a normal form is not quite enough, however. We
must show that (a) each normal form is unique: i.e. it is
not equivalent to any other, and (b) any media value can be
transformed into an equivalent normal form using only the
axioms of A. We will treat (a) as an assumption, and return
later to study situations where this is not true. For (b), we
prove the following lemma:

Lemma 7.1. Any m : Media T can be transformed into
a media normal-form using only the axioms of A.

Proof. We define a normalization function normalize

in Figure 3. The auxiliary function norm does most of the
work, returning a media value that is either none d, or is
such that all interior nodes are parallel constructions (i.e.
applications of (:=:)) and all of the leaves are of the form
(none di1 :+: Prim xi :+: none di2). So this is almost in
media normal form: what remains to be done is simply flat-
ten and sort this structure, which is what sortM does. This
is a straightforward task involving only the associativity of
(:=:), and thus we omit the details.

We focus instead on the function norm. In particular, we
must prove, using only the axioms of A, that the normal form

that norm generates has the same meaning as the original
term. That is, we must prove that A ` norm (dur m) 0 m = m.
We do so by relying on a more general result, that stated
in Lemma 7.2 (see below). With that result we proceed
straightforwardly as follows:

norm (dur m) 0 m lemma

=== none 0 :+: m :+: none (dur m - 0 - dur m)

=== none 0 :+: m :+: none 0 Axioms 4 and 5

=== m

Lemma 7.2. For all d, t :: Dur and finite well-formed
m :: Media T:

norm d t m === none t :+: m :+: none (d-t-dur m)

Proof. See Appendix A.3.

With these lemmas we can now prove our main result.

Theorem 7.3. (Completeness) The axiomatic semantics
A is complete, that is: for all m1, m2 :: Media T:

m1 === m2 ⇒ A ` m1 = m2

if and only if the normal forms in MediaNF T are unique,
that is, for all nf1, nf2 :: MediaNF T:

nf1 6= nf2 ⇒ ¬(nf1 === nf2)

Proof. Assume that the normal forms are unique. If
m1 === m2, then p = meaning m1 = meaning m2. Let n1 =

normalize m1 and n2 = normalize m2. Then A ` n1 = m1

and A ` n2 = m2. Thus:

meaning n1

= meaning m1

= p

= meaning m2

= meaning n2

But we know from Section 6 that there is an isomorphism
between Media T/(===) and I. Therefore p corresponds
uniquely to some normal form, namely h−1 p. This implies
that n1 = h−1 p = n2, and thus A ` m1 = m2.

Now assume that the axioms are complete. We will show
that the normal forms must therefore be unique by contra-
diction. If they are not unique, then there must be two
normal forms nf1 and nf2 whose meanings are the same;
i.e. nf1 === nf2. If just one of these is of the form none d,
then it is clear that no axiom can establish its equivalence
to the other, therefore the axioms must not be complete.
This contradicts our assumption, so the normal forms must
be unique. On the other hand, if nf1 and nf2 are each of
the form none d1 :+: Prim x :+: none d2, then a similar
argument follows: If either pair of corresponding durations
are different, then no axiom can establish their equivalence.
If both pairs of corresponding durations are the same, then
it must be that two Prim values are equivalent, but that also
cannot be proven by any axiom. Thus if nf1 and nf2 are
in fact equivalent, the axioms are not complete. But that
contradicts our assumption, so the normal forms must be
unique.

Theorem 7.3 is important not only because it establishes
completeness, but also because it points out the special na-
ture of the normal forms. That is, there can be no other

choice of the normal forms – they are uniquely tied to com-
pleteness.

Example 1 (Music): The normal forms for Music, i.e.
MusicNF Note, are unique. In fact, the domain is isomor-
phic to Performance. To see this, we can define a bijection
between the two domains as follows:

1. The music normal form none d corresponds to the in-
terpretation meaning (none d) = zero d.

2. The non-trivial normal form, call it m, written in Def-
inition 7.2, corresponds to the performance:

meaning m

= (dur m, [(d11, p1, d12),

(d21, p2, d22), ...

(dn1, pn, dn2)], dur m)

This correspondence is invertible because each di3 is
computable from the other durations; i.e. di3 = dur m - di1 - di2.

Example 2 (Animation): The normal forms of the
Animation media type are not unique. There are several
reasons for this. First, there may be pairs of primitive im-
ages that are equivalent, such as a circle of radius zero and a
square of length zero, or a square and a polygon that mimics
a square. Second, there may be pairs of animations that are
equivalent because of the effect of occlusion. For example,
a large box completely occluding a small circle is equivalent
to a large box completely occluding any other image. It is
possible to include additional axioms to cover these special
cases, in which case the resulting axiomatic semantics may
be complete, but the proof will not be automatic and cannot
rely exclusively on the uniqueness of the normal forms.

8. OTHER CONCRETE MEDIA
In the final paper we will outline the representation of a

sound file as an array of floating-point signal values sampled
at a standard rate, and discuss the applicability to other
media as well.

9. RELATED WORK
There has been a fair amount of work in embedding se-

mantic descriptions in multimedia frameworks (XML, UML,
the Semantic Web, and so on), but we are not aware of any
work attempting to formalize the semantics of concrete me-
dia, at least not from a programming languages point of
view. There are also many authoring tools, scripting lan-
guages, and so on for designing multimedia applications.
The one closest to a programming language is SMIL [15].
This language can be seen as treating multimedia in a poly-
morphic way. Our own work on Haskore and MDL [9, 6, 7,
8] is of course highly related, but specialized to music. Gra-
ham Hutton shows how fold and unfold can be used to de-
scribe denotational and operational semantics, respectively
[11], and thus our use of fold to describe the semantics of
temporal media is an instance of his framework.

10. ACKNOWLEDGEMENTS
The NSF provided partial support for this research under

grant number CCR9900957. Also thanks to the many stu-
dents who have worked with me over the years on Haskore,
which inspired this work more than any other effort.

APPENDIX

A. PROOFS

A.1 Proof of Theorem 4.1
For the first equation, beginning with the base cases:

If d2 = 0:

takeM d1 (takeM d2 m) unfold takeM

= takeM d1 (none 0) theorem above

= none 0 fold takeM

= takeM d2 m fold min

= takeM (min d1 d2) m

If d1 = 0:

takeM d1 (takeM d2 m) unfold takeM

= none 0 fold takeM

= takeM d1 m fold min

= takeM (min d1 d2) m

takeM d1 (takeM d2 (Prim x)) unfold takeM

= takeM d1 (Prim (takeM d2 x)) unfolf takeM

= Prim (takeM d1 (takeM d2 x)) assumption

= Prim (takeM (min d1 d2) x) fold takeM

= takeM (min d1 d2) (Prim x)

Induction steps:

takeM d1 (takeM d2 (m1 :+: m2)) unfold takeM

if d2 <= dur m1:

= takeM d1 (takeM d2 m1) ind hyp

= takeM (min d1 d2) m1 fold takeM

= takeM (min d1 d2) (m1 :+: m2)

if d2 > dur m1:

= takeM d1 (m1 :+: takeM (d2 - dur m1) m2)

unfold takeM

if d1 <= dur m1:

= takeM d1 m1 fold min

= takeM (min d1 d2) m1 fold takeM

= takeM (min d1 d2) (m1 :+: m2)

if d1 > dur m1

= m1 :+: takeM (d1 - dur m1)

(takeM (d2 - dur m1) m2)

ind hyp

= m1 :+: takeM (min (d1 - dur m1)

(d2 - dur m1)) m2

arith

= m1 :+: takeM (min d1 d2 - dur m1) m2

fold takeM

= takeM (min d1 d2) (m1 :+: m2)

takeM d1 (takeM d2 (m1 :=: m2))

unfold takeM

= takeM d1 (takeM d2 m1 :=: takeM d2 m2)

unfold takeM

= takeM d1 (takeM d2 m1) :=: takeM d1 (takeM d2 m2)

ind hyp

= takeM (min d1 d2) m1 :=: takeM (min d1 d2) m2

fold takeM

= takeM (min d1 d2) (m1 :=: m2)

(Remainder of proof omitted because of space limitations.)

A.2 Proof of Theorem 7.2
The base case is trivially true from the assumption. For

the first induction step:

takeM d (m1 :+: m2) :+: dropM d (m1 :+: m2)

unfold takeM and dropM

Now if d <= dur m1:

= takeM d m1 :+: (dropM d m1 :+: m2)

assoc

= (takeM d m1 :+: dropM d m1) :+: m2

ind hyp

= m1 :+: m2

And if d > dur m1:

= (m1 :+: take (d - dur m1) m2) :+:

dropM (d - dur m1) m2

assoc

= m1 :+: (takeM (d - dur m1) m2 :+:

dropM (d - dur m1) m2)

ind hyp

= m1 :+: m2

Finally, for the second induction step:

takeM d (m1 :=: m2) :+: dropM d (m1 :=: m2)

unfold takeM and dropM

= (takeM d m1 :=: takeM d m2) :+:

(dropM d m1 :=: dropM d m2) ser/par axiom

= (takeM d m1 :+: dropM d m1) :=:

(takeM d m2 :+: dropM d m2) ind hyp

= m1 :=: m2

A.3 Proof of Lemma 7.2
Base cases:

norm d t (none d’)

= none d

= none t :+: none d’ :+: none (d-t-d’)

norm d t (Prim x)

= none t :+: Prim x :+: none (d-t-dur x)

= none t :+: Prim x :+: none (d-t-dur(Prim x))

For the first induction step, let d1 = dur m1, d2 = dur m2,
and d12 = dur (m1:=:m2). Then:

norm d t (m1 :=: m2)

= norm d t m1 :=: norm d t m2

=== (none t :+: m1 :+: none (d-t-d1)) :=:

(none t :+: m2 :+: none (d-t-d2))

=== (none t :=: none t) :+:

(m1 :=: m2) :+:

(none (d-t-d1) :=: none (d-t-d2))

=== none t :+: (m1 :=: m2) :+:

(none (d-t-d1) :=: none (d-t-d2))

=== none t :+: (m1 :=: m2) :+:

none (d-t-d12)

For the second induction step, let d1 = dur m1, d2 = dur m2,
and d12 = dur (m1:+:m2). Then:

norm d t (m1 :+: m2)

= norm d t m1 :=: norm d (t+d1) m2

= (none t :+: m1 :+: none (d-t-d1)) :=:

(none (t+d1) :+: m2 :+: none (d-t-d1-d2))

= (none t :+: m1 :+: none (d-t-d1)) :=:

(none t :+: none d1 :+: m2 :+: none (d-t-d1-d2))

=== (none t :=: none t) :+:

(m1 :=: none d1) :+:

(none (d-t-d1) :=: (m2 :+: none (d-t-d1-d2)))

=== none t :+: m1 :+:

(m2 :+: none (d-t-d1-d2)))

=== none t :+: (m1 :+: m2) :+: none (d-t-d12)

B. REFERENCES
[1] International MIDI Association. Midi 1.0 detailed

specification: Document version 4.1.1, February 1990.

[2] Richard S. Bird. Introduction to Functional
Programming using Haskell (second edition). Prentice
Hall, London, 1998.

[3] Conal Elliott. Modeling interactive 3D and
multimedia animation with an embedded language. In
Proceedings of the first conference on Domain-Specific
Languages, pages 285–296. USENIX, October 1997.

[4] Conal Elliott and Paul Hudak. Functional reactive
animation. In International Conference on Functional
Programming, pages 263–273, June 1997.

[5] Liwen Huang and Paul Hudak. Dance: A language for
humanoid robot motion. In International Conference
on Functional Programming. ACM Press, 2003.
Submitted for publication.

[6] Paul Hudak. Haskore music tutorial. In Second
International School on Advanced Functional
Programming, pages 38–68. Springer Verlag, LNCS
1129, August 1996.

[7] Paul Hudak. The Haskell School of Expression –
Learning Functional Programming through Multimedia.
Cambridge University Press, New York, 2000.

[8] Paul Hudak. Describing and Interpreting Music in
Haskell, chapter 4. Palgrave, 2003. The Fun of
Programming, edited by Jeremy Gibbons and Oege de
Moor.

[9] Paul Hudak, Tom Makucevich, Syam Gadde, and
Bo Whong. Haskore music notation – an algebra of
music. Journal of Functional Programming,
6(3):465–483, May 1996.

[10] Ann Hutchinson. Labanotation. Routledge Theatre
Arts Books, New York, 1991.

[11] Graham Hutton. Fold and unfold for program
semantics. In International Conference on Functional
Programming. ACM Press, 1998.

[12] Simon Peyton Jones, editor. Haskell 98 Language and
Libraries – The Revised Report. Cambridge University
Press, Cambridge, England, 2003.

[13] J.P. Tremblay and R. Manohar. Discrete
Mathematical Structures with Applications to
Computer Science. McGraw-Hill, New York, 1975.

[14] B. Vercoe. Csound: A manual for the audio processing
system and supporting programs. Technical report,
MIT Media Lab, 1986.

[15] World Wide Web Consortium (W3C). Synchronized
Multimedia Integration Language (SMIL), 2003.
http://www.w3.org/AudioVideo.

