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Abstract—Increasing use of social media in campaigns raises
the question of whether one can predict the voting behavior
of social-network users who do not disclose their political
preferences in their online profiles. Prior work on this task only
considered users who generate politically oriented content or
voluntarily disclose their political preferences online. We avoid
this bias by using a novel Bayesian-network model that combines
demographic, behavioral, and social features; we apply this novel
approach to the 2016 U.S. Presidential election. Our model is
highly extensible and facilitates the use of incomplete datasets.
Furthermore, our work is the first to apply a semi-supervised
approach for this task: Using the EM algorithm, we combine
labeled survey data with unlabeled Facebook data, thus obtaining
larger datasets as well as addressing self-selection bias.

Index Terms—Bayesian Networks, Social Media, U.S. Elections

I. INTRODUCTION

Political choices and voting decisions are considered by
many people to be highly sensitive and private information that
they are reluctant to reveal. Political campaigns, on the other
hand, are investing heavily in voter targeting, focusing intently
on social network platforms because of the micro-targeted
advertising capabilities they provide. In this paper, we explore
the following question: Can we predict the voting behavior of
Facebook users from their public Facebook profiles?

We present a novel approach for predicting the voting
behavior of Facebook users using a Bayesian-network model
that combines demographic, behavioral and social features.
Although we focus on the 2016 U.S. Presidential election,
our approach can be extended to any two-part system.

This paper is the first to use a Bayesian network model
for political attribute inference. Furthermore, it is the first
to not only address, but also offer concrete solutions to
the selection bias problem, combining a representative and
heterogeneous datasets of both politically active and passive
users, a semi-supervised training methodology and a diverse

set of demographic, behavioral and social features. Finally,
our model is trained to predict not only to whom the user will
vote, but also whether she will vote at all, a task that has not
been performed by any existing work on vote prediction.

A. Related work

There are several streams of research that investigate the
predictive power of social media for political purposes.

One stream of research concentrates on predicting the polit-
ical orientation of an individual from various components of
her social network profile: Tweets’ content [21]; retweet graph
[8]; following behavior [3]; degree of tweets and retweets [5],
[25]; and “liking” politically oriented pages [4].

A more general approach, taken by [19], [26]–[28] aims at
building a generic framework for latent attribute inference of
social media users. Those works do not focus on political ori-
entation as a stand-alone trait, but rather use it to demonstrate
the functionality of their generic classification system.

Another stream of research focuses on election prediction
from social network data. Such works usually take either a
volume based approach or a sentiment analysis based approach
and use it to predict the outcomes of various election systems
in both two-party and multiparty settings [6], [15], [22], [23].

Although closely related to the lines of research discussed
above, individual voting behavior differs in several respects.
Individual voting behavior prediction aims at predicting an
individual choice (unlike election prediction, that aims at
capturing an aggregated measure) for a specific event. This
event has a well-defined end date and a well-defined set of
choices (labels) that represent the possible voting choices
the individual has in a given election. In contrast, political
orientation reflects a generic and subjective measure that
does not have well defined time boundaries; furthermore, the
multitude of scales used for measuring political orientation,
combined with the fact that any point on such scale may have
different meanings to different individuals results in the lack
of a well-defined set of labels.

In contrast to the work on political orientation and election
prediction, relatively little work has focused on individual
voting behavior prediction: Gayo-Avello [9] tried to infer the
votes of Twitter users in the 2008 U.S. elections by applying
multiple sentiment analysis methods. Bachhuber et al. [2]
examined several approaches aimed at finding distinct clusters
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of Twitter users based on linguistic properties of their tweets,
creating language profiles for supporter groups in the 2016 US
elections. Kristensen et al. [14] used Facebook to predict voter
intentions in the 2015 Danish election, and examined users’
political like history to predict which party will they vote for.

B. Shortcomings of prior research
A significant shortcoming of prior research is the use of

biased datasets. Those datasets are composed of politically
active social-network users, a minority which does not repre-
sent the ordinary user population. Classifiers trained on such
datasets will thus experience limited predictive accuracy when
applied to ordinary users [7], who are less politically engaged
yet constitute the majority of social media users [18].

We recognize three potential sources of bias:
Platform: Twitter is the social network most commonly

used for politically oriented data-mining research. However,
Twitter is one of the least representative social networks [1],
[17]: First, the usage statistics among American adults are
quite low. Second, Twitter users are not demographically rep-
resentative of the population; the resulting demographic bias
is often ignored in research concerning political orientation
inference and voting behavior prediction. Third, Twitter is con-
sidered the most “political” social network, attracting a user
population with unusually high political awareness. Twitter
users’ datasets are therefore highly likely to be politically and
demographically unrepresentative of the general population.

Features: The vast majority of prior work relies solely on
the analysis of user-generated content or politically oriented
activities in social networks. This approach introduces sub-
stantial selection bias because the only social network users
who appear in such datasets are those who engage in politically
overt activities, and only a minority of all users do so [7], [14].
In other words, those approaches yield high-accuracy results,
but those results are limited to a small fraction of social media
users. Indeed, Table II shows that less than 27% of the users
in our dataset performed a public activity related to Trump or
Clinton before the 2016 election date; that is, more than 73%
of the users for whom solely relying on user-generated content
would yield results which are essentially no better than those
we would have received using a random classifier.

Labels: Previous works have used several methodologies
for extracting labels from social-network accounts, relying on
online behaviors such as explicitly stating political orientation
online [9], [19], [27]; including politically related content
in tweets [2], [8], [25]; supporting partisan causes [21] or
following candidates [24]. Subsequently, only users for whom
such label exists are included in the datasets, leading to the
creation of biased datasets, composed entirely of individuals
who voluntarily disclose their political preference online. This
methodology introduces self-selection bias into the final re-
sults, as users who choose to disclose their political affiliations
constitute a minority of social media users [20].

C. Our contribution
The goal of the models presented in this paper is the

following: given a Facebook user, predict the individual voting

behavior of that user based on the public portions of the user’s
Facebook profile. Our main contributions are the following:

Addressing sources of potential bias: we address platform-
based bias by using Facebook as our social network platform.
Facebook is known to be much more representative of the
general population than Twitter and supports a richer profile
representation; we address features-based bias by going be-
yond active content analysis and combining multiple types of
information about the user: static (demographic attributes of
the user), dynamic (activities performed by the user and their
frequency patterns) and social (information we can learn about
the user from her social network links). Finally, we address
label-based bias by applying a semi-supervised approach that
uses a combination of labeled data, where labels are obtained
from surveys, and unlabeled data, composed of users who
didn’t participate in the survey though were offered to.

Incorporating non-voters: Existing works implicitly as-
sume that all users indeed vote. That is, the only users that
are included in the datasets are users who voted for one of the
candidates in a given election. This assumption is not only
an unrealistic oversimplification of election systems but also
prevents us from identifying important subpopulations, whose
specific vote is inconsistent with their general partisanship
such as strong partisans who decide not to vote in a given
election. Our key assumption is that a voting decision is
influenced by two types of components: a “static” component
that is determined by the general party identification of the
individual, and “dynamic” components that are determined
by specific characteristics of the candidates and include both
factual policy-related material and subjective perception of
the candidate. Each component can be learnt from different
elements in a social-network profile, and its influence on the
individual’s voting behavior is combined with the rest of the
components using a Bayesian network model.

Using a novel Bayesian network model: Bayesian-network
(BN) classifiers offer important advantages that specifically fit
the nature of our problem as well as the nature of our data.

One advantage of BNs is their ability to support the com-
bination of data and prior knowledge about the problem’s
domain. This allows us to use existing research and statistics
for encoding some of the model’s parameters; these include
interactions between demographic attributes, and interactions
between demographic attributes and party identification. An-
other advantage of BNs is that they handle missing data very
well within both training and evidence data. This is particularly
important when dealing with social network datasets, which
are often incomplete. Indeed, datasets used in this work
contain a large number of missing values, which correspond to
attributes that users have chosen not to include in their public
Facebook profile. Due to our use of BN, missing values in
the evidence data need not be imputed but rather can be fed
directly to the model. Furthermore, the probabilistic represen-
tation combines naturally with the Expectation-Maximization
(EM) algorithm, enabling our training data to include both
missing values and latent variables. It is this trait of BNs that
facilitates the use of both labeled and unlabeled training data.
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II. METHODOLOGY AND DATASETS

We designed and distributed a comprehensive survey which
adopted purposeful sampling of eligible voters in the 2016
U.S. elections that are also Facebook users. We used the
Qualtrics survey platform to create and host the survey.

Survey construction: The survey included questions about
the user’s demographics, her Facebook activity, her Facebook
friends’ demographics and activity, and her political opinions
including her party identification and her vote in the 2016
presidential election. All survey data was anonymized after
collection. We informed participants that their responses would
be used for academic research.

We implemented several methods for identifying and ex-
cluding data from participants who answered unreliably. First,
we eliminated responses from participants who took the survey
more than once. We took a conservative approach and dis-
carded responses that came from the same IP address. Second,
to ensure the eligibility of participants, they had to complete
a screening questionnaire before taking the survey. The ques-
tionnaire was carefully designed, in order to prevent respon-
dents from inferring the qualifications we were looking for and
taking the survey without being an eligible participant. We
avoided yes/no questions regarding the qualification needed
and used multiway questions instead, as yes/no questions tend
to insinuate the “correct” answer in order to pass the screening
questionnaire. In addition, we disguised the real screening
questions among other dummy questions. For example: instead
of directly asking: “do you have a Facebook account”? we
asked a series of identical multiway questions about news
consumption habits from each of the media platforms. For
example, the question “how often do you consume news via
TV?” had the following five answers: More than 5 times a
day; 3 times a day; once daily; Never; I do not have a TV. In
the same question that dealt with Facebook, the last answer
was replaced by “I do not have a Facebook account”. Third,
we included control questions to ensure that the respondents
were providing reliable data; those were fairly straightforward
questions which asked the same question multiple times, in
different parts of the survey, and using a slightly different
terminology. We excluded participants who failed in one or
more of the control questions. Lastly, the survey’s name did
not include words such as ’politics’ or ’social media’ so as
to not expose the qualifications needed, as well as not to
oversample from the more politically engaged population.

Datasets: In this paper, we make use of three datasets:
D1 consists of 1638 survey responses collected via Ama-

zon’s Mechanical Turk (MTurk). Labels for this dataset are
obtained through the survey.

D2 consists of 841 Facebook profiles and corresponding
survey responses collected via both Facebook and Qualtrics.
Labels for this dataset are obtained through the survey.

D3 consists of 500 Facebook profiles collected via Face-
book. Those individuals did not participate in our survey,
though were offered to. The only information that was col-
lected on this dataset is public — details that the users have

TABLE I: Descriptive statistics for D1 and D2. D1 was stratified by Party Iden-
tification, resulting in a balanced representation of Republicans, Democrats,
and Independents within the training set.

Attribute Metric D2 D1 Census

Gender Female 48.6% 50.6% 50.8%
Male 51.4% 49.4% 49.2%

Education Level Post graduate degree 52% 54.5% 62.6%
College degree 35% 31.2% 26.2%

No college degree 13% 14.3% 11%
Marital Status Married 48.9% 49.5% 48.3%

Unmarried 51.1% 50.5% 51.7%
Race Caucasian 66.6% 71.4% 62.8%

African American 10.7% 9.77% 12.2%
Hispanic 15.6% 12.1% 16.9%

Other 7.13% 6.72% 8.1%
State Of Residence Solid republican 28.3% 23.6% 24%

Lean republican 8.56% 10.5% 11.7%
Competitive 38% 39.2% 40.5%

Lean democratic 13.1% 14.6% 14.8%
Solid democratic 12% 11.9% 9%

Age 20-33 years 38.9% 53.7% 19.7%
34-49 30.2% 26% 20.5%

50+ years 30.9% 20.3% 44%
Income <$25k 36.9% 38.5% 38.9%

$25k-$60k 47.6% 46.8% 42.2%
$60k+ 15.5% 14.8% 18.9%

Party Identification Republican 33.9% 33.3%
Democrat 40% 33.3%

Independent 26.2% 33.3%
Vote Trump 30.8% 32.1%

Clinton 36.7% 37.3%
Other 32.5% 30.6%

published in their public Facebook profile. For that reason, D3
is unlabeled and contains a large number of missing features.

The use of D1, D2, D3 was motivated by two considerations:
Obtaining larger datasets Recruiting a large number of

respondents via MTurk (D1) was a relatively quick and easy
task in comparison to a direct Facebook recruitment process
(D2). D1, however, was not fully representative of our target
population, as it is limited to individuals who are registered to
MTurk. Furthermore, tasks published on MTurk cannot ask for
personal data, such as name or Facebook profile. In order to
account for those limitations, we used D1 as our training dataset
and D2 as our test dataset. A second strategy for obtaining
larger datasets is the use of unlabeled data, D3, for augmenting
our training data. Such data can be easily collected as the
inclusion of a Facebook account in an unlabeled dataset does
not require the account holder to participate in the survey.

Addressing selection bias we consider three types of bias:
Visibility bias: Datasets used in prior research were often

created by systematically excluding users who did not publish
a certain attribute — one that is crucial to the model’s per-
formance, such as politically oriented activity or self-reported
label — in their public social network profile. Acknowledging
that such approach yield datasets that are not representative of
the Facebook user population, our datasets were constructed so
that the absence of a feature or a label from a user’s public
profile does not affect the user’s chance of being selected; as
is evident from Table II, neither feature was publicly disclosed
by more than 46% of the users in D2, and only 4.4% of them
published their vote in the 2016 presidential election.

Self-selection bias: D1 represents a population of individuals
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Fig. 1: The BASIC model

who have actively picked our survey from the list of tasks
published on MTurk. D2 represent a population that was invited
by us to participate in the survey and agreed to do so. Those two
groups selected to participate in our survey. In order to address
this selection bias, we created a third dataset, D3, composed of
Facebook users who, though were asked to, did not participate
in our survey. While we could not use D3 for testing, as it is
unlabeled, we did combine it in our training set in order to
further generalize our model.

Demographic bias: one advantage of the use of MTurk for
data collection is the ability to obtain data from demographi-
cally diverse groups; although MTurk’s population is not fully
representative of the US population, the ease of data collection
via MTurk enabled us to reach crowds that are diverse across
the primary demographic dimensions used in this work. Table I
presents descriptive statistics of D1 and D2 and compares a
subset of their demographics to the 2014 US census. As can be
seen, each group is well represented in the datasets.

External software: Throughout this paper we refer to
specific subtasks that were performed using existing, readily
available software. Examples include Genderize.io1 and ethni-
colr2 for gender and race inference based on the user’s name;
Python NLTK for sentiment analysis tasks; GeNle and pysmile
for our BNs’ creation, parameter learning, and inference.

III. THE BAYESIAN NETWORK

The target node in our BN, “vote”, represents the voting
behavior of an individual user. It may take one of three values:
vote for candidate 0 (“c0”); vote for candidate 1 (“c1”); not vote
at all or vote for a third party candidate (“Other”). In our setting,
“candidate 0” represents a vote for Donald Trump; “candidate
1” represents a vote for Hillary Clinton; “Other” represents non
voters or a vote for a third party candidate in the 2016 U.S.
elections. The basic idea behind our BN models is to treat the
vote node as both a cause and an effect. As such, it is influenced
by a set of causes and causes a set of effects: Causes include the
party identification (PID) of the user and the voting behavior
of the user’s network neighborhood (NET). Effects include the
user’s politically oriented activities on Facebook (ACT). Each
of the causes and effects belongs to a subnetwork that includes

1https://genderize.io/
2https://ethnicolr.readthedocs.io/

a different type of observable variables: demographic attributes
of the user (“static subnetwork”); types and patterns of Face-
book activity performed by the user (“dynamic subnetwork”);
and activities performed by the user’s network neighborhood
(“social subnetwork”). Due to the BN’s structure, we are able
to elicit different priors with varying levels of confidence to the
different subnetworks.

Formally, given a target Facebook user ut, Let D =
{D1

t , D
2
t , ...D

n
t } be n demographic attributes of ut, A =

{A1
t , A

2
t , ...A

k
t } be k attributes describing Facebook activities

performed by ut and N = {N1
t , N

2
t , ...N

j
t } be j attributes

describing ut’s network neighborhood. Given our target node,
vote, we are interested in the label c that maximizes the
following posterior probability:

c = argmax
v∈{c0,c1,Other}

P (vote = v | PID,ACT,NET ) (1)

Assuming that {D1
t , D

2
t , ...D

n
t }, {A1

t , A
2
t , ...A

k
t } and

{N1
t , N

2
t , ...N

j
t } are observable attributes, and using a

bayesian approach,

P (ACT |A1
t , A

2
t , ...A

k
t ), P (NET |N1

t , N
2
t , ...N

j
t )

are obtained from our datasets and a uniform prior, and

P (PID|D1
t , D

2
t , ...D

n
t )

is obtained from our datasets and survey-based, or census-
based priors.

Using the EM algorithm, we employed a two-stage learning
methodology: first, we trained a BN using the available labeled
data (D1) and probabilistically labeled the unlabeled data; then,
we trained a second BN using both the labeled data and a subset
of the unlabeled data (D3) about which the first BN was the
most confident. This allowed us to both learn the parameters of
the model’s latent variables and diversify our training set with
a more representative, but unlabeled, data. Inference was done
using a Junction tree based algorithm.

Complexity-accuracy trade-off: the models presented in this
paper were carefully designed so as to create compact models
without damaging performance; if a certain edge did not
substantially contribute to the model’s predictive performance,
we did not include it in the network. For example, the income
node in our SELF INFER model is, theoretically, influenced
by many demographic attributes. However, we have found
that the only edges that significantly contribute to the overall
accuracy were those connecting income with occupation, race
and gender, and hence included only those edges in the network.

BASIC: Two nodes, “party identification” and “activity” are
directly linked to the “vote” node. “Party identification” covers
the influence of an individual’s general party identification
on her actual vote. It is considered an unobservable attribute,
and thus inferred from the user’s demographic attributes. The
attributes which are included in the model met two criteria:
attributes which are highly indicative of party identification;
observable attributes, in the sense that they are either offered
by Facebook as an optional field in a profile or can be inferred
from other public information, such as name. The following
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attributes were included in our model: gender, age, race, state
of residence, education level, marital status.

We enhance the static subnetwork using prior information
about the magnitude of the interactions between each demo-
graphic attribute and the PID. Priors are based on multiple
surveys conducted by Pew research center3 and on statistics
provided by the U.S. Census Bureau; priors refer to data that
was collected at least six months before the elections and were
incorporated into the model’s parameters using a Bayesian
approach and a Dirichlet prior with varying confidence factors
based on the available prior information on a given parameter.

As can be seen in Fig. 1, the static subnetwork is built in
a conceptually “layered” fashion: The first level represents as-
cribed attributes; the second level represents acquired attributes;
the final level contains the PID node. In order to avoid a large
CPT for the PID node, we used a parent-divorcing technique,
introducing intermediate nodes (colored orange in Fig. 1,2) that
serve as the “accumulators” of the PID given the subset of
demographic attributes to which they are linked.

The second node which is directly linked to the target node
is the “activity” node, which addresses the more dynamic
indicators of the user’s voting behavior and is influenced by
the public Facebook activities that the user performs.

In BASIC, we included three types of activities: writing a
post; sharing an item; and “liking” a page that is positively
or negatively associated with one of the candidates. Each of
those activities is represented in the model using a separate
observable node. The “activity” node aggregates the different
combinations of activities into three states that represent the
user’s overall activity: activity associated with supporting can-
didate 0, activity associated with supporting candidate 1 and
activity that is not associated with supporting either candidate
(such as writing a positive post about both candidates).

REVISED: Our second model, the REVISED model, refines
the dynamic subnetwork (Fig. 2) in order to reflect several in-
sights we obtained from reviewing the explanations respondents
gave to different questions in the survey:

Positive activity towards a candidate and negative ac-
tivity towards her opponent are not equivalent: Although
positive activities were almost always associated with a vote
for the candidate who was the subject of the activity, negative
activities towards a candidate were associated either with a vote
for the candidate’s opponent, or with non voters.

Passive users versus politically passive users: The respon-
dents who answered that they did not perform any political
activities on Facebook were asked to explain why they didn’t.
A common explanation was an unwillingness to reveal political
opinions on Facebook. It is important to note that those answers
differed from the answers of respondents who reported that
they rarely use Facebook, use Facebook without performing
activities, or are simply not interested in politics. An inter-
esting observation was that most users who said they did not
want to expose their political opinions on Facebook identified
themselves as either voted for Trump or did not vote at all.

3https://www.pewresearch.org/

TABLE II: Fraction of users (D2) whose public profile contains the following
attributes

Attribute Fraction revealed

Age 18.2%
Educational attainment 34.8%

Marital status 36%
Occupation 32.7%

State of residence 45.5%
Wall content (full) 57.7%

Wall content (partial) 72.5%
Friends list 53.6%

Activity (positive or negative)
associated with either Clinton or Trump 26.6%
Vote in the 2016 Presidential election 4.4%

Considering other Facebook activities: Respondents
pointed out that, although they have not performed an activity
associated with one of the main candidates, they did perform
an activity that was associated with a third-party candidate.

Based on our observations, we created the REVISED model:
First, the “activity” node was replaced with two nodes: “positive
activity” and “negative activity”. In addition, the observed
“post”, “share”, and “like” nodes are each replaced by two
nodes, one for the positive form of the activity and one for
the negative form of the activity. Note, that unlike the BASIC
model in which there was no distinction between a positive
activity towards candidate x and a negative activity towards
her opponent (as both were mapped to the same “pro candidate
x” state), here we distinguish between positive and negative
activities, each separately influences the vote node.

Second, we added a new binary node, labeled “Other activ-
ity”, that represents various online activities that may indicate
a vote for a third-party candidate. In the REVISED model, it
is set to one only if there is a positive activity associated with
a third party candidate in the user’s profile.

Third, we added a binary node, “activity level”, that rep-
resents the general activity level of the user on Facebook.
We wanted to distinguish those users who are not active
on Facebook from those who are not politically active on
Facebook; our second observation suggested that while the first
group is not particularly important for the inference process, the
second group is strongly associated with users who voted for
Trump (more generally, with the candidate who is considered
less “socially acceptable”). We added four questions to the
survey: one asked for the subjective estimation, on a ten-
point scale, of the respondent’s activity volume on Facebook.
The remaining three asked about the number of posts, shares,
and likes that the user has recently performed. We aggregated
those four measurements into one node, “activity level”, by
discretizing each variable with a median split and setting the
“activity-level” value to the four variables’ logical AND.

IV. HANDLING INCOMPLETE DATA

The models discussed thus far has considered a simplified
setting, in which no evidence data is missing. While social-
networking services can potentially obtain such complete in-
formation about their users (by accessing profile items in all
visibility levels or collecting demographic data when the user
creates an account), third-party services can not, because they
are limited to the public portion of social-network profiles that
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Fig. 2: Additions to the BASIC model of Figure 1 needed to obtain the
REVISED (right) and SELF-INFER (left) models

often lacks some of the attributes that comprise our models’
features. Thus, it is essential to understand how well does the
model perform in the presence of missing data.

MISSING: In order to understand to what extent our model’s
performance is influenced by missing data, we tested the
REVISED model on another dataset, D′2, which is identical
to D2 except for the following case: if the value of an attribute
was not publicly shared in a user’s Facebook profile, we deleted
the attribute’s value from the user’s record in D′2 and treated
it as “missing evidence”. In other words, D′2 includes only
those attributes that the users in D2 have chosen to publish
under a “visible to everyone” setting. For attributes that do not
have their own field in a Facebook profile, such as race, we
used external software and inferred them from other public
information such as name; if the software misclassified the
attribute (compared to the real label that was obtained from
the survey), we deleted it from D′2.

Results for the MISSING model suggested a significant
decrease in the overall accuracy, resulting in the need to design
models that are specifically suited for missing evidence. The
following models demonstrate several strategies that were used
to handle the challenge of incomplete datasets.

SELF INFER: This model enriches REVISED by exploring
various correlations between the input variables for the purpose
of reducing the influence of missing data on the overall results.

Interactions among demographic attributes: Instead of
treating demographic attributes uniformly, we partition them
into two groups: ascribed attributes and acquired attributes.
We can then make use of the possible dependency relations
between the two groups. This idea is incorporated in the model
by creating new edges between the two “acquired” attributes,
education level and marital status, and the “ascribed” attributes
which are known to be highly indicative of them: race, gender
for the education level, and age, gender for the marital status.
An important advantage of this approach is the ability to
combine priors in the CPD of the demographic child nodes,
which represent the known “influence” of the node’s parents
on their descendant; the priors for this purpose were taken
from census statistics and were incorporated into the model’s
parameters using a Bayesian approach with a Dirichlet prior.

Hidden demographic attributes: Demographic attributes
that were included in the former models were both influential
on the PID and observable, i.e., can be directly extracted from
a Facebook profile. A question that may arise is whether both

of those traits must exist in a single attribute. The key idea is
that while some observable attributes are not highly influential
on the PID, they are influential on other unobservable attributes
which do have a high influence on the PID. Using the chain of
observable attribute → unobservable attribute → PID we can
combine such unobservable nodes in our model as well.

We consider one such pair: occupation and personal income.
While income is not a “potentially observable” attribute on
Facebook, it is highly indicative of the individual’s PID. Oc-
cupation, on the other hand, is not considered very indicative
of PID but can be considered as an observable attribute. In the
model shown in Fig. 2, we incorporate this idea, introducing
two new nodes: an observed occupation node and a hidden
income node. The latter is fed by three observed nodes:
occupation, race and gender, and feeding the PID node. The
occupation node’s states represents the twenty main occupation
categories according to the standard SOC (Standard Occupa-
tional Classification) system, to which we added two additional
states: “student” and “retired”.

V. COMBINING LINK INFORMATION: THE FULL MODEL

Homophily is the tendency of individuals to link to others
who are similar to them. In a social network setting, this princi-
ple implies that the network neighborhood of an individual may
reveal a significant amount of information about the individual.
In the FULL model, we adopt a fine-grained interpretation
of the homophily principle in order to both enrich the static
subnetwork and create the social subnetwork.

A common BN representation of social network ties [12],
[13] relies on a user-based granularity where each node corre-
sponds to a user within the target user’s (ut) neighborhood; in
such representation, dependency relations (and, consequently,
similarity relations) can only be established between users.
Thus, such representation implicitly assumes that if two users
share a tie, all their traits are similar. As demonstrated by
[16], this assumption is false: It is known that some attributes
experience a more homophilous nature than others. For some,
similarity does not induce homophily at all.

In order to facilitate a more realistic representation of social
network ties, our FULL model relies on an attribute-based
granularity, thus reflecting a more “fine-grained” homophily
which may vary across different attributes. To achieve that, we
decompose a user into the different attributes that constitute
her social network profile by associating nodes with pairs of
<user, attribute>, and dependency relations with links between
attributes of users. Using this fine-grained representation, de-
pendency relations can be established between a single attribute
of ut and the same attribute of each of her neighbors only if
the attribute is known to be highly homophilous.

The above idea is implemented in the model using a small,
fixed number of “aggregator” nodes, thus avoiding the overhead
of dynamically allocating a separate node for each neighbor of
ut. For a given attribute, those nodes aggregate the magnitude
of each of the attribute’s states within ut’s neighborhood: let at
be an attribute of ut that we want to infer from ut’s neighbors,
and has q(at) states, a1t ..a

q(at)
t . In the BN, we allocate q(at)
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TABLE III: Comparison of the overall classification accuracy using different
training configurations.

TEST → D2 D′2
TRAIN ↓ BASELINE BASIC REVISED MISSING SELF INFER FULL

10-fold CV .382 .68 .745 .661 .718 .825
D1 .382 .726 .76 .67 .712 —
D1+D3 .382 .738 .782 .695 .755 —

aggregator nodes, parents of at, where the ith node represent
the magnitude of the subset of ut’s neighbors for whom the
value of at equals the state ait.

A. Enriching the static subnetwork

We use the homophily principle to infer missing demo-
graphic traits of ut from the Facebook profile of ut’s neighbors.

FULL: In the FULL model, we focused on a particular
subset of ties within ut’s network neighborhood. The subset
is composed of neighbors who are ”close friends” of ut, where
a close friend is defined as a friend who has reacted to a
recent post on ut’s wall. Using this approach, we only consider
ties that are both intense and recent, as the stronger the tie
connecting two individuals, the more similar they are [11], [16].
Furthermore, such activity based metric is more predictive of
tie strength than metrics based on network structure or social
distance, incorporating both intimacy and intensity factors [10],
[11]. The major advantage of this approach is its simplicity
and practicality, as it does not require access to the full list of
friends, but only to ut’s wall. Furthermore, such ties can be
identified and accessed directly from ut’s profile.

We examined two attributes that are known to be highly
homophilous: state of residence (SOR) and age. We elaborate
on the CPD design of the state of residence node (VSOR). The
CPD of the age node was built in a similar process.

The influence of ut’s neighbors’ SOR on ut’s own SOR
is modeled using five aggregator nodes that represent the five
states that the SOR variable can take in the BN (see Table I),
{SORi}1≤i≤5. The jth aggregator node quantifies the portion
of ut’s close friends for whom VSOR=SORj . Each of the
aggregator nodes was discretized to reflect the rank of the state
it represents among VSOR’s states and was linked to VSOR as
its parent using a memory-efficient multinomial logistic CPD.

B. Creating the social subnetwork

The influence of the target user’s neighborhood on her
voting behavior has been considered thus far only indirectly,
through the static subnetwork. A natural extension is to treat
the vote node as a stand-alone trait; then, the homophily
principle can be used directly to infer the voting behavior of
ut from the voting behavior of her neighborhood. However,
because the voting behavior cannot be directly extracted from
a Facebook profile field we cannot use exact counts as we did
for demographic attributes. Instead, we use an approximation
of the overall voting behavior of ut’s neighborhood, obtained
via the following procedure: First, we mark the subset of ut’s
neighborhood whose voting behavior can be estimated with
high confidence; these are users who have performed a social
network activity that is associated with one of the candidates.

Second, we determine the influence of ut’s neighborhood on
her own voting behavior using only this marked subset, as well
as the magnitude of this subset relative to ut’s neighborhood.

FULL: A social subnetwork, built under the same principles
used to enhance the static subnetwork, is added to the FULL
model. The subnetwork contains four aggregator nodes, repre-
senting the portion of ut’s close friends who performed either a
positive or negative Facebook activity associated with candidate
0 or 1, and a “noise” node, representing the portion of ut’s
close friends who did not perform any public Facebook activity
associated with a candidate. In order to avoid continuous-valued
nodes, the portions represented by each node were discretized
into five intervals using equal-frequency discretization. All four
nodes were linked into one of two intermediate nodes (’Positive
neighborhood activity’ and ’Negative neighborhood activity’),
while the ’noise’ node was linked to both. Those intermediate
nodes aggregate the influence of the user’s neighborhood on
her voting behavior and feed directly to the vote node.

VI. EXPERIMENTAL RESULTS

The BASELINE, BASIC and REVISED models were eval-
uated on D2, which includes attributes in all visibility levels.
The REVISED model was also evaluated on D′2, which only
includes attributes from D2 published under a “visible to
everyone” setting. SELF INFER and FULL, designed to handle
missing evidence, were evaluated on D′2.

Table IV provides a detailed summary of results. We report
overall accuracy, Precision, Recall, and AUC for each class.
For FULL, we report the 10-fold cross-validation results on
D′2, because D1 does not include social features. However,
in order to take advantage of the information in D1, we use
the CPDs obtained for the static and dynamic subnetwork in
previous models as high-confidence priors for FULL.

Inspired by [19], we employ a simple baseline system
(BASELINE) that classifies all the users explicitly mentioning
their vote in the 2016 election within one of their public posts.
All other users are considered misses for the given class.

Table III compares the overall accuracy of each model using
different training configurations. The cross-validation results
allow adequate comparison between the results of FULL in
Table IV and the rest of the results. As can be seen, augmenting
the labeled dataset, D1, with unlabeled data, D3, indeed
improves the classification accuracy. Furthermore, this increase
becomes more significant as the number of missing values
within the test set increases.

BASELINE’s low overall accuracy probably results from the
fact that very few users have publicly disclosed their voting
intention. Results for the REVISED model demonstrate an
improvement over the BASIC model, especially for the “other”
class. This improvement suggests that the finer-grained model-
ing of the dynamic subnetwork allows the classifier to capture
additional information which uniquely characterizes the “other”
class, thus better separating it from the other two classes.
Results also show that the MISSING model underperforms the
REVISED model. However, the differences are not as sharp as
we expected considering the large number of missing values.
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FULL was the best model, as evidenced by its high accuracy
score (82.5%). Its use of social features boosts both precision
and recall, but the SELF INFER model, which only includes
demographic and behavioral features, achieves a decent score
(75.5%) as well. This demonstrates the fact that using carefully
designed models combined with complementary sources of
information about the user yields solid predictions even when
both training and testing datasets are incomplete.

Most determinant features: We performed a sensitiv-
ity analysis to assess the impact of the various models’
features on our target variable, vote. We elaborate here
on the two most determinant features for each state of
the vote node. The most influential feature for vote=Trump
was race=African American, which decreased the pos-
terior probability of vote=Trump by 19%, followed by
positive neighborhood activity Trump=very high, which in-
creased the posterior probability of vote=Trump by 13%. For
vote=Clinton, the two most influential features were posi-
tive post=Clinton and education level=post graduate degree;
they increased the posterior probability of vote=Clinton by
22% and 15%, respectively. The two most influential features
on vote=Other were negative activity=both candidates and
noise=very high. They increased the posterior probability of
vote=Other by 15% and 9%, respectively.

Comparison with Existing Results: Unlike political ori-
entation, prediction of individual voting behavior has not
been intensively studied. Exceptions include [2], [9], and
[14], achieving an overall accuracy of 63%, 78.8%, 70.8%
respectively. However, datasets used in all three works were
artificially limited to include only politically active users: users
who performed politically oriented tweets [2], hashtags [9]
or likes [14]. The last is highlighted because the accuracy of
political-orientation classifiers is heavily dependent on users’
political-engagement level. For example, [7] showed that meth-
ods for inferring the political orientation of social-network users
previously claimed to achieve greater than 90% accuracy on
politically active users, actually achieve barely 65% accuracy
when applied to “politically modest” users.

The prior work most relevant to ours is that of Kristensen
et al. [14], which considers five models. We could not use
all five as baselines for our work, because some use features
that can not be directly extracted from a Facebook profile
(such as the user’s opinion towards politically dividing issues,
information which [14] obtains from surveys). In contrast, our
main principle in this work is to only use features that can be
extracted from a Facebook profile directly, without requiring the
user to participate actively in the data-collection process (our
survey is used for validation purposes only). We were able to
apply model 2, which uses the user’s single most recent like that
is associated with a party or politician’s page; model 3, which
uses the number of such likes over the past two years; and their
final model, which combines the features from model 3 with
all the features from the survey that served as their baseline
model. We selected from their final model only those features
that can be extracted from a Facebook profile directly: gender,
age, geography and education. All models were implemented

TABLE IV: Detailed results for the Bayesian network models presented in this
paper

Model Class Acc.
Prec. Rec. AUC

BASIC Trump .77 .76 .91 .738
Clinton .72 .89 .91
Other .72 .53 .78

REVISED Trump .73 .85 .94 .782
Clinton .79 .83 .92
Other .83 .64 .84

MISSING Trump .63 .84 .88 .695
Clinton .75 .7 .85
Other .72 .53 .78

SELF INFER Trump .69 .87 .91 .755
Clinton .81 .73 .88
Other .76 .65 .82

FULL Trump .78 .88 .94 .825
Clinton .83 .86 .93
Other .85 .72 .91

using Python’s scikit-learn library.
Applying model 2 to our dataset (Using D1 and D2 as

training and test sets) achieved an overall accuracy of 38.6%, a
low score both compared to the result achieved in [14] (43.9%)
and to our BN models’ results. Applying model 3 to our dataset
achieved an overall accuracy of 40.4%. It is interesting to see
that there is not much improvement in the accuracy compared to
model 2, while the difference between the two models in [14]
is more significant, with model 3 achieving 60.9%. Finally,
applying their final model to our dataset achieved an overall
accuracy of 60%; we can see a clear increase in the accuracy
compared to models 2 and 3; however, it still underperforms
[14]’s final results (70.8%). This results from the fact that [14]
both artificially limit their datasets to users who performed a
“political like” (only 19% from our dataset) and use features
that can not be directly extracted from a user’s profile such
as opinion about politically dividing issues. As evidenced by
Table IV, [14]’s final model significantly underperforms all our
BN models when applied to our datasets. This highlights the
added value that BNs have for this specific task compared to a
regression model, and the importance of the other features that
are not included in [14]’s final model but are included in our
BN models.

Apart from [14], no other existing work could serve as a
proper baseline for our work, primarily because their objective
is different from ours; Unlike works such as [15], [22], we are
not trying to forecast the general outcome of an election. Unlike
works such as [7], [8], [19], [27], we are not trying to predict
a general political orientation of an individual. Therefore, a
direct comparison of our results and theirs is meaningless.
For election forecasting, such comparison is impossible since
the evaluation metrics are different: while we use an overall
accuracy score, election prediction papers use MSE and com-
pare their forecasting results to national surveys. Furthermore,
the vast majority of political orientation inference papers have
dealt with Twitter; thus, their models heavily rely on Twitter-
specific features, making it impossible to apply those models
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directly to our datasets. However, in order to gain further
insights about how our BN compares to other models used in
previous work, we chose two other classifiers commonly used
in previous work on political orientation inference: Support
Vector Machines (SVM) and Boosted Decision Trees (BDT), as
well as simplified Multinomial Naive Bayes (MNB) classifier,
and tested the performance of each classifier when applied to
our datasets and fed with the features of each of our BN models.

Hyperparameters (cost and γ for the RBF SVM; number of
trees and learning rate for BDT) were chosen using a random-
ized grid search with 5-fold cross-validation. All three models
were implemented using Python’s scikit-learn library. As seen
in Fig. 3, both MNB and SVM considerably underperform the
BN on all five configurations. On the other hand, the BDT
classifier performs on par with the BN; it slightly outperforms
the BN on the REVISED model but underperforms the BN on
the MISSING, SELF-INFER and FULL models; that is, when
the test set contains missing evidence.

VII. CONCLUSION

In this paper, we presented a novel approach to predicting
the voting behavior of Facebook users based on a Bayesian-
network model that combines diverse yet complementary types
of information about the user. In contrast to previous works, we
made use of datasets of ordinary Facebook users, thus avoiding
the bias entailed in cherry-picked datasets, limited to politically
active users. Using a semi-supervised methodology, we applied
our model to the case of the 2016 U.S. elections, achieving
promising results despite large amounts of missing data.

Interesting avenues for future research include augmenting
the model with additional behavioral and interest based traits,
combining more complex measures of the network neighbor-
hood, and adding temporal features that capture how various
attributes change over time. The latter is particularly useful
for politically-oriented applications such as identifying swing
voters by examining whether the political opinions of a user
are consistent over time, or measuring the extent to which a
specific event influenced the user’s voting intentions.
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