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Functional images
Conal Elliott

7

7.1 Introduction

Functional programming offers its practitioners a sense of beauty of expres-
sion. It is a joy to express our ideas with simplicity and generality and then
compose them in endless variety. Software used to produce visual beauty,
on the other hand, is usually created with imperative languages and generally
lacks the sort of ‘inner beauty’ that we value. When occasionally one gets to
combine these two kinds of beauty, the process, and sometimes the result, is
a great pleasure. This chapter describes one such combination in an attempt
to share this pleasure and inspire others to join in the exploration.

Computer-generated images are often constructed from an underlying
‘geometric’ model, composed of lines, curves, polygons in 2D, or illuminated
and textured curved or polyhedral surfaces in 3D. Just as images are often
presentations of geometric models, so also are geometric models often pre-
sentations of more specialised or abstract models, such as text (presented via
outline fonts) or financial data (presented via pie charts).

The distinction between geometry and image, and more generally, be-
tween model and presentation [34], is very valuable, in that it allows one to
concentrate on the underlying model and rely on a library to take care of
presentation. This focus makes it easier to describe images (for example, via
a set of curve control points or a text string), while narrowing the range of
describable images. What about the general notion of ‘image’?

Functional languages are particularly good at the model-oriented approach
to image generation, thanks to their excellent support for modularity. Fortu-
nately, as illustrated in this chapter, the general notion of images may be
modelled directly and effectively as functions from a 2-dimensional domain to
colours. This formulation is especially elegant when the 2D domain is contin-
uous, non-rectangular and possibly of infinite extent. Adding another dimen-
sion for (continuous) time is just as easy, yielding temporally and spatially
scalable image-based animation.

This chapter explores the very simple notion of images as functions in a
Haskell library — a ‘domain-specific embedded language’ (DSEL) [60] — called
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Pan. It presents the types and operations that make up Pan, and illustrates
their use through a collection of examples. Some of the examples are synthe-
sised from mathematical descriptions, while others are image-transforming
‘filters’ that can be applied to photographs or synthetic images. For more ex-
amples, including colour and animations, see the example gallery at this book’s
supporting web site; the implementation is freely available for downloading
from there.

As is often the case with DSELs, some properties of the functional host
language turn out to be quite useful in practice. Firstly, higher-order functions
are essential, since images are functions. Parametric polymorphism allows im-
ages whose ‘pixels’ are of any type at all, with some image operations being
polymorphic over pixel type. Aside from colour-valued images, boolean im-
ages can serve as a general notion of ‘regions’ for image masking or selection,
and real-valued images can represent 3D height fields or spatially varying pa-
rameters for colour generation. Dually, some operations are polymorphic in
the domain rather than the range type. These operations might be used to
construct ‘solid textures’, which are used in 3D graphics to give realistic ap-
pearance to simulated clouds, stone and wood. So far, laziness has not been
necessary, so translation to a strict functional language should be straightfor-
ward and satisfactory.

For efficiency, Pan is implemented as a compiler [35].1 It fuses the code
fragments used in constructing an image as well as the display function it-
self, performs algebraic simplification, common-subexpression elimination
and code hoisting, and produces C code, which is then given to an optimising
compiler.

7.2 What is an image?

Pan’s model of images is simply functions from infinite, continuous 2D space
to colours with partial opacity. (Although the domain space is infinite, some
images are transparent everywhere outside of a bounding region.) One might
express the definition of images as follows:2

type Image = Point → Colour

where Point is the type of Cartesian coordinates:

type Point = (Float, Float)

1At the time of writing, running the Pan compiler requires having the Microsoft C++ compiler.
2As described elsewhere [35], the implementation really uses ‘expression types’ with names

like FloatE instead of Float, in order to optimise and compile Pan programs into efficient
machine code. Operators and functions are overloaded to work on expression types where
necessary, but a few require special names, such as ‘==∗’ and ‘notE ’. The definitions used in
this chapter could, however, be used directly as a valid but less efficient implementation. For
conciseness, this chapter uses some standard mathematical notation for functions like absolute
value, floor, and square root.
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It is useful, however, to generalise the semantic model of images so that the
range of an image is not necessarily Colour , but an arbitrary type. For this
reason, Image is really a type constructor :

type Imageα = Point → α

It can also be useful to generalise the domain of images, from points in
2D space to other types (such as 3D space or points with integer coordinates).
Boolean-valued ‘images’ are useful for representing arbitrarily complex spatial
regions (or ‘point sets’) for complex image masking. This interpretation is just
the usual identification between sets and characteristic functions:

type Region = Image Bool

As a first example, Figure 7.1 shows an infinitely tall vertical strip of unit
width, vstrip, as defined below.3

vstrip :: Region
vstrip (x,y) = |x| � 1/2

For a slightly more complex example, consider the checkered region shown
in Figure 7.2. The trick is to take the floor of the pixel coordinates and test
whether the sum is even or odd. Whenever x or y passes an integer value, the
parity of �x� + �y� changes.

checker :: Region
checker (x,y) = even (�x� + �y�)

Images need not have straight edges and right angles. Figure 7.3 shows
a collection of concentric black and white rings. The definition is similar to
checker , but uses the distance from the origin to a given point, as computed
by distO.

altRings p = even �distO p�

The distance-to-origin function is also easy to define:

distO (x,y) =
√

x2 + y2

It is often more convenient to define images using polar coordinates (ρ,θ)
(where ρ is the distance from the origin, and θ is the angle between the positive
X axis and the ray emanating from the origin and passing through p), rather
than rectangular coordinates (x,y).

type PolarPoint = (Float, Float)
3Each figure shows an origin-centred finite window onto an infinite image and is annotated

with the width of the window in logical coordinates. For instance, Figure 7.1 shows the window
[−7/2,7/2]× [−7/2,7/2] onto the infinite vstrip image.
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width = 7

Figure 7.1: vstrip
width = 7

Figure 7.2: checker

The following definitions are helpful for converting between polar and rectan-
gular coordinates.

fromPolar :: PolarPoint → Point
fromPolar (ρ, θ) = (ρ × cos θ,ρ × sin θ)
toPolar :: Point → PolarPoint
toPolar (x,y) = (distO (x, y),atan2 y x)

Figure 7.4 shows a ‘polar checkerboard’, defined using polar coordinates.
The integer parameter n determines the number of alternations, and hence is
twice the number of slices.4 (We will see a simpler definition of polarChecker
in Section 7.7.)

polarChecker :: Int → Region
polarChecker n = checker · sc · toPolar

where
sc (ρ, θ) = (ρ, θ × fromInt n/π)

For grey-scale images, we can use as ‘pixel’ values in the real interval [0,1].
This constraint is not expressible in Haskell’s type system, but as a reminder,
we introduce the type synonym Frac:

type Frac = Float

Figure 7.5 shows a wavy grey-scale image that shifts smoothly between white
(zero) and black (one) in concentric rings.

4fromInt turns an integer into some other type, here Float.
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width = 10

Figure 7.3: altRings
width = 10

Figure 7.4: polarChecker 10

wavDist :: Image Frac
wavDist p = (1 + cos (π × distO p)) / 2

7.3 Colours

Pan colours are quadruples of real numbers in [0,1], with the first three com-
ponents for blue, green, and red (BGR) components, and the last for trans-
parency (‘alpha’):

type Colour = (Frac, Frac, Frac, Frac) — BGRA

The blue, green, and red components will have alpha multiplied in already,
and so must be less than or equal to alpha (according to the convention of
‘pre-multiplied alpha’ [121]). Given this constraint, there is exactly one fully
transparent colour:

invisible = (0,0,0,0)

We are now in a position to define some familiar (completely opaque)
colours:

red = (0,0,1,1)
green = (0,1,0,1)
. . .
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width = 10

Figure 7.5: wavDist
width = 1

Figure 7.6: bilerpC black red blue white

It is often useful to interpolate (‘lerp’) between colours, to create a smooth
transition through space or time. This is the purpose of lerpC w c1 c2. The
first parameter w is a fraction, indicating the relative weight of the colour c1.
The weight assigned to the second colour c2 is 1−w:

lerpC :: Frac → Colour → Colour → Colour
lerpC w (b1,g1, r1,a1) (b2,g2, r2,a2) = (h b1 b2,h g1 g2,h r1 r2,h a1 a2)

where
h x1 x2 = w × x1 + (1 − w) × x2

Exercise 7.1 Use lerpC to define functions that lighten, darken, and fade (to-
ward invisibility) colours by fractional amounts. �

Exercise 7.2 Extend lerpC to a function bilerpC that interpolates among four
colours in two dimensions. (Hint: make three applications of lerpC.) See
Figure 7.6, which is centred at (1/2,1/2) rather than the origin. �

An operation similar to lerpC is colour overlay, which will be used in the
next section to define image overlay. The result is a blend of the two colours,
depending on the opacity of the top (first) colour. A full discussion of this
definition can be found in [121]:

(b1,g1, r1,a1) ‘overC ‘ (b2,g2, r2,a2) = (h b1 b2,h g1 g2,h r1 r2,h a1 a2)
where

h x1 x2 = x1 + (1 − a1) × x2
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Not surprisingly, colour-valued images are of particular interest, so let us
use a convenient abbreviation:

type ImageC = Image Colour

7.4 Pointwise lifting

Many image operations result from pointwise application of operations on one
or more values. For example, the overlay of one image on top of another can
be defined in terms of overC:

over :: ImageC → ImageC → ImageC
(top ‘over ‘ bot) p = top p ‘overC ‘ bot p

This commonly arising pattern is supported by a family of ‘lifting’ func-
tionals:5

lift1 :: (α→β) → (p→α) → (p→β)
lift2 :: (α→β→γ) → (p→α) → (p→β) → (p→γ)
lift3 :: (α→β→γ→δ) → (p→α) → (p→β) → (p→γ) → (p→δ)
lift1 h f1 p = h (f1 p)
lift2 h f1 f2 p = h (f1 p) (f2 p)
lift3 h f1 f2 f3 p = h (f1 p) (f2 p) (f3 p)

Then over = lift2 overC. Other examples of pointwise lifting include selection
(cond) and interpolation (lerpI ) between two images:6

cond :: Image Bool → Imageα → Imageα → Imageα
cond = lift3 (λ a b c → if a then b else c)

lerpI :: Image Frac → ImageC → ImageC → ImageC
lerpI = lift3 lerpC

Nullary lifting is already provided by Haskell’s const function:

const :: α → (p → α)
const a p = a

Given const, we can define the empty image and give convenient names to
several opaque, constant-colour images:

empty = const invisible
whiteI = const white

5For intuition, think of p as Point, so that p → α = Image α and similarly for β, γ, δ.
6In a call-by-value language, cond would need to be defined differently in order to avoid

unnecessary evaluation.
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width = 10

Figure 7.7: ybRings
width = 7

Figure 7.8: Exercise 7.4

blackI = const black
redI = const red
. . .

Note that all pointwise-lifted functions are polymorphic over the domain
type (not necessarily Point), and so could work for 1D images (for example,
interpreted as sound), 3D images (sometimes called ‘solid textures’), or ones
over discrete or abstract domains as well.

The image defined below (shown in Figure 7.7) interpolates between blue
and yellow, and will be useful in later examples.

ybRings = lerpI wavDist blueI yellowI

Exercise 7.3 Define functions bwIm and byIm that map regions into black-
and-white and blue-and-yellow images, respectively. �

Exercise 7.4 Express Figure 7.8 as image interpolation (lerpI ) of the examples
in Figures 7.5, 7.2, and 7.4. Since lerpI works on colour images, first colour
the rectangular and polar checkerboards with bwIm and byIm, respectively. �

Exercise 7.5 Define ‘colour-lifting’ functionals clift1, . . . , analogous to lift1, . . . ,
and use clift2 to simplify the definitions of lerpC and overC from Section 7.3.
�
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7.5 Spatial transforms

In computer graphics, spatial transforms are commonly represented by matri-
ces, and hence are restricted to special classes like linear, affine, or projective.
Application of transformations is implemented as a matrix/vector multiplica-
tion, and composition as matrix/matrix multiplication. In fact, this represen-
tation is so common that transforms are often thought of as being matrices.
A simpler and more general point of view, however, is that transforms are
simply space-to-space functions:

type Transform = Point → Point

It is then easy to define the familiar affine transforms:

type Vector = (Float, Float)

translateP :: Vector → Transform
translateP (dx,dy) (x,y) = (x + dx, y + dy)

scaleP :: Vector → Transform
scaleP (sx, sy) (x,y) = (sx × x, sy × y)

uscaleP :: Float → Transform — uniform
uscaleP s = scaleP (s, s)

rotateP :: Float → Transform
rotateP θ (x,y) = (x × cos θ − y × sin θ , y × cos θ + x × sin θ)

By definition, transforms map points to points. Can we ‘apply’ them, in
some sense, to map images into transformed images?

applyTrans :: Transform → Imageα → Imageα

A look at the definitions of the Image and Transform types suggests the fol-
lowing simple definition:

applyTrans xf im
?= im · xf — wrong

Figures 7.9 and 7.10 show a unit disk udisk and the result of udisk · uscaleP 2.

udisk :: Region
udisk p = distO p < 1

Notice that the uscaleP-composed udisk is half rather than twice the size of
udisk. (Similarly, udisk · translateP (1,0) moves udisk to the left rather than
right.) The reason is that uscaleP 2 maps input points to be twice as far from
the origin, so points have to start out within 1/2 unit of the origin in order for
their scaled counterparts to be within 1 unit.

In general, to transform an image, we must inversely transform sample
points before feeding them to the image being transformed:
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width = 3

Figure 7.9: udisk
width = 3

Figure 7.10: udisk · uscaleP 2

applyTrans xf im = im · xf −1

While this definition is simple and general, it has the serious problem of
requiring inversion of arbitrary spatial mappings. Not only is it sometimes
difficult to construct inverses, but also some interesting mappings are many-
to-one and hence not invertible. In fact, from an image-centric point-of-view,
we only need the inverses and not the transforms themselves. For these rea-
sons, we simply construct the transforms in inverted form, and do not use
applyTrans.7

Because it can be mentally cumbersome always to think of transforms as
functions and transform application as composition, Pan provides a friendly
vocabulary of image-transforming functions:

type Filter α = Imageα → Imageα

translate, scale :: Vector → Filter α
uscale, rotate :: Float → Filter α

translate (dx,dy) im = im · translateP (−dx,−dy)
scale (sx, sy) im = im · scaleP (1/sx,1/sy)
uscale s im = im · uscaleP (1/s)
rotate θ im = im · rotateP (−θ)
In addition to these familiar affine transforms, one can define any other

kind of space-to-space function, limited only by one’s imagination. For in-
stance, here is a ‘swirling’ transform. It takes each point p and rotates it about

7Easy invertibility is one of the benefits of restricting transforms to be affine and representing
them as matrices.
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width = 5

Figure 7.11: swirl 1 vstrip
duration = 2,width = 5

Figure 7.12: λt → swirl (t2) xPos

the origin by an amount that depends on the distance from p to the origin.
For predictability, this transform takes a parameter r that gives the distance
at which a point is rotated through a complete circle (2π radians):

swirlP :: Float → Transform
swirlP r p = rotate (distO p × 2π / r) p

swirl :: Float → Filter α — Image version
swirl r im = im · swirlP (−r)

Applying the swirl effect to vstrip (Figure 7.1) defined earlier results in an
infinite spiral whose arms thin out away from the origin (Figure 7.11).

It will be useful to have compact names for transformations of colour
images:

type FilterC = Filter Colour

7.6 Animation

Just as an image is a function of space, an animation is a function of continuous
time. This model leads to temporal resolution independence, which allows
animations to be transformed in time, as easily as images are transformed in
space.

type Time = Float
type Animα = Time → Imageα
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duration = 8,width = 1

Figure 7.13: radReg n for n = 0, . . . ,8
width = 2.5

Figure 7.14: wedgeAnnulus 0.25 7

As a simple animation example, Figure 7.12 shows what swirl does to the
half plane xPos given by x > 0. We square time to emphasise small and large
values of the swirl parameter.

xPos :: Region
xPos (x,y) = x > 0

This approach to animation is adopted from Fran. See [34, 36] for many
more examples.

7.7 Region algebra

Recall that ‘regions’ of 2D space are simply Boolean-valued images. Set opera-
tions on regions are useful and easy to define:

universeR, emptyR :: Region
compR :: Region → Region
(∩), (∪), xorR, (\) :: Region → Region → Region

universeR = const True
emptyR = const False

compR = lift1 not

(∩) = lift2 and
(∪) = lift2 or
xorR = lift1 (≠)
r \ r′ = r ∩ compR r ′
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width = 10

Figure 7.15: shiftXor 2.6 altRings
width = 7

Figure 7.16: xorgon 8 (7/4) altRings

Let’s see what we can do with these region operators. First, we’ll build an
annulus by subtracting one disk from another:

annulus :: Frac → Region
annulus inner = udisk \ uscale inner udisk

Next, we’ll make a region consisting of alternating infinite pie wedges (Fig-
ure 7.13, which is a simplification of Figure 7.4).

radReg :: Int → Region
radReg n = test · toPolar

where
test ( , θ) = even �θ × fromInt n / π�

Putting these two together, we get Figure 7.14.

wedgeAnnulus :: Float → Int → Region
wedgeAnnulus inner n = annulus inner ∩ radReg n

The xorR operator is useful for creating op art8. For instance, Figure 7.15
is made from two copies of altRings (Figure 7.3), shifted in opposite directions
and combined with xorR.

shiftXor :: Float → Filter Bool
shiftXor r reg = reg′ r ‘xorR‘ reg′ (−r)

8A mathematically oriented form of abstract art from the 1960s, using repetition of simple
forms to achieve the optical illusion of movement.



144 The Fun of Programming

width = 2.5

Figure 7.17: Exercise 7.9
width = 2.5

Figure 7.18: Exercise 7.9

where
reg′ d = translate (d,0) reg

Exercise 7.6 Generalise shiftXor to xorgon, distributing n copies of its given
region around a circle of radius r and xor-ing them all together (Figure 7.16).
�

Exercise 7.7 Redefine polarChecker (Figure 7.4) very simply by applying xorR
to altRings (Figure 7.3) and radReg (Figure 7.13): �

Exercise 7.8 Use xorR and a coordinate-swapping filter to redefine checker
(Figure 7.2) in terms of a region with alternating horizontal or vertical slabs. �

One use for regions is to crop a colour-valued image:

crop :: Region → FilterC
crop reg im = cond reg im empty

Exercise 7.9 Express Figures 7.17 and 7.18 in terms of wedgeAnnulus (Fig-
ure 7.14), ybRings (Figure 7.7), crop and swirl. �

7.8 Some polar transforms

The swirlP function (used to define swirl in Section 7.5) can be expressed in
terms of polar rather than rectangular coordinates
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width = 10

Figure 7.19: rippleRad 8 0.3 ybRings
width = 15

Figure 7.20: Exercise 7.10

swirlP r = polarXf (λ (ρ, θ) → (ρ, θ + ρ × 2π / r))

where the useful function polarXf is defined very simply:

polarXf :: Transform → Transform
polarXf xf = fromPolar · xf · toPolar

Note that θ changes under swirlP , but ρ does not.

Turning things inside out

Next, let’s consider a polar transform that changes ρ but not θ. Simply mul-
tiplying ρ by a constant is equivalent to uniform scaling (uscale). However,
inverting ρ has a striking effect (Figure 7.23):

radInvertP :: Transform
radInvertP = polarXf (λ (ρ, θ) → (1/ρ, θ))

radInvert :: Imageα → Imageα
radInvert im = im · radInvertP

Radial ripples

As another radial transformation, we can multiply ρ by an amount that oscil-
lates around 1 with a given magnitude s, having a given number n of periods
as θ varies from 0 to 2π .
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width = 10

Figure 7.21: Exercise 7.10
width = 15

Figure 7.22: Exercise 7.10

rippleRadP :: Int → Float → Transform
rippleRadP n s = polarXf $ λ (ρ, θ) →

(ρ × (1 + s× sin (fromInt n×θ)), θ)
rippleRad :: Int → Float → Imageα → Imageα
rippleRad n s im = im · rippleRadP n (−s)

In order to visualise the effect of rippleRad, apply it to ybRings (Figure 7.7).
The result is Figure 7.19.

The examples so far have been infinite in size. We can also make finite
ones by cropping against a region. As a convenience, we define cropRad as a
function that crops an image to a disk-shaped region of a given radius:

cropRad :: Float → FilterC
cropRad r = crop (uscale r udisk)

Exercise 7.10 Use rippleRad, cropRad, and possibly swirl to express Fig-
ures 7.20, 7.21 and 7.22. �

Circle limits

Figure 7.24 shows the result of squeezing the infinite checker image into
a finite disk. Note that the spatial transformation used is essentially one-
dimensional. It just moves a point closer or further from the origin, based
only on its given distance.
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width = 2.2

Figure 7.23: radInvert checker
width = 22

Figure 7.24: circleLimit 10 (bwIm checker)

circleLimit :: Float → FilterC
circleLimit radius im = cropRad radius (im · polarXf xf )

where
xf (ρ, θ) = (radius × ρ/(radius − ρ), θ)

7.9 Strange hybrids

Regions are useful for cropping images, as in cropRad above, but also for
pointwise selection, using cond (Section 7.4). For instance, cond xPos im im′

looks like im in its right half-space and like im in its left half-space.
To create more interesting images, transform the basic xPos region before

applying selection. For convenience in constructing examples, let’s define a
function to select between a girl (becky) and her cat (fraidy), based on a given
time-varying region:

hybrid :: Anim Bool → Anim Colour
hybrid f t = cond (f t) fraidy becky

Figures 7.25 through 7.27 show animations based on time-varying regions:

turningXPos t = rotate t xPos
swirlingXPos t = swirl (10 / sin t) xPos
roamingDiskt = uscale 30 (translate (cos t, sin (2× t)) udisk)
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duration = π,width = 120

Figure 7.25: hybrid turningXPos
duration = π,width = 120

Figure 7.26: hybrid swirlingXPos

Exercise 7.11 The cond function produces hard edges between the images
being combined. Use lerpI (Section 7.4) to define a softHybrid function that
shifts gradually from one image to the other. For example, Figure 7.28 shows
softHybrid (const (swirl 10 (wipe2 75))). �

7.10 Bitmaps

In order to work with digital photos, we must reconcile two differences be-
tween our ‘image’ notion and the various ‘bitmap’ formats that can be im-
ported.9 Pan images have infinite domain and are continuous, while bitmaps
are finite and discrete arrays, which we represent as dimensions and a sub-
scripting function:

data Array2 α = Array2 Int Int ((Int, Int) → α)

That is, the value Array2 n m f represents an array of n columns and m rows,
and the valid arguments of f (and hence indices of the array) are pairs (x, y)
with 0 � x < n and 0 � y <m.

Rather than creating and storing an actual array of colours, each repre-
sented as a quadruple of floating point numbers, conversion from the file
representation (typically 1, 8, 16, or 24 bits per pixel) is done on-the-fly during
‘subscripting’. The details depend on the particular format. This flexibility is
exactly why we chose to use subscripting functions rather than a more concrete
representation.

The heart of the conversion from bitmaps to images is captured in the
reconstruct function defined below. Sample points outside of the array’s rect-
angular region are mapped to the invisible colour. Inner points generally do
not map to one of the discrete set of pixel locations, so some kind of filtering
is needed. For simplicity with reasonably good results, Pan uses bilinear in-
terpolation (using the function bilerpC, as defined in Section 7.3) to calculate

9Somewhat misleadingly, the term ‘bitmap’ is often used to refer not only to monochrome
(1-bit) formats, but to colour ones as well.
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duration = π,width = 120

Figure 7.27: hybrid roamingDisk

width = 120

Figure 7.28: Exercise 7.11

a weighted average of the four nearest neighbours. That is, given any sample
point p, we find the four pixels nearest to p and bilerp their four colours, using
the position of p relative to the four pixels to determine the weights. (Note
that wx and wy in the definition below are fractions.)

bilerpArray2 :: ((Int, Int) → Colour) → ImageC
bilerpArray2 sub (x,y) =

let
i = �x�; wx = x − fromInt i
j = �y�; wy = y − fromInt j

in
bilerpC (sub (i, j )) (sub (i + 1, j ))

(sub (i, j + 1)) (sub (i + 1, j + 1))
(wx,wy)

Finally, we define reconstruction of a bitmap into an infinite extent image.
The reconstructed bitmap will be given by bilerpArray2 inside the array’s spa-
tial region, and empty (transparent) outside. For convenience, the region is
centred at the origin:

reconstruct :: Array2 Colour → ImageC
reconstruct (Array2 w h sub) =

move (− fromInt w / 2,− fromInt h / 2)
(crop (inBounds w h) (bilerpArray2 sub))

The function inBounds takes the array bounds (width w and height h), and
checks whether a point falls within the given array bounds:
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inBounds :: Int → Int → Region
inBounds w h (x,y) = 0 � x ∧ x � fromInt (w − 1) ∧

0 � y ∧ y � fromInt (h− 1)

7.11 Chapter notes

This examples in this chapter represent just a hint at what can be done, and
are far from exhaustive, or even necessarily representative. I hope that readers
are inspired to apply their own creativity to generate images and animations
that look very different from mine.

I am grateful to Sigbjørn Finne and Oege de Moor for their collaboration
on the implementation of Pan and for many fruitful discussions.

Jerzy Karczmarczuk independently developed a ‘texture generation’ sys-
tem called Clastic [79] based on the same essential insights as in Pan. He went
on to create images based on weaving, noise, solid textures, and tesselation.

Peter Henderson began the game of functional geometry for image syn-
thesis [52]. Since then there have been several other such libraries [87, 140, 7,
1, 38, 36]. Many or all of these libraries are based on a spatially continuous
model, but unlike Pan, none has addressed the general notion of images. A
similar remark applies to the various ‘vector-based’ 2D APIs and file formats.

Gerard Holzmann developed a system called ‘Pico’, which consisted of
an editor, a simple language for image transformations, and a machine code
generator for fast display. His delightful book shows many examples, using
photos of Bell Labs employees [57]. Pico’s model of images was the discrete
rectangular array of bytes, which could be interpreted as grey-scale values or
other scalar fields. The host language appears to have been very primitive,
with essentially no abstraction mechanisms.

John Maeda’s ‘Design by Numbers’ (DBN) is another language aimed at
simplifying image synthesis, sharing with Pan the goals of simplicity and en-
couragement of creative exploration [90]. In contrast, the DBN language is
squarely in the imperative style (doing rather than being). Its programs are
lists of commands for outputting dots or line segments and changing internal
state, with an image emerging as the cumulative result. Like Pico, DBN presents
a discrete notion of space, partitioned into a finite array of square pixels.

The Haskell ‘region server’ [63] used characteristic functions to represent
regions, in essentially the same formulation as Pan (Section 7.7). Those re-
gions were not used for visualisation, nor were they generalised to range types
other than Boolean. Paul Hudak also used regions for graphics [61]. There
an algebraic data type represents regions, but an interpretation (semantics) is
given by translating to a function from 2D space to Booleans.

In his work on evolution for computer graphics, Karl Sims represented
images as Lisp expressions over variables with names x, y, and t (adding z
for solid textures) [118]. He did not exploit Lisp’s support for higher-order
functional programming in composing image functions.
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