Lecture 1 (Sept 5)
Welcome and Introduction

Hand out and discuss the “CS Courses” summary; discuss goals of CS112.
Also introduce TA’s.
On the surface: syntax.

Underneath: algorithms and data structures.

Classroom experiment:
1. Have eight people come forward and stand in line, side-by-side.

2. Choose another person as the “computer”, and ask him/her to re-arrange the line in order of height.

3. Then ask, “How did you do that? Suppose you were an employer and you had to spell out every last detail – i.e. write down directions.” Point out that that’s what you have to do when programming a computer.
4. Point out issues such as: access to the people in the line, moving from one to the other, measuring/comparing the height of people, and so on.

5. Have students hold hands, work through an algorithm that works, and point out its relationship to a linked list.
6. Mention Google. Ask, “Find the tallest, shortest, nth tallest, etc. What is the algorithm?” Point out “access” issue again, and mention “addressing”.

7. Now ask, “Find the person who is exactly 6 feet tall (if one exists),” and point out relationship to Google search. How do we do that?

8. Get seven more volunteers, and create a “tree” structure.

9. Ask how many steps it takes to find the person using a tree, compared to a linear list. Point out that the tree is logarithmic, and the list is linear. Show a chart of the amazing difference between the two.

Suppose it takes 1 millisecond for one step:
	n
	Total time
	Log n
	Total time

	4
	4 milliseconds
	2
	2 milliseconds

	16
	16 milliseconds
	4
	4 milliseconds

	64
	64 milliseconds
	6
	6 milliseconds

	256
	256 milliseconds
	8
	8 milliseconds

	1024
	1.0 seconds
	10
	10 milliseconds

	4096
	4.1 seconds
	12
	12 milliseconds

	…
	…
	…
	…

	1 billion
	12 days (!)
	30
	30 milliseconds

So which representation do you think Google uses to store its data?

Point out relationship between specification (mathematical), algorithm (computational, but abstract), and program (computational, but concrete).

Add to that a compiler / interpreter sequence, with object / machine code, and pointing out that the compiler / interpreter is just another program (software), and the computer (CPU) is just a hardware interpreter.

Introduce C#: brief history, why we use it in CS-112. One of the details that will drive you crazy is the syntax of C# (or pretty much any language). It is totally unforgiving! A misplaced semicolon or misspelled word will crash the program. It requires patience... Mention Visual Studio .NET – it is an example of an “integrated development environment”, or IDE.
Everything else is in the details: graphical user interfaces, graphics and animation, multi-media, databases, the operating system, the Internet, and so on. The .NET library has millions of lines of code that can be re-used in many different applications.

Ask a final question: If I can give you a mathematically precise specification, do you think that it’s always possible to come up with an algorithm to meet that specification? Ask for show of hands. Then explain the halting problem. Point out that it’s a program looking at a program, just like VS, so don’t expect miracles…
At end:

1. Mention website – textbook, TA’s, grading, syllabus, assignments, etc.
2. Review grading, homework, and exams.

3. Mention Visual Studio, the VS Servers, and Remote Desktop Connection.

4. Each student should send an email to one of the TA’s with their NetId.
I will give a demo of Visual Studio on one of the VS Servers on Friday.

Lecture 2 (Sept 8)

Reminders:

1. The website is plucky.cs.yale.edu; TA office hours are now posted.

2. You should join CPSC-112 on classes*v2 server.

3. Problem Set 0 has been posted on the website (due anytime next week – we just want to be sure that you can log on, use the software, etc).

4. You must send your netid to one of the TA’s in order to do the assignment!
Today: A look at our first C# program.

Warning: I will go painfully slow at first… but will speed up rapidly, so stay with me!

Suppose I write the following:

x = 42

y = x2
Everybody’s Ok with this, right? Now suppose I write:

number = 42

squared = number2

Everybody still Ok? In writing programs, we often choose descriptive names for our variables, instead of x, y, a, b, c, etc. Furthermore, we don’t have the option (usually) of “superscripting” the exponent (2 above), so we need to instead write:
number = 42

squared = number * number

[We will learn later that there is also a library function that will square a number.]
[discuss here the issue of “whitespace”, and the need for semicolons]

Now the question is, what do we do with the result of this calculation? One thing we could do is print it out on the “console” (explain):

WriteLine (squared);
As it turns out, there are zillions (well, not quite) of functions, procedures, or methods in C#, and they are organized into hierarchical libraries, so in fact what we really need to write is:
System.Console.WriteLine (squared);

[give (reverse) analogy to URLs, for example: plucky.cs.yale.edu, google.com, maps.google.com]

To get even fancier, we could write:

System.Console.WriteLine (“The square of {0} is {1}”, number, squared);

[explain]

Ok, now how do we get this whole thing to run? We need to type it into a file, and somehow “feed it” to the C# compiler or interpreter. But alas, to do that, we need to add the following “boilerplate”:

public class Square {

static void Main () {

…

}

}

[Draw hierarchical picture of a class, method, and statements.]
What’s worse, here’s what Visual Studio does:

using System;

namespace ConsoleApplication1

{

class Square

{

[STAThread]

static void Main(string[] args)

{

…

}

}

}

[Give analogy to digging a hole with a shovel or back-hoe!]
Lecture 3 (Sept 11)

Demonstration of VS.NET

Lecture 4 (Sept 13)

Mostly from Chapter 2.
If you ask a real estate agent what the three most important things in real estate are, she’ll say, “location, location, location.” If you ask me what the three most important things in programming are, I’d say, “abstraction, abstraction, abstraction.”

What is abstraction? Webster says:

abstract, vt (1) remove, separate (2) to consider apart from application

to a particular instance.
Programming languages provide varying degrees of “abstraction mechanisms”, and C# does a pretty good job. One important abstraction mechanism is the method in C#. In the example above we defined one class and one method. We can also define a second method:
public static int SquareIt(int number)

{

return number * number;

}

and use it instead of “number * number”. Q: Why is this better? Some answers:
1. Improved clarity / readability, and is more concise.

2. Allows repeating the operation in many places (recall Webster above).

3. To make a change, we only need to do it one place!

We could also define a new class, and place the new method within the class:

public class SquareIt

{

public static int Square(int number)

{

return number * number;

}

}
But then to use it we would write: “SquareIt.Square(number)”. Q: Why is this better? Some answers:

1. Modularity: it allows us to group common methods together within the same class (again recall Webster).
2. Scalability: it provides a good way to organize large programs.
Back up for bigger picture. Draw diagram of “software life-cycle”: Requirements analysis, Specification, Design, Implementation/Coding, Testing, and Maintenance. Mention that dominant cost for large systems is in maintenance: a dollar saved in design is worth ten in maintenance. One of the most difficult things is determining in advance what the best abstractions are – the language provides abstraction mechanisms, but the software designer must define what the actual abstractions are for a particular application.
Variables and numbers:

Discuss difference between variables in C# and variables in math; mention that variables are an abstraction of a “location in memory”.
Discuss differences between:
int number;

// declaration

number = 42;

// assignment

int number = 42;

// declaration + assignment = initialization

number = number + 1;
// assignment changes old value based on old value

const int number = 42;
// a constant; not allowed to change number

Mention comments: // and /* … */.
Mention types: int is the type of fixed precision integers, which is the type of numbers that fits (more or less) into one 32-bit memory address. Since the encoding from computer to computer is sometimes different, it would be nice to know what the max is. So it is in “int.MaxValue”.
What happens when the sum of two numbers (say) exceeds the max? Overflow results. Note: integer overflow is not signaled as an error in C# (or in many languages). Be careful!!

Q: What is the meaning of a/b+c? How about a-b/c? or a-b+c? Discuss precedence and associativity. “If in doubt, add parentheses!”

Discuss difference between syntax and semantics, but note how the two are intricately tied together.

Increment and decrement operations (see page 50-53) – bad idea in language design! (My personal opinion.) So therefore I’m going to use instructor privileges and not discuss them. (
Input from the Console

So far we have talked about output to the console, via Console.WriteLine. What about input? There is a method called Console.ReadLine that reads a line of input text from the console. It takes no argument, but returns a string result (in contrast to WriteLine, which takes a string argument and returns no result (i.e. void). So for example:

str = Console.ReadLine();

If the user types “hello”, the str will have the string value “hello”. If the user type “123”, str will have the string value “123”. Note that this is a string, not a number! T convert it into a number we have to parse it:

num = int.Parse(str);

Note that this int.Parse is the parser for int’s. Other kinds of numbers have their own parsers.

Finally, discuss homework assignment (Problem Set 1).
Lecture 5 (Sept 15)

Discuss difference between expressions (return a useful result) and commands (may or may not return a useful result, but also cause side effects). Then discuss the dangers of mixing the two – commands inside of expressions depend on the evaluation order, which, although well-defined in C#, is considered by many to be “bad style”.

Related aspects of methods:

1. Parameters in call can take constants, variables, or expressions.

2. There might be no operations (example: printing something: void, (), no “return”).

The last point highlights that methods may be functions or procedures, or both. Explain the differences.

[Answered lots of questions, including the issues of “call-by-value” vs. (for later in the course) “call-by-reference”.]

Chapter 3: Control Structures
So far all of our programs have been “straight line” programs – there is one sequential flow of control. But what if we want to:

· Do one thing or something else, depending on some kind of a test.

· Repeat something a certain number of times.

To handle these situations we need control structures. The text gives a cute example involving getting up in the morning. Here is a different one:

If we-are-being-attacked

then { try-diplomacy;

 if that-doesn’t-work

 then attack-the-enemy

 otherwise peace

 }

otherwise peace

or:

while al-Qaeda-is-still-active

 occupy-Iraq

How do we do this in C#? Syntactically things are a little different:
-- “then” is not used
-- “otherwise” is “else”, and is optional

But semantically the idea is sound.

And semantically, we need to understand what Boolean values and relational operators are.
In C#, the two Boolean values are true and false (which, if printed out, become True and False, resp.). The Boolean type is bool. So I can do:
bool test = true;

More importantly there are various (mostly infix) operators whose result is of type bool. Many of these have to do with arithmetic:

>, <, >=, <=, !=, ==

But the latter two (!= and ==) can be used with other data types. [give examples]

Lecture 6 (Sept 18)

The syntax of a conditional statement is:
If <Boolean-expression>

 <statement>

For example:

If (temperature>212)

 WriteLine (“The boiler is about to blow!”)

Note: the indenting is convention and is considered good style.
If there are multiple things to do, they must be enclosed in curly braces. [add a statement “SoundAlarm” to the above]

This is sometime called a “one-armed conditional” because there is no “otherwise” part. If we want an otherwise part, we use an “else” clause:

If (temperature>212)

 WriteLine (“The boiler is about to blow!”)

else

 WriteLine(“Everything is cool (pardon the pun).”)

And once again, if there’s more than one thing to do, add parens.

Flowcharts

The flow of control specified by conditional statements is sometimes better seen graphically using a flow chart. There are several kinds of “nodes”: diamond-shaped conditional, with 1 entry and 2 exits; a simple command block; and a join (circle). [give examples, and note that the join can be eliminated]
While Loop

The if-else statement allows us to fork the flow of control. But in order to repeat things, we need something more. Graphically, using a flow chart, we need something like this: [show the flow chart for while (Fig 3.9), which looks just like a conditional, but with “feedback”, or a “loop” – i.e. the graph is cyclic.]

Q: How can we get this loop in C#? A: Older languages provided something called a “goto” statement, but this resulted in unwieldy programs. Better is to have one construct that does it all. In C# this is called a while loop, and has syntax:

while <Boolean-expression>
 statement;

Lecture 7 (Sept 20)
Go over solution to PS1 on-line with VS.NET.
Work through a program to compute the average of a number of test scores typed in by the user, using a sentinel (say, -1) to indicate that there are no more test scores. Draw a flow-chart first, then develop code on-line.
(Note: the text computes a sum, but the average is more complex because you need to keep track of the number of scores.)
Lecture 8 (Sept 22)
Review solution to averaging program from last lecture. Point out that:

· Querying the user is more complex for PS2 Q3, because there I am asking that if the number typed is “out of range”, the number is ignored and the user is asked to try again. Ask the students how they will do this.

· Point out that there is a bug in the averaging program: division by zero! How do we fix this?
Develop further by showing how loops can be nested – in this case, create an outer loop that asks the question at the end, “Do you want to compute another average?” and if the user types “yes”, then it starts over, otherwise it ends.

Also show how this can be done by making the current program a method with a name other than Main, and then sticking it inside of a loop in the new Main.
Chapter 4: More Control Structures and Types
Introduce &&, || and ! (not). [briefly discussed in a previous lecture]

Discuss problem with “dangling else”, using:
If <condition1>

If <condition2>

 <statement1>

 else <statement2>

Q: which “if” is the “else” matched up with?

A: in C#, the nearest “if” (in this case the nested one).

 Mention that white-space doesn’t matter.

To get the other semantics, we need to do:

If <condition1>

{ If <condition2>

 <statement1> };

else <statement2>

Discuss if followed by lots of “else if”’s. Then introduce “switch” statement::

switch <expression> {

case 0: <statements>;

 [break;]

(square brackets means “optional”)

case 1: <statements>

 [break;]

…

default: <statements>

 [break;]

Mention that there are lots of ways to do PS2 Q3 – could use straight conditionals using &&, could use nested if’s, or could use switch.

Lecture 9 (Sept 25)
Mention that:

· The TA (Yitong Yin) has put a file PS1_grade.txt into your VS.NET folder, which should contain a grade and (if necessary) some comments. If you did not get such a file, let me know right away.

· Overall, the grades were very good (mostly A’s).

· Also, who is jsg63?

· If you have a question / problem, try to resolve it with the TA first – if that fails, come see me.

· Solutions to PS1 are on-line.

· Reminder: PS2 is due tonight at 11:59.

Open the floor to questions.
Finish Chapter 4

We’ve discussed bools and relational operators, as well as the switch statement. Today we will look at the “for” and “do” loops.

do loop

The “do” loop is just a variation of “while”, and is often called “repeat” in other languages. [draw flow-chart for while; then for do]

The syntax is:

do <statement>

while (<condition>)

Example: recall the problem of repeating an entire program over and over again, assuming that the user wants to. Suppose that Averager() is this program. Using a while loop we would write something like:

Averager();

userResponse = QueryUser();
// returns “yes” or “no”

while (userResponse = “yes”)

{ Averager();

 userResponse = QueryUser();

}

But using do, we could just do (pardon the pun) this instead:

do
{ Averager();

 userResponse = QueryUser();

}

while (userResponse = “yes”)

Lecture 10 (Sept 27)
Ask the class how they are doing. Mention that this is about the point in the semester where I start to lose some people – please let me know how you are doing, either now or in private.
Go over PS2, quickly if possible, on-line.

Then try to finish Chapter 4.
for loop

The following flow of control often repeats itself: [draw diagram from page 136]
One could try to abstract this behavior into a method, and that would be a Good Thing, but one would have a little difficulty with the “update” part. So C# (and several other languages) goes a step further by providing special syntax to capture this behavior, which makes it even easier to write:

for (<initialize>; <test>; <update>)

<statement>
The most idiomatic way to use this is when doing something a specific number of times. For example, adding the numbers from 1 to 10:

int sum = 0;

for (int i = 1; i<=10; i=i+1)

sum = sum + 1;

Types
Q: What types have we discussed so far?

A: int, bool, string, double …

Here are a few more, starting with mumbers:
· float – single-precision floating-point (decimal) numbers

· long – double-precision integers

	
	Integers
	Floating point

	Single precision
	int
	float

	Double precision
	Long
	double

There are other forms of integers (namely shorter ones) but they are less often used.

Mention Math library: Math.xxx, where xxx is Sin, Cos, Min, Max, Log, Exp, Pow, Sqrt, PI, etc.

Characters

Characters (type char) are what make up strings, and are written ‘a’, ‘b’, ‘c’, and so on. Special characters include:

· \n – new line

· \r – return to beginning of line

· \t – tab

· \b – backspace

· \” – double quote

· \\ -- backslash

which can also be included in strings.

So I can write:

char c1 = ‘a’; char c2 = ‘\n’; char c3 = ’’’

But I can’t write:

char c4 = ‘ab’;
Mention that chars can be used in a switch statement.

Also mention the String library, such as String.Format, which constructs a string using the “{0}” etc. format, as with Console.WriteLine.
Enumerations

Numbers are good for representing quantitative things in the real world, like distance, or grades, or size, or weight.

But suppose we want to represent something like gender. We could use bool to “encode” it, such as true represents female, and false represents male. But what about colors? Well, perhaps we could encode using numbers. And what about states? Well, perhaps strings…

Generally these encoding can lead to trouble: they are not perspicuous, and they can lead to programming errors not caught by the type system.

Better: enumerations. For example:

enum Gender {Male, Female};

enum Color {Red, Green, Blue, Indigo, Violet};

What the book doesn’t tell you is that these have to be declared at the level of a method, i.e. inside the class, but not inside the method! Then once you do that, you can do:

Gender g = Gender.Female

Color c = Color.Blue

And so on. Furthermore (and what the book doesn’t say), you can use these with switch statements:

switch (c)

{ case (Color.Red): …

 case (Color.Blue): …

 …

}

But in reality, this is a cheat – enumerations are really just integers!

Lecture 11 (Sept 29)
Chapter 5

I will introduce today a new abstraction mechanism: objects.

C# is an “object oriented” programming language (as is Java), and thus relies heavily on objects. But so far we have avoided them – indeed objects are not necessary, but they are a useful tool in our toolbox of abstraction mechanisms.
Although useful, they can be over-used, and in particular are “brittle” (rigid, inflexible) – so be judicious.

Examples:

1. The sorting we did on day one – instead of one “sorter”, perhaps every value should know how to “sort itself”?

2. Printing – same idea.

3. From textbook: A vending machine.

An object consists of three things: state, behavior, and identity.

Q: In the case of a vending machine, what are these three things?

A:
· State: contents and money – but more details: it may be broken; it might be able to make change, might not.
· Behavior: interaction with user – but more detail: that its public behavior, but it might also have some kind of private behavior when it interacts with the vending machine supplier. It also might have internal behavior.

· Identity: there may be many vending machines, and they all have different state!

The last point brings us to an important issue:

An object is an instance of a class.
So far we have used classes to “organize code”, but in general they can be used in a far more powerful way: they can describe a “template” for an object. From that template, many instances (objects) can be created, each with a unique identity.

A class declaration in C# looks like this:

public class <name-of-class>

<instance variables>
// define the state of objects

<constructors>

// for creating unique identities of objects

<instance methods>
// describe the behavior of objects

For example, let’s design a really simple vending machine, in which everything is free – so no money is exchanged – and there are only three items: candy bars, crackers, and chips:

public class VendingMaching

{
// instance variables – note that they are private.
private int candy = 0;

private int crackers = 0;

private int chips = 0;

// constructors – note: (1) always the same name as the class,

//
and (2) have no result type. Q: what is the result type??

public VendingMachine()

{
candy = 0; crackers = 0; chips = o;
}

public VendingMachine(int ca, int cr, int ch)

{
candy = ca; crackers = cr; chips = ch
}

// methods – this is pretty much as we have always done, except that

//
they have direct access to the instance varables.

public bool GetCandy()

{
if candy > 0

{ candy = candy-1; return true; }

else return false

}

… similarly for GetCrackers and GetChips …

public void AddCandy(int amt)

{
candy = candy + amt
}

… similarly for AddCrackers and AddChips …

}
To create an instance of this class, we do:

VendingMachine vm1 = new VendingMachine();

VendingMachine vm2 = new VendingMachine(2,4,42);

[Draw picture of the two vending machines, with two different states.]

Interactions with an object are often described as “sending messages” to it, and pragmatically amount to “invoking methods”. Point out that it is only the public methods (or variables) that we can access – everything else is hidden.
[Now walk through several interactions with the vending machines.]

Lecture 12 (Oct 2)
Answer any questions about the homework that is due tonight.
Q: what abstraction mechanisms have we talked about in C# so far?

A: variables (naming), methods, loops (three kinds), and classes.

Note that classes are used in two ways:

· To organize code (i.e. group common methods together).

· As a template for objects.
The latter is what we talked about on Friday. To review, a method consists of:

· State (instance variables)

· Behavior (instance methods)

· Identity (constructors)

[Recall vending machine example, and sketch design.]

Now, it turns out that the “organizational” idea of classes has a place with objects, too.

Class variable and methods

Specifically, sometimes we want to keep track of some information about all of the objects that are instances of a class. For example, we may want to keep track of the total number of transactions conducted by users of all of the vending machines.

To do this, we use class variables and class methods, which are indicated using the static keyword. (Ring a bell??)

private static int transactions = 0;

…

public static int NumberOfTransactions()

return transactions;

Then each of the “user” methods -- getCandy, getCrackers, and getChips – needs to increment the class variable “transactions” by one.

To invoke NumberOfTransactions, we use the class name, as in:

int n = VendingMachine.NumberOfTransactions()

[Draw a picture of multiple instances of VendingMachine, with transactions shown as “shared state”.]
Lecture 13 (Oct 4)
Go over solutions to PS3 on-line.

The use of classes to both organize code and be templates for objects is confusing… So let me summarize.

To organize code:

class MyMath

{
public static double pi = 3.14;

// public global variable

private static int n = 0;

// private global variable

public static double SqRt(double x) { ... }

// public method

}

To access methods or globals, we use the class name:
double sqx = MyMath.SqRt(x);

double y = MyMath.pi + 1 ;

// MyMath.n will not work
As a template for objects:

public class VM

{
private static double transactions = 0;
// class variables

private double candy = 0

// instance variables
public static int GetTransactions();
// class method

public void GetCandy();

// instance method

}
But other combinations of “private” and “static” are possible:

· private int Poly(…)

// private instance method

· private static Accounting(…)
// private class method

· … and so on

Lecture 14 (Oct 6)
Referring to thyself
Objects can be passed to other methods. For example:

VendingMachine vm1 = new VendingMachine();

Foo(vm1);

…

public static void Foo(v)

… v.getCandy() …

But sometime we need to pass the object from within the method that is within the object! For example, suppose in getCandy we want to pass the current object to another method, because that method may want to invoke some method within the object. For example:
public bool GetCandy()

{
if candy > 0

{ candy = candy-1; return true; }

else

{ Owner.ReportEmptyCandy(this);

 return false

}

}

public void ReportEmptyCandy(vm)

… vm.fillCandy() …

Note the keyword “this” – it refers to the current object.

Strings

The textbook spends a lot of time on strings. I don’t intend to do this. But there is one important thing to note:

Strings are objects.
When we write:

string s = “Hello World.”;

It is really just special syntax for something like:

string s = new String(‘H’, ‘e’,’l’,’l’,’o’, … etc.)
Object Identity and Object References
A really important thing about objects is that they are passed to methods by reference, and not by value.

For example, s above is really a reference to the string, and not the string itself.

[Draw picture.]

So if we write:

string t = s;

C# will create a new variable t having the same reference as s – thus the string is not copied.

This is important for efficiency reasons, but it also has subtle semantics. For example, does s==t? Since they have the same reference, and thus point to the same string, the answer is of course yes.

But suppose we write:

string s = “Hello world.”;

string t = “Hello world.”;

Now does s==t? The answer is no, because the references are different.
[Draw picture.]

So how do we compare two strings with unique identities? The answer is, use the Equals method:

s.Equals(t)

(The book also mentions a more general “CompareTo” method, which returns -1 if s<t, 0 if s=t, and +1 if s>t, where the ordering reflects the lexicographic ordering of strings.)
The same is true of vending machines. If vm1 is a vending machine and we assign vm2 to vm1, then vm1==vm2 returns true. But if they are unique vending machines, then the answer will be false, even if their internal state is the same.
Q: How do we compare two vending machines for equality?

A: Write an Equals method!!

public bool Equals(VendingMachine v)

{
vca = v.HowMuchCandy();

vcr = v.HowMuchCrackers();

vch = v.HowMuchChips();

return (vca==candy && vcr==crackers && vch==chips)

}

Then we just do vm1.Equal(vm2).
Q: How can we make “candy”, “crackers”, etc. more abstract?

A: Change them to “this.HowMuchCandy()”, etc.!

Comment on how all this relates to PS4 (Tic Tac Toe).
Lecture 15 (Oct 9)
Give general advice regarding PS4 (the Tic Tac Toe program), and then open the floor for questions.

General advice: Read through the assignment and follow the “top level” directions exactly. Start with the classes, and write them out using VS.NETto help you organize things. Then go back and “fill in” stuff as you need it. This is called Top-Down Design.
Go through process on blackboard:

· First write classes, with sections for state, identity, and behavior.
· Then add constructors.

· Then add methods.

· Then add instance variables (but don’t fill in completely – let them figure this out).

· Also add Player’s class variable for Random, and explain.

Then pop up to Main. Point out that it’s here where the objects are created and used. And it’s here that a flowchart might help out more.

If you are unsure what the individual methods should do, try writing the code that uses them first – again, this is top-down design. So in essence, try writing the code for Main first.

Advice:

· Use private methods for auxiliary functions.

· Convert (x,y) board position to a unique single number that can be used with a switch statement. (Ask how that can be done.)

Lecture 16 (Oct 11)
Remind class where we stand:

· We will finish Chapter 6 today.

· We will do Chapter 7 today and Friday.

· Problem Set on Chapter 7 will be due Monday or Wed.

· The following Monday will be a mid-term exam (comment on that).

· After that, graphics and animation (Chapter 8)! (i.e. fun! ()

Interfaces (final topic in Chapter 6)
We can raise the level of abstraction of objects and classes one more level through the use of interfaces, which basically separate the type-specification of a class from its implementation. The motivation here is that many different objects might share the same interface – and thus we’d like to abstract them.
We will not use them much in this class, but you need to know about them in order to use libraries (such as .NET).

One example is from Tic Tac Toe: we have a Player, but also a SmartPlayer.

The example from the book will also do well: There are many kinds of cars (vans, sports cars, SUV’s, etc.), but they all share a common interface: starting and stopping and so on. So we write:

public interface IDriveable
// starting an interface name with I is a convention
{
void Start();

void Stop();

void Accelerate();

void Decelerate();

void Turn(string direction);

}

A method using this interface should work for any object that satisfies the interface. For example:

public static void GoForward(IDriveable d) // the interface looks just like a class
{
d.Start();

d.Accelerate();

d.Decelerate();

}

Then we can have vans and sports cars, say, that implement this interface:

class SportsCar : IDriveable
// note new syntax
{
…
}

class Van : IDriveable

{
…
}

To use all this, we do:

SportsCar s = new SportsCar();

Van v = new Van();

GoForward(s);
// in a sense, we have “overloaded” GoForward:
GoForward(v);
// any object satisfying the IDriveable interface is Ok
Also note: the SportsCar and Van classes could have additional public methods. Also, there private instance variables don’t have to be the same. That’s the real point: internally, they may be quite different from each other.

Arrays (Chapter 7)

Several times I commented on the need for arrays. For example: the “bins” in the histogram program, long lists of words in the “crazy paragraph” program, and the 3-by-3 board in the Tic Tac Toe program.

An array is an object that contains an arbitrarily long (but fixed) sequence of values. The values may be retrieved or changed by indexing into the array with an integer.
Because arrays are so common, there is special syntax for dealing with them – but you should think of them as objects. (By analogy, strings have special syntax too, but recall that they are just objects.)

Examples of array creation:

Int[] intList = {0,1,2,3};

double[] numList = {0,2,3.14,7};

char[] charList = {‘h’,’e’,’l’,’l’,’o’};

string[] stringList = {“hello “, “world”};

VendingMaching[] vmL = {new VendingMachine(), new VendingMachine(1,2,3)};

And so on.

Lecture 17 (Oct 13)
Arrays, cont’d

Review array creation above.

To access an element in an array, do this:
intList[2] (2

charList[1] (‘e’

numList[4] (run-time error
If your index “out of range”, you will get a run-time error – this is bad, but in some languages, you don’t get an error! (Mention C and the “buffer overflow” exploit used by hackers!)

You can also declare an array without initializing it, like this:

int[] intList = new int[10];

Now it looks more like an object. You can also do things like:

intList.Length (10

Indeed, the “10” above could be a variable, or in fact any computation, such as:

int[] intList = new int[size+42];

Example: static method to add all the numbers stored in an array.

public static int AddArray(int[] a)

{
int s = a.Length;

int sum = 0;

for (int i=0; i<s; i=i+1)

{
sum = sum + a[i];
}

}

Key new point: like objects, arrays have identity, and are not copied in method calls. This means that we can change an array in a method call, and it will be “felt” by the callee. [Draw picture of shared state.]
Example: static method to reverse the elements in an array.

public static int[] RevArray(int[] a)

{
int right = a.Length;

int left = 0;

while (left<right)

{
swap(left,right,a);

left = left+1;

right = right-1;

}

}

private static void swap(i,j,a)

{
int temp = a[i];

a[i] = a[j];

a[j] = temp;

}

To use this we could do:

reva = RevArray(a);

But since RevArray actually modifies the array, we could also do:

RevArray(a);

reva = a;

(And we would probably make the return type void.)

But what if we wanted to keep the old a, and generate a new, reversed a?

No problem: create a new array, and write a (simpler) loop to copy from one to the other:

[Work through code for RevCopyArray.]
We can also copy an array via:

Array.Copy (old, oldStart, new, newStart, n)

Where old is the array to be copied, new if the array to be copied into, oldStart and newStart are the starting indices, and n is the number of elements to be copied.

The last problem set was tough – long and conceptually difficult. The next one will be easier, and then there’s the mid-term. The new problem set has two questions:

1. Re-write the histogram program. Mention that:

a. Re-writing old code is a Good Thing.

b. Hint: don’t use nested if-then-else’s; instead, compute the array index directly.

2. Bubble-sort! (Finally solving the problem we started on Day 1…) This problem will require nested loops.
Lecture 18 (Oct 16)
Multi-dimensional Arrays
A 2-by-2 array is often called a matrix. But we can also have 3-by-3 arrays, and beyond.
As an example, suppose I have an array to keep track of your grades. In other words, I have an array of students, and each student has an array of grades. If I represent each student as an integer, I can write:

int [,] studs = new int [55][12]

This is a matrix of 55 students, each having twelve grades.
Notice the syntax for the type, the constructor, and the access. How confusing!

If we know the scores already, we can input them directly, like this:

Int [,] studs = { {5,2,4,6}, {5,3,5,7}, {7 8 6 3} };

This creates a 3-by-4 array.
We can access an element in the matrix by writing:

 studs[i,j]

which is the jth score of the ith student. C# stores arrays like this is contiguous memory, and computes an index to access the array elements in one step.

To get the size of the different dimensions of the array, we do:

studs.GetLength(0) for the size of the first dimension, and

studs.GetLength(1) for the size of the seond dimension.

Arrays of Arrays

It’s also possible to have “arrays of arrays”, where the arrays stored as elements have different lengths. For example, another professor may allow a varying numbers of grades. To handle this we can do:

int[][] studs2 = new int[3][];

This says we have an array of 3 arrays, but we don’t know how long each of those 3 arrays is. Later we could do:

studs2[0] = new int[4];

studs2[1] = new int[2];

and so on. Or we could do:

int[][] studs2 = new int[3]{ new int[4], new int[3] … }

which is the same as:

int[][] studs2 = { new int[4], new int[3] … }

We can access an element in the array of arrays by writing:

 studs[i][j]

which is the jth score of the ith student. Note now that C# cannot access an element in one steps – it takes two steps. So arrays of arrays are more general, but slightly less efficient.

Note: studs.Length gives the size of studs, and studs[n].Length gives the size of the nth element in the array.

Example: CS112 grader
Work through example of computing the grades for CS112.
Homework
Review PS5: (1) Re-doing the histogram program, and (2) Bubblesort.

Then open the floor for questions.

Lecture 19 (Oct 18)
Chapter 8: Event-Driven Programming (graphics)
Chapter 9: User Interfaces (GUIs)

Chapter 13: Threads and Animation

Why graphics, animation, and GUIs are different from the console (ask the class, then fill out this list by making two columns: console, graphics window):
1. There is only one console, but there may be many different graphics windows, and thus we need to be able to create them, destroy them, manipulate them, and keep track of them.

2. The console takes sequential text, whereas a graphics window is “random access” – any point on the screen can be written to.

3. The default console size is 25x80, i.e. can display 2000 characters. A graphics window may be 1000x1000 pixels or larger, i.e. over 1 million pixels.

4. The console deals only with text – a graphics window deals with pixels and colors, as well as text having different fonts, etc.

5. The console takes sequential text input from one location – a GUI can take text input from multiple locations. It can also take input from the mouse (both mouse location and mouse clicks).

6. The console is completely sequential – there’s only one thing going on at a time – whereas with graphics many things can be going on concurrently (for example animation and user input).

7. When a console is hidden and then reappears, we expect the same thing to appear each time (Q: how does this happen?). This is not always true, however, for a graphics window – and we will want to specify what happens.

So graphics, animation, and GUI programming are necessarily more complex than what we have seen so far.

But there aren’t too may drastically new ideas – most of it builds on what we already know. (There are a couple of big exceptions, however…)

The graphics window coordinate system
The window is Cartesian, but with a slightly different orientation that what is taught in math classes: For an mxn window, point (0,0) is in the upper left, and (m-1,n-1) is in the lower right.

[draw picture]

This odd numbering scheme is a holdover from people programming consoles, where the output would appear left-to-right and top-to-bottom.

The graphics context

Since there are possibly many different graphics windows, we need to distinguish them. These are called graphics contexts in Windows, but we will just call them graphics objects. The Graphics class supports many kinds of operations. For example:
g.DrawString(<string>, , <brush>, <x-coord>, <y-coord>)

Many more methods are discussed in the book.

Lecture 20 (Oct 20)
[Go over PS5 on-line.]

Reveiw for the Mid-Term Exam
If you follow the table-of-contents of the book, you should be fine.

There are, however, some over-arching themes, the most important being:

Abstraction: consolidating repeating patterns into one place; for clarity, modularity, and reusability. Let’s list the many abstractions that we’ve seen:

· variables (naming values),

· methods (naming sub-programs)

· primitive operations (on primitive types)

· loops (three kinds: while, do, and for)

· arrays (as a collection of names)

· control structures (conditional and switch)

· classes for organizing code

· classes as templates for objects

Understanding the difference between and subtleties of the last two abstraction mechanisms above is confusing, but important.

Objects vs. primitive values. The latter include Booleans, integers, doubles, and characters. Pretty much everything else is an object, even though there is special syntax for some of them (e.g. strings and arrays).

Types.
· Everything has a type in C#.
· Method declarations must include the types of arguments, and the type of the result.
· Array elements must all be of the same type.

· Sometimes C# will coerce things from one type to another (for example int to double), but depending on it requires caution.
Objects.

· Have three components: state (defined by instance variables), identity (defined by constructors), and behavior (defined by instance methods).

· Are first-class – can be passed as argument to methods, stored in data structures or other objects, and returned as values from method calls.
· Are always passed around via references, whereas primitive values are not (they are copied).

· A class can also have class variables and class methods that are shared by all instances (i.e. objects) of the class.
Lecture 21 (Oct 23)
Mid-term Exam.

Lecture 22 (Oct 25)
Hand back and go over mid-term exam.

General comments:
· The Problem Sets scores have been high. In-class exams are useful for differentiating those who really know the material from those who don’t.
· The Bad News: the average was only 80.72 (the mean was 84.5).
· The Good News: I drop the lowest score!
· But – the final will be similar to the midterm, only longer, and it counts as two grades. So if you didn’t do well on the midterm, you need to figure out why:

· Are you getting too much help?

· Was the time-pressure a problem?

· Are you missing some fundamental concepts?

· There will be five more Problem Sets:

· The next three will be due in Wednesdays (Nov 1, 8, and 15).
· (Then there’s Spring Break.)

· The final two will due on Fridays (Dec 1 and 8).

The new topic that we are on is Chapter 8: Event-Driven Programming.
I will also sneak in an important, powerful, enabling tool: recursion!
Lecture 23 (Oct 27)
Forms and Inheritance
Form is a fairly fancy (and complex…) class for creating forms, which are the basis of a GUI. Unfortunately, using them effectively requires understanding a concept known as inheritance, which is not covered until Chapter 10 (sigh…).

So we need to do a little detour…

The idea of inheritance is this: Sometimes we want to create a class that has all of the methods in some existing class, plus more. In the case of Form, we will often want to inherit all of its methods, and define some of our own.

Furthermore, we sometimes (less often…) want to override one of the methods in the parent class.

Let’s do an example on-line:
· Show how to create a “Windows Application” project.

· Go through Example 8.1 exactly as it is in textbook, but pointing out the extra “designer” stuff that VS.NET introduces.

· Explain in detail every line of code, including inheritance, overriding, events, graphics context, etc.

· Note the definition of “Main” within the class itself – to me this is a bit odd.

· So let’s pull it out into a separate class…

· We can even invoke it twice in succession. Note that:

· The windows appear one at a time (we need concurrency to do otherwise).

· If we make “count” static it retains the count between invocations!

· Now add some code to draw an ellipse.

Recursion
Recursion is more powerful than iteration – anything expressible as an iteration can be expressed recursively, but not vice versa.

Consider the multiplication example from the midterm exam. Here is a recursive method to achieve the same result:

public int Prod(int m, int n)

{
if (n==0)

return m

else return (m + Prod(m,n-1))

}

Even better, we can use a conditional expression, which has the form:

<test> ? <true-result> : <false-result>

Note that this is an expression, not a command. So we can write:

public int Prod(int m, int n)

return (n==0 ? m : m + Prod(m,n-1))
How elegant!

Work through another example – factorial – starting with the mathematical definition, and then translating to C#.

Lecture 24 (Oct 30)
Announcements
· Ask the students what days they would prefer for TA office hours. In particular, if assignments are due on Wednesday evenings for the next three weeks, is there any reason to have a Sunday office hour?
· Problem 2 on PS6 has a problem: “double-clicking” doesn’t appear to work right… (So, forget about double clicks: When a single click occurs, make a blue rectangle appear. When a subsequent click inside the rectangle appears, make it disappear. And so on. Once a rectangle appears, a click outside of the rectangle should not do anything.

· Show the students the fractal snowflake.
Mouse Events

Mouse movement and mouse clicks create events just like uncovering a window. They are “sent” to methods such as “OnMouseDown” and “OnMouseUp”. For example:

protected override void OnMouseDown(MouseEventArgs e)

{
… e.X is the x position of mouse click

… e.Y is the y position of mouse click

}

You will need this on Problem 2 of PS6.

Review of recursion

Remember the slogan:

To iterate is human,

To recurse, divine.

- Anonymous
Point out that recursion will be needed on Problem Set 6, but not the conditional expression that I introduced on Friday.
One more example: binary search.
Recall the sorting program for an array. Suppose we now want to see if a particular number (called the key) is in the array.
We could use a loop and search the array sequentially. (Q: what is the worst-case and average number of steps required to do this?).
Or, we could use the following method: Compare the key to the middle element. If they’re the same, return true. Otherwise if the key is less than the middle element, recursively search the left half; otherwise search the right half.

Q: Can this be done with a loop?

A: Yes, a while loop would do the trick.

But a cleaner solution is to use recursion, as follows.

Let’s assume that the array contains words instead of integers (which makes it more realistic, and also less confusing, because ints are also used for array indices). Work through this code:
public bool BinSearch(string[] a, string key, int left, int right)

{
if (left > right)

return false;

else

{
mid = (left+right)/2;

switch (String.Compare(key, a[mid]))

case -1:
return BinSearch(a,key,left,mid-1);

case 0:
return true

case +1:
return BinSearch(a,key,mid+1,right);

}

}

To call this in Main, do: BinSearch(a, “foobar”, 0, a.Length-1)
Lecture 25 (Nov 1)
Are there any questions regarding PS6?
[mention my experience with Q2]

Chapter 9 (Graphical User Interfaces)

GUIs in C# rely on inheritance and the event-driven model of computation that we saw for graphics. The new ideas are:
· Controls (buttons, labels, etc.) are dynamic, visual objects that we create and place on a form.

· Delegates are a way to create and register event-handlers for these objects, since each of them may behave differently.

· VS.NET can write a lot of the boilerplate code for us.

The Control class contains lots of stuff, and lots of classes are derived from it.

[Draw parts of Fig 9.1 in text, showing at least Button, Label, and Form.]

There’s also one other idea that keeps arising, and that I keep skirting around, namely modifiers. Here is a quick summary of them (Fig 10.13 in text):

· public

Accessible anywhere the class name is accessible.
· protected internal
Accessible in derived classes and in the program in

which the variable or method is declared.

· protected

Accessible in derived classes.

· internal

Accessible in the program in which the variable or

method is declared.

· private

Accessible only in the class in which the variable or

method is declared.

These can be arranged in degree of privacy as follows:

most public

public

 |

 protected internal

 / \

 protected

 internal

 \ /

private

most private

For simplicity we could just make everything public. But it’s better to make things as private as possible, while still allowing access where needed.

Let’s work through the example from the book:

public class Form1 : System.Windows.Forms.Form

{

// Required designer variable.

private System.ComponentModel.Container components = null;

private Button print = new Button();

private Button clear = new Button();

private Label message = new Label();

public Form1()

{
// Required

InitializeComponent();

Text = "Button Press";

print.Text = "Print";

clear.Text = "Clear";

message.Text = "Message goes here.";

Size = new Size(300,300);

message.Size = new Size(message.PreferredWidth,

message.PreferredHeight);

print.Location = new Point(20,30);

clear.Location = new Point(30 + print.Width, 30);

message.Location = new Point(40 + print.Width

 + clear.Width, 30);

Controls.Add(print);

Controls.Add(clear);

Controls.Add(message);

print.Click += new EventHandler(Print_Click);

clear.Click += new EventHandler(Clear_Click);

}

protected void Print_Click(Object sender, EventArgs e)

{

message.Text = "Hi there.";

}

protected void Clear_Click(Object sender, EventArgs e)

{

message.Text = "";

}

// The main entry point for the application.

[STAThread]

static void Main()

{

Application.Run(new Form1());

}

}
Lecture 26 (Nov 3)
Go over solutions to Problem Set 6 on-line.

While on-line, demonstrate VS.NET’s ability to write boilerplate code for GUIs. Also go over example 9.1. While doing this, point out that:
1. No need to repaint! (Why?)

2. Chapter 9 covers lots of different controls (widgets). The differences between them are in the details – you should read through the many examples.

3. The most important thing is to embrace the notion of event-driven programming. Think about what needs to happen, and when, and separate issues of control from issues of display.

Lecture 27 (Nov 6)
Ask if there any questions about PS7.

Discuss the issue of having one event handler to handle more than one button. For this to work, one needs to be able to distinguish the buttons. The event handler should look something like:

protected void NumberClick(Object sender, EventArgs e)
Note that the first argument is an “Object,” the mother of all objects. This will actually be the Button object that invoked NumberClick.

So, the solution I gave in the hint is to just test to see if “sender” above is equal to one of the numeric Button objects. You can package this in a method as suggested in the hint.

But, there is another way… What we are really trying to do is get the value of a button, right? But we can get the text of the object, so why not do this:

int i = int.Parse(((Button)sender).Text);

Note how the sender is coerced (cast) into the object that it is.
But, there is even another way… What we’d really like to do is associated the value with the button itself. Ordinary Button’s don’t have such values, but we can use inheritance:
public class NumButton : Button

{
// the value associated with a numeric button

public int Value;

}

and then use (Button)sender).Value to get the value when we need it.

Lecture 28 (Nov 8)
Delegates

The notion of delegates is the one truly new idea in Chapter 9.
Delegates are a way to “package up” methods so that they are “first class”, and can thus be passed in a “type safe” way to other methods, or stored in data structures, etc.
They are used in a critical way in C#’s Control class: namely as event handlers, which are also sometimes called call-back routines.
But you can also declare your own delegate like this:
 public delegate <return-type> <delegate-name>(<formal-params-&-types>);

For example, here is an example from the text:
 public delegate double ComputeDelegate(double d);

This declaration serves two purposes:

1. It behaves as a simple class declaration. Thus “ComputeDelegate” serves as both a new type name, and a constructor name, just like any other class.

2. But the odd thing about it as a class declaration is that it contains extra info about types (the stuff underlined above). That info defines the function type of the argument that is passed to the constructor.
The following example is a simplification of the one in the text, and is motivated (once again) by abstraction.
Suppose we see a repeated calculation – everything is the same except that in one place we use x and y, and in the other place we use u and v. So we define a method:

 public int Foo(int a, int b) …

where a and b are the formal parameters. Then we replace the original code with Foo(x, y) and Foo(u, v). (Right?)
But now suppose that these repeated calculations are the same except that one operator (say + or -) or one method call (say f or g) is different. Then we’d like to abstract that out, too. So we’d like to write something like this:

 public int Foo(int a, int b, ? h) …

where h is the formal parameter for the abstracted operator or method. But what should the type of h be?
The answer is that it should be delegate type, as follows:
 public int Foo (int a, int b, …, ComputeDelegate h)

 {
… h(a+b) …
}

Then when we call Foo we have to first make + or – or f or g or whatever into a delegate, as follows:

 ComputeDelegate cd1 = new ComputeDelegate(Math.Sqrt);

 ComputeDelegate cd2 = new ComputeDelegate(Area);

 public double Area(double r)

 { return (Math.pi * r * r) }

Then we can replace the original code with:

 …
Foo(a,b,cd1)
…
… Foo(a,b,cd2) …
Note how “ComputeDelegate” is used in two ways above – as a type, and as a constructor.

Using delegates in PS7

Interestingly, there’s a cool way to use delegates on the Calculator program.
In the hint I suggested using a common event handler not just for the numeric keys, but also for the three operator keys. To distinguish the keys we could convert them into integers as discussed earlier.

Or, we could look at the “Text” in the keys and do a dispatch on them.

But there is a better way… Just as we stored the number into the numeric keys, we could store the operator function into the operator keys, which requires a delegate! In other words:

public class OpButton : Button

{
public BinOp Op;

}

public delegate int BinOp(int i, int j);

[Talk through other details, like the fact that the Enter key needs to know which operator key was pressed, which can be done by storing a delegate in an instance variable.]

[Ask if there are other questions on PS7]
Lecture 29 (Nov 10)
Kevin Yip lectured. He went over PS7 solutions, and also did the following on Exception Handling:

/*

Concepts:

. What are exceptions?

. Source of exceptions

. Illegal user inputs (e.g. FormatException)

. Programming errors (e.g. IndexOutOfBoundException)

. System problems (e.g. OutOfMemoryException)

. What can we do with an exception?

. Catch it (try, catch): we want to handle

. Do not rethrow: the exception should not disrupt the

 normal execution

. Rethrow: the program should be disrupted, but we want

 to do something before that

. Let the caller handle it: we don't want to handle/ we don't

 know how to handle

. Finally: always execute (e.g. to release resources)

. Can selectively handle some classes of exceptions

. Actively throw exceptions (did not have time to cover)

*/

using System;

public class ExceptionConcepts

{

public static void Main()

{

//IllegalUserInputs();

//ProgrammingErrors();

//SystemProblems(1000000);

//CatchWithoutRethrow();

//CatchAndRethrow1(null);

//CatchAndRethrow2(null);

//ActiveThrow1(1, 0);

//ActiveThrow2(1, 0);

}

static void IllegalUserInputs()

{
Console.Write("Please enter an integer: ");

int i = int.Parse(Console.ReadLine());

}

static void ProgrammingErrors()

{
int[] a = new int[5];

for (int i=0; i<=5; i++)

a[i] = i;

}

static void SystemProblems(int i)

{
if (i > 0)

SystemProblems(i-1);

}

static void CatchWithoutRethrow()

{
int i = 0;

while (i <= 0)

{
try

{
Console.Write("Please enter positive integer: ");

i = int.Parse(Console.ReadLine());

if (i <= 0)

Console.WriteLine("Sorry, the number is non-positive.");

}

catch (FormatException e)

{
Console.WriteLine("Sorry, invalid integer.");

}

}

}

static int CatchAndRethrow1(string s)

{
try

{
int i = s.Length;

return i;

}

catch(NullReferenceException e)

{
Console.WriteLine("null parameter is not allowed.");

throw e;

}

}

static int CatchAndRethrow2(string s)

{
try

{
int i = s.Length;

return i;

}

catch(NullReferenceException e)

{
throw new NullReferenceException("null parameter is not allowed.", e);

}

}

static int ActiveThrow1(int numerator, int denominator)

{
return numerator / denominator;

}

static int ActiveThrow2(int numerator, int denominator)

{
if (denominator == 0)

throw new DivideByZeroException("Denominator parameter of ActiveThrow2 should not be zero.");

else
return numerator / denominator;

}

}

Lecture 30 (Nov 13)
The conceptually new ideas in Chapter 11 are:
1. Exceptions.

2. Command-line arguments.

3. File I/O.

Kevin lectured on (1) on Friday. (2) and (3) are not just about C# -- they touch on operating systems issues as well.

Do the following on-line:

· Show how to use MSDN as a reference tool for C#, VS.NET, and libraries.

· Show how a program can be executed by double-clicking on it (discuss binaries, and how VS.NET is really only for development).

· Show how a program can be executed from a command prompt.

· Show how a program can take command-line arguments.
Kevin covered (1) and we just did (2) – the only other thing you need to know for PS8 is (3) above.
File I/O

Files are special data structures that are handled by the operating system, external to a program. Their formats vary from one OS to another, but for the most part they are the same, and programming languages have standard interfaces for dealing with them.

There are two issues: input and output.

In C#, we can open a file by creating a “stream reader”, as follows:

StreamReader input = new StreamReader(“filename.txt”);

This can throw several exceptions, such as FileNotFoundException, but the generic class of all I/O errors is IOException. We often don’t need to distinguish amongst them, so this will do in most cases.

Once we have successfully created a StreamReader, we can read from it by using the familiar ReadLine method:

String line = input.ReadLine();

If we have reached the end of the file, ReadLine will not throw an error – instead, it will return the value “null”, which can be tested via “line == null”.

Once we are done, the file’s StreamReader should be closed, via input.close.

In general, the right way to do file input is:

try { StreamReader input = new StreamReader(“filename.txt”);

…

 }

catch (IOException e)

{ … }

finally

(input.close }

The “finally” clause ensures that the file is closed, regardless of the kind of error that occurs (note that an error other than IOException could occur in the first “…” above, so it will not be caught, and the code after the catch will not be executed, unless a finally clause is included, as above).

For output, we use a similar abstraction:
new StreamWriter output = new StreamWriter(“foo.txt”);

and familiar friends:

output.WriteLine(“Hello World”);

The text also talks about binary files, but I will skip this discussion so that we have time for other things.

Lecture 31 (Nov 15)
Static vs. Dynamic Program Structure

Conceptually, exceptions are doing something “different”. Let’s try to understand this better. First, a few definitions.

The lexical structure of a program relates to the way it is laid out as text in a file. In C# we have things like:

class A

{
private int i1;

public int i2;

method Main { int a1, string a2 }

method M2 { … }

}

class B
{
public int j1;

private int j2;

method N1 { bool b1, double b2 }

method N2 { … }

}

This layout directly affects the visibility of things – for example, i1 and i2 are visible to Main and M2, and Main and M2 are visible to each other, regardless of their visibility modifiers. Also a1 and a2 are only visible inside of M1. This is called lexical scoping. Of course, modifiers also affect visibility outside of the classes, but even this is considered a “lexical” issue.
In contrast, note that Main may call M2, which in turn may call N1, which might call itself recursively 100 times, and then call N2, which might then call M1. This forms what is called a method call stack, because it behaves like a “stack” on which you put things on and take things off, like a stack of pancakes (also called “last-in-first-out”, or LIFO).
The stack is initially empty. The program begins with a call to Main, so it is placed on the call stack. If we draw the stack, it grows as method calls are made, but then shrinks as method calls return results, and also grows again as more calls are made, etc.
[draw this as vertical “pancake” stack: Main-M2-N1-N1-N1-…, etc.]

Eventually the stack shrinks till Main is all that is left, which then “returns” to the operating system, leaving an empty stack, and the program terminates.
Note that, whereas the lexical structure is completely static (i.e. it doesn’t change), the call stack is very dynamic (it changes constantly).

Now, the important thing to remember about exceptions is that they work with respect to the dynamic call stack, and have little to do with lexical structure.
More importantly, exceptions allow “short cutting” of the incremental stack-like behavior. For example, in the above call stack, if M2’s call to N1 were done within a “try”, then if an exception occurs deep within a recursive call to N1 (or any other method), the control “jumps” immediately to the “try” – the rest of the call stack is completely abandoned.
Contrast this with another method to handle errors, namely the encoding of errors in a data structure – this would require defining that data structure, changing the type of each method that would need to “pass it back” through the call chain, and writing code to handle that possibility in each method. This is more work for the programmer, and less efficient.
So, exceptions really do add something “new” to a language.

[Ask if there are any questions regarding PS8, due tonight. Discuss what “remove extra space between words” means, and mention s.Split() and s.ToCharArray().]
Announcement made on Classes*v2 after class:
To answer two questions raised in class:

1. The reason that you need to initialize the StreamReader and StreamWriter outside of the try block is that the try block introduces a new lexical scope, which was exactly the issue that I was lecturing about in class today. If those variables were only to be used inside the try, everything would be fine, but since we need to close the streams after exiting the try block, we need them to be visible outside of the try block.

2. The reason f.Close() doesn't work when f is null is quite simple: the null object doesn't have any methods, so, naturally, trying to find the Close method will fail. (I should have realized that simple explanation in class -- sorry.)

Bottom line: the "right" way to do this, including the use of "finally" is:

StreamReader f = null;
StreamWriter g = null;
try { f = new StreamReader(...);
 g = new StreamWriter(...);
 ...
 }
catch { ... }
finally { if (f!=null) f.Close();
 if (g!=null) g.Close();
 }

Lecture 32 (Nov 17)
[Go over PS8. Point out the issue of “try” introducing a lexical scope, and point out that in fact loops do the same thing.]

Give an overview of remainder of course:

· Chapter 13 (Threads and Animation).

· Chapter 16 (ASP.NET).

Thanksgiving Break
Lecture 33 (Nov 27)
Welcome back! Reminders:

· Two more problems sets, both due on Fridays.

· TA hours have changed – see website.

· Final exam is at 9am on Monday Dec 18.
Chapter 13: Threads and Animation

The main “new” idea in Chapter 13 is threads. A thread is a “thread of control”, and there may be more than one of them. They are not really parallel (which would require more than one processor) but are concurrent (their execution is interleaved on one processor, which is called multi-tasking). Actually they might even be parallel if you are using one of the new multi-core processors.
Now, it’s clear that the operating system (say, Windows), already does a fair amount of multitasking. (E.e. multiple aps, downloading files while other aps are running, or even different aspects of the same ap, animations in web aps, etc.).
In addition, you may want to program an ap that requires concurrent threads as well. How do we do this?

C# has an object type called Thread. Threads are created like any other object, i.e. via a call to a constructor:

Thread t = new Thread(<user-defined-delegate>);

Where <user-defined-delegate> is the method that you wish to run as a thread, but wrapped up as a delegate. For example:

public delegate void MyThreadType();

This allows any method with no arguments and a void result to be turned into a thread. Let’s say that method is defined by:

public void DownLoadFile()

{
…
}

So we would do:

Thread t = new Thread(new MyThreadType(DownLoadFile));

Or if you prefer:

MyThreadType threadDel = new MyThreadType(DownLoadFile);

Thread t = new Thread(threadDel);

Then to run the thread, we just do:

t.Start();

This in fact doesn’t pass control to t, but it makes it ready to execute once the current thread relinquishes control to the operating system. How does a thread relinquish control? There are at least four ways:
1. It terminates (duh).

2. It executes an operation requiring a call to the OS (not just expensive things like file download, but even simple things like Console.WriteLine).

3. It goes to sleep via a call to Thread.Sleep (in a sense this is a special case of (2) above).
4. It is interrupted by the operating system because of a higher-priority thread that needs to run.

A thread may “put itself to sleep” by executing:

Thread.Sleep(time);
Where “time” is the sleep time in milliseconds.

Finally, a thread may be:

· Suspended (via t.Suspend).

· Resumed (via t.Resume).

· Aborted (via t.Abort).

Q: What do you think happens if an aborted thread is resumed? Or if a suspended thread is suspended again? Or …

A: I’m pretty sure that the former will throw an exception, whereas the latter will not… (Why?) There are too many cases to remember them all, so just be careful that you know what you are doing in a particular application.

Note: The operating system has a scheduler to decide which thread to execute next. The scheduler keeps a queue (i.e. first-in-first-out) data structure to keep track of the pending threads (in a reality is a priority queue, but I digress…).
In general, the scheduling of threads is not something that is easy to predict, so it’s best to think of the threads as really executing in parallel. There are many things that might interrupt a thread’s execution.

Point out problems:

· A thread may go into an infinite loop and never relinquish control!

· On the other hand, sometimes was want the thread to be an infinite loop.

· Two threads may share the same resource (could create invalid results).

· Two threads may compete for the same resource (deadlock!).

Lecture 34 (Nov 29)
Let’s consider the problem of animation. The example to focus on is 13.5 in the text, since that’s what you’ll need for your homework assignment.
Example 13.5 from text

Look at the big picture first:

public class AnimateBall : Form

<instance methods for ball position, buttons, and the animation thread>

public AnimateBall()

<the class constructor -- sets up all the buttons, and creates and starts

an animation thread based on Run>

public void Run()

<the method corresponding to the animation thread, consisting of an
 infinite loop to continuously change the position of the ball. The loop
 is “slowed down” via sleeping.>

protected override void OnPaint(…)

<paints the ball in location specified by instance variables>

protected void Abort_Click(…) {…}

protected void Suspend_Click(…) {…}

protected void Resume_Click(…) {…}

<these are the event handlers for each of the buttons>

public static void Main()

<the usual main method>

It’s important to understand how all of these pieces work together to achieve the desired result. It is done via a combination of event-driven programming, and threads.

Q: What changes are needed for each of the new capabilities asked for in PS9:

· Bouncing ball.

· Horizontal line.

· New button.

· Score label.

· Other functionality.

Lecture 35 (Dec 1)
Problems with threads
Programming with threads, or in general any kind of programming involving concurrency, introduces interesting problems. Two in particular:
First, simultaneous access to shared data can result in inconsistent (i.e. wrong) behavior. For example, suppose Mom and Dad are depositing to two ATMs at the same time, but into the same account.

[Work through example on board, showing how the result can be wrong.]

The solution to this is to allow some means to lock the data while it is being processed. C# has a particular way to do this, which I will not describe (see Chapter 13). In general, there are lots of ways to do this.

Second, most locking mechanisms lead to other problems, such as deadlock. For example, suppose that two threads need to gain access to two resources.

[Work through example leading to deadlock – transferring money from one account into a second, thus requiring locks on both of them.]
HTML
Chapter 16 is about ASP.NET, a way to run programs from within web pages. But first this requires knowing something about HTML, or “HyperText Markup Language”, which is the main format for web pages.

[start with explanation of how browsers work – URLs, etc.]

Here is the basic set of HTML tags, as explained in the text:

break

<p>

new paragraph

 …
text emphasis

<title> … </title>
title at top of window

<h1> … </h1>
top-level header

<h2> … </h2>
second-level header (and so on, six levels deep)

 …

unodered list

list item (note no ending)

 ...
an anchor, or hypertext link

an image

[Work through some examples on-line]
Lecture 36 (Dec 4)
Draw diagram of CS112-a server, plucky, and other machines (clients), and emphasize the following points:
· CS112-a and plucky communicate via a LAN (local-area network) using a Windows XP protocol that allows file sharing. So plucky is a file server.

· Plucky is also a web server (recall that the course website is there). The web server uses HTTP protocol to communicate with other machines connected via a WAN (wide-area network).
· The m: drive on your account is actually in a subdirectory called CS112, containing all of the student accounts. It can be accessed via file sharing (for example, I and the TA’s have access to it). And it can now be accessed via http as: http://plucky.cs.yale.edu/cs112asp.

· Show VS.NET and Wordpad running on CS112-a.

· Show an HTML file on plucky, and explain how it’s downloaded via HTTP.

· Now show an ASP (aspx) file, which is just like an HTML file, except that the server does some processing on it before sending it off – if you hit “view source” in a browser, you can see the difference.

· This processing might in fact involved executing a C# program, either embedded in the ASP file, or as “code behind”.

· Communications using HTTP can be done via “get” or “post” – explain and diagram the differences.

· Key point: there is no state in these transactions – everything must be explicitly saved somewhere:

· On the server, this is usually done via a database, or writing to a file, or whatever.

· On the client, this is done via session tracking, which is library in C# that basically reads to and writes from a special file called a cookie.

· The three-tier architecture is the client, the web server, and a database. We are not using a database, but you can think of our writing to a file as the third tier instead.

· Describe the homework assignment in more detail, saying where the bits of state need to go. Point out the “race” condition on the file that’s on the server – resolving that is one of the things that a database does!

Lecture 37 (Dec 6)
Online:

· Go over the PS9 solution.

· Also show the GetOrder examples from the text:

· Show the “web.config” file.

· Show what happens when an error occurs in the .aspx file.

· Show what happens when an error occurs in the .cs file.

For PS10, point out two issues regarding the state:

First, the file on the server-side should be referenced as:

"e:/cs112/<netid>/Results.txt"

In other words, do something like:

StreamReader f = new

StreamReader("e:/cs112/<netid>/Results.txt")

But if you want to use backslashes, you need to use:

"e:\\cs112\\<netid>\\Results.txt"
(Why?)

Second, on the client side, we want to use session tracking. The Session object is an association list, that works like this:

Session.Add(key1, value1);

Session.Add(key2, value2);

and so on, stores (key,value) pairs into the association list. Then:

Session[key1]
(
value1

Session[key2]
(
value2

and so on.

Since any values can be stored in Session, it’s important to cast them appropriate when they are used. For example, if strings are stored as values, then you might do:

String s = (String)Session[key1]

The example in the text stores an ArrayList – yet another data structure that we have not discussed. But you don’t need this for the assignment – you just need to store something, really anything, that denotes whether or not the vote occurred.

Q: What could you store? What if the cookie doesn’t exist yet?

Q: Regarding the overall application, is their a race condition somewhere? Or the potential for deadlock?

Lecture 38 (Dec 8)
Are there any questions regarding PS10?
Final exam: Monday December 18, 9am-12pm here in 220DL.

The final exam will be much like the mid-term, except that it will cover more material, and it will be longer.

Review for final: The material will be comprehensive: I.e. everything up to the mid-term, plus everything after. The focus will be more on the stuff after, but of course much of that builds on the stuff before. As I said before the mid-term: If you have been attending class, doing well on the homework, and doing the homework on your own, you should be in good shape.
New ideas since the mid-term:

· Event-driven programming.

· Recursion.

· GUI’s.

· Delegates.

· Exceptions.

· File I/O.

· Threads and concurrency.
· Animation.

· HTML and ASP.

The Final will be structured similarly to the mid-term: matching problems, true/false, perhaps a multiple choice problem, but also thinking problems – i.e. where you have to solve a problem and write the code fragment to express your solution. It will be closed book, closed notes, closed laptop, but of course these won’t help you on the latter kinds of problems anyway.
Note: I will put all of these lecture notes on the website as a study guide.

Final thoughts
What should you take away from this course? Do I care whether or not you remember the syntax of a for loop? (No...) Here are some thoughts worth remembering:
· First, there are conceptual issues – like algorithms and data structures and recursion and so on – that transcend programming languages, and have to do with the very essence of computation, which is a wonderfully abstract and important idea. Personally, I think that these ideas should be required topics in a liberal arts education.

· Second, there are issues of complexity, which come in two forms:

· Qualitative complexity relates to the very nature of a problem, and the inherent difficulty in solving it. Qualitative complexity is ultimately reflected in the sophistication of the algorithms and data structures that comprise a solution to the problem. The solution might not be a lot of code, but it might take a while to come up with or understand the code.

· Quantitative complexity relates to the size of a problem, which in turn is reflected in the amount of memory or amount of time that is needed to solve a problem.

· And sometimes there is a little (or a lot!) of both…

· Third, even if you don’t ever program again, hopefully you have an appreciation for the difficulties involved in programming. We only tackled some of the most basic ideas and problems, but even some of them were problematical. Also, imagine that, as a problem gets larger, you have to be part of a team that has to solve it – this is not easy!

· Finally, despite the nerd-like reputation of programmers, I hope that you can see that software design can be a challenging, creative, and rewarding career. Recent studies have shown that in fact software designers had the highest ratings in job satisfaction. Also, there are great opportunities for research in computer science.
[If time permits, describe some of my own research.]

In the last lecture I joked about not caring about the real world, but of course I do, in fact very much so. The goal of my research is to:

· Reduce the difficulties involved in programming by designing better languages and software tools.

· Provide ways to verify the correctness of computer programs to ensure that they are bug-free.

To do this requires a fair amount of mathematics and other theoretical tools, but it is all motivated by the desire to improve things in the real world. Applications of my work include graphics and animation, mobile and humanoid robots, and computer music.
For an interesting departing thought, consider the complexity, the challenge, the reward, and the fun that must have gone into creating Animusic.
[see www.animusic.com]

