JAY P. LIM

 $(414) \cdot 534 \cdot 3472 \diamond jay.lim@yale.edu$

https://www.cs.yale.edu/homes/lim-jay/

RESEARCH INTERESTS

My research interests lie in generating and verifying low-level systems including, but are not limited to, math libraries, compilers, and cryptography libraries. I am especially interested in developing foundational techniques to automatically generate and verify these systems with minimal user intervention.

In my current research, I am developing novel approaches to create efficient and correctly rounded implementations of elementary functions in math libraries for several representations and rounding modes.

EDUCATION

2021	PhD in Computer Science Rutgers University, New Brunswick, New Jersey Advisor: Santosh Nagarakatte
2011	BS in Computer Science and Mathematics University of Wisconsin - Madison, Madison, Wisconsin

POSITIONS HELD

2021-present	Lecturer Department of Computer Science, Yale University
2014-2021	 Graduate Research Asssistant Computer Science Department, Rutgers University Dissertation Title: Novel Polynomial Approximation Methods for Generating Correctly Rounded Elementary Functions
2017	Research Intern MSR Next OS Technology, Microsoft Research Redmond - Developed generic functions for CheckedC to reduce void pointer usage.
2011-2014	Software Developer Quad/Graphics Inc. - Server back-end and web development, large databases maintenance.

HONORS AND AWARDS

2022	John C. Reynolds Doctoral Dissertation Award Title: Novel Polynomial Approximation Methods for Generating Correctly Rounded Elementary Functions
2022	Distinguished Paper Award at POPL 2022 Title: One Polynomial Approximation to Produce Correctly Rounded Results of an Elementary Function for Multiple Representations and Rounding Modes
2021	Distinguished Paper Award at PLDI 2021 Title: High Performance Correctly Rounded Libraries for 32-bit Floating Point Representations

2019	Rutgers University Rizvi Family Graduate Fellowship For excellence in research
2018	Student Research Competition Gold Medal, PLDI 2018 Title: Automatic Verification of Assembly Implementation of Cryptographic Algorithms

SCIENTIFIC PUBLICATIONS

PLDI 2022	Progressive Polynomial Approximations for Fast Correctly Rounded Math Libraries. Mridul Aanjaneya, Jay P. Lim , and Santosh Nagarakatte. Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation (PLDI), 2022.
POPL 2022	*Distinguished paper award* One Polynomial Approximation to Produce Correctly Rounded Results of an Ele- mentary Function for Multiple Representations and Rounding Modes. Jay P. Lim and Santosh Nagarakatte. 49th ACM SIGPLAN Symposium on Principles of Pro- gramming Languages (POPL), 2022.
PLDI 2021	*Distinguished paper award* High Performance Correctly Rounded Math Libraries for 32-bit Floating Point Rep- resentations. Jay P. Lim and Santosh Nagarakatte. Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Imple- mentation (PLDI), 2021.
POPL 2021	An Approach To Generate Correctly Rounded Math Libraries for New Floating Point Variants. Jay P. Lim, Mridul Aanjaneya, John Gustafson, and Santosh Nagarakatte. 48th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL), 2021.
CF 2020	Approximating Trigonometric Functions for Posits Using the CORDIC Method. Jay P. Lim, Matan Shachnai, and Santosh Nagarakatte. Proceedings of the 17th ACM International Conference on Computing Frontiers (CF), 2020.
PLDI 2020	Debugging and Detecting Numerical Errors in Computation with Posits. Sangeeta Chowdhary, Jay P. Lim, and Santosh Nagarakatte. Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementa- tion (PLDI), 2020.
CGO 2019	Automatic Equivalence Checking for Assembly Implementations for Cryptography Libraries. Jay P. Lim, and Santosh Nagarakatte. Proceedings of the International Symposium on Code Generation (CGO), 2019.
PLAS 2017	Compiler Optimizations with Retrofitting Transformations: Is There a Semantic Mismatch? Jay P. Lim, Santosh Nagarakatte, and Vinod Ganapathy. ACM SIGSAC Workshop and Programming Languages and Analysis for Security (PLAS), 2017.

TECHNICAL REPORTS

Nov. 2021RLibm-Prog: Progressive Polynomial Approximations for Fast Correctly Rounded
Math Libraries. Mridul Aanjaneya, Jay P Lim, and Santosh Nagarakatte. Depart-
ment of Computer Science, Rutgers University, Technical Report DCS-TR-758

Aug. 2021	RLIBM-ALL: A Novel Polynomial Approximation Method to Produce Correctly Rounded Results for Multiple Representations and Rounding Modes. Jay P. Lim and Santosh Nagarakatte. Department of Computer Science, Rutgers University, Technical Report DCS-TR-757
Apr. 2021	RLIBM-32: High Performance Correctly Rounded Math Libraries for 32-bit Floating Point Representations. Jay P. Lim and Santosh Nagarakatte. Department of Computer Science, Rutgers University, Technical Report DCS-TR-754
Jul. 2020	A Novel Approach to Generate Correctly Rounded Math Libraries for New Floating Point Representations. Jay P. Lim, Mridul Aanjaneya, John Gustafson, and San- tosh Nagarakatte. Department of Computer Science, Rutgers University, Technical Report DCS-TR-753
THESIS	

Aug. 2021	Novel Polynomial Approximation Methods for Generating Correctly Rounded Ele-
	mentary Functions. Jay P. Lim, PhD Dissertation, Rutgers, The State University
	of New Jersey, Supervised by Professor Santosh Nagarakatte

INVITED TALKS AND CONFERENCE PRESENTATIONS

Jan. 2022	One Polynomial Approximation to Produce Correctly Rounded Results of an Ele- mentary Function for Multiple Representations and Rounding Modes. Conference presentation at POPL 2022. January 2022 Online. (Video)
July 2021	High Performance Correctly Rounded 32-bit Math Libraries. Invited talk at FPTalks 2021. July 2021 Online. (Video)
July 2021	 High Performance Correctly Rounded Math Libraries for 32-bit Floating Point Representations. Conference presentation at PLDI 2021. July 2021 Online. (Video)
Jan. 2021	 An Approach to Generate Correctly Rounded Math Libraries for New Floating Point Variants. Conference presentation at POPL 2021. January 2021 Online. (Video)
Oct. 2020	 An Approach to Generate Correctly Rounded Math Libraries for New Floating Point Variants. Poster session at 2020 Virtual LLVM Developers' Meeting. October 2020. Online.
Jun. 2020	Creating Correctly Rounded Math Libraries for Real Number Approximations. Invited talk at FPTalks 2020. June 2020 Online. (Video)
Jun. 2020	Approximating Trigonometric Functions for Posits Using the CORDIC Method. Conference presentation at CF 2020. June 2020 Online.
Feb. 2019	 Automatic Equivalence Checking for Assembly Implementations for Cryptography Libraries. Conference presentation at CGO 2019. February 2019. Washington D.C.

Nov. 2017	Automatic Verification of Assembly Implementation of Crypto Software.Invited talk at NJ Programming Languages and Systems Seminar. November 2017.Princeton University, New Jersey.
Oct. 2017	 Compiler Optimizations with Retrofitting Transformations: Is there a Semantic Mismatch? Conference presentation at PLAS 2017. October 2017. Dallas, Texas.
Aug. 2017	Filling The Void: Extending C to Eliminate the Use of Void Pointers in Practice. End of the Internship Talk at Microsoft Reesarch. August 2017. Microsoft Research Redmond, Washington.

TEACHING EXPERIENCE

Fall 2022	Lecturer at Yale University Introduction to Computing and Programming (CPSC 100) Full Stack Web Programming (CPSC 419 & CPSC 519)
Spring 2022	Lecturer at Yale University Introduction to Systems Programming and Computer Organization (CPSC 323) Compilers and Interpreters (CPSC 421 & CPSC 521)
Fall 2021	Lecturer at Yale University Introduction to Computing and Programming (CPSC 100) Introduction to Systems Programming and Computer Organization (CPSC 323)
Fall 2020	Teaching Assistant at Rutgers University Computer Architecture (01:198:211)
Spring 2020	Teaching Assistant at Rutgers University Computer Seurity (01:198:544)
Summer 2019	Instructor at Rutgers University Computer Architecture (01:198:211)
Spring 2019	Co-Instructor at Rutgers University Computer Security (01:198:544)
Fall 2018	Teaching Assistant at Rutgers University Computer Architecture (01:198:211)
Spring 2018	Teaching Assistant at Rutgers University Programming Languages and Compilers II (01:198:516)
Summer 2015	Teaching Assistant at Rutgers University Introduction to Discrete Structures II (01:198:206)
Spring 2015	Teaching Assistant at Rutgers University Principles of Programming Languages (01:198:314)
Fall 2014	Teaching Assistant at Rutgers University Principles of Programming Languages (01:198:314)

UNDERGRADUATE THESIS SUPERVISION

Fall 2022	Lee Chen - Senior Thesis Project
Fall 2022	Kaitlyn Sandor - Senior Thesis Project
Spring 2021	Masayuki Nagase - Senior Thesis Project

PROGRAM COMMITTEE MEMBER

2022	OOPSLA'23 Extended Review and Artifact Evaluation Committee SPLASH 2023 - OOPSLA track
2022	SIGCSE TS'23 Program Committee SIGCSE 2023 Technical Symposium
2021	OOPSLA'22 Extended Review and Artifact Evaluation Committee SPLASH 2022 - OOPSLA track

UNIVERSITY AND DEPARTMENTAL SERVICE

2022	Yale University CS Academic Honesty Committee
Summer 2022	Camp Yale - Build Program advisor
2021	Yale University CS Academic Honesty Committee

PROFESSIONAL SOCIETIES

• ACM member since 2018.