
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 5 , MAY 1980 71 1

The New Routing Algorithm for the ARPANET
JOHN M. McQUILLAN, MEMBER, IEEE. IRA RICHER, MEMBER. IEEE. AND ERIC C. ROSEN

Absrracr-The new ARPANET routing algorithm is an improvement
over the old procedure in that it uses fewer network resources, operates on
more realistic estimates of network conditions, reacts faster to important
network changes, and does not suffer from long-term loops or oscillations.
In the new procedure, each node in the network maintains a database
describing the complete network topology and the delays on all lines, and
uses the database describing the network to generate a tree representing the
minimum delay paths from a given root node to every other network node.
Because the traffic in the network can be quite variable, each node
periodically measures the delays along its outgoing lines and forwards this
information to all other nodes. The delay information propagates quickly
through the network so that all nodes can update their databases and
continue to route traffic in a consistent and efficient manner.

An extensive series of tests were conducted on the ARPANET, showing
that line overhead and CPU overhead are 60th less than two percent, most
nodes learn of an update within 100 ms, and the algorithm detects
congestion and routes packets around congested areas.

I. INTRODUCTION

T HE last decade has seen the design, kfdementation, and
operation of several routing algorithms for distributed net-

works of computers. The first such algorithm, the original
routing algorithm for the ARPANET, has served remarkably
well considering how long ago (in the history of packet switch-
ing) it was conceived. This paper describes the new routing
algorithm we installed recently in the ARPANET. Readers not
familiar with our earlier activities may consult [I] for a survey
of the ARPANET design decisions,. induding the previous
routing algorithm; readers interested in a survey of routing al-
gorithms for other computer networks and current research in
the area may consult [2] .

A distributed, adaptive routing scheme typically has a
number of separate components, including: 1) a measurement
process for determining pertinent network characteristics,
2) a protocol for disseminating information about these
characteristics, and 3) a calculation to determine how traffic
should be routed. A routing “algorithm” or “procedure” is
not specified until all these components are defined. In the
present paper, we discuss these components of the new
ARPANET algorithm. We begin with a brief outline of the
shortcomings of the original algorithm; then, following an over-
view of the new procedure, we provide some greater detail on
the individual components. The new algorithm has undergone
extensive testing in the A*ANET under operational condi-
tions, and the final section of the paper gives a summary of the

Paper approved by the Editor for Computer Communication of the
IEEE Communications Society for publication without oral presentation.
Manuscript received May 11, 1979; revised October 5, 1979. This work
was supported by the Defense Advanced Research Projects Agency
under ARPA Order 3941, and by the Defense Communications Agency
(DoD) under Contract MDA903-78C-0129, monitored by DSSW.

The authors are with Bolt Beranek and Newman Inc., Cambridge,
MA 02138.

test results. This paper is a summary of our conclusions only;
for more complete descriptions of our research findings, see
our internai reports on this project [3] -[5].

11. PROBLEMS WITH THE ORIGINAL ALGORITHM

m e original ARPANET routing algorithm and the new ver-
sion both attempt to route packets along paths of least delay.
The total path is not determined in advance; rather, each node
decides which line to use in forwarding the packet to the next
node. In the original approach, each node maintained a table
of estimated delay to each other node, and sent its table to all
adjacent nodes every 128 ms. When node I received the table
from adjacent node J , it would first measure the delay from it-
self t o J . (we will shortly discuss the procedure used for meas-
uring the delay.) Then it would compute its delay via J to all
other nodes by adding to each entry i n S s table its own delay
to J . Once a table was received from all adjacent nodes, node I
could easily determine which adjacent node would result in
the shortest delay to each destination node in the network.

In recent years, we began to observe a number of problems
with the original ARPANET routing algorithm [7] and came
to the conclusion that a complete redesign was the only way
to solve some of them. In particular,.we decided that a new
algorithm was necessary to solve the following problems.

1) Although the exchange of routing tables consumed only
a s..aLfraction of line bandwidth, the packets containing the
tables were long, and the periodicTransmission and processing
of such long, high-priority packets can adversely affect the
flow of network traffic. Moreover, as the ARPANET grows to
100 or more nodes, the routing packets would become cor-
respondingly larger (or more frequent), exacerbating the
problem.

2) The route calculation is performed in a distributed man-
ner, with each node basing its calculation on local information
together with calculations made at every other node. With
such a scheme, it is difficult to ensure that routes used by dif-
ferent nodes are consistent.

3) The rate of exchange of routing tables and the distributed
nature of the calculations causes a dilemma: the network is
too slow in adapting to congestion and to important topology
changes, yet it can respond too quickly (and, perhaps, inac-
curately) t o minor changes.

The delay measurement procedure of the old ARPANET
routing algorithm is quite simple. Periodically, an IMP counts
the number of packets queued for transmission on its lines and
adds a constant to these counts; the resulting number is the
“length” of the line for purposes of routing. This delay meas-
urement procedure has three serious defects.

1) If two lines have different speeds, or different propaga-
tion delays, then the fact that the same number of packets is

0090-6778/80/0500-0711$00.75 0 1980 IEEE

712 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 5 , MAY 1980

queued for each line does not imply that packets can expect
equal delays over the two lines. Even if two lines have the
same speed and propagation delay, a difference in the size
‘of the packets which are queued for each line may cause dif-
ferent delays on the two lines.

2) In the ARPANET, where the queues are constrained to
have a (short) maximum length, queue length is a poor indi-
cator of delay. The constraints on queue length are imposed
by the software in order to fairly resolve contention for a limited
amount of resources. There are a number of such resources
which must be obtained before a packet can even be queued
for an output line. If a packet must wait a significant amount
of time to get these resources, it may experience a long delay,
even though the queue for its output line is quite short.

3) An instantaneous measurement of queue length does not
accurately predict average delay because there is a significant
real-time fluctuation in queue lengths at any traffic level. Our
measurements show that under a high constant offered load,
the average delay is high, but many individual packets show
low delays, and the queue length often falls to zero! This
variation may be due to variation in the utilization of the CPU,
or to other bottlenecks, the presence of which is not accurately
reflected by measuring queue lengths.

These three defects are all reflections of a single point,
namely, that the length of an output queue is only one of
many factors that affect a packet’s delay. A measurement pro-
cedure that takes into account only one such factor cannot
give accurate results.

The new routing algorithm is an improvement over the old
one in that it uses fewer network resources, operates on more
realistic estimates of network conditions, reacts faster to im-
portant network changes, and does not suffer from long-term
loops or oscillations.

111. OVERVIEW OF THE NEW ROUTING PROCEDURE

The routing procedure we have developed contains several
basic components. Each node in the network maintains a data-
base describing the network topology and the line delays.
Using this database, each node independently calculates the
best paths to all other nodes, routing outgoing packets accor-
dingly. Because the traffic in the.network can be quite variable,
each node periodically measures the delays along its outgoing
lines and forwards this information (as a “routing update”) to
all other nodes. A routing update generated by a particular
node contains information only about the delays on the lines
emanating from that node. Hence, an update packet is quite
small (176 bits on the average), and its size is independent of
the number of nodes in the network. An update generated by
.a particular node travels unchargea to all nodes in the network
(not just to the immediate neighbors of the originating node,
as in many other routing algorithms). Since the updates need
not be processed before being forwarded ,because they are
small, and since they are handled with the highest priority,
they propagate very quickly through the network, so that all
nodes can update their databases rapidly and continue to route
traffic in a consistent and efficient manner.

Many algorithms have been devised for finding the shortest
path through a network. Several of these are based on the con-
cept of computing the entire tree of shortest paths from a

given node, the root of the tree. A recent article [9] dis-
cusses some of these algorithms and references several survey
articles. The algorithm we have implemented is based on one
attributed to Dijkstra [lo] ; because of its search rule, we call
it the shortest-path-first (SPF) algorithm.

The basic SPF algorithm uses a database describing the net-
work to. generate a tree representing the minimum delay paths
from a given root node to every other network node. Fig. 1
shows a simplified flowchart of the algorithm. The database
specifies which nodes are directly connected to which other
nodes, and what the average delay per packet is on each net-
work line. (Both types of data are updated dynamically, based
on real-time measurements.) The tree initially consists of just
the root node. The tree is then augmented to contain the node
that is closest (in delay) to the root and that is adjacent to a
node already on the tree. The process coritinueP by repetition
of this last step. LIST denotes a data structure containing
nodes that have not yet been placed on the tree but are
neighbors of nodes that are on the tree. The tree is built up
shortest-paths-first-hence, the name of the algorithm. Event-
ually, the furthest node from the root is added to the tree, and
the algorithm terminates. We have made important additions
t o this basic algorithm so that changes in network topology or
characteristics require only an incremental calculation rather
than a complete recalculation of all shortest paths.

Fig. 2 shows a six-node network and the corresponding
shortest path tree for node 1. The figure also shows the rout-
ing directory which ‘is produced by the algorithm and which
would be used by node 1 to dispatch traffic. For example,
traffic for node 4 is routed via node 2 . Only the routing direc-
tory is used in forwarding packets; the tree is used only in
creating the directory.

The two other important components of the routing
procedure are the mechanism for measuring delay and the
scheme for propagating information. The routing algorithm
must have some way of measuring the delay of a packet at
each hop. This aspect of the routing algorithm is quite crucial;
an algorithm with poor delay measurement facilities will per-
form poorly, no matter how sophisticated its other features
are.

Each node measures the actual delay of each packet flowing
over each of its outgoing lines, and calculates the average delay
every 10 S. If this delay is significantly different from the
previous delay, it is reported to all other nodes. The choice of
10 s as the measurement period represents a significant depar-
ture from the old routing algorithm. Since it takes 10 s-to
produce a measurement, the delay estimate for a given line
cannot change more often than once every 10 s. The old rout-
ing algorithm, on the other hand, would allow the delay esti-
mate to change as often as once every 128 ms. We now believe,
however, that there is no point in changing the estimate so
often, since it is not possible to obtain an accurate estimate
of delay in the ARPANET in less than several seconds. (See
Section IV-B.)

The updating procedure for propagating delay information
is of critical importance because it must ensure that each
update is actually received at all nodes so that identical data-
bases of routing information are maintained at all nodes. Each
update is transmitted to all nodes by the simple but reliable

McQUILLAN e t al.: ROUTING ALGORITHM FOR THE ARPANET 713

MARK ALL NODES

NOT orJ LIST

4

I .1

PUT ROOT (SELF)

ON LIST

REMOVE NODE CLOSEST
NONE + TO ROOT FROM LIST;

PUT NODE ord TREE
W DONE

4
FOR ALL NEIGHBORS OF NODE:

IF ON TREE, DO NOTHING
IF ON LIST, UPDATE DISTANCE
ELSE PUT ON LIST

(a) (b)

Fig. 3. (a) Shortest path tree for network of Fig. 2(a) after the length
of the line 2 + 4 increase t o 6 . (b) Modified tree after the length of
line -, 5 decrease to 2.

transient loops may form for a few packets when a change is
being processed, but that is quite acceptable, since it has no
significant impact on the average delay in the network.

Fig. 1.

DESTINATION
NODE

ROUTETRAFFIC
VIA NODE

(b)

Fig. 2. (a) Example network (line lengths indicated by the numbers
beside the arrowheads). (b) Shortest path tree. (c) Routing directory.

method of transmitting it on all lines. When a node receives an
update, it first checks to see if it has processed that update
before. If so, the update is discarded. If not, it is immediately
forwarded to all adjacent nodes. In this way, the update flows
quickly (within 100 ms) to all other nodes. The fact that an
update flows once in each direction over each network line is
the basis for a reliable transmission procedure for the updates.
Because the updates are short and are generated infrequently,
this procedure uses little line or node bandwidth (less than two
percent). We have augmented this basic procedure with a
mechanism to ensure that databases at nodes are correctly
updated when a new node or line is installed, or when a whole
set of previously disconnected nodes joins the network. This is

Since all nodes perform the same calculation on an identical
database, there are no permanent routing loops. Of course,

1 discussed in more detail in Section IV-C.

IV. DETAILED DESCRIPTION OF THE NEW
ROUTING PROCEDURES

A . Routing Calculation-The SPF Algorithm
We now describe the additions to the basic algorithm of

Fig. 1 which we have developed to handle various possible
changes in network status without having to recalculate the
whole tree. For each change described below, we assume that
the shortest path tree rooted at node I prior to the change is
known.

First, consider the case where the delay of the line AB from
node A to node B increases. Clearly, if the line is not in the
tree (i.e., not in the shortest path from that node to any other
node), nothing need be done because if the line were not part
of any shortest path prior to the change, then it will certainly
not be used when its delay increases. If the line is in the tree,
then the delay to B increases, as does the delay to each node
whose route from I passes through B. Thus, the nodes in the
subtree whose root is B are candidates for changed positions in
the tree. Conversely, nodes not in this subtree will not be
repositioned.

The first two steps for handling an increase of X in the de-
lay from A t o B are as follows.

1) Identify nodes in B’s subtree and increase their delays
from I by X .

2) For each subtree node S, examine S ’ s neighbors which
are not in the subtree to see if there is a shorter path from I
to S via those neighbors. If such a path is found, put node S
on LIST.

At the conclusion of these steps, LIST either will be empty
or will contain some subtree nodes for which better paths have
been found. In order to find the best paths to the nodes on
LIST, a slightly modified version of SPF can be invoked. This
will also find better paths, if any exist, for other subtree nodes.
Fig. 3(a) shows the modification to the tree of Fig. 2 that
results when the delay of the line from node 2 to node 4
increases to 6.

Now consider the case where the delay on AB decreases by
X . If this line is in the tree, then paths to the nodes of the sub-
tree which have 9 as its root will be unchanged because the
subtree nodes were already at minimum delay, and hence
the decreased delay will only shorten their distances from
1. Moreover, any node whose delay from I is less than or

714 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 5 , MAY 1980

equal to B s new distance from I will not be repositioned, since
the node’s path must reach B first in order to take advantage
of the improved line. However, nodes which are not in the sub-
tree and which are farther from I than B may have a shorter
distance via one of the subtree nodes.

The algorithm must thus first perform the following steps.
1) Identify the nodes in the subtree and decrease their dis-

tances from I by X .
2) Try to find a shorter distance for each node K that is not

in the subtree but is adjacent to a subtree node by identifying
a path to K via an adjacent node which is in the subtree. If
such a path is found, put node K on LIST.

At the conclusion of these steps, LIST will contain some
(possibly zero) subtree adjacent nodes that have been re-
positioned. Nodes adjacent to these that are not in the sub-
tree are also candidates for improved paths, and starting with
the LIST generated in step 2) above, the basic SPF algorithm
(with minor modifications) can be used t o restructure the rest
of the tree. Fig. 3(b) shows how the tree of Fig. 3(a) changes
when the length of the link from node 2 to node 5 decreases
to 2, while the length of the link from node 2 to 4 remains
at 6.

If the delay on line AB improved, but AB was not originally
in the shortest path tree, the algorithm first determines whether
B can take advantage of ,this improvement. Since the delay
from I t o A cannot be improved, the delay to B using the line
AB will be equal to the original distance to A plus the new
delay of AB. If the new delay is greater than or equal to the
former delay from I to node B, then the improved line does
not help and no changes are made to the tree or to the routing
table. If, on the other hand, the updated delay is less than the
original delay, then the best route to B now includes AB. The
first change to the shortest path tree is, therefore, to relocate
B (and its subtree), attaching it to node A via line AB. Now
the situation is identical to that of the previous paragraph in
which the line from A to B was in the tree in the first place
and its delay decreased.

Finally, a change in the status of a node-namely, the
addition of a new node, the removal of a node, a node failure,
or its recovery from a failure-is implicitly recognized by the
change in the status of its lines. For example, if a node fails, its
neighbors determine that the lines to that node have failed,
and when other nodes receive this information, they calculate
that the failed node is unreachable. (Of course, nodes can be-
come unreachable even if their lines do not fail.) Thus, the
algorithm need explicitly consider only line changes.

The basic SPF calculation and all of the above incremental
cases are consolidated into the semiformal version of the algo-
rithm given in the Appendix.

B. Delay Measurement
Measuring the delay of an individual packet is a simple

matter. When the packet arrives at the IMP, it is time-stamped
with its arrival time. When the first bit of the packet is trans-
mitted to the next IMP, the packet is stamped with its “sent
time.” If the packet is retransmitted, the original sent time is
overwritten with the new sent time. When the acknowledg-
ment for the packet is received, the arrival time is subtracted
from the sent time. To this difference are added the propaga-

tion delay of the line (a constant for each line) and the packet’s
transmission delay (found by looking it up in a table indexed
by packet length and line speed). The result is the packet’s
total delay at that hop-the time it took the packet to get
from one IMP t o the next.

Every 10 s the average delay of all packets which have tra-
versed a line in the previous 10 s is computed. Our measure-
ments show that when we take an average over a period of
less than 10 s, the average shows io0 much variation from
measurement period t o measurement period, even when the
offered load is constant. There is a tradeoff here: a longer
measurement period means less adaptive routing if condi-
tions actually change; a shorter period means less optimal
routing because of inaccurate measurements.

Another important aspect of the measurement technique is
that the measurement periods are not synchronized across the
network. Rather, the measurement periods in the different
IMP’S are randomly phased. This is an important property be-
cause synchronized measurement periods could, in theory,
lead to instabilities [4] , [111 .

The new routing algorithm does not necessarily generate
and transmit an update at the end of each measurement period;
it does so only if the average delay just measured is ‘‘signifi-
cantly” different from the average delay reported in the last
update that was sent (which may or may not be the same as
the delay measured in the previous measurement period). The
delay is considered to have changed “by a significant amount”
whenever the absolute value of the change exceeds a certain
threshold. The threshold is not a constant but is a decreasing
function of time because whenever there is a large change in
delay, it is desirable to report the new delay as soon as pos-
sible, so that routing can adapt quickly; but when the delay
changes by only a small amount, it is not important to report
it quickly, since it is not likely to result in important routing
changes. However, whenever a change in delay is loug lasting,
it is important that it be reported eventually, even if it is small;
otherwise, additive effects can introduce large inaccuracies
into routing. What is needed, then, is a scheme which reacts
to large changes quickly and small changes slowly. A threshold
value which is initially high but which decreases to zero over
a period of time has this effect. In the scheme we have imple-
mented, the threshold is initially set to 64 ms. After each
measurement period, the newly measured average delay is
compared with the previously reported delay. If the difference
does not exceed the threshold, the threshold is decreased by
12.8 ms. Whenever a change in average delay equals o r exceeds
the threshold, an update is generated, and the threshold is
reset to 64 ms. Since the threshold will eventually decay to
zero, an update will always be sent after a minute, even if
there is no change in delay. (This feature is needed to ensure
reliability of the updating protocol under certain conditions.
See Section IV-C.) It should be pointed out that when a line
goes down or comes up, an update reporting that fact is
generated immediately.

C Updating Policy
We next discuss the policy for propagating the delay in-

formation needed in SPF calculations, which require identical
data bases at all the nodes [12]. The updating technique must

McQUILLAN e t al . : ROUTING ALGORITHM FOR THE ARPANET 715

meet two basic criteria, high efficiency (i.e., low utilization of
line and CPU bandwidth) and high reliability. Efficiency is im-
portant both under normal conditions and when a change is
detected that requires immediate updating. Reliability means
that upd.ates must be processed in sequence, handled without
loss during equipment failures, and treated correctly after
failure recovery.

Rather than having separate updates for each line, each up-
date contains information about all the lines at a particular
IMP. That is, each update from a given node specifies all the
neighbors of that node, as well as the delay on the direct line
to each of the neighbors. This results in more efficiency (i.e.,
less overhead), and the simplicity of only one single serial
number per node. The latter makes sequencing and other
bookkeeping easier.

We considered different approaches for distributing the up-
dates [8] and decided on “flooding,” in which each node sends
each new update it receives on all its lines except the line on
which the update was received. An important advantage of
flooding is that the node sends the same message on all its
lines, as opposed to crea’ting separate messages on the dif-
ferent lines. These messages are short (no addressing informa-
tion is required), so that the total overhead due to routing up-
dates is much less than one percent. A final consideration
which favors flooding is that it is independent of the routing
algorithm. This makes it a safe, reliable scheme.

We considered several different ways of augmenting the
basic flooding scheme to ensure reliable transmission [4]. An
important feature of all the schemes is that updates which
need to be retransmitted can be reconstructed from the topol-
ogy tables in each IMP. The protocol we have adopted uses an
explicit acknowledgment which is a natural extension of the
basic flooding scheme. Using flooding, there is no need to
transmit an update back over the line on which it was received
since the neighbor on that line already has the update. In our
protocol, however, the updates are transmitted over all lines,
including the input line. The “echo” over the input line serves
as an acknowledgment t o the sender; if the echo is not received
in a given amount of time (measured by a retransmission timer
for each line), the update is retransmitted. In order to cover
the case of a missed echo, the retransmitted update is specially
marked (with a “Retry” bit) to force an echo even if the up-
date has been seen before. Note that acknowledging an update
at each hop ensures that the update will be received by all
nodes which have a path to the source.

One difficult problem in maintaining duplicate databases at
all nodes is that some nodes may become disconnected from
each other due to a network partition. For some period of
time, certain nodes are unable to receive routing updates from
certain other nodes. When the partition ends, the nodes in one
segment of the network may remember the serial numbers of
the last updates they received from nodes in the other segment.
However, if the partition lasted a long enough time, the serial
numbers used by the disconnected nodes may have wrapped
around one or more times. If there has been wrap-around, it is
meaningless to compare the serial numbers of new updates
with the serial numbers of old updates. Some method must be
developed to force all nodes to discard the prepartition up-
dates in favor of the postpartition ones. The obvious approach

of ignoring updates from unreachable nodes is not workable,
since the SPF databases may temporarily be inconsistent, and
different nodes may ignore different updates.

This problem is resolved by having the update packets carry
around some indication of their age. There is a k-bit field in
each packet, and each node has a clock which ticks once every
t seconds. When an update is first generated, the “age field” is
2k - 1 . When an update is received, its age field is decremented
once each tick of the clock. An update is considered “too old”
when its age field has been decremented to zero. This scheme
ensures that the age of an update as seen by a given node is
determined by the time it has been held in the given node,
plus the time it was held in any nodes from which it was re-
transmitted. The use of a time-out scheme like the one just
described places several constraints on the parameters used
by the routing scheme.

1) It should be impossible for the serial numbers of updates
generated by any one node to wrap around (i.e., to get half-
way through the sequence number space) before the time-out
period expires.

2) The time-out period should be somewhat longer than the
maximum period between updates from a single node. This
means that good, recent updates from reachable nodes will not
time out.

3) It should be impossible for a node to stop and be restarted
within the time-out interval. This ensures that all of the node’s
old updates will time out before any new updates are sent.

There is one other important facet to the updating proto-
col. When a network line which has been down is determined
to be in good operating condition, it is placed in a special
“waiting” state for a period of one minute. The line is not
“officially” considered to be up until the waiting period is
over. While a line is in the waiting state, therefore, no data can
be routed over it. However, routing updates are transmitted
over lines in the waiting state. As we indicated in Section IV-B,
each node is required to generate at least one update per minute,
even if there is no change in delay. This means that while a
line is in the waiting state, an update from every node in the
network will traverse it; the line cannot come up until enough
time has elapsed so that recent updates from all nodes have
been transmitted over it. This feature is needed for three
reasons.

1) In order to properly perform the routing computation, a
node must have a copy of the network database which is
identical to the copies in all the other nodes. Recall that the
database specifies the topology of the network (i.e., which
nodes are direct neighbors of which other nodes), as well as
the delay on each network line. When a new node is ready to
join the network, it has none of this information. It must some-
how obtain the information before it can be permitted t o join.
Note, however, that the procedure described above ensures
that a node cannot come up (because its lines cannot come
up) until it has received an update from each other node. Since
an update from a given node specifies the neighbors of that
node, as well as the delay on the line to each neighbor, it fol-
lows that a node cannot come up until it has received enough
information to construct a complete and up-to-date copy of
the network database.

2) When the network is partitioned, the partition must not

716 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 5 , M A Y 1980

be permitted to end until updates from each segment have
flowed into the other. Otherwise, nodes in one segment may
have copies of the database which are inconsistent with those
in the other segment. Again, the procedure of having each
node generate at least one update per minute, while holding a
line in the waiting state before allowing it up, is sufficient to
avoid this problem. Since a partition can only end when a line
comes up, and a line cannot come up until updates from all
nodes have traversed it, a partition cannot end until all nodes
have complete, consistent, and up-to-date copies of the data-
base.

3) There are certain peculiar cases in which flooding is not
totally reliable, even when augmented by a retransmission
strategy. For example, suppose a node has two lines, one of
which comes up at the precise moment the other goes down.
An update which is being flooded around the network might
arrive at each line at a time when it is down, This means that
the update may never reach that node, even though there is
no instant when both of the node’s lines are down. However,
by ensuring that a line cannot come up until enough time has
passed for updates ‘from all nodes to have traversed it, this
situation is prevented.

V. PERFORMANCE

We next describe some analytical and empirical results on
the performance of the new routing algorithm. One important
measure of the efficiency of the SPF algorithm is the average
time required to process changes in the delays along network
lines, since such changes comprise the bulk of the processing
requirements. When a given node receives an update message
indicating that the delay along some line has increased, the
running time of the SPF algorithm is roughly proportional to
the number of nodes in that line’s subtree; that is, it is roughly
proportional to the number of nodes to which the delay has
become worse. When a given node receives an update message
indicating that the delay along some line has decreased, the
amount of time it takes to run the incremental SPF algorithm
is roughly proportional to the number of nodes in that line’s
subtree after the algorithm is run; that is, it is roughly propor-
tional to the number of nodes to which the delay got better.
Thus, in either case, the SPF running time is directly related
to the subtree size.

Since the average subtree size provides a measure of SPF
performance, it is useful to understand how this quantity
varies with the size of the network. Let N denote the number
of network nodes, and let hi represent the number of hops on
the path from the source node, i = 1, to node i; in other words,
if the length of each line is 1, then hi is the length of the path
to node i. Clearly, node i appears in i’s subtree and in the sub-
trees of all the nodes along the path to i.Thus, hi is equal to
the number of subtrees in which node i is present, so that

total number of all subtree nodes

N

= hi
i= 2

and since there are N - 1 subtrees (the complete tree from the

source node is not considered to be a “subtree”), the average
subtree size is given by

average subtree size

1 -__ - 2 hi.
N-1 i=2

But this expression is identical to the average hop length of all
paths, and thus we have the remarkable result that in any tree,
the average subtree size is equal to the average hop length
from the root to all nodes. This result is significant because
the average hop length generally increases quite slowly as the
number of nodes increases. (For a network with uniform con-
nectivity c > 2 , the average hop length increases roughly as

To establish some estimate of the running time of the algo-
rithm, we programmed a stand-alone version for the ARPANET
nodes. We randomly assigned each line in the ARPANET a
length between 1 and 20. We ran the SPF algorithm to initialize
the data structure in each node. Then we picked 50 lines at
random and successively gave each a new random length. Every
time we changed the length of a line, we changed it by at least
15 percent. Also, some lines were brought down by being as-
signed a length which represented infinity. Each time we did
this, we ran the SPF algorithm with each node as the source
node. We obtained the following results.

1) The average time per node to run the incremental SPF
algorithm was about 2.2 ms.

2) The average time per subtree node to run the incremental
SPF algorithm was about 1 .I ms.

Since we calculated that the average subtree size multiplied
by the probability that a line is in the tree is about 2 , these
two results are in agreement. Note that these are average times;
actual times varied from under 1 to 40 ms.

The figures given above are for the shortest path calculation
only. Processing an update invokes a routine to maintain the
topology database (including the ability to dynamically add or
delete lines and nodes), and a routine t o determine which nodes
can be reached from the root node. These modules increase
the running time by about a factor of two; and the total stor-
age requirement, including these modules, the topology data-
base, and the measurement and updating packages, is about
2000 16-bit words.

We designed and programmed the new routing procedure
over a period of about six months. We than began an extensive
series of tests on the ARPANET, at off-peak hours but under
actual network conditions [SI . Our tests involved a great deal
more than simply turning the new routing algorithm on to see
whether it would run. The tests were specifically designed to
stress the algorithm, by inducing those situations which would
be most difficult for it to handle well. To stress its ability to
react properly to topological changes, we induced line and
node failures in as many different ways as we could think of,
including multiple simultaneous failures. We also generated
large amounts of test traffic in order to see how the algorithm
performs under heavy load. (In this respect, it should be noted
that the periods during which we were testing were “off-peak”

logN/log (c - 1) [3] .)

McQUILLAN e t a l . : ROUTING ALGORITHM FOR THE ARPANET 717

only with respect to the amount of ordinary user traffic in the
network. The amount of test traffic we generated far exceeds
the amount of traffic generated by users, even during peak
hours.) We experimented with many different traffic patterns,
in order to test the algorithm under a wide variety of heavily
loaded conditions. In particular, we tried to induce those situa-
tions which would be most likely to result in loops or in wild
oscillations. We also designed and implemented a sophisticated
set of measurement and instrumentation tools, so that we
could evaluate the routing algorithm’s performance. Some of
these tools enabled us to monitor the utilization of resources
used by the algorithm. Others enabled us to monitor changes
in delay (as measured by the routing algorithm), as well as
changes in the routing trees themselves at particular network
nodes. One of our most important tools was the “tagged
packet.” A tagged packet is a packet which, as it travels through
the network, receives an imprint from each node through which
it travels. When such a packet reaches its destination, it con-
tains a list of all the nodes it has traversed, as well as the delay
it experienced at each node. These packets provided us with a
very straightforward indication of the routing algorithm’s
performance. Of course, since the network was also in use by
ordinary users during our tests, we cannot claim to have per-
formed “controlled” experiments, in the strict scientific sense.
However, all our experiments were repeated many times be-
fore being used to draw conclusions. Some of our main results
are as follows.

1) Utilization of resources (line and processor bandwidth)
by the new routing algorithm is as expected, and compares
quite favorably with the old algorithm. Line overhead is less
than one percent; CPU overhead is less than two percent. We
have measured these quantities repeatedly since the new routing
algorithm became operational in May 1979, and we have found
this result to hold even during peak hours on the network.

2) The new algorithm responds quickly and correctly to
topological changes; most nodes adapt to the change within
100 ms.

3) The new algorithm is capable of detecting congestion,
and will route packets around a congested area.
4) The new algorithm tends to route traffic on minimum

hop paths, unless there are special circumstances which make
other paths more attractive.

5) The new algorithm does not show evidence of serious
instability or oscillations due to feedback effects.

6) Routing loops occur only as transients, affecting only
packets which are already in transit at the time when there is
a routing change. The few packets that we have observed looping
have not traversed any node more than twice. However, the
loop can be many hops long. Although packets which loop
may experience a longer delay than packets which do not, there
is no significant impact on the average delay in the network.

7) Under heavy load, the new algorithm will seek out paths
where there is excess bandwidth, in order to try to deliver as
much traffic as possible to the destination.

Of course, the new routing algorithm does not generate
optimal routing-no single-path algorithm with statistical
input data could do that. It has performed well, and is suc-
cessful in eliminating many of the problems associated with

the old routing scheme. After several months of careful testing
during which both old and new routing algorithms were resi-
dent in the network and used for experiments [S I , we began
to operate the ARPANET with the new routing scheme in May
1979, and removed the old routing program. Since that time,
we have continued to monitor the performance of the algo-
rithm. The results obtained during our test periods have con-
tinued to hold, even during peak hours, and no new or unfore-
seen problems have yet arisen.

Is the new routing algorithm really better than the old? We
are convinced that it is for reasons that we will summarize
shortly. We would like first to point out, though, that there is
no general answer to the question, “What makes routing algo-
rithm A better than routing algorithm B?” If one could claim
that algorithm A performs better in every possible situation
than algorithm B does, according to some well-defined metric
of performance, then one would have a good reason for prefer-
.ring A . However,’such a claim could never be supported for it
is untestable. One might try to claim that algorithm A per-
forms better than algorithm B in “most” situations, but that
would not necessarily show that A is a better algorithm than
B. A’s performance in the minority of situations might be so
much worse than B’s that B is to be preferred. Furthermore, it
is difficult to define a performance metric which is equally
applicable to every possible situation. For example, in some
situations it may be desirable to minimize delay; in others to
maximize throughput. Yet these two intuitively desirable per-
formance metrics are in conflict. In attempting to decide which
of two routing algorithms is the better one, one cannot appeal
to any procedure simple enough to be followed by rote. Rather,
one must first look at particular situations which are known to
give rise to performance difficulties. Then one must decide
what sort of performance one would like to see in those situa-
tions (a decision often akin to a value judgment). Only then
can one compare the two algorithms to see which gives the
more desirable performance.

Our purpose in designing and implementing a new routing
algorithm for the ARPANET was to eliminate certain prob-
lems in the performance of the old algorithm, while at the
same time maintaining the strengths of the old algorithm. We
believe that one of the strengths of the old algorithm was that
it was distributed, in the sense that the routing computation
was performed by every node. In the ARPANET environment,
this makes good sense from the point of view of reliability and
efficiency. The new routing algorithm retains this feature by
replicating the SPF computation at every node. There is a
sense, however, in which the old routing computation was a
distributed computation but the SPF computation is not. In
the old algorithm, the inputs to the computation at one node
were the outputs of the computation at the neighboring nodes.
In this sense, then, the old routing computation was a global
computation, with each node performing just a piece of it.
Since the nodes performed the computation in an unsynchro-
nized manner, the output of the global computation at any
instant depended more on the history of events around the
network than on the traffic in the network at that instant. The
SPF computation, on the other hand, is a local computation.
It does depend on measurements which have been made all

718 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 5, MAY 1980

around the network, but the updating protocol provides these
measurements to all nodes unchanged and unprocessed; the
SPF computation at one node never learns of the results of
the SPF computation at any other node. In this way, we have
kept the advantages of distributed routing while dispensing
with the disadvantages of having a distributed computation.

Another good quality of the old algorithm was its attempt
to adapt to changing delay conditions in the network. We real-
ize that there may be certain applications, where network traf-
fic can be accurately predicted and the network can be sized
to handle exactly that traffic load and pattern, in which it
may not be important for the routing to be adaptive. In the
ARPANET, however, nodes and trunks are frequently added
or removed. These changes are primarily made for administra-
tive or economic reasons, rather than for the purpose of opti-
mizing traffic flows. The traffic in the ARPANET is quite un-
predictable, being largely determined by the behavior of a com-
munity of researchers. Furthermore, although there are sites
on the ARPANET separated by as many as 11 hops, about
one-third of the messages in the network travel no more than
one hop; about half travel no more than three hops. This leads
to situations in which the load in the network is very nonuni-
form, and these are the situations in which adaptive routing is
likely to be of great utility. For reasons such as these, adaptive
routing seems no less important to us now than it did to the
original designers of the ARPANET many years ago. There
were, however, several problems in the way the old algorithm
responded to changes in network delay. Most of the problems
stemmed from deficiencies in the delay measurement procedure
of the old algorithm (see Section 11). Because of these defi-
ciencies, the old algorithm was often incapable of detecting
congestion, and would sometimes send traffic directly into a
congested area, thereby causing the congestion to spread. Our
tests [5] show that we have eliminated this problem, and have
done so without introducing any countervailing problems,
such as instability or wild oscillation of the routing patterns.
In its ability to adjust to changes in delay, the new algorithm
appears to dominate the old completely.

An important deficiency of the old algorithm was its slow
response to topological changes. The old algorithm would take
many seconds to respond properly to a node or line failure.
During this period, many nodes could be directing traffic to-
wards a failed node. Having to buffer such traffic for seconds
at a time was a significant cause of congestion in the network.
With the new algorithm, however, the time for all nodes to re-
spond to topological changes is on the order of 100 ms. Since
the new algorithm was installed, we have not observed any
congestion arising due to slow response to line or node failures.

The updates of the old routing algorithms were over 1200
bits long. There were often as many as seven such updates per
second on each line. The new routing updates average 176 bits.
Even during peak periods, it is rare to see more than two up-
dates per second per line. One of the problems with the old
algorithm was the increase in the delay of ordinary data packets
due to the presence of the long, frequently sent routing up-
dates. Clearly, the new routing updates interfere much less
with ordinary network traffic than did the old.

The old routing algorithm took a fixed amount of time (15-
20 ms) to process an update. The new algorithm, as we have

pointed out, takes a variable amount of time, with the amount
of time proportional to the size of the routing change neces-
sitated by the update. This results in a much more efficient
use of the CPU.

One of the major problems of the old algorithm was that it
was prone to form loops which might persist for several seconds
at a time. A given packet might be trapped in such a loop for a
significant amount of time. Often a large number of packets
would get “sucked in” to such loops, causing congestion which
began at the locus of the loop and then spread throughout the
network. While the new algorithm cannot be said to be loop-
free, the loops that it forms occur only as transients while the
network is adapting to a routing change. The loops which do
form do not persist; a packet will sometimes loop once, but
we have never seen packets traveling around and around in a
loop, as would sometimes happen with the old algorithm. The
small amount of looping which has been observed has never
led to congestion, or even to a significant increase in average
network delay. We conclude, therefore, that looping is not a
problem with the new algorithm, as it was with the old.

Someone might object that any algorithm that permits loops
is seriously deficient; this point is worth commenting on briefly.
It is certainly true that, other things being equal, it is better
not to have looping than to have it. But other things are never
equal-we know of no pair of routing algorithms that perform
exactly alike, except that one permits looping and the other
does not. An algorithm which does not permit looping does
not necessarily result in lower delay, less variable delay, higher
throughput or less congestion than an algorithm which does.
We simply do not believe that a small amount of transient
looping should be regarded as a problem.

Are there any ways in which the old algorithm is better
than the new one? The new algorithm does take about three
times the memory as the old one, but conservation of memory
is not generally considered to be an important desideratum for
routing algorithms. From the point of view of performance,
the new algorithm seems to dominate the old one in every re-
spect. This is not to say that our approach is appropriate for
every possible application, or even that it is the only possible
approach for our application. We do believe, though, that we
have met our goal of designing a new routing algorithm which
kept the known strengths of the old one while eliminating
many of its known weaknesses.

APPENDIX

This Appendix gives a semiformal description of the algo-
rithm to calculate and update the shortest path tree. SOURCE

denotes the node in which the algorithm is running. The
algorithm’s basic data structure, LIST, is a variable-length list
whose elements are ordered triples. An ordered triple T is of
the form (SON, FATHER, DISTANCE) where SON and FATHER

are nodes and DISTANCE is a member. (We use the notation
SON (0 in the obvious way to mean the first element of the
triple T.) Each triple represents a particular path from SOURCE
to SON. The penultimate hop on this path is FATHER, and the
total length of this path is DISTANCE. The algorithm we de-
scribe here has been modified so that changes to the tree can
be computed incrementally, without having to recalculate those

~ M ~ Q U I L L A N e t a[. : ROUTING ALGORITHM FOR THE ARPANET

parts of the tree that do not change. Hence, it does not cor-
respond exactly to the flow chart in Fig. 1.

SPF Algorithm

0) If no tree exists, place (SOURCE, SOURCE, 0) on LIST,
and go to Step 4).

1) If the change was to line AB, then perform one of the
following steps.

a) If AB is in the tree, set DELTA equal to the change in
distance along AB.

b) If AB is not in the tree, set DELTA equal to the dis-
tance to node A plus the distance along AB minus the distance
to B; if DELTA is greater than or equal to 0, done.

2) Identify B and all of B’s descendants (both first genera-
tion and succeeding generations) as members of the subtree;
increase the distances of all subtree members by DELTA.

3) For each subtree node S , perform one of the following
steps.

a) If DELTA is positive, try to find a shorter path to S via
each of S’s neighbors that i s not in the subtree; if such an im-
proved path is found, put the triple representing S on LIST.

b) If DELTA is negative, try to find a shorter path to each
of S’s nonsubtree neighbors by attempting to route each neigh-
bor via S; if such an improved path is found, put the triple for
the neighbor node on LIST.

4) Search LIST for the triple T with the smallest DISTANCE.
Remove T from LIST; place SON (T) on the shortest path tree
so that its father on the tree is FATHER (T). (Exception: if
SON (T) = SOURCE, place it in the tree as its root.)

5) For each neighbor N of SON (0, do one of the following
steps.

a) If N is already in the shortest path tree, then
i) if its distance from SOURCE along the tree is less

than or equal t o DISTANCE (7‘) + LINE-LENGTH (SON (T),N),
do nothing;

ii) if its distance from SOURCE along the tree is greater
than DISTANCE (T) + LINE- LENGTH (SON (T),N), removeN
from the tree and place W, SON (0, DISTANCE (0 + LINE-

LENGTH (SON (0, N)) on LIST.

b) If there is no triple on LIST such that SON (i“) = N ,
then place the triple W, SON (0, DISTANCE (T), + LINE-
LENGTH (SON (T),N)) on LIST.

c) If there is already a triple i“ on LIST such that SON

(i“) = N , and if DISTANCE (T‘)<DISTANCE (T) + LINE-

LENGTH (SON (N), do nothing.
d) If there is already a triple 3“ on LIST such that SON

(2‘) = N , and if DISTANCE (T’) > DISTANCE (T) + LINE-
LENGTH (SON (T‘) N), then

i) remove i“ from LIST;

ii) place the triple VV, SON (T), DISTANCE (r) +

6) If LIST is nonempty, go to step 4). Otherwise, the algo-
LINE- LENGTH (SON (0, N)) O N LIST.

rithm is finished.

REFERENCES
[I] J. M. McQuillan and D. C. Walden. “The ARPANET design deci-

121 J. M. McQuillan. “Routing algorithms for computer networks-A
sions,” Comput. Networks. vol. I . Aug. 1977.

survey.” presented at the 1977 Nat. Telecommun. Conf.. Dec. 1977.

719

J. M. McQuillan. I . Richer. and E. C. Rosen. “ARPANET routing
algOrithm improvements-First semiannual technical report.” BBN

J. M. McQuillan, I . Richer, E. C. Rosen, and D. P. Bertsekas,
Rep. 3803. Apr. 1978.

technical report.” BBN Rep. 3940. Oct. 1978.
“ARPANET routing algorithm improvements-Second semiannual

E. C. Rosen. J . Heman. I . Richer. and J . M. McQuillan. “ARPANET
routing algorithm improvements-Third semiannual technical report.”
BBN Rep. 4088, Apr. 1979.
J. M. McQuillan, G . Falk. and I . Richer. “A review of the development
and performance of the ARPANET routine algorithm.” IEEE Trms.
Commun., Dec. 197.8.
J. M. McQuillan. I . Richer, and E. Rosen. “ARPANETroutingstudy-
Final report.” BBNRep. 3641. Sept. 1977.
J. M. McQuillan, “Enhanced message addressing modes for computer
networks,” Proc. IEEE (Special Issue on Packer Communication
Networks), Nov. 1978.
D. B. Johnson. “Efficient algorithms for shortest paths in sparse net-
works,“ J . Ass. Cornput. Mach.. vol. 24. pp. 1 - 1 3. Jan. 1977.
E. Dijkstra, “A note on two problems in connection with graphs.”
N’umer. Math.. vol. I . pp. 269-27 I. 1959.
D. P. Bertsekas. “Dynamic models of shortest path routing algorithms
for communications networks with a ring topology.” in preparation.
E. C . Rosen. “The updating protocol of the ARPANET’s new routing
algorithm: A case study in maintainins identical copies of a changing
distributed data base.” in Proc. 4th Berkelev Conf. Disrrihufed Dato
Monogernent and Cornput. Networks. Aug. 28-30, 1979. pp. 260-274.

*
John M. McQuillan (“77) was born in New York.
NY. on February 2 3 . 1949. He received the A.B..
S.M.. and Ph.D. degrees in 1970. I97 I. and 1974.
respectively, from Harvard University. Cambridge.
MA. all in applied mathematics.

Since 1971 he has been with Bolt Beranek and
Newman (BBN) Inc., where he was a major con-
tributor to the design and implementation of the
ARPANET. He has investigated several types of
advanced computer communications systems.
directed BBN’s consulting in this field, and pub-
lished over 30 articles in this area.

*
Ira Richer (S’S8-M’63) received the B.E.E. degree
from Rensselaer Polytechnic Institute. Troy, NY. in
1959, and the M.S. and Ph.D. degrees in electrical
engineering from the California Institute of Tech-
nology. Pasadena. in 1960 and 1964. respectively.

After holding postdoctoral positions at the Tech-
nical University of Denmark. Lyngby. and at
Cal Tech, Pasadena, he joined M.I.T. Lincoln
Laboratory, Lexington, MA, where he was involved
in a number of advanced communications projects
that spanned orders of magnitude in both the fre-

quency and altitude domains (ELF to UHF and submarine to satellite). In 1977
he joined Bolt Beranek and Newman (BBN) Inc., Cambridge, MA. As a Senior
Scientist at BBN, he consults to both commercial and government organizations
on a variety of network and communications topics.

*
Eric C. Rosen received the S.B. degree in 1973 from the Massachusetts
Institute of Technology, Cambridge, and the Ph.D. degree in philosophy in
1976 from Princeton University, Princeton, NJ.

He has worked for M.I.T.’s Laboratory for Computer Science, for Boeing
Computer Services, and since 1977. for the Computer Systems Division of Bolt
Beranek and Newman (BBN). Inc. While at BBN, he has been extensively
involved in measuring the performance of the ARPANET. and in designing and
testing the ARPANET’s new routing algorithm. He is currently conducting
research in routing and congestion control techniques for computer networks.

