
Compiler Optimizations with Retrofitting Transformations: Is
there a Semantic Mismatch?

Jay P Lim
Rutgers University, USA

jpl169@scarletmail.rutgers.edu

Vinod Ganapathy
Indian Institute of Science, India

vg@iisc.ac.in

Santosh Nagarakatte
Rutgers University, USA

santosh.nagarakatte@cs.rutgers.edu

ABSTRACT
A retrofitting transformation modifies an input program by adding
instrumentation to monitor security properties at runtime. These
tools often transform the input program in complex ways. Com-
piler optimizations can erroneously remove the instrumentation
added by a retrofitting transformation in the presence of semantic
mismatches between the assumptions of retrofitting transforma-
tions and compiler optimizations. This paper proposes a strategy
to ascertain that every event of interest that is checked in the
retrofitted program is also checked after optimizations. Our ini-
tial experiments have identified bugs both in previously proposed
retrofitting transformations and our implementations of retrofitting
transformations.

1 INTRODUCTION
There is a vast body of prior work onmonitoring program execution
at runtime for enforcing various properties related to security, cor-
rectness, reliability, debugging, and many others [4, 5, 16, 17, 26, 33–
38, 42, 49]. Typically, such monitoring is performed via retrofitting
transformations, in which a given program is modified by adding
instrumentation to perform checks, and propagate and store meta-
data information at runtime. For example, a transformation to de-
tect buffer overflows or other memory-safety errors would instru-
ment a program to propagate information about pointer bounds
with each pointer operation and check them on pointer derefer-
ences [5, 13, 16, 18, 36, 37, 46]. Similarly, a control-flow integrity
enforcement mechanism would add instrumentation to propagate
the set of allowed control flow transfers and check the target of
every indirect call and jump instruction [4, 40].

Over the past several years, researchers and practitioners have
developed numerous such retrofitting transformations. They dif-
fer widely in their design, ranging from transformations that are
applied directly at the source-code level [13, 16, 23], to those that
modify the compiler to add instrumentation [9, 10, 18, 26, 30, 37,
42, 46], and to those that add instrumentation via binary rewrit-
ing [14, 43, 44]. Regardless of the specific design used, retrofitting
transformations are typically complex to implement. This is be-
cause the transformations are usually designed at an abstract level,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLAS’17, October 30, 2017, Dallas, TX, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5099-0/17/10. . . $15.00
https://doi.org/10.1145/3139337.3139343

but any real-world implementation must deal with the complexities
of modern languages, runtime, and the hardware ABI.

Far from being research prototypes, such tools are now beginning
to see wide-spread use. Sanitizers such as AddressSanitizer [42] for
checking memory safety errors and CFI checkers [3, 45] are widely
used compiler-based tools. Once a program has been instrumented
with a retrofitting transformation, it is optimized with a suite of
existing optimizations to reduce performance overheads following
the “optimize-instrument-optimize” methodology [26, 32, 37, 38, 42,
46, 50]. The use of existing optimizations reduces the amount of new
code added to optimize retrofitted programs while also minimizing
performance overheads.

Apart from removing redundant checks, optimizations can re-
move a necessary check (from a retrofitting transformation perspec-
tive) when they optimize aggressively in the presence of undefined
behavior [47]. Further, optimizations can also erroneously remove
the inserted checks when implicit assumptions of the retrofitting
transformation are not explicitly specified through the dataflow
in the program (as these checks seem redundant from the opti-
mization’s perspective). For example, we discovered a bug in our
SoftBoundCETS transformation in the presence of compiler opti-
mizations due to a mismatch in the assumptions [1]. As a result,
SoftBoundCETS propagates invalid bounds metadata in the shadow
stack when the LLVM compiler optimizes function arguments af-
ter instrumentation [1]. Further, any semantic mismatch between
correctness properties and the introduced checks can result in re-
moval of checks [19]. One way to address this problem is to avoid
compiler optimizations after retrofitting transformations. However,
it can result in significant performance overheads. Hence, this paper
tackles an alternative research question: is the instrumentation added
to the program by a retrofitting transformation still preserved after
compiler optimizations?

This paper proposes an approach to detect whether the added
checks have been erroneously removed by optimizations due to
mismatches in the assumptions. Our approach relies on the obser-
vation that any event of interest that is checked in the retrofitted
program must also be checked in the resulting retrofitted program
after optimizations. However, this task is challenging for the follow-
ing reasons: (1) the checks can be safely optimized away when they
are redundant, (2) the added instrumentation can be moved around
with optimization, and (3) many small functions can be completely
inlined (e.g., with link time optimizations (LTO)).

To identify erroneously removed checks, we propose encoding
the reachability of the event of interest as constraints in both the
retrofitted program (Pretro) and optimized version of the retrofitted
program (Poptretro). When the check is successful in the retrofitted
program, the event of interest will be reachable and vice versa.
We identify path conditions that makes the event of interest being

Session 3: Information Flow PLAS’17, October 30, 2017, Dallas, TX, USA

37

https://doi.org/10.1145/3139337.3139343

reachable. Let’s say, Eretro and Eoptretro represents the constraints for
event E to be reachable in the retrofitted program and the optimized
version of the retrofitted program, respectively. Then, we check
the validity of the formula Eretro =⇒ Eoptretro and Eoptretro =⇒ Eretro.
Our prototype addresses the challenges of encoding reachability
with path conditions and checking the validity of these checks (see
Section 2 for details). Our approach can be broadly viewed as a
tailored application of translation validation, where the transfor-
mation applied to a single program is checked before and after
optimizations.

We have developed an initial prototype to determine whether
checks in retrofitted LLVM-IR programs have been erroneously
optimized. We have tested the prototype with Olden benchmarks
retrofitted with SoftBoundCETS [37, 38] and AddressSanitizer trans-
formations. Our prototype detects erroneous removal of checks
in a custom integer overflow checker with undefined behavior. It
has also identified bugs when programs retrofitted with SoftBound-
CETS transformation are optimized.

2 DETECTING ERRONEOUSLY REMOVED
CHECKS

Programmers reasoning about a retrofitting transformation want to
identify the added instrumentation. They may also want to ensure
that the inserted instrumentation is not erroneously removed by the
tool chain. Typically, retrofitting transformations are performed
on a program after it has been optimized with a suite of exist-
ing optimizations. Subsequently, the program transformed with
the retrofitted transformation is optimized again. This “optimize-
instrument-optimize” methodology is widely used by many trans-
formations [37, 42, 45, 46], which minimizes the amount of code
added to perform retrofitting transformations.

The compiler or other parts of the tool-chain can remove checks
when it infers them to be redundant or due to compiler bugs [2, 47].
This is especially true when parts of the check may not conform
to the strict language standard (i.e. they may have undefined be-
havior according to the considered language standard) [29, 47].
However, the retrofitting transformation may consider the check
to be essential. The problem is challenging because the develop-
ers of retrofitting transformations expect the tool-chain to remove
redundant checks. Further, an optimized version of the retrofit-
ted program can have little syntactic similarity to the retrofitted
program especially with inlining and link time optimizations. De-
ploying completely verified tool-chains and verifying retrofitting
transformations can address this problem. However, completely
verified tool-chains are unavailable for mainstream systems. Hence,
we propose a new approach to detect whether the tool-chain has
erroneously removed the checks.

2.1 High-level Sketch
To identify erroneously removed checks, our approach is to identify
events of interest, which varies with each retrofitting transforma-
tion, in the program that are protected by checks. We have to match
the event of interest in the retrofitted program and its optimized
version, which is a hard problem. To address this problem, we add
a custom pass in the compiler that adds compile time metadata
to the event of interest, which is maintained with optimizations.

define i32 @foo(i32 a, i32 b)
(c)

int foo(int a, int b) {
 int c = a + b;
 return c;
}

int foo(int a, int b) {
 if (a > 0 && b > 0 && a > a + b)
 exit(1);
 if (a > 0 && b < 0 && a < a + b)
 exit(1);
 int c = a + b;
 return c;
}

(a)

(b)

 %2 = icmp sgt a, 0
 br i1 %2, L3, L9

L3 : %4 = icmp sgt b, 0
 br %4, L5, L9

L5 : %6 = add a, b
 %7 = icmp sgt a, %6
 br %7, L8, L9

L8 : call void @exit(1)
 unreachable

L9 : %10 = icmp slt a, 0
 br %10, L11, L17

L11 : %12 = icmp slt b, 0
 br %12, L13, L17

L13 : %14 = add a, b
 %15 = icmp slt a, %14
 br %15, L16, L17

L16 : call void @exit(1)
 unreachable

L17 : %18 = add a, b
 ret %18

T

T

T

T

T

T

F
F

F F

F

F

define i32 @foo(a, b)
 %0 = icmp sgt b, 0
 %1 = and b, a
 %2 = icmp slt %1, 0
 %3 = and %0, %2
 br %3, L4, L5

M4 : call void @exit(1)
 unreachable

M5 : %6 = add b, a
 ret %6

T F

(d)

Figure 1: (a) A simple C program. (b) Naive integer overflow checks
added to the C program in (a). (c) Simplified LLVM IR of (b). (d)
Simplified LLVM IR of (c) after optimization (with -O1). LLVM op-
timized the integer overflow checks because a > a + b evaluates to
true when a > 0 and b > 0 and signed integer overflows are unde-
fined behavior in C.

Using this compile-time metadata, we match these events in both
retrofitted program (Pretro) and the optimized version of the retro-
fitted program (Poptretro). Once we identify the events of interest, we
identify constraints that ensure the reachability of the event of
interest in both the retrofitted program (Pretro) and the optimized
version of the retrofitted program (Poptretro).

Conceptually, we encode all instructions from the beginning of
the function till the event of interest and necessary path conditions
as constraints. Let Eretro and Eoptretro represent the constraints for
event E to be reachable in Pretro and Poptretro, respectively. Subse-
quently we check if Pretro can reach an event of interest E, then
event E should also be reachable in Poptretro; if Pretro cannot reach and
event of interest E, then E should not be reachable even in Poptretro.
Essentially, we check the validity of the following formula:

(Eretro =⇒ Eoptretro) ∧ (¬ Eretro =⇒ ¬ Eoptretro)

The contrapositive of¬Eretro =⇒ ¬ E
opt
retro (i.e., E

opt
retro =⇒ Eretro)

is easier to compute and amenable for incremental generation of
constraints. Hence, we check the validity of the formula:

(Eretro =⇒ Eoptretro) ∧ (Eoptretro =⇒ Eretro)

Illustration.We illustrate our approach using a naive integer
overflow checker. Figure 1 shows an integer overflow checker for C
programs (naive but illustrates our point), a retrofitting transforma-
tion. Signed integer overflows are undefined behavior in C. Hence,
the retrofitting transformation adds checks that aborts the program
when an integer overflow occurs. The resultant LLVM IR for the
retrofitted program is shown in Figure 1(c). The compiler evaluates
the condition a > a + b to true assuming that the program is well-
defined (because signed integer overflow is undefined behavior)

Session 3: Information Flow PLAS’17, October 30, 2017, Dallas, TX, USA

38

and the resultant program (i.e. Poptretro) is shown in Figure 1(d). Here,
the check in Poptretro can be considered to be erroneously removed.

The event of interest in Pretro is in block labeled L17 in Pretro (see
Figure 1(c)) and in block labeled M5 in Poptretro (see Figure 1(d)). We
generate reachability condition for this event in both Pretro and
Poptretro and check the validity of the formula described above. Next,
we illustrate the process of generating constraints to encode the
reachability of the event.

2.2 Encoding Paths as Constraints
Our approach is based on the following observation: when an op-
timization erroneously modifies or removes a check introduced by a
retrofitting transformation, we will be able to observe that an exe-
cution may reach the event of interest in Pretro but aborts in Poptretro,
and vice versa. To detect that an event is reachable, we generate all
distinct static paths that can reach the event in the program. We
restrict ourselves to intra-procedural paths. We generate all possi-
ble paths in both Pretro and Poptretro that makes the event reachable.
Next step is to generate constraints to generate the static path and
relate the paths in Pretro and Poptretro.

First, we generate constraints for the static path to manifest.
It consists of: (1) ϕbc — constraints to encode the branch condi-
tions taken in the path, and (2) ϕinst — constraints that encode
the sequence of non-branch instructions executed in the path. The
constraint ϕbc is a conjunction of the constraints for each branch
condition in the path. For example, there is only one path in Poptretro
that reaches the event of interest in Figure 1(d). Hence, ϕbc is %3 ==
false. Similarly, the constraintϕinst is a conjunction of constraints
of each non-branch instruction in the path. Finally, the constraint
for the path to manifest is ϕbc ∧ ϕinst .

Second, we generate a constraint that relates the paths in Pretro
and Poptretro. Let’s say P0retro, P1retro . . . PIretro represent the con-
straints corresponding to the static paths in the retrofitted program
(Pretro) that reaches the event of interest. Similarly, lets consider
P0optretro, P1

opt
retro . . . PJ

opt
retro represent the constraints for the static

paths in the optimized retrofitted program (Poptretro) that reaches the
event of interest. Then, we generate the following constraint to
encode that if an event of interest is reachable in Pretro, then it is
reachable in Poptretro:

(P0retro ∨ P1retro ∨ . . . ∨ PIretro) =⇒ (P0optretro ∨ P1optretro ∨ . . . ∨ PJoptretro).

Similarly, we generate constraints to encode that if the event is
not reachable in Pretro, then it is not reachable in Poptretro. We use the
contrapositive of the above statement:
(P0optretro ∨ P1optretro ∨ . . . ∨ PJoptretro) =⇒ (P0retro ∨ P1retro ∨ . . . ∨ PIretro).

The final constraint that we generate is the conjunction of the
above two conditions. Finally, we also generate constraints to relate
the initial memory states, function arguments, and live registers of
Pretro and Poptretro.

We repeat this process for every event of interest in the retrofitted
program. Our approximations in relating memory states, encoding
paths involved with loops and function calls can result in both miss-
ing errors and false errors. Our design choices try to minimize such
false errors while being useful in detecting erroneously removed
checks.

Incremental construction of queries. SMT solvers can quickly
solve small queries. The size of the queries will increase with an
increase in the number of branches and instructions considered.
Hence, we incrementally construct the query and break the above
formula checked for validity into smaller parts. Mathematically,
(p1 ∨ p2) =⇒ q is equivalent to (p1 =⇒ q) ∧ (p2 =⇒ q) and
p =⇒ (q1 ∨ q2) is equivalent to (p =⇒ q1) ∨ (p =⇒ q2).

Therefore, one part of the validity check:

(P0retro ∨ P1retro ∨ . . . ∨ PIretro) =⇒ (P0optretro ∨ P1
opt
retro ∨ . . . ∨ PJoptretro)

can be simplified to

((P0retro =⇒ P0optretro)∨ . . . ∨ (P0retro =⇒ PJoptretro))∧ . . . ∧ ((PIretro =⇒
P0optretro) ∨ . . . ∨ (PIretro =⇒ PJoptretro)).

Abstractly, this equation states that for every path in Pretro, there
must be a corresponding path in Poptretro. For example, in Figure 1,
there are 9 distinct paths that can reach the event of interest in
Poptretro and 1 path that reaches the event of interest in Pretro. Hence,
one part of the validity check is equivalent to (P0retro =⇒ P0optretro)
∧ (P1retro =⇒ P0optretro) ∧ . . .∧ (P8retro =⇒ P0optretro). This simpli-
fication was instrumental in scaling our detector to large functions.

3 EVALUATION
This section describes the methodology used for generating retro-
fitted programs, optimized retrofitted program, and detecting erro-
neous removal of checks.

3.1 Prototype and Methodology
Wehave built a prototype tool to detect erroneously removed checks
for retrofitted and optimized retrofitted programs expressed as
LLVM IR programs. Although we evaluated our prototype with
programs expressed as LLVM IR programs, it can also be used with
x86-binaries. We modified retrofitting transformations to mark all
events of interest (using compiler metadata) for this evaluation. We
check the validity of the queries generated by our prototype using
the Z3 [15] SMT solver.

We evaluated our prototype by using it to detect erroneously
removed checks in Olden benchmarks retrofitted using the Soft-
BoundCETS [32] pass, AddressSanitizer [42] transformation, and
our custom integer overflow checking transformation. We built a
custom integer overflow checker to test the effectiveness of the
tool when the checks introduced by the retrofitting transforma-
tion leverages some form of undefined behavior, which allows the
LLVM optimizer to remove parts of the check. All these retrofitting
transformations are LLVM-based transformations that work on
the source code of Porig and produce Pretro when the compiler is
invoked with the corresponding flags. We configured the tools to
use LLVM optimization level O3 with link time optimizations to
produce both Porig and Pretro.

We used nine Olden benchmarks transformed with retrofitting
transformations for this evaluation. To ensure that we do not expe-
rience timeouts while checking the validity of queries, we restricted
the prototype to consider events that have at most 10 static paths
and have approximately 200 LLVM IR instructions in either Pretro
or Poptretro.

Session 3: Information Flow PLAS’17, October 30, 2017, Dallas, TX, USA

39

Address Sanitizer

Benchmark Functions
Total
Events

Check
Success

Check
Failed Time-Out

bh 38 135 121 9 5
bisort 7 20 18 1 1
em3d 9 27 21 4 2
health 13 41 37 3 1

mst 10 14 11 2 1
perimeter 6 28 27 1 0

power 13 56 48 2 6
treeadd 6 8 6 2 0

tsp 9 19 16 2 1
SoftBoundCETS

Benchmark Functions
Total
Events

Check
Success

Check
Failed Time-Out

bh 52 263 259 2 2
bisort 16 86 86 0 0
em3d 15 66 63 3 0
health 17 108 105 3 0

mst 16 88 85 1 2
perimeter 11 82 78 4 0

power 6 25 22 2 1
treeadd 8 43 43 0 0

tsp 13 84 84 0 0

Table 1: Table presents the data on the number of functions
where the tool checked for erroneous removal of checks,
total number of events of interest checked in the applica-
tion, the number of events for which tool successfully vali-
dated that the check was not removed, the number of events
where tool couldnot successfully validate that the checkwas
not removed (i.e., either a false positive or a true error), and
the number of instances when solver experienced time outs
with both SoftBoundCETS and AddressSanitizer.

3.2 Effectiveness in Detecting Erroneously
Removed Checks

Table 1 reports the number of functions that were used as part of
the evaluation, the number of events that were checked in those
functions, the total number of events where our tool was success-
fully able to confirm that the check was not removed, total number
of events where our tool could not confirm that the check was
removed, and the number of timeouts experienced during our eval-
uation. Whenever our tool could not confirm that the check was
removed, it could be because either the check was removed erro-
neously or it is a false positive. We have not completely examined
all failed checks.

The false positives are typically due to the length of the query
and approximation in the assumptions encoded with our precon-
ditions. For example, SoftBound/CETS uses multiple levels of dis-
joint metadata. We need to ensure that any alloca slot is disjoint
from any entry in the disjoint metadata space. Our implementation
makes some approximation in encoding the metadata structure as
constraints, which can result in false positives. Our goal was to
determine if a programmer who is not aware of the internal details
of the retrofitting transformation can identify whether checks are
erroneously removed. Hence, we did not encode the details about
the metadata layout in our constraints.

While we were building our prototype, we discovered a bug in
the SoftBoundCETS implementation. The root cause of the bug
was due to a semantic mismatch between the assumptions of the

SoftBoundCETS transformation and actions taken by compiler op-
timizations. SoftBoundCETS transformation passes metadata for
pointer arguments using a shadow stack. It uses the position of the
argument in the function signature of the called function to retrieve
metadata from the shadow stack. When the optimizer removes an
argument (which changed the function signature), the SoftBound-
CETS checks would get invalid metadata because the position of
the pointer argument has changed. Subsequently, we have created
a micro benchmark with a function that takes two function argu-
ments. The first argument of the function is optimized away by the
compiler, which our tool was able to detect. We have confirmed
that the SoftBoundCETS bug is a valid bug [1], which is one of
the root causes of false positive memory safety errors reported
by SoftBoundCETS. Our prototype also detected all instances of
erroneous removal of checks in the presence of optimizations with
our integer overflow checker.

4 RELATEDWORK
There is a large body of work on reverse-engineering, malware
analysis, and binary analysis. We highlight the most related work.

Translation Validation. Translation validation checks the correct-
ness of a compiler optimization for a given program rather than
checking the correctness of the optimization for all programs [39,
41]. Translation validation is attractive because it is easier to check
the transformation for a single instance rather than proving correct-
ness. Our approach can be considered similar in spirit to translation
validation because our technique determines whether checks have
been erroneously removed in a single program. However, we ad-
dress false positives in a generic translation validator by designing
custom procedure for detecting such erroneously removed checks.

Semantic Differencing. Symdiff [27] proposes a language-agnostic
tool for checking equivalence and semantic difference of impera-
tive programs. The resultant programs generated from retrofitting
transformations can be checkedwith the original program for equiv-
alence and differences. To use Symdiff, one would have to enhance it
with detailed semantics of retrofitting transformations. Otherwise,
it would report any added instrumentation as a semantic difference.
In contrast, this paper addresses a more directed problem of deter-
mining whether optimizations have erroneously removed instru-
mentation without requiring detailed information about retrofitting
transformations.

Detecting Undefined Behavior. Compilers optimize assuming there
is no undefined behavior. Checks are typically removed if they rely
on any undefined behavior. Stack [47] detects the stability of pro-
grams with undefined behavior by interpreting the program under
two language semantics and checking if they have diverging behav-
ior. It may be possible to detect removal of checks with Stack. In
contrast to Stack, our approach can detect any check that is elimi-
nated through optimization not just in the presence of undefined
behavior.

Binary Analysis Tools. Statically analyzing x86 binary code is a
well-studied area with a variety of goals and applications (e.g. mal-
ware detection [11, 12]). Binary analysis tools can possibly be used

Session 3: Information Flow PLAS’17, October 30, 2017, Dallas, TX, USA

40

to reason about LLVM IR code. However, the precision of such
techniques is a concern.

Binary differencing is related to our work and has important
applications, such as in detecting security holes or generating soft-
ware fingerprints [8]. Among the early tools in this area was Bin-
Diff [20], which proposed techniques to identify similarity between
two executables using graph isomorphism. BinDiff normalized bi-
naries as control flow graphs (CFG) and explored similarity and
differences between CFGs. BinHunt [21] and BinSlayer [7] extend
BinDiff’s algorithms with a combination of symbolic execution,
theorem proving and bipartite matching. Rendezvous [24] uses
statistical model along with CFGs to enable searching for binary
code. BitShred [22] uses feature hashing to cluster similar binary
components.

Dynamic binary Analysis has successfully been applied for a
number of reverse-engineering tasks, such as for binary component
reuse (e.g. [25, 51]) and forensics applications (e.g. [28]). It is also
possible to use dynamic analysis to reason about concrete execu-
tions and extract semantically-similar code. In the past, even simple
clustering of runtime execution traces has shown promise for tasks
such as malware classification [6]. Dynamic similarity detection
techniques can leverage control-flow matching techniques [31] or
more sophisticated forms of execution indexing [48]. In contrast
to dynamic approaches, our tool can detect semantically-similar
transformations of instrumentation code statically without the need
for inputs to the program.

5 CONCLUSION
Retrofitting transformation change programs in complex ways.
Compiler optimizations can remove the added instrumentation as
a result of implicit assumptions, semantic mismatches about the
necessity of the instrumentation, and/or undefined behavior in
the code. Our prototype offers programmers the ability to under-
stand precisely whether the added instrumentation persists after
optimizations. We have proposed a novel approach to encode the
property that added checks have not been erroneously removed
as constraints. Our initial results show that these approaches are
useful in detecting bugs that arise in retrofitting programs with
compiler optimizations.

ACKNOWLEDGMENTS
This paper is based on work supported in part by NSF CAREER
Award CCF–1453086, a sub-contract of NSF Award CNS–1116682,
a NSF Award CNS–1441724, and NSF Award CNS–1408803.

REFERENCES
[1] 2016. SoftBoundCETS shadow stack metadata propagation is wrong when

llvm optimizations remove arguments. (2016). https://github.com/santoshn/
softboundcets-34/issues/8.

[2] 2017. 2017/04/17 0 apple clang elides bounds check. (2017).
https://github.com/sandstorm-io/capnproto/blob/master/security-advisories/
2017-04-17-0-apple-clang-elides-bounds-check.md.

[3] 2017. Windows Dev Center, Control Flow Guard. (2017). https://msdn.microsoft.
com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx.

[4] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-Flow
Integrity. In ACM Conference on Computer and Communications Security (CCS).

[5] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. 2009. Baggy
bounds checking: An efficient and backwards-compatible defense against out-of-
bounds errors. In USENIX Security Symposium.

[6] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher Kruegel,
and Engin Kirda. 2009. Scalable, Behavior-Based Malware Clustering. In Network
and Distributed System Security Symposium (NDSS).

[7] Martial Bourquin, Andy King, and Edward Robbins. 2013. BinSlayer: Accurate
Comparison of Binary Executables. In Program Protection and Reverse Engineering
Workshop (PPREW).

[8] David Brumley, Juan Caballero, Zhenkai Liang, James Newsome, and Dawn Song.
2007. Towards Automatic Discovery of Deviations in Binary Implementations
with Applications to Error Detection and Fingerprint Generation. In USENIX
Security Symposium.

[9] Scott A. Carr and Mathias Payer. 2017. DataShield: Configurable Data Confiden-
tiality and Integrity. In ACM Sympsium on Information, Computer and Communi-
cations Security (ASIACCS).

[10] Miguel Castro, Manuel Costa, and Tim Harris. 2006. Securing software by
enforcing data-flow integrity. In USENIX Symposium on Operating Systems Design
and Implementation (OSDI).

[11] Mihai Christodorescu and Somesh Jha. 2003. Static Analysis of Executables to
Detect Malicious Patterns. In USENIX Security Symposium.

[12] Mihai Christodorescu, Somesh Jha, Sanjit A. Seshia, Dawn Song, and Randal E.
Bryant. 2005. Semantics-aware malware detection. In IEEE Symposium on Security
and Privacy.

[13] Jeremy Condit, Matthew Harren, Scott McPeak, George C. Necula, and Westley
Weimer. 2003. CCured in the Real World. In ACM Conference on Programming
Language Design and Implementation (PLDI).

[14] Lucas Davi, Ra Dmitrienko, Manuel Egele, Thomas Fischer, Thorsten Holz, Ralf
Hund, Stefan NÃĳrnberger, and Ahmad reza Sadeghi. 2012. MoCFI: A framework
to mitigate control-flow attacks on smartphones. In Network and Distributed
System Security Symposium (NDSS).

[15] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems.

[16] Christian DeLozier, Richard Eisenberg, SantoshNagarakatte, Peter-Michael Osera,
MiloM. K.Martin, and Steve Zdancewic. 2013. Ironclad C++: A library-augmented
type-safe subset of C++. In Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages and Applications.

[17] Dinakar Dhurjati and Vikram Adve. 2006. Backwards-Compatible Array Bounds
Checking for C with Very Low Overhead. In International Conference on Software
Engineering (ICSE). 162–171.

[18] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve. 2006. SAFECode: Enforc-
ing alias analysis for weakly typed languages. InACMConference on Programming
Language Design and Implementation (PLDI).

[19] Vijay D’Silva, Mathias Payer, and Dawn Song. 2015. The correctness-security gap
in compiler optmization. In IEEE Symposium on Security and Privacy Workshops.

[20] Halvar Flake. 2004. Structural comparison of executable objects. In SIG SIDAR
Conference on Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA).

[21] Debin Gao, Michael K. Reiter, and Dawn Song. 2008. BinHunt: Automatically
Finding Semantic Differences in Binary Programs. In International Conference on
Information and Communications Security (ICICS).

[22] Jiyong Jang, David Brumley, and Shobha Venkataraman. 2011. BitShred: Feature
Hasing Malware for Scalable Triage and Semantic Analysis. In ACM Conference
on Computer and Communications Security (CCS).

[23] Trevor Jim, J. Greg Morrisett, Dan Grossman, Michael W. Hicks, James Cheney,
and Yanling Wang. 2002. Cyclone: A safe dialect of c. In USENIX Annual Technical
Conference.

[24] Wei Ming Khoo, Alan Mycroft, and Ross Anderson. 2013. Rendezvous: A Search
Engine for Binary Code. In Working Conference on Mining Software Repositories
(MSR).

[25] Dohyeong Kim, William N. Sumner, Xiangyu Zhang, Dongyan Xu, and Hira
Agrawal. 2014. Reuse-oriented Reverse Engineering of Functional Components
from x86 binaries. In International Conference on Software Engineering (ICSE).

[26] Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, R. Sekar,
and Dawn Song. 2014. Code-Pointer Integrity. InUSENIX Symposium on Operating
Systems Design and Implementation (OSDI).

[27] Shuvendu K. Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique Rebêlo.
2012. SYMDIFF: A Language-agnostic Semantic Diff Tool for Imperative Programs.
In Proceedings of the 24th International Conference on Computer Aided Verification
(CAV’12).

[28] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. 2010. Automatic Reverse Engi-
neering of Data Structures from Binary Execution. In Network and Distributed
System Security Symposium (NDSS).

[29] Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nienhuis, David
Chisnall, Robert N. M. Watson, and Peter Sewell. 2016. Into the Depths of C:
Elaborating theDe Facto Standards. InACMConference on Programming Language
Design and Implementation (PLDI).

[30] Daniele Midi, Mathias Payer, and Elisa Bertino. 2017. Memory Safety for Embed-
ded Devices with nesCheck. In ACM Sympsium on Information, Computer and
Communications Security (ASIACCS).

Session 3: Information Flow PLAS’17, October 30, 2017, Dallas, TX, USA

41

https://github.com/santoshn/softboundcets-34/issues/8
https://github.com/santoshn/softboundcets-34/issues/8
https://github.com/sandstorm-io/capnproto/blob/master/security-advisories/2017-04-17-0-apple-clang-elides-bounds-check.md
https://github.com/sandstorm-io/capnproto/blob/master/security-advisories/2017-04-17-0-apple-clang-elides-bounds-check.md
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx

[31] Vijay Nagarajan, Rajiv Gupta, Xiangyu Zhang, Matias Madou, Bjorn de Sutter,
and Koen de Bosschere. 2007. Matching Control Flow of Program Versions. In
International Conference on Software Maintenance (ICSM).

[32] Santosh Nagarakatte. 2012. Practical Low-Overhead Enforcement of Memory Safety
for C Programs. Ph.D. Dissertation. University of Pennsylvania.

[33] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. 2012. Watchdog:
Hardware for Safe and Secure Manual Memory Management and Full Memory
Safety. In Proceedings of the 39th Annual International Symposium on Computer
Architecture (ISCA).

[34] Santosh Nagarakatte, Milo M K Martin, and Steve Zdancewic. 2013. Hardware-
Enforced Comprehensive Memory Safety. IEEE MICRO 33, 3 (May/June 2013).

[35] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. 2014. Watch-
dogLite: Hardware-Accelerated Compiler-Based Pointer Checking. In 12th Annual
IEEE/ACM International Symposium on Code Generation and Optimization, CGO
’14. 175.

[36] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. 2015. Everything
you want to know about pointer-based checking. In Proceedings of SNAPL: The
Inaugural Summit On Advances in Programming Languages.

[37] Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin, and Steve Zdancewic.
2009. SoftBound: Highly Compatible and Complete Spatial Memory Safety for C.
In Proceedings of the SIGPLAN 2009 Conference on Programming Language Design
and Implementation.

[38] Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin, and Steve Zdancewic.
2010. CETS: Compiler Enforced Temporal Safety for C. In Proceedings of the 2010
International Symposium on Memory Management.

[39] George Necula. 2000. Translation validation for an optimizing compiler. In ACM
Conference on Programming Language Design and Implementation (PLDI).

[40] Ben Niu and Gang Tan. 2014. Modular control-flow integrity. In ACM Conference
on Programming Language Design and Implementation (PLDI).

[41] Hanan Samet. 1978. Proving the correctness of heuristically optimized code.
Communications of the ACM (CACM) (1978).

[42] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In USENIX
Annual Technical Conference.

[43] Julian Seward and Nicholas Nethercote. 2005. Using Valgrind to detect undefined
value errors with bit-precision. In USENIX Security Symposium.

[44] Julian Seward and Nicholas Nethercote. 2007. Valgrind: a framework for heavy-
weight dynamic binary instrumentation.. In ACM Conference on Programming
Language Design and Implementation (PLDI).

[45] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar
Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing forward-edge control-
flow integrity in GCC & LLVM. In USENIX Security Symposium.

[46] Jonas Wagner, Volodymyr Kuznetsov, George Candea, and Johannes Kinder. 2015.
High system-code security with low overhead. In IEEE Symposium on Security
and Privacy.

[47] Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama.
2013. Towards optimization-safe systems: Analyzing the impact of undefined
behavior.. In ACM Symposium on Opererating Systems Principles (SOSP).

[48] Bin Xin, William N. Sumner, and Xiangyu Zhang. 2008. Efficient Program Ex-
ecution Indexing. In ACM Conference on Programming Language Design and
Implementation (PLDI).

[49] Wei Xu, Daniel C. DuVarney, and R. Sekar. 2004. An Efficient and Backwards-
Compatible Transformation to Ensure Memory Safety of C Programs. In ACM
SIGSOFT International Symposium on the Foundations of Software Engineering
(FSE).

[50] Bin Zeng, Gang Tan, and Úlfar Erlingsson. 2013. Strato: A retargetable framework
for low-level inlined-reference monitors. In USENIX Security Symposium.

[51] Junyuan Zeng, Yangchun Fu, Kenneth A. Miller, Zhiqiang Lin, Xiangyu Zhang,
and Dongyan Xu. 2013. Obfuscation-resilient binary code reuse through trace-
oriented programming. In ACM Conference on Computer and Communications
Security (CCS).

Session 3: Information Flow PLAS’17, October 30, 2017, Dallas, TX, USA

42

	Abstract
	1 Introduction
	2 Detecting Erroneously Removed Checks
	2.1 High-level Sketch
	2.2 Encoding Paths as Constraints

	3 Evaluation
	3.1 Prototype and Methodology
	3.2 Effectiveness in Detecting Erroneously Removed Checks

	4 Related Work
	5 Conclusion
	References

