
The Fun of Programming

Edited by

Jeremy Gibbons and Oege de Moor

Contents

Preface vii

1 Fun with binary heap trees 1
Chris Okasaki
1.1 Binary heap trees 1
1.2 Maxiphobic heaps 4
1.3 Persistence 6
1.4 Round-robin heaps 7
1.5 Analysis of skew heaps 10
1.6 Lazy evaluation 12
1.7 Analysis of lazy skew heaps 15
1.8 Chapter notes 16

2 Specification-based testing with QuickCheck 17
Koen Claessen and John Hughes
2.1 Introduction 17
2.2 Properties in QuickCheck 18
2.3 Example: Developing an abstract data type of queues 20
2.4 Quantifying over subsets of types 25
2.5 Test coverage 30
2.6 A larger case study 32
2.7 Conclusions 39
2.8 Acknowledgements 39

3 Origami programming 41
Jeremy Gibbons
3.1 Introduction 41
3.2 Origami with lists: sorting 42
3.3 Origami by numbers: loops 49
3.4 Origami with trees: traversals 52
3.5 Other sorts of origami 56
3.6 Chapter notes 60

iv

4 Describing and interpreting music in Haskell 61
Paul Hudak
4.1 Introduction 61
4.2 Representing music 61
4.3 Operations on musical structures 67
4.4 The meaning of music 70
4.5 Discussion 78

5 Mechanising fusion 79
Ganesh Sittampalam and Oege de Moor
5.1 Active source 79
5.2 Fusion, rewriting and matching 85
5.3 The MAG system 89
5.4 A substantial example 98
5.5 Difficulties 101
5.6 Chapter notes 103

6 How to write a financial contract 105
Simon Peyton Jones and Jean-Marc Eber
6.1 Introduction 105
6.2 Getting started 106
6.3 Building contracts 108
6.4 Valuation 116
6.5 Implementation 123
6.6 Operational semantics 127
6.7 Chapter notes 128

7 Functional images 131
Conal Elliott
7.1 Introduction 131
7.2 What is an image? 132
7.3 Colours 135
7.4 Pointwise lifting 137
7.5 Spatial transforms 139
7.6 Animation 141
7.7 Region algebra 142
7.8 Some polar transforms 144
7.9 Strange hybrids 147
7.10 Bitmaps 148
7.11 Chapter notes 150

8 Functional hardware description in Lava 151
Koen Claessen, Mary Sheeran and Satnam Singh
8.1 Introduction 151
8.2 Circuits in Lava 152
8.3 Recursion over lists 153

v

8.4 Connection patterns 155
8.5 Properties of circuits 157
8.6 Sequential circuits 160
8.7 Describing butterfly circuits 162
8.8 Batcher’s mergers and sorters 166
8.9 Generating FPGA configurations 170
8.10 Chapter notes 175

9 Combinators for logic programming 177
Michael Spivey and Silvija Seres
9.1 Introduction 177
9.2 Lists of successes 178
9.3 Monads for searching 179
9.4 Filtering with conditions 182
9.5 Breadth-first search 184
9.6 Lifting programs to the monad level 187
9.7 Terms, substitutions and predicates 188
9.8 Combinators for logic programs 191
9.9 Recursive programs 193

10 Arrows and computation 201
Ross Paterson
10.1 Notions of computation 201
10.2 Special cases 208
10.3 Arrow notation 213
10.4 Examples 216
10.5 Chapter notes 222

11 A prettier printer 223
Philip Wadler
11.1 Introduction 223
11.2 A simple pretty printer 224
11.3 A pretty printer with alternative layouts 228
11.4 Improving efficiency 233
11.5 Examples 236
11.6 Chapter notes 238
11.7 Code 240

12 Fun with phantom types 245
Ralf Hinze
12.1 Introducing phantom types 245
12.2 Generic functions 248
12.3 Dynamic values 250
12.4 Generic traversals and queries 252
12.5 Normalisation by evaluation 255
12.6 Functional unparsing 257

vi

12.7 A type equality type 259
12.8 Chapter notes 262

Bibliography 263

Index 273

Functional images
Conal Elliott

7

7.1 Introduction

Functional programming offers its practitioners a sense of beauty of expres-
sion. It is a joy to express our ideas with simplicity and generality and then
compose them in endless variety. Software used to produce visual beauty,
on the other hand, is usually created with imperative languages and generally
lacks the sort of ‘inner beauty’ that we value. When occasionally one gets to
combine these two kinds of beauty, the process, and sometimes the result, is
a great pleasure. This chapter describes one such combination in an attempt
to share this pleasure and inspire others to join in the exploration.

Computer-generated images are often constructed from an underlying
‘geometric’ model, composed of lines, curves, polygons in 2D, or illuminated
and textured curved or polyhedral surfaces in 3D. Just as images are often
presentations of geometric models, so also are geometric models often pre-
sentations of more specialised or abstract models, such as text (presented via
outline fonts) or financial data (presented via pie charts).

The distinction between geometry and image, and more generally, be-
tween model and presentation [34], is very valuable, in that it allows one to
concentrate on the underlying model and rely on a library to take care of
presentation. This focus makes it easier to describe images (for example, via
a set of curve control points or a text string), while narrowing the range of
describable images. What about the general notion of ‘image’?

Functional languages are particularly good at the model-oriented approach
to image generation, thanks to their excellent support for modularity. Fortu-
nately, as illustrated in this chapter, the general notion of images may be
modelled directly and effectively as functions from a 2-dimensional domain to
colours. This formulation is especially elegant when the 2D domain is contin-
uous, non-rectangular and possibly of infinite extent. Adding another dimen-
sion for (continuous) time is just as easy, yielding temporally and spatially
scalable image-based animation.

This chapter explores the very simple notion of images as functions in a
Haskell library — a ‘domain-specific embedded language’ (DSEL) [60] — called

132 The Fun of Programming

Pan. It presents the types and operations that make up Pan, and illustrates
their use through a collection of examples. Some of the examples are synthe-
sised from mathematical descriptions, while others are image-transforming
‘filters’ that can be applied to photographs or synthetic images. For more ex-
amples, including colour and animations, see the example gallery at this book’s
supporting web site; the implementation is freely available for downloading
from there.

As is often the case with DSELs, some properties of the functional host
language turn out to be quite useful in practice. Firstly, higher-order functions
are essential, since images are functions. Parametric polymorphism allows im-
ages whose ‘pixels’ are of any type at all, with some image operations being
polymorphic over pixel type. Aside from colour-valued images, boolean im-
ages can serve as a general notion of ‘regions’ for image masking or selection,
and real-valued images can represent 3D height fields or spatially varying pa-
rameters for colour generation. Dually, some operations are polymorphic in
the domain rather than the range type. These operations might be used to
construct ‘solid textures’, which are used in 3D graphics to give realistic ap-
pearance to simulated clouds, stone and wood. So far, laziness has not been
necessary, so translation to a strict functional language should be straightfor-
ward and satisfactory.

For efficiency, Pan is implemented as a compiler [35].1 It fuses the code
fragments used in constructing an image as well as the display function it-
self, performs algebraic simplification, common-subexpression elimination
and code hoisting, and produces C code, which is then given to an optimising
compiler.

7.2 What is an image?

Pan’s model of images is simply functions from infinite, continuous 2D space
to colours with partial opacity. (Although the domain space is infinite, some
images are transparent everywhere outside of a bounding region.) One might
express the definition of images as follows:2

type Image = Point → Colour

where Point is the type of Cartesian coordinates:

type Point = (Float, Float)

1At the time of writing, running the Pan compiler requires having the Microsoft C++ compiler.
2As described elsewhere [35], the implementation really uses ‘expression types’ with names

like FloatE instead of Float, in order to optimise and compile Pan programs into efficient
machine code. Operators and functions are overloaded to work on expression types where
necessary, but a few require special names, such as ‘==∗’ and ‘notE ’. The definitions used in
this chapter could, however, be used directly as a valid but less efficient implementation. For
conciseness, this chapter uses some standard mathematical notation for functions like absolute
value, floor, and square root.

7 Functional images 133

It is useful, however, to generalise the semantic model of images so that the
range of an image is not necessarily Colour , but an arbitrary type. For this
reason, Image is really a type constructor :

type Imageα = Point → α

It can also be useful to generalise the domain of images, from points in
2D space to other types (such as 3D space or points with integer coordinates).
Boolean-valued ‘images’ are useful for representing arbitrarily complex spatial
regions (or ‘point sets’) for complex image masking. This interpretation is just
the usual identification between sets and characteristic functions:

type Region = Image Bool

As a first example, Figure 7.1 shows an infinitely tall vertical strip of unit
width, vstrip, as defined below.3

vstrip :: Region
vstrip (x,y) = |x| � 1/2

For a slightly more complex example, consider the checkered region shown
in Figure 7.2. The trick is to take the floor of the pixel coordinates and test
whether the sum is even or odd. Whenever x or y passes an integer value, the
parity of �x� + �y� changes.

checker :: Region
checker (x,y) = even (�x� + �y�)

Images need not have straight edges and right angles. Figure 7.3 shows
a collection of concentric black and white rings. The definition is similar to
checker , but uses the distance from the origin to a given point, as computed
by distO.

altRings p = even �distO p�

The distance-to-origin function is also easy to define:

distO (x,y) =
√

x2 + y2

It is often more convenient to define images using polar coordinates (ρ,θ)
(where ρ is the distance from the origin, and θ is the angle between the positive
X axis and the ray emanating from the origin and passing through p), rather
than rectangular coordinates (x,y).

type PolarPoint = (Float, Float)
3Each figure shows an origin-centred finite window onto an infinite image and is annotated

with the width of the window in logical coordinates. For instance, Figure 7.1 shows the window
[−7/2,7/2]× [−7/2,7/2] onto the infinite vstrip image.

134 The Fun of Programming

width = 7

Figure 7.1: vstrip
width = 7

Figure 7.2: checker

The following definitions are helpful for converting between polar and rectan-
gular coordinates.

fromPolar :: PolarPoint → Point
fromPolar (ρ, θ) = (ρ × cos θ,ρ × sin θ)
toPolar :: Point → PolarPoint
toPolar (x,y) = (distO (x, y),atan2 y x)

Figure 7.4 shows a ‘polar checkerboard’, defined using polar coordinates.
The integer parameter n determines the number of alternations, and hence is
twice the number of slices.4 (We will see a simpler definition of polarChecker
in Section 7.7.)

polarChecker :: Int → Region
polarChecker n = checker · sc · toPolar

where
sc (ρ, θ) = (ρ, θ × fromInt n/π)

For grey-scale images, we can use as ‘pixel’ values in the real interval [0,1].
This constraint is not expressible in Haskell’s type system, but as a reminder,
we introduce the type synonym Frac:

type Frac = Float

Figure 7.5 shows a wavy grey-scale image that shifts smoothly between white
(zero) and black (one) in concentric rings.

4fromInt turns an integer into some other type, here Float.

7 Functional images 135

width = 10

Figure 7.3: altRings
width = 10

Figure 7.4: polarChecker 10

wavDist :: Image Frac
wavDist p = (1 + cos (π × distO p)) / 2

7.3 Colours

Pan colours are quadruples of real numbers in [0,1], with the first three com-
ponents for blue, green, and red (BGR) components, and the last for trans-
parency (‘alpha’):

type Colour = (Frac, Frac, Frac, Frac) — BGRA

The blue, green, and red components will have alpha multiplied in already,
and so must be less than or equal to alpha (according to the convention of
‘pre-multiplied alpha’ [121]). Given this constraint, there is exactly one fully
transparent colour:

invisible = (0,0,0,0)

We are now in a position to define some familiar (completely opaque)
colours:

red = (0,0,1,1)
green = (0,1,0,1)
. . .

136 The Fun of Programming

width = 10

Figure 7.5: wavDist
width = 1

Figure 7.6: bilerpC black red blue white

It is often useful to interpolate (‘lerp’) between colours, to create a smooth
transition through space or time. This is the purpose of lerpC w c1 c2. The
first parameter w is a fraction, indicating the relative weight of the colour c1.
The weight assigned to the second colour c2 is 1−w:

lerpC :: Frac → Colour → Colour → Colour
lerpC w (b1,g1, r1,a1) (b2,g2, r2,a2) = (h b1 b2,h g1 g2,h r1 r2,h a1 a2)

where
h x1 x2 = w × x1 + (1 − w) × x2

Exercise 7.1 Use lerpC to define functions that lighten, darken, and fade (to-
ward invisibility) colours by fractional amounts. �

Exercise 7.2 Extend lerpC to a function bilerpC that interpolates among four
colours in two dimensions. (Hint: make three applications of lerpC.) See
Figure 7.6, which is centred at (1/2,1/2) rather than the origin. �

An operation similar to lerpC is colour overlay, which will be used in the
next section to define image overlay. The result is a blend of the two colours,
depending on the opacity of the top (first) colour. A full discussion of this
definition can be found in [121]:

(b1,g1, r1,a1) ‘overC ‘ (b2,g2, r2,a2) = (h b1 b2,h g1 g2,h r1 r2,h a1 a2)
where

h x1 x2 = x1 + (1 − a1) × x2

7 Functional images 137

Not surprisingly, colour-valued images are of particular interest, so let us
use a convenient abbreviation:

type ImageC = Image Colour

7.4 Pointwise lifting

Many image operations result from pointwise application of operations on one
or more values. For example, the overlay of one image on top of another can
be defined in terms of overC:

over :: ImageC → ImageC → ImageC
(top ‘over ‘ bot) p = top p ‘overC ‘ bot p

This commonly arising pattern is supported by a family of ‘lifting’ func-
tionals:5

lift1 :: (α→β) → (p→α) → (p→β)
lift2 :: (α→β→γ) → (p→α) → (p→β) → (p→γ)
lift3 :: (α→β→γ→δ) → (p→α) → (p→β) → (p→γ) → (p→δ)
lift1 h f1 p = h (f1 p)
lift2 h f1 f2 p = h (f1 p) (f2 p)
lift3 h f1 f2 f3 p = h (f1 p) (f2 p) (f3 p)

Then over = lift2 overC. Other examples of pointwise lifting include selection
(cond) and interpolation (lerpI) between two images:6

cond :: Image Bool → Imageα → Imageα → Imageα
cond = lift3 (λ a b c → if a then b else c)

lerpI :: Image Frac → ImageC → ImageC → ImageC
lerpI = lift3 lerpC

Nullary lifting is already provided by Haskell’s const function:

const :: α → (p → α)
const a p = a

Given const, we can define the empty image and give convenient names to
several opaque, constant-colour images:

empty = const invisible
whiteI = const white

5For intuition, think of p as Point, so that p → α = Image α and similarly for β, γ, δ.
6In a call-by-value language, cond would need to be defined differently in order to avoid

unnecessary evaluation.

138 The Fun of Programming

width = 10

Figure 7.7: ybRings
width = 7

Figure 7.8: Exercise 7.4

blackI = const black
redI = const red
. . .

Note that all pointwise-lifted functions are polymorphic over the domain
type (not necessarily Point), and so could work for 1D images (for example,
interpreted as sound), 3D images (sometimes called ‘solid textures’), or ones
over discrete or abstract domains as well.

The image defined below (shown in Figure 7.7) interpolates between blue
and yellow, and will be useful in later examples.

ybRings = lerpI wavDist blueI yellowI

Exercise 7.3 Define functions bwIm and byIm that map regions into black-
and-white and blue-and-yellow images, respectively. �

Exercise 7.4 Express Figure 7.8 as image interpolation (lerpI) of the examples
in Figures 7.5, 7.2, and 7.4. Since lerpI works on colour images, first colour
the rectangular and polar checkerboards with bwIm and byIm, respectively. �

Exercise 7.5 Define ‘colour-lifting’ functionals clift1, . . . , analogous to lift1, . . . ,
and use clift2 to simplify the definitions of lerpC and overC from Section 7.3.
�

7 Functional images 139

7.5 Spatial transforms

In computer graphics, spatial transforms are commonly represented by matri-
ces, and hence are restricted to special classes like linear, affine, or projective.
Application of transformations is implemented as a matrix/vector multiplica-
tion, and composition as matrix/matrix multiplication. In fact, this represen-
tation is so common that transforms are often thought of as being matrices.
A simpler and more general point of view, however, is that transforms are
simply space-to-space functions:

type Transform = Point → Point

It is then easy to define the familiar affine transforms:

type Vector = (Float, Float)

translateP :: Vector → Transform
translateP (dx,dy) (x,y) = (x + dx, y + dy)

scaleP :: Vector → Transform
scaleP (sx, sy) (x,y) = (sx × x, sy × y)

uscaleP :: Float → Transform — uniform
uscaleP s = scaleP (s, s)

rotateP :: Float → Transform
rotateP θ (x,y) = (x × cos θ − y × sin θ , y × cos θ + x × sin θ)

By definition, transforms map points to points. Can we ‘apply’ them, in
some sense, to map images into transformed images?

applyTrans :: Transform → Imageα → Imageα

A look at the definitions of the Image and Transform types suggests the fol-
lowing simple definition:

applyTrans xf im
?= im · xf — wrong

Figures 7.9 and 7.10 show a unit disk udisk and the result of udisk · uscaleP 2.

udisk :: Region
udisk p = distO p < 1

Notice that the uscaleP-composed udisk is half rather than twice the size of
udisk. (Similarly, udisk · translateP (1,0) moves udisk to the left rather than
right.) The reason is that uscaleP 2 maps input points to be twice as far from
the origin, so points have to start out within 1/2 unit of the origin in order for
their scaled counterparts to be within 1 unit.

In general, to transform an image, we must inversely transform sample
points before feeding them to the image being transformed:

140 The Fun of Programming

width = 3

Figure 7.9: udisk
width = 3

Figure 7.10: udisk · uscaleP 2

applyTrans xf im = im · xf −1

While this definition is simple and general, it has the serious problem of
requiring inversion of arbitrary spatial mappings. Not only is it sometimes
difficult to construct inverses, but also some interesting mappings are many-
to-one and hence not invertible. In fact, from an image-centric point-of-view,
we only need the inverses and not the transforms themselves. For these rea-
sons, we simply construct the transforms in inverted form, and do not use
applyTrans.7

Because it can be mentally cumbersome always to think of transforms as
functions and transform application as composition, Pan provides a friendly
vocabulary of image-transforming functions:

type Filter α = Imageα → Imageα

translate, scale :: Vector → Filter α
uscale, rotate :: Float → Filter α

translate (dx,dy) im = im · translateP (−dx,−dy)
scale (sx, sy) im = im · scaleP (1/sx,1/sy)
uscale s im = im · uscaleP (1/s)
rotate θ im = im · rotateP (−θ)
In addition to these familiar affine transforms, one can define any other

kind of space-to-space function, limited only by one’s imagination. For in-
stance, here is a ‘swirling’ transform. It takes each point p and rotates it about

7Easy invertibility is one of the benefits of restricting transforms to be affine and representing
them as matrices.

7 Functional images 141

width = 5

Figure 7.11: swirl 1 vstrip
duration = 2,width = 5

Figure 7.12: λt → swirl (t2) xPos

the origin by an amount that depends on the distance from p to the origin.
For predictability, this transform takes a parameter r that gives the distance
at which a point is rotated through a complete circle (2π radians):

swirlP :: Float → Transform
swirlP r p = rotate (distO p × 2π / r) p

swirl :: Float → Filter α — Image version
swirl r im = im · swirlP (−r)

Applying the swirl effect to vstrip (Figure 7.1) defined earlier results in an
infinite spiral whose arms thin out away from the origin (Figure 7.11).

It will be useful to have compact names for transformations of colour
images:

type FilterC = Filter Colour

7.6 Animation

Just as an image is a function of space, an animation is a function of continuous
time. This model leads to temporal resolution independence, which allows
animations to be transformed in time, as easily as images are transformed in
space.

type Time = Float
type Animα = Time → Imageα

142 The Fun of Programming

duration = 8,width = 1

Figure 7.13: radReg n for n = 0, . . . ,8
width = 2.5

Figure 7.14: wedgeAnnulus 0.25 7

As a simple animation example, Figure 7.12 shows what swirl does to the
half plane xPos given by x > 0. We square time to emphasise small and large
values of the swirl parameter.

xPos :: Region
xPos (x,y) = x > 0

This approach to animation is adopted from Fran. See [34, 36] for many
more examples.

7.7 Region algebra

Recall that ‘regions’ of 2D space are simply Boolean-valued images. Set opera-
tions on regions are useful and easy to define:

universeR, emptyR :: Region
compR :: Region → Region
(∩), (∪), xorR, (\) :: Region → Region → Region

universeR = const True
emptyR = const False

compR = lift1 not

(∩) = lift2 and
(∪) = lift2 or
xorR = lift1 (≠)
r \ r′ = r ∩ compR r ′

7 Functional images 143

width = 10

Figure 7.15: shiftXor 2.6 altRings
width = 7

Figure 7.16: xorgon 8 (7/4) altRings

Let’s see what we can do with these region operators. First, we’ll build an
annulus by subtracting one disk from another:

annulus :: Frac → Region
annulus inner = udisk \ uscale inner udisk

Next, we’ll make a region consisting of alternating infinite pie wedges (Fig-
ure 7.13, which is a simplification of Figure 7.4).

radReg :: Int → Region
radReg n = test · toPolar

where
test (, θ) = even �θ × fromInt n / π�

Putting these two together, we get Figure 7.14.

wedgeAnnulus :: Float → Int → Region
wedgeAnnulus inner n = annulus inner ∩ radReg n

The xorR operator is useful for creating op art8. For instance, Figure 7.15
is made from two copies of altRings (Figure 7.3), shifted in opposite directions
and combined with xorR.

shiftXor :: Float → Filter Bool
shiftXor r reg = reg′ r ‘xorR‘ reg′ (−r)

8A mathematically oriented form of abstract art from the 1960s, using repetition of simple
forms to achieve the optical illusion of movement.

144 The Fun of Programming

width = 2.5

Figure 7.17: Exercise 7.9
width = 2.5

Figure 7.18: Exercise 7.9

where
reg′ d = translate (d,0) reg

Exercise 7.6 Generalise shiftXor to xorgon, distributing n copies of its given
region around a circle of radius r and xor-ing them all together (Figure 7.16).
�

Exercise 7.7 Redefine polarChecker (Figure 7.4) very simply by applying xorR
to altRings (Figure 7.3) and radReg (Figure 7.13): �

Exercise 7.8 Use xorR and a coordinate-swapping filter to redefine checker
(Figure 7.2) in terms of a region with alternating horizontal or vertical slabs. �

One use for regions is to crop a colour-valued image:

crop :: Region → FilterC
crop reg im = cond reg im empty

Exercise 7.9 Express Figures 7.17 and 7.18 in terms of wedgeAnnulus (Fig-
ure 7.14), ybRings (Figure 7.7), crop and swirl. �

7.8 Some polar transforms

The swirlP function (used to define swirl in Section 7.5) can be expressed in
terms of polar rather than rectangular coordinates

7 Functional images 145

width = 10

Figure 7.19: rippleRad 8 0.3 ybRings
width = 15

Figure 7.20: Exercise 7.10

swirlP r = polarXf (λ (ρ, θ) → (ρ, θ + ρ × 2π / r))

where the useful function polarXf is defined very simply:

polarXf :: Transform → Transform
polarXf xf = fromPolar · xf · toPolar

Note that θ changes under swirlP , but ρ does not.

Turning things inside out

Next, let’s consider a polar transform that changes ρ but not θ. Simply mul-
tiplying ρ by a constant is equivalent to uniform scaling (uscale). However,
inverting ρ has a striking effect (Figure 7.23):

radInvertP :: Transform
radInvertP = polarXf (λ (ρ, θ) → (1/ρ, θ))

radInvert :: Imageα → Imageα
radInvert im = im · radInvertP

Radial ripples

As another radial transformation, we can multiply ρ by an amount that oscil-
lates around 1 with a given magnitude s, having a given number n of periods
as θ varies from 0 to 2π .

146 The Fun of Programming

width = 10

Figure 7.21: Exercise 7.10
width = 15

Figure 7.22: Exercise 7.10

rippleRadP :: Int → Float → Transform
rippleRadP n s = polarXf $ λ (ρ, θ) →

(ρ × (1 + s× sin (fromInt n×θ)), θ)
rippleRad :: Int → Float → Imageα → Imageα
rippleRad n s im = im · rippleRadP n (−s)

In order to visualise the effect of rippleRad, apply it to ybRings (Figure 7.7).
The result is Figure 7.19.

The examples so far have been infinite in size. We can also make finite
ones by cropping against a region. As a convenience, we define cropRad as a
function that crops an image to a disk-shaped region of a given radius:

cropRad :: Float → FilterC
cropRad r = crop (uscale r udisk)

Exercise 7.10 Use rippleRad, cropRad, and possibly swirl to express Fig-
ures 7.20, 7.21 and 7.22. �

Circle limits

Figure 7.24 shows the result of squeezing the infinite checker image into
a finite disk. Note that the spatial transformation used is essentially one-
dimensional. It just moves a point closer or further from the origin, based
only on its given distance.

7 Functional images 147

width = 2.2

Figure 7.23: radInvert checker
width = 22

Figure 7.24: circleLimit 10 (bwIm checker)

circleLimit :: Float → FilterC
circleLimit radius im = cropRad radius (im · polarXf xf)

where
xf (ρ, θ) = (radius × ρ/(radius − ρ), θ)

7.9 Strange hybrids

Regions are useful for cropping images, as in cropRad above, but also for
pointwise selection, using cond (Section 7.4). For instance, cond xPos im im′

looks like im in its right half-space and like im in its left half-space.
To create more interesting images, transform the basic xPos region before

applying selection. For convenience in constructing examples, let’s define a
function to select between a girl (becky) and her cat (fraidy), based on a given
time-varying region:

hybrid :: Anim Bool → Anim Colour
hybrid f t = cond (f t) fraidy becky

Figures 7.25 through 7.27 show animations based on time-varying regions:

turningXPos t = rotate t xPos
swirlingXPos t = swirl (10 / sin t) xPos
roamingDiskt = uscale 30 (translate (cos t, sin (2× t)) udisk)

148 The Fun of Programming

duration = π,width = 120

Figure 7.25: hybrid turningXPos
duration = π,width = 120

Figure 7.26: hybrid swirlingXPos

Exercise 7.11 The cond function produces hard edges between the images
being combined. Use lerpI (Section 7.4) to define a softHybrid function that
shifts gradually from one image to the other. For example, Figure 7.28 shows
softHybrid (const (swirl 10 (wipe2 75))). �

7.10 Bitmaps

In order to work with digital photos, we must reconcile two differences be-
tween our ‘image’ notion and the various ‘bitmap’ formats that can be im-
ported.9 Pan images have infinite domain and are continuous, while bitmaps
are finite and discrete arrays, which we represent as dimensions and a sub-
scripting function:

data Array2 α = Array2 Int Int ((Int, Int) → α)

That is, the value Array2 n m f represents an array of n columns and m rows,
and the valid arguments of f (and hence indices of the array) are pairs (x, y)
with 0 � x < n and 0 � y <m.

Rather than creating and storing an actual array of colours, each repre-
sented as a quadruple of floating point numbers, conversion from the file
representation (typically 1, 8, 16, or 24 bits per pixel) is done on-the-fly during
‘subscripting’. The details depend on the particular format. This flexibility is
exactly why we chose to use subscripting functions rather than a more concrete
representation.

The heart of the conversion from bitmaps to images is captured in the
reconstruct function defined below. Sample points outside of the array’s rect-
angular region are mapped to the invisible colour. Inner points generally do
not map to one of the discrete set of pixel locations, so some kind of filtering
is needed. For simplicity with reasonably good results, Pan uses bilinear in-
terpolation (using the function bilerpC, as defined in Section 7.3) to calculate

9Somewhat misleadingly, the term ‘bitmap’ is often used to refer not only to monochrome
(1-bit) formats, but to colour ones as well.

7 Functional images 149

duration = π,width = 120

Figure 7.27: hybrid roamingDisk

width = 120

Figure 7.28: Exercise 7.11

a weighted average of the four nearest neighbours. That is, given any sample
point p, we find the four pixels nearest to p and bilerp their four colours, using
the position of p relative to the four pixels to determine the weights. (Note
that wx and wy in the definition below are fractions.)

bilerpArray2 :: ((Int, Int) → Colour) → ImageC
bilerpArray2 sub (x,y) =

let
i = �x�; wx = x − fromInt i
j = �y�; wy = y − fromInt j

in
bilerpC (sub (i, j)) (sub (i + 1, j))

(sub (i, j + 1)) (sub (i + 1, j + 1))
(wx,wy)

Finally, we define reconstruction of a bitmap into an infinite extent image.
The reconstructed bitmap will be given by bilerpArray2 inside the array’s spa-
tial region, and empty (transparent) outside. For convenience, the region is
centred at the origin:

reconstruct :: Array2 Colour → ImageC
reconstruct (Array2 w h sub) =

move (− fromInt w / 2,− fromInt h / 2)
(crop (inBounds w h) (bilerpArray2 sub))

The function inBounds takes the array bounds (width w and height h), and
checks whether a point falls within the given array bounds:

150 The Fun of Programming

inBounds :: Int → Int → Region
inBounds w h (x,y) = 0 � x ∧ x � fromInt (w − 1) ∧

0 � y ∧ y � fromInt (h− 1)

7.11 Chapter notes

This examples in this chapter represent just a hint at what can be done, and
are far from exhaustive, or even necessarily representative. I hope that readers
are inspired to apply their own creativity to generate images and animations
that look very different from mine.

I am grateful to Sigbjørn Finne and Oege de Moor for their collaboration
on the implementation of Pan and for many fruitful discussions.

Jerzy Karczmarczuk independently developed a ‘texture generation’ sys-
tem called Clastic [79] based on the same essential insights as in Pan. He went
on to create images based on weaving, noise, solid textures, and tesselation.

Peter Henderson began the game of functional geometry for image syn-
thesis [52]. Since then there have been several other such libraries [87, 140, 7,
1, 38, 36]. Many or all of these libraries are based on a spatially continuous
model, but unlike Pan, none has addressed the general notion of images. A
similar remark applies to the various ‘vector-based’ 2D APIs and file formats.

Gerard Holzmann developed a system called ‘Pico’, which consisted of
an editor, a simple language for image transformations, and a machine code
generator for fast display. His delightful book shows many examples, using
photos of Bell Labs employees [57]. Pico’s model of images was the discrete
rectangular array of bytes, which could be interpreted as grey-scale values or
other scalar fields. The host language appears to have been very primitive,
with essentially no abstraction mechanisms.

John Maeda’s ‘Design by Numbers’ (DBN) is another language aimed at
simplifying image synthesis, sharing with Pan the goals of simplicity and en-
couragement of creative exploration [90]. In contrast, the DBN language is
squarely in the imperative style (doing rather than being). Its programs are
lists of commands for outputting dots or line segments and changing internal
state, with an image emerging as the cumulative result. Like Pico, DBN presents
a discrete notion of space, partitioned into a finite array of square pixels.

The Haskell ‘region server’ [63] used characteristic functions to represent
regions, in essentially the same formulation as Pan (Section 7.7). Those re-
gions were not used for visualisation, nor were they generalised to range types
other than Boolean. Paul Hudak also used regions for graphics [61]. There
an algebraic data type represents regions, but an interpretation (semantics) is
given by translating to a function from 2D space to Booleans.

In his work on evolution for computer graphics, Karl Sims represented
images as Lisp expressions over variables with names x, y, and t (adding z
for solid textures) [118]. He did not exploit Lisp’s support for higher-order
functional programming in composing image functions.

Bibliography

[1] Kavi Arya. A functional animation starter-kit. Journal of Functional
Programming, 4(1):1–18, January 1994.

[2] Lex Augusteijn. Sorting morphisms. In S. D. Swierstra, P. R. Henriques,
and J. N. Oliveira, editors, Advanced Functional Programming, volume
1608 of Lecture Notes in Computer Science, pages 1–27.
Springer-Verlag, 1999.

[3] Lennart Augustsson. Cayenne: A language with dependent types.
SIGPLAN Notices, 34(1):239–250, January 1999.

[4] Franz Baader and Tobias Nipkow. Term Rewriting and All That.
Cambridge University Press, 1998.

[5] Roland Backhouse, Patrik Jansson, Johan Jeuring, and Lambert
Meertens. Generic programming: An introduction. In S. D. Swierstra,
P. R. Henriques, and J. N. Oliveira, editors, Advanced Functional
Programming, volume 1608 of Lecture Notes in Computer Science,
pages 28–115. Springer-Verlag, Berlin, 1999.

[6] Denis Baggi. Computer-Generated Music. IEEE Computer Society Press,
Las Alamitos, CA, 1992.

[7] Joel F. Bartlett. Don’t fidget with widgets, draw! Technical Report 6,
DEC Western Digital Laboratory, May 1991.

[8] Kenneth E. Batcher. Sorting networks and their applications. In AFIPS
Spring Joint Conference, pages 307–314, 1968.

[9] Gérard Berry and Georges Gonthier. The Esterel synchronous
programming language: Design, semantics, implementation. Science of
Computer Programming, 19(2):87–152, 1992.

[10] A. S. Bhandal, V. Considine, and G. E. Dixon. An array processor for
video picture motion estimation. In J. McCanny, J. McWhirter, and
E. Swartzlander, editors, Systolic Array Processors, pages 369–378.
Prentice-Hall International, 1989.

264 The Fun of Programming

[11] Richard Bird. An introduction to the theory of lists. In M. Broy, editor,
Proceedings of the NATO Advanced Study Institute on Logic of
Programming and Caculi of Discrete Design. Springer Verlag, June 1987.

[12] Richard Bird and Oege de Moor. Algebra of Programming. Prentice
Hall, 1997.

[13] Richard Bird and John Hughes. The alpha–beta algorithm: an exercise
in program transformation. Information Processing Letters, 24(1):53–57,
January 1987.

[14] Richard S. Bird. The promotion and accumulation strategies in
transformational programming. ACM Transactions on Programming
Languages and Systems, 6(4):487–504, October 1984. Addendum in
7(3), p. 490–492.

[15] Richard S. Bird. Introduction to Functional Programming using Haskell.
Prentice Hall Europe, 2nd edition, 1998.

[16] Richard S. Bird and Jeremy Gibbons. Arithmetic coding with folds and
unfolds. In Johan Jeuring and Simon Peyton Jones, editors, Advanced
Functional Programming. Springer-Verlag, 2002. To appear.

[17] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava:
Hardware design in Haskell. In International Conference on Functional
Programming. ACM, 1998.

[18] Phelim Boyle, Mark Broadie, and Paul Glasserman. Monte Carlo
methods for security pricing. Journal of Economic Dynamics and
Control, 21:1267–1321, 1997.

[19] Paul Caspi, Daniel Pilaud, Nicholas Halbwachs, and John A. Plaice.
LUSTRE: A declarative language for programming synchronous
systems. In 14th ACM Symposium on Principles of Programming
Languages, pages 178–188, Munich, 1987.

[20] James Cheney and Ralf Hinze. A lightweight implementation of
generics and dynamics. In Manuel M.T. Chakravarty, editor, Proceedings
of the 2002 ACM SIGPLAN Haskell Workshop, October 2002.

[21] Olaf Chitil. Pretty printing with lazy dequeues. In ACM SIGPLAN
Haskell Workshop, pages 183–201, Firenze, Italy, 2001. Universiteit
Utrecht UU-CS-2001-23.

[22] Seonghun Cho and Sartaj Sahni. Weight biased leftist trees and
modified skip lists. In International Computing and Combinatorics
Conference, pages 361–370, June 1996.

[23] Koen Claessen and John Hughes. QuickCheck: a lightweight tool for
random testing of Haskell programs. In International Conference on
Functional Programming, pages 268–279. ACM, 2000.

[24] Koen Claessen and John Hughes. Testing Monadic Code with
QuickCheck. In Haskell Workshop. ACM SIGPLAN, 2002.

Bibliography 265

[25] Koen Claessen and David Sands. Observable sharing for functional
circuit description. In Asian Computer Science Conference, pages
62–73, Phuket, Thailand, 1999. ACM SIGPLAN.

[26] William F. Clocksin and Christopher S. Mellish. Programming in Prolog.
Springer Verlag, second edition, 1984.

[27] Antony Courtney and Conal Elliott. Genuinely functional user
interfaces. In Haskell Workshop, pages 41–69, 2001.

[28] John C. Cox, Stephen A. Ross, and Mark Rubinstein. Option pricing: a
simplified approach. Journal of Financial Economics, 7:229–263, 1979.

[29] Clark Allan Crane. Linear lists and priority queues as balanced binary
trees. PhD thesis, Computer Science Department, Stanford University,
February 1972. Available as STAN-CS-72-259.

[30] Olivier Danvy. Functional unparsing. Journal of Functional
Programming, 8(6):621–625, November 1998.

[31] Olivier Danvy, Morten Rhiger, and Kristoffer H. Rose. Normalization by
evaluation with typed abstract syntax. Journal of Functional
Programming, 11(6):673–680, November 2001.

[32] Oege de Moor and Ganesh Sittampalam. Generic program
transformation. In Third International Summer School on Advanced
Functional Programming, volume 1608 of Lecture Notes in Computer
Science, pages 116–149. Springer-Verlag, 1998.

[33] Oege de Moor and Ganesh Sittampalam. Higher-order matching for
program transformation. Theoretical Computer Science, 269:135–162,
2001.

[34] Conal Elliott. An embedded modeling language approach to interactive
3D and multimedia animation. IEEE Transactions on Software
Engineering, 25(3):291–308, May/June 1999. Special Section:
Domain-Specific Languages (DSL).

[35] Conal Elliott, Sigbjørn Finne, and Oege de Moor. Compiling embedded
languages. Journal of Functional Programming, 2001. To appear.

[36] Conal Elliott and Paul Hudak. Functional reactive animation. In
International Conference on Functional Programming, pages 263–273,
1997.

[37] Levent Erkök and John Launchbury. Recursive monadic bindings. In
International Conference on Functional Programming, pages 174–185,
2000.

[38] Sigbjorn Finne and Simon Peyton Jones. Pictures: A simple structured
graphics model. In Glasgow Functional Programming Workshop,
Ullapool, July 1995.

266 The Fun of Programming

[39] Alexandre Frey, Gérard Berry, Patrice Bertin, François Bourdoncle, and
Jean Vuillemin. Jazz. Available from
http://www.exalead.com/jazz, 1998.

[40] Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes.
Essentials of Programming Languages. MIT Press, second edition, 2001.

[41] Jeremy Gibbons. Algebras for Tree Algorithms. D. Phil. thesis,
Programming Research Group, Oxford University, 1991. Available as
Technical Monograph PRG-94.

[42] Jeremy Gibbons. Deriving tidy drawings of trees. Journal of Functional
Programming, 6(3):535–562, 1996.

[43] Jeremy Gibbons. A pointless derivation of radixsort. Journal of
Functional Programming, 9(3):339–346, 1999.

[44] Jeremy Gibbons. Calculating functional programs. In Roland
Backhouse, Roy Crole, and Jeremy Gibbons, editors, Algebraic and
Coalgebraic Methods in the Mathematics of Program Construction,
volume 2297 of Lecture Notes in Computer Science, pages 148–203.
Springer-Verlag, 2002.

[45] Jeremy Gibbons and Geraint Jones. The under-appreciated unfold. In
International Conference on Functional Programming, pages 273–279,
September 1998.

[46] Andrew Gill, John Launchbury, and Simon Peyton Jones. A short cut to
deforestation. In Functional Programming Languages and Computer
Architecture, pages 223–232, 1993.

[47] Carlos Gonzaĺıa. Análisis asintótico amortizado en lenguajes
funcionales perezosos. In Latin-American Conference on Functional
Programming, October 1997.

[48] Nicholas Halbwachs, Fabienne Lagnier, and Pascal Raymond.
Synchronous observers and the verification of reactive systems. In
Algebraic Methodology and Software Technology, pages 83–96. Springer
Verlag, 1993.

[49] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The
synchronous dataflow programming language LUSTRE. Proceedings of
the IEEE, 79(9):1305–1320, September 1991.

[50] Richard Hamlet. Random testing. In J. Marciniak, editor, Encyclopedia
of Software Engineering, pages 970–978. Wiley, 1994.

[51] Michael Hanus, Herbert Kuchen, and Juan Jose Moreno-Navarro. Curry:
A truly functional logic language. In ILPS’95 Workshop on Visions for the
Future of Logic Programming, pages 95–107, 1995.

[52] Peter Henderson. Functional geometry. In ACM Symposium on LISP and
Functional Programming, pages 179–187, 1982.

Bibliography 267

[53] Ralf Hinze. A new approach to generic functional programming. In
Thomas W. Reps, editor, Proceedings of the 27th Symposium on
Principles of Programming Languages, pages 119–132, January 2000.

[54] Ralf Hinze. Functional Pearl: Formatting: a class act. Journal of
Functional Programming, 2002. To appear.

[55] Thomas Ho and Sang-Bin Lee. Term Structure Movements and Pricing
Interest Rate Contingent Claims. Journal of Finance, 41:1011–1028,
1986.

[56] Douglas R. Hofstadter. Gödel, Escher, Bach: an Eternal Golden Braid.
Basic Books, New York, 1979.

[57] Gerard J. Holzmann. Beyond Photography — the Digital Darkroom.
Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

[58] Paul Hudak. Building domain-specific embedded languages. ACM
Computing Surveys, 28, December 1996.

[59] Paul Hudak. Haskore music tutorial. In Second International School on
Advanced Functional Programming, pages 38–68. Springer Verlag, LNCS
1129, August 1996.

[60] Paul Hudak. Modular domain specific languages and tools. In
P. Devanbu and J. Poulin, editors, Fifth International Conference on
Software Reuse, pages 134–142. IEEE Computer Society Press, 1998.

[61] Paul Hudak. The Haskell School of Expression: Learning Functional
Programming through Multimedia. Cambridge University Press, New
York, 2000.

[62] Paul Hudak and Jonathan Berger. A model of performance, interaction,
and improvisation. In Proceedings of International Computer Music
Conference. International Computer Music Association, 1995.

[63] Paul Hudak and Mark P. Jones. Haskell vs. Ada vs. C++ vs Awk vs . . . :
An experiment in software prototyping productivity. Technical report,
Yale, 1994.

[64] Paul Hudak, Tom Makucevich, Syam Gadde, and Bo Whong. Haskore
music notation: An algebra of music. Journal of Functional
Programming, 6(3):465–483, May 1996.

[65] John Hughes. A novel representation of lists and its application to the
function ‘reverse’. Information Processing Letters, 22:141–144, 1986.

[66] John Hughes. The design of a pretty-printer library. In Johan Jeuring
and Erik Meijer, editors, Advanced Functional Programming, volume
925 of LNCS. Springer, 1995.

[67] John Hughes. Generalising monads to arrows. Science of Computer
Programming, 37:67–111, May 2000.

[68] MIDI 1.0 detailed specification: Document version 4.1.1, February 1990.

268 The Fun of Programming

[69] Michael A. Jackson. Principles of Program Design. Academic Press,
1975.

[70] Patrik Jansson and Johan Jeuring. PolyP—a polytypic programming
language extension. In Conference Record 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’97), Paris,
France, pages 470–482. ACM Press, January 1997.

[71] Steven Johnson. Synthesis of Digital Designs from Recursion Equations.
The ACM Distinguished Dissertation Series, The MIT Press, 1984.

[72] Geraint Jones and Mary Sheeran. Collecting butterflies. Technical
Monograph PRG-91, Oxford University Computing Laboratory,
Programming Research Group, February 1991.

[73] Geraint Jones and Mary Sheeran. The study of butterflies. In Graham
Birtwistle, editor, Proc. 4th Banff Workshop on Higher Order. Springer
Workshops in Computing, 1991.

[74] Geraint Jones and Mary Sheeran. Circuit design in Ruby. In
J. Staunstrup, editor, Formal Methods for VLSI Design. North Holland,
1992.

[75] Geraint Jones and Mary Sheeran. Designing arithmetic circuits by
refinement in Ruby. In R. Bird, C. Morgan, and J. Woodcock, editors,
Mathematics of Program Construction, volume 669 of Lecture Notes in
Computer Science, pages 208–232. Springer, 1993.

[76] Geraint Jones and Mary Sheeran. Designing Arithmetic Circuits by
Refinement in Ruby. Science of Computer Programming, 22(1-2), 1994.

[77] Simon Peyton Jones. Haskell pretty-printer library.
http://www.haskell.org/libraries/#prettyprinting, 1997.

[78] André Joyal, Ross Street, and Dominic Verity. Traced monoidal
categories. Mathematical Proceedings of the Cambridge Philosophical
Society, 119(3):447–468, 1996.

[79] Jerzy Karczmarczuk. Functional approach to texture generation. In
Shriram Krishnamurthi and C. R. Ramakrishnan, editors, Practical
Aspects of Declarative Languages, volume 2257 of Lecture Notes in
Computer Science, pages 225–242. Springer, 2002.

[80] Donald E. Knuth. Searching and Sorting, volume 3 of The Art of
Computer Programming. Addison-Wesley, 1973.

[81] Richard E. Ladner and Michael J. Fischer. Parallel prefix computation.
Journal of the ACM, 27:831–838, 1980.

[82] D. Lahti. Applications of a functional programming language to
hardware synthesis. Master’s thesis, UCLA, 1980.

[83] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a
practical approach to generic programming. Available from
http://research.microsoft.com/˜simonpj/papers/hmap/, 2002.

Bibliography 269

[84] John Launchbury, Jeff Lewis, and Byron Cook. On embedding a
microarchitecture design language within Haskell. In International
Conference on Functional Programming. ACM, 1999.

[85] John Launchbury and Tim Sheard. Warm fusion: Deriving build-catas
from recursive definitions. In Functional Programming Languages and
Computer Architecture, pages 314–323. ACM Press, 1995.

[86] Daan Leijen and Erik Meijer. Domain-specific embedded compilers. In
Proceedings of the 2nd Conference on Domain-Specific Languages,
pages 109–122, Berkeley, CA, October 1999. USENIX Association.

[87] Peter Lucas and Stephen N. Zilles. Graphics in an applicative context.
Technical report, IBM Almaden Research Center, 650 Harry Road, San
Jose, CA 95120-6099, July 8 1987.

[88] Wayne Luk. Systematic serialisation of array-based architectures.
Integration, the VLSI Journal, 14(3), February 1993.

[89] Wayne Luk, Geraint Jones, and Mary Sheeran. Computer-based tools for
regular array design. In J McCanny, J McWhirter, and E Swartzlander,
editors, Systolic Array Processors, pages 589–598. Prentice-Hall
International, 1989.

[90] John Maeda. Design By Numbers. MIT Press, May 1999.

[91] John Matthews and John Launchbury. Elementary microarchitecture
algebra. In Nicolas Halbwachs and Doron Peled, editors, Computer
Aided Verification, volume 1633 of Lecture Notes in Computer Science,
pages 333–360. Springer, 1999.

[92] Lambert Meertens. Paramorphisms. Formal Aspects of Computing,
4(5):413–424, 1992.

[93] Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional
programming with bananas, lenses, envelopes and barbed wire. In John
Hughes, editor, Functional Programming Languages and Computer
Architecture, volume 523 of Lecture Notes in Computer Science, pages
124–144. Springer-Verlag, 1991.

[94] Erik Meijer and Graham Hutton. Bananas in space: Extending fold and
unfold to exponential types. In Functional Programming Languages
and Computer Architecture, 1995.

[95] Jayadev Misra. Powerlist: A structure for parallel recursion. ACM
Transactions on Programming Languages and Systems,
16(6):1737–1767, November 1994.

[96] Marek Musiela and Marek Rutkowski. Martingale Methods in Financial
Modelling. Springer, 1997.

[97] John O’Donnell. Hydra: Hardware description in a functional language
using recursion equations and higher order combining forms. In G. J.

270 The Fun of Programming

Milne, editor, The Fusion of Hardware Design and Verification, pages
363–382. North-Holland, 1988.

[98] John O’Donnell. From transistors to computer architecture: Teaching
functional circuit specification in Hydra. In Functional Programming
Languages in Education, volume 1022 of Lecture Notes in Computer
Science, pages 195–214. Springer-Verlag, 1996.

[99] Chris Okasaki. Amortization, lazy evaluation, and persistence: Lists
with catenation via lazy linking. In IEEE Symposium on Foundations of
Computer Science, pages 646–654, October 1995.

[100] Chris Okasaki. Simple and efficient purely functional queues and
deques. Journal of Functional Programming, 5(4):583–592, 1995.

[101] Chris Okasaki. The role of lazy evaluation in amortized data structures.
In ACM SIGPLAN International Conference on Functional Programming,
pages 62–72, May 1996.

[102] Chris Okasaki. Purely Functional Data Structures. Cambridge University
Press, 1998.

[103] Yoshiyuki Onoue, Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi.
A calculational fusion system HYLO. In Richard S. Bird and Lambert
Meertens, editors, Algorithmic Languages and Calculi, pages 76–106.
Chapman and Hall, 1997.

[104] Derek Oppen. Pretty-printing. ACM Transactions on Programming
Languages and Systems, 2(4):465–483, 1980.

[105] Dorab Patel, Martine D. F. Schlag, and Milos D. Ercegovac. νFP: An
environment for the multi-level specification, analysis, and synthesis of
hardware algorithms. In Functional Programming Languages and
Computer Architecture, volume 201 of Lecture Notes in Computer
Science, pages 238–255. Springer-Verlag, 1985.

[106] Ross Paterson. A new notation for arrows. In International Conference
on Functional Programming, pages 229–240. ACM Press, September
2001.

[107] John Power and Edmund Robinson. Premonoidal categories and
notions of computation. Mathematical Structures in Computer Science,
7(5):453–468, October 1997.

[108] Vaughan Pratt. Shellsort and Sorting Networks. PhD thesis, Stanford
University, 1971. Also Garland, New York, 1979.

[109] Daniel Revuz and Marc Yor. Continuous Martingales and Brownian
Motion. Springer, 1991.

[110] Curtis Roads, editor. The Music Machine (Selected Readings from
Computer Music Journal). MIT Press, Cambridge, MA, 1989.

[111] Edward Rothstein. Emblems of Mind: The Inner Life of Music and
Mathematics. Times Books, New York, 1995.

Bibliography 271

[112] Robert Sedgewick. Analysis of Shellsort and related algorithms. In
European Symposium on Programming, 1996.

[113] Eleanor Selfridge-Field, editor. Beyond MIDI (The Handbook of Musical
Codes). MIT Press, Cambridge, MA, 1997.

[114] Silvija Seres. The Algebra of Logic Programming. D.Phil., Programming
Research Group, University of Oxford, 2001.

[115] Mary Sheeran. µFP, an algebraic VLSI design language. D.Phil.,
Programming Research Group, Oxford University, 1983.

[116] Mary Sheeran. Puzzling permutations. In P. Trinder, editor, Glasgow
Functional Programming Workshop, 1996.

[117] Donald L. Shell. A high-speed sorting procedure. Communications of
the ACM, 2(7):30–32, 1959.

[118] Karl Sims. Artificial evolution for computer graphics. ACM Computer
Graphics, 25(4):319–328, July 1991.

[119] Ganesh Sittampalam and Oege de Moor. Higher-order pattern matching
for automatically applying fusion transformations. In O. Danvy and
A. Filinski, editors, Second Symposium on Programs as Data Objects,
volume 2053 of Lecture Notes in Computer Science, pages 198–217.
Springer-Verlag, 2001.

[120] Daniel D. K. Sleator and Robert E. Tarjan. Self-adjusting heaps. SIAM
Journal on Computing, 15(1):52–69, February 1986.

[121] Alvy Ray Smith. Image compositing fundamentals. Technical Report
Technical Memo #4, Microsoft, July 1995.
http://www.alvyray.com/Memos.

[122] Zoltan Somogyi, Fergus Henderson, and Thomas Conway. Mercury: An
efficient purely declarative logic programming language. In Proceedings
of the Australian Computer Science Conference, pages 499–512,
Glenelg, Australia, 1995.

[123] J. Michael Spivey. Unification: A case-study in data refinement,. Formal
Aspects of Computing, 7(2):158–168, 1995.

[124] J. Michael Spivey. Combinators for breadth-first search. Journal of
Functional Programming, 10(4):397–408, 2000.

[125] Leon Sterling and Ehud Y. Shapiro. The Art of Prolog. MIT Press, second
edition, 1994.

[126] S. Doaitse Swierstra and Luc Duponcheel. Deterministic,
error-correcting combinator parsers. In John Launchbury, Erik Meijer,
and Tim Sheard, editors, Advanced Functional Programming, volume
1129 of Lecture Notes in Computer Science, pages 184–207. Springer,
1996.

272 The Fun of Programming

[127] Robert E. Tarjan. Amortized computational complexity. SIAM Journal
on Algebraic and Discrete Methods, 6(2):306–318, April 1985.

[128] Hervé Touati and Mark Shand. PamDC: a C++ library for the simulation
and generation of Xilinx FPGA designs. Available from
http://research.compaq.com/SRC/pametta/PamDC.pdf, 1999.

[129] David A. Turner. An overview of Miranda. SIGPLAN Notices,
21(12):158–166, 1986.

[130] Arie van Deursen and Paul Klint. Little languages: little maintenance?
Journal of Software Maintenance, 10:75–92, 1998.

[131] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific
languages: an annotated bibliography. Technical report, Centrum voor
Wiskunde en Informatica, Amsterdam, 2000.

[132] Varmo Vene. Categorical Programming with Inductive and Coinductive
Types. PhD thesis, University of Tartu, 2000.

[133] Varmo Vene and Tarmo Uustalu. Functional programming with
apomorphisms (corecursion). Proceedings of the Estonian Academy of
Sciences: Physics, Mathematics, 47(3):147–161, 1998. 9th Nordic
Workshop on Programming Theory.

[134] Jean Vuillemin. On circuits and numbers. IEEE Transactions on
Computers, 43:8:868–879, 1994.

[135] Jean Vuillemin, Patrice Bertin, Didier Roncin, Mark Shand, Hervé Touati,
and Philippe Boucard. Programmable Active Memories: the Coming of
Age. IEEE Trans. on VLSI, 4(1), March 1996.

[136] William W. Wadge and Edward A. Ashcroft. Lucid, the Dataflow
Programming Language. Academic Press, 1985.

[137] Philip Wadler. Deforestation: Transforming programs to eliminate
trees. Theoretical Computer Science, 73:231–248, 1990.

[138] Philip L. Wadler. How to replace failure by a list of successes. In J.-P.
Jouannaud, editor, Functional Programming Languages and Computer
Architecture, volume 201 of Lecture Notes in Computer Science, pages
113–128. Springer-Verlag, 1985.

[139] Paul Willmot, Jeff N. Dewynne, and Sam D. Howison. Option Pricing:
Mathematical Models and Computation. Oxford Financial Press, 1993.

[140] Stephen N. Zilles, Peter Lucas, T.M. Linden, Jeff B. Lotspiech, and A.R.
Harbury. The Escher document imaging model. In ACM Conference on
Document Processing Systems, pages 159–168, December 5–9 1988.

