
NOVEL POLYNOMIAL APPROXIMATION METHODS FOR GENERATING
CORRECTLY ROUNDED ELEMENTARY FUNCTIONS

By

JAY PHIL LIM

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Santosh Nagarakatte

And approved by

New Brunswick, New Jersey

October, 2021

ABSTRACT OF THE DISSERTATION

Novel Polynomial Approximation Methods for Generating Correctly Rounded

Elementary Functions

by JAY PHIL LIM

Dissertation Director:

Prof. Santosh Nagarakatte

All endeavors in science use math libraries to approximate elementary functions (e.g.

ln(x) or ex). Unfortunately, mainstream math libraries for floating point (FP) representa-

tions do not produce correctly rounded results for all inputs. In addition, given the impor-

tance of FP performance in numerous domains, several new variants of FP and its alterna-

tives have been proposed (e.g., bfloat16, tensorfloat32, posits). These representations do

not have correctly rounded math libraries. This dissertation proposes the RLIBM approach,

a collection of novel techniques for generating polynomial approximations that produce

correctly rounded results of an elementary function f(x).

Existing approaches use polynomial approximations that approximate the real value

of f(x). The minimax approach generates polynomials that minimize the maximum ap-

proximation error compared to the real value of f(x) across all inputs. However, minimax

polynomials produce wrong results due to approximation errors and rounding errors in the

implementation. In contrast, the RLIBM approach makes a case for generating polyno-

mials that approximate the correctly rounded result of f(x) (i.e., the exact value of f(x)

computed in reals and rounded to the target representations). This approach provides more

freedom in generating efficient polynomials that produce correctly rounded results for all

ii

inputs.

Additionally, this dissertation makes the following contributions. First, we show that

the problem of generating polynomials that produce correctly rounded results can be struc-

tured as a linear programming problem. Second, the RLIBM approach accounts for nu-

merical errors that occur from range reduction by automatically adjusting the amount of

freedom available to generate polynomials. The generated polynomial with RLIBM pro-

duces the correctly rounded results for all inputs. Third, we propose a set of techniques to

develop correctly rounded elementary functions for 32-bit types. Specifically, we generate

efficient piecewise polynomials using counterexample guided polynomial generation and

bit-pattern based domain splitting. Finally, we extend the RLIBM approach to generate a

single polynomial approximation that produces the correctly rounded results for multiple

rounding modes and multiple precision configurations. To generate correctly rounded ele-

mentary functions for n-bit type, our key idea is to generate a polynomial approximation

for a (n + 2)-bit representation using the round-to-odd mode. We provide formal proof

that the resulting polynomial will produce the correctly rounded results for all standard

rounding modes and for multiple representations with k bits where k ≤ n.

Using the RLIBM approach, we have developed several implementations of elementary

functions for various representations and rounding modes. These elementary functions

produce the correctly rounded results for all inputs in the target representations. Addition-

ally, the functions are faster than mainstream math libraries which have been optimized for

decades. Our RLIBM-ALL prototype, a collection of elementary functions that produce

the correctly rounded results for multiple floating point representations with all standard

rounding modes, has 1.1×, 1.3×, and 1.9× speedup over glibc, Intel, and CR-LIBM math

libraries, respectively. Our prototypes also provide the first correctly rounded elementary

functions for 32-bit posit.

iii

ACKNOWLEDGMENTS

First and foremost, this dissertation would have not been possible without my advisor

Santosh Nagarakatte, who has been my mentor, collaborator, and role model. His support

and guidance has made a tremendous impact in my journey to become a researcher. Santosh

has spent countless number of hours with me reading and discussing papers to teach me

how to think rigorously and critically. Our time together brainstorming ideas have helped

me develop my problem solving skills: simpler is better! He taught me to be compassionate

and caring for students. In times of trouble, Santosh has supported me financially and

psychologically to ensure that I can focus on growing as a researcher. Without Santosh’s

support, I would not have been able to begin, let alone complete, this dissertation.

I would like to thank my dissertation committee members, Ulrich Kremer, Richard

Martin, and Zachary Tatlock. Their insight and feedback have been extremely helpful in

improving this dissertation.

Many insights and ideas in this dissertation would have not been realized without my

collaborators, John Gustafson and Mridul Aanjaneya. Our discussions with John Gustafson

regarding the Minefield technique and the round-to-odd rounding mode have been crucial

in developing the key insights of the RLIBM approach. The realization from Mridul Aan-

janeya that generating polynomials is a linear programming problems have been instrumen-

tal in automating the RLIBM approach. Although not direct collaborators, I have learned

tremendously from the members of the FPBench community on topics related to floating

point. My gratitude goes especially towards Zachary Tatlock, Pavel Panchekha, and Bill

Zorn for organizing and leading the monthly meetings and yearly workshops. I would also

like to extend my thanks to my mentor David Tarditi during my internship in MSR Red-

mond, who has been instrumental in my development in the foundation of programming

languages.

I have been shaped by many great people in Rutgers University throughout my PhD

iv

career. I thank Vinod Ganapathy for noticing my potential and mentoring me in the early

years, along with Santosh. I learned the importance of simplifying complex ideas through

my interactions with Ulrich Kremer and Badri Nath. It was always fun to talk to Richard

Martin and learn about the history of computer science.

I would like to thank my lab-mates, David Menendez, Adarsh Yoga, Nader Boushehri-

inejad, Mohammedreza Solyaniyeh, Sangeeta Chowdharay, Harishankar Vishwanathan,

and Matan Shachnai, at the RAPL group for their support. I would like to give special

thanks to Adarsh who has been like a big brother since the early years of my PhD as well

as Sangeeta and Matan, my collaborators in different projects. I also met great peers out-

side of RAPL group including Georgiana, Daehan, Hai, Daeyoung, Liu, Hong-yu, Jaewoo,

Sunghyun, and David. In stressful times of PhD, they brought fun and gave me motivation

to continue.

I am deeply thankful for my family, my wife, daughter, parents, and parents-in-law for

their moral support throughout the years. My wife Inyoung has always been my greatest

rival and supporter who has constantly pushed me to be at my best. My daughter Sammie

has been the light of my life which motivates me to continue. I thank my parents, Tae-Seop

and Myung, for the educational and emotional support they provided throughout my life.

I would also like to thank my friends, Dexter, Carolyn, Shinjae, Daehoon, Jisoo, Bong,

Grace, James, Inah, Nick, Joonsang, Paul, Kimun, Kay, Hongjin, and Ben for all the fun

activities that provided refreshing breaks from work.

v

To the loves of my life, Inyoung and Sammie

vi

TABLE OF CONTENTS

Abstract . ii

Acknowledgments . iv

List of Tables . xiii

List of Figures . xiv

Chapter 1: Introduction . 1

1.1 Dissertation Statement . 5

1.2 Contributions of the Dissertation . 6

1.2.1 The RLIBM Approach for Correctly Rounded Polynomial Approx-
imations . 6

1.2.2 The RLIBM Approach With Range Reduction 9

1.2.3 Scaling RLIBM To 32-bit Representations 10

1.2.4 A Single Approximation for Multiple Representations and Round-
ing Modes . 12

1.2.5 Prototype . 13

1.3 Contributions to This Dissertation . 14

1.4 Organization of This Dissertation . 15

Chapter 2: Background . 16

vii

2.1 The Floating Point Representation . 16

2.1.1 Interpreting a Floating Point Bit-String 17

2.1.2 Rounding a Real Number to the FP Representation 19

2.1.3 A Systematic Methodology for Rounding To the FP Representation 22

2.1.4 Different FP Configurations and Fixed-Precision Variants 29

2.2 The Posit Representation . 32

2.2.1 Decoding a Posit Bit-String . 33

2.2.2 Interpreting a Posit Bit-String . 33

2.2.3 Rounding a Real Number to the Posit Representation 36

2.2.4 A Systematic Methodology for Rounding To Posit Representation . 40

2.2.5 Posit Configurations and Posit Variants 43

2.3 Numerical Errors in Finite Precision Representation 43

2.3.1 Rounding Error with Extremal Values. 44

2.3.2 Double Rounding . 44

2.3.3 Cancellation Error . 45

2.4 Prior Work on Approximating Elementary Functions 46

2.4.1 Approximating AR(x) . 46

2.4.2 Implementation in Finite Precision 52

2.5 Challenges in Generating Correctly Rounded Functions by Approximating
f(x) . 52

Chapter 3: The RLIBM Approach For Correctly Rounded Polynomial Approx-
imations . 56

3.1 Approximating The Correctly Rounded Result 56

viii

3.2 Illustration Of Our Approach . 59

3.2.1 Computing the Correctly Rounded Result. 61

3.2.2 Identifying the Rounding Interval 61

3.2.3 Generating a Polynomial Approximation 62

3.3 The RLIBM Approach To Generate Correctly Rounded Polynomial Ap-
proximation . 63

3.3.1 High-Level Overview of The RLIBM Approach 64

3.3.2 Computing the Rounding Intervals 66

3.3.3 Generating the Polynomial With an LP Formulation 68

3.4 Summary . 72

Chapter 4: The RLIBM Approach With Range Reduction 73

4.1 Generating Polynomial Approximations With Range Reduction 73

4.2 Illustration . 76

4.2.1 Range Reduction for ln(x) . 76

4.2.2 Identifying Correctly Rounded Results and Rounding Intervals . . . 77

4.2.3 Computing the Reduced Input and the Reduced Interval 79

4.2.4 Combining the Reduced Intervals 80

4.2.5 Generating a Polynomial Approximation 82

4.3 Range Reduction Strategies for Various Elementary Functions 83

4.3.1 Logarithm functions (loga(x)) . 83

4.3.2 Exponential functions (ax) . 87

4.3.3 Hyperbolic Sine Function (sinh(x)) 89

4.3.4 Hyperbolic Cosine Function (cosh(x)) 93

ix

4.3.5 Trigonometric Sinpi Function (sinpi(x)) 95

4.3.6 Trigonometric Cospi Function (cospi(x)) 97

4.4 Our Approach For Generating Polynomials With Range Reduction 99

4.4.1 High-level Overview of the RLIBM Approach For Univariate Out-
put Compensation Functions . 102

4.4.2 Identifying Reduced Inputs and Reduced Intervals 103

4.4.3 Combining the Reduced Constraints 106

4.5 The RLIBM Approach For Multivariate Output Compensation Functions . . 107

4.5.1 High-level Overview of the RLIBM Approach For Multivariate Out-
put Compensation Function . 110

4.5.2 Identifying Reduced Inputs and Intervals For Each Polynomial . . . 111

4.6 Summary . 114

Chapter 5: The RLIBM Approach for 32-Bit Representations 115

5.1 Scaling Our Approach to 32-Bit Representations 115

5.2 Illustration . 117

5.2.1 Domain Splitting . 119

5.2.2 Polynomial Generation for Each Sub-Domain. 121

5.3 Our Approach to Generate Piecewise Polynomials 121

5.3.1 Domain Splitting for Efficient Piecewise Polynomials 124

5.3.2 Counterexample Guided Polynomial Generation 127

5.3.3 Storing the Coefficients of Piecewise Polynomials 129

5.3.4 Implementing the Elementary Function 130

5.4 Summary . 131

x

Chapter 6: A Single Polynomial that Produces Correct Results For Multiple
Representations and Rounding Modes 132

6.1 Case For Generic Math Libraries . 132

6.2 Illustration . 136

6.2.1 A Strawman Approach . 136

6.2.2 Generating A Polynomial Approximation With the rno Mode. . . . 138

6.2.3 Generating Generic Polynomial Approximations 139

6.3 The RLIBM Approach to Generate Generic Polynomials 142

6.3.1 The Round to Odd (rno) Rounding Mode 143

6.3.2 Why Does The rno Result Avoid Double Rounding Error? 145

6.3.3 Generating Polynomials for Tn+2 with the rno Mode 147

6.3.4 Computing the rno result of f(x) in Tn+2 149

6.3.5 Computing the Odd Intervals . 150

6.3.6 Implementing the Elementary Function 151

6.3.7 Efficiently Identifying Inputs With Singleton Generic Interval . . . 152

6.4 Proof of Tn+2 Result with rno Producing Correctly Rounded Result for Tk . 158

6.5 Odd Intervals for Extremal Values in Posit Representations 163

6.6 Summary . 165

Chapter 7: Experimental Evaluation . 166

7.1 Experimental Methodology And Setup . 166

7.2 Experimental Evaluation of RLIBM-16 169

7.2.1 Correctness Evaluation of RLIBM-16 169

7.2.2 Performance Evaluation of RLIBM-16 171

xi

7.3 Experimental Evaluation with RLIBM-32 174

7.3.1 Correctness Evaluation of RLIBM-32 176

7.3.2 Performance Evaluation of RLIBM-32 178

7.4 Experimental Evaluation With RLIBM-ALL 181

7.4.1 Correctness Evaluation of RLIBM-ALL 183

7.4.2 Performance Evaluation . 189

Chapter 8: Related Work . 194

8.1 Approximation Methods . 194

8.2 Correctly Rounded Approximation . 198

8.3 Range Reduction Strategies . 202

8.4 Verification of Math Libraries . 206

8.5 Math Library Repair Tools . 207

Chapter 9: Conclusion and Future Directions . 209

9.1 Dissertation Summary . 209

9.2 Future Directions . 210

xii

LIST OF TABLES

7.1 Details on the elementary functions in RLIBM-16. 170

7.2 Generation of correctly rounded results in bfloat16 with rne mode using RLIBM-
16 and various math libraries. 171

7.3 Details on the elementary functions in RLIBM-32. 175

7.4 Generation of correctly rounded results in 32-bit float with the rne mode using
RLIBM-32 and various math libraries. 176

7.5 Generation of correctly rounded results in posit32 using RLIBM-32 and various
math libraries. 177

7.6 Detalis on the elementary functions in RLIBM-ALL. 182

7.7 Report on the ability of RLIBM-ALL’s functions to produce correctly rounded rno
results. 183

7.8 Generation of correctly rounded results for 32-bit float with the standard IEEE-754
rounding modes using RLIBM-ALL and various math libraries. 185

7.9 Generation of correctly rounded results for TensorFloat32 with the standard IEEE-
754 rounding modes using RLIBM-ALL and various math libraries. 187

7.10 Generation of correctly rounded results for bfloat16 with the five standard IEEE-
754 rounding modes using RLIBM-ALL and various math libraries. 188

xiii

LIST OF FIGURES

1.1 Illustration of the intuition behind the RLIBM approach, which makes a case for
approximating the correctly rounded result of f(x). 7

1.2 The RLIBM’s approach to generate a polynomial approximation. 7

1.3 The RLIBM’s approach to generate a polynomial approximation used with range
reduction strategies. 9

1.4 The RLIBM’s approach to generate a polynomial approximation for 32-bit repre-
sentations. 11

1.5 The RLIBM’s approach to generate polynomial approximations for multiple rep-
resentations. 13

2.1 Bit-pattern of various standard IEEE-754 FP representations. 17

2.2 Examples of bit-patterns for different types of floating point values. 18

2.3 Illustration of the standard floating point rounding modes. 20

2.4 The bit-pattern used to round a real value to a floating point representation. 23

2.5 Illustration of the range of real values represented by different rounding components. 24

2.6 Rounding decision for the rne mode using the rounding components. 26

2.7 Rounding decision for various rounding modes based on the rounding components. 27

2.8 Bit-patterns of variants of floating point representations. 29

2.9 Bit-patterns of MSFP12 and Flex16+5 representations. 30

2.10 Bit-pattern of an n-bit posit representation. 32

xiv

2.11 Bit-patterns of various values in a 〈9, 2〉 posit representation. 34

2.12 Illustration for identifying the midpoint between two adjacent posit values. 37

2.13 Illustration of posit’s arithmetic and geometric rounding behavior. 38

2.14 Special rounding behaviors in the posit rounding mode. 39

2.15 Rounding decisions for values near 0 with the posit rounding mode. 41

2.16 Rounding decision for values outside of the dynamic range with the posit rounding
mode. 41

2.17 Rounding decision for non-special-case values with the posit rounding mode. . . . 42

2.18 An illustration of the double rounding error. 45

2.19 An illustration depicting the challenges in producing the correctly rounded result
of f(x). 53

3.1 Different amount of freedom available in generating polynomials when approxi-
mating the real value ofo f(x) or the correctly rounded result itself. 57

3.2 The RLIBM’s approach to generate a polynomial approximation of ln(x) for FP5. 60

3.3 A real number line showing the rounding intervals of various FP5 values. 61

3.4 The polynomial approximation of ln(x) for FP5 generated using the RLIBM’s
approach. 63

4.1 The RLIBM’s approach to generate a polynomial approximation of ln(x) for FP5
that produces the correctly rounded results for all inputs when used with range
reduction strategies. 78

4.2 The list of reduced inputs and reduced intervals that define the constraints on the
output of the polynomial to be generated. 81

4.3 The polynomial approximation of ln(x) for FP5 that produces the correctly rounded
results for all inputs when used with the given range reduction strategy. 82

5.1 Bit-pattern of the 6-bit FP (FP6) representation. 117

xv

5.2 The list of inputs and rounding intervals for generating a polynomial approxima-
tion of ln(x) for FP6 using the RLIBM’s approach. 118

5.3 The procedure to split the input domain into two sub-domains for ln(x) and FP6
using the RLIBM’s approach. 119

5.4 Illustration of the counterexample guided polynomial generation used for the first
sub-domain of ln(x) for FP6. 120

5.5 Illustration of the counterexample guided polynomial generation used for the sec-
ond sub-domain of ln(x) for FP6. 122

5.6 The piecewise polynomial that produces the correctly rounded result of ln(x) for
all inputs in FP6. 122

5.7 Details on how the RLIBM’s approach splits the input domain into smaller sub-
domains. 126

6.1 Bit-patterns of the FP4, FP5, and FP7 representations with two exponent bits. . . 135

6.2 The correctly rounded results and its rounding intervals of ln(1.5) in the FP4 and
FP5 representations with the standard floating point rounding modes. 137

6.3 The correctly rounded results and its rounding intervals of ln(1.0) in the FP4 and
FP5 representations with the standard floating point rounding modes. 139

6.4 The odd interval for the correctly rounded result of ln(x) in FP7 with the rno
mode, for each input in FP5. 141

6.5 The polynomial generated using the odd intervals that produces the correctly rounded
results of ln(x) for both FP4 and FP5 representations and all standard floating
point rounding modes. 141

6.6 Illustration of the rno mode. 144

6.7 An illustration showing that the rno mode maintains sufficient information to pro-
duce the correctly rounded result of real values. 146

6.8 A pictorial presentation of Lemma 2 and Lemma 3. 159

6.9 A pictorial presentation of the proof of Theorem 6.1. 161

6.10 The odd interval computation for the posit representations to account for the spe-
cial posit rounding behavior when the real value is outside of the dynamic range. . 164

xvi

7.1 Speedup of RLIBM-16’s bfloat16 functions compared to glibc and Intel math li-
brary functions. 172

7.2 Speedup of RLIBM-16’s posit16 functions compared to SoftPosit-Math library. . 172

7.3 An illustration showing the amount of freedom provided by the RLIBM’s approach
to generate polynomials that produce correctly rounded results of 10x for all in-
puts. 173

7.4 Speedup of RLIBM-32’s float functions compared to glibc and Intel math library
functions. 179

7.5 Speedup of RLIBM-32’s posit32 functions compared to glibc and Intel’s math
library functions. 180

7.6 The performance impact between the size of the piecewise polynomial compared
to the degree of the polynomial. 181

7.7 Speedup of RLIBM-ALL functions compared to various math libraries when pro-
ducing 32-bit float results. 189

7.8 Speedup of RLIBM-ALL functions compared to various math libraries when pro-
ducing bfloat16 results. 191

7.9 Speedup of RLIBM-ALL functions compared to various math libraries when pro-
ducing posit32 results. 192

xvii

1

CHAPTER 1

INTRODUCTION

Every programming language has primitive data types to approximate real numbers. The

two important attributes for such datatypes are the ability to represent a wide range of

values (dynamic range) and represent a particular real number precisely (precision). The

floating point (FP) representation, standardized by the IEEE-754 standard in 1985 [27], is

a widely used primitive datatype to represent real numbers for its large dynamic range and

reasonable precision. For example, every number in JavaScript used to be represented with

double (a 64-bit FP representation), until in 2020 when JavaScript introduced the BigInt

datatype to represent large integer values [68].

In recent years, the performance of FP arithmetic operations is becoming important,

especially in machine learning and high performance computing domains. Hence, modern

accelerators, processors, and systems have explored new variants of FP representations

that tweak the bit-length, dynamic range, and precision [44, 55, 58, 74, 78, 100, 108, 112,

116, 130, 131]. Some of these variants are precision configurations of the standard FP

representation (i.e. bfloat16 [131] and TensorFloat32 [108]). Several new representations

use the same strategy as FP to encode the values but store the bit-pattern in different ways

(i.e., MSFP12 [116] and FlexPoint [78]). There are also completely new representations

(i.e., log number systems [44, 112, 130] or posit [55, 58]). In particular, posits can provide a

wider dynamic range than FP for a given number of bits. Additionally, posits provide more

precision when representing values near 1, known as tapered precision. The new variants

of FP also aim towards minimizing the bit-length for efficient hardware implementation

of primitive operations [66, 69, 70, 107, 136, 142] while maintaining sufficient amount of

dynamic range and precision.

Any number system that approximates real numbers needs a math library that provides

2

implementations of elementary functions [103] (e.g., sin(x), ln(x), ex). Elementary func-

tions are widely used in scientific domains ranging from machine learning to scientific

simulation. For example, the exponential function ex is used widely to model the sigmoid

function (i.e., ex

ex+1
) and the fourier transformation in digital signal processing. As ele-

mentary functions are essential building blocks for scientific applications, efficiently and

accurately computing the result of an elementary function f(x) is paramount. The IEEE-

754 standard [27] defines a list of elementary functions and recommends math libraries

implement them to produce the correctly rounded result.

Given a representation T with finite precision (e.g., float), the correctly rounded result

of an elementary function f(x) for an input x ∈ T is defined as the value of f(x) computed

with real numbers and rounded to a value in the representation T. Developing correctly

rounded math libraries is a challenging problem. Hence, there have been seminal work

on generating approximations of elementary functions [4, 11, 17, 20, 21, 22, 71, 80, 99],

verifying the correctness of math libraries [8, 35, 38, 39, 59, 60, 62, 83, 119], and repairing

math libraries [145]. Further, there are correctly rounded math libraries for the float and

double types [29, 65, 101, 146] for some rounding modes. Widely used math libraries [51,

67] do not produce correctly rounded results for all inputs.

The new FP representations currently do not have math libraries. A quick and naive

way to address this problem is to repurpose an existing math library. For example, to ap-

proximate ex for bfloat16, we can use an implementation of ex designed for 32-bit float.

We can convert a bfloat16 input to a float value, use an existing implementation of ex to

produce the float result, and round the output back to bfloat16. This approach is appealing

if a correctly rounded math library for a representation with significantly higher precision

compared to the target representation is available. However, it can produce wrong results

due to the double rounding error. A Double rounding error can occur when one rounds a

real value to an intermediate representation and subsequently rounds the intermediate re-

sult to the target representation, known as double rounding. Depending on the rounding

3

modes used in each rounding operation, double rounding may result in a different value

compared to directly rounding the real value to the target representation, which is called

the double rounding error. As a correctly rounded math library effectively rounds the real

value of f(x) to its target representation, rounding this result a smaller representation can

cause double rounding errors and produce wrong results. Chapter 2 provides more details

on the double rounding error and why repurposing an existing library fails to produce the

correctly rounded result. The repurposed math library is intended for a larger representa-

tion and computes the result with significantly more precision than necessary. Hence, its

performance may not be ideal.

The most common method to approximate an elementary function f(x) is with a poly-

nomial approximation. Prior approaches generate polynomials that minimizes the maxi-

mum error among all inputs compared to the real value of f(x), which is known as the

minimax approach. This approach is based on the Weierstrass approximation theorem [144]

which states that if f(x) is a continuous real function over a domain [a, b], then there exists

a polynomial P (x) where the error with respect to f(x) is bounded, i.e., |f(x)−P (x)| < ε

for all real numbers x ∈ [a, b] where ε > 0. The Chebyshev alternating theorem [137] pro-

vides the condition for such a polynomial. A minimax polynomial of degree d has exactly

d+ 2 inputs with the absolute maximum error |f(x)−P (x)| and the error for each of these

inputs alternate in sign. Finally, Remez algorithm [114] provides the procedure to identify

the minimax polynomial of degree d with real numbers.

Polynomial approximations are efficient and accurate when approximating f(x) in a

small domain [a, b]. To approximate elementary functions for the entire input domain in

the target representation T, polynomials are often used with range reduction that reduces

the input domain to a smaller domain. A typical range reduction strategy has three com-

ponents. First, the range reduction function reduces the original input x ∈ T to a reduced

input x′ in a small domain [a, b]. The polynomial then approximates the elementary func-

tion f(x′) using the reduced input x′. Finally, the result of the polynomial approximation,

4

which approximates for the reduced input, is adjusted with the output compensation func-

tion to produce the result for the original input x. Some strategies (e.g., Cody and Waite’s

range reduction for logarithm functions [25]) transforms the original f(x) into a differ-

ent function g(x) where the polynomial approximation is more efficient (i.e., even or odd

polynomial). The most commonly used strategy in mainstream math libraries uses a com-

bination of mathematical identities and look-up tables to efficiently evaluate the output

compensation function [133, 134, 135]. To produce accurate results for T, the range re-

duction, polynomial approximation, and output compensation functions are evaluated in a

representation H that has higher precision compared to T.

There are several challenges in generating efficient polynomial approximations that

produce correctly rounded results for all inputs using the minimax approach. These chal-

lenges arise due to the fundamental difference between the goal of correctly rounded math

libraries and the minimax approach. Correctly rounded math libraries must produce the

correctly rounded result of f(x). In comparison, the goal of the minimax approach is to

approximate the real value of f(x) as closely as possible. Although the correctly rounded

result of f(x) is computed by rounding the real value of f(x) to the target representation,

rounding a value close to (but not exactly equal to) f(x) does not guarantee to produce the

same result. Hence, the error bound of the polynomial P (x) generated with the minimax

approach compared to f(x) may need to be arbitrarily small. Consider an input xi where

the exact result of f(xi) with real numbers is close to the rounding boundary of two values

in T (i.e., f(xi) rounds to a value v1 but f(xi) + ε rounds to a different value v2 for an

input xi and a small value ε). To produce the correctly rounded result of f(xi), the error

of the polynomial approximation P (xi) must be smaller than ε. This likely requires a large

degree polynomial with many terms, resulting in less than ideal performance. Also, there

is no known general method to analyze and predict the error bound of P (x) that guarantees

to produce the correctly rounded result for all inputs in T. This problem is widely known

as table-maker’s dilemma [75]. The table maker’s dilemma states that there is no general

5

method to predict how accurate an approximation of f(x) must be to produce the correctly

rounded result for an arbitrary input. The only way to determine the error bound is by

iteratively computing the real value of f(x) for each input x [85].

Additionally, there is a disparity between the settings assumed by the minimax ap-

proach and correctly rounded math libraries. The error bound guaranteed by the Remez

algorithm only holds if the polynomial is evaluated with real numbers. However, math li-

brary functions are evaluated with finite precision representations, which causes numerical

errors when evaluating the polynomial, range reduction, and output compensation func-

tions. To produce correctly rounded results for all inputs, this necessitates the polynomial

approximation to account for numerical errors and the internal computations may need to

be evaluated in a significantly high precision representation. For example, several parts of

the elementary functions in CR-LIBM [30], a correctly rounded math library for the 64-bit

double type (with 53 precision bits), are implemented with the triple-double representation

where each intermediate value is represented with three double values (a total of 159 pre-

cision bits). In addition, CR-LIBM formally proves that the polynomial they generate will

produce correctly rounded results for all inputs even with numerical errors.

1.1 Dissertation Statement

To generate efficient and correctly rounded polynomial approximations of an elementary

function f(x), this dissertation makes a case for generating polynomials that approximate

the correctly rounded result of f(x). In comparison, mainstream math libraries generate

polynomials that approximate the real value of f(x) using the minimax approach. Approx-

imating the correctly rounded results provide more freedom in generating polynomials that

produce correctly rounded results for all inputs, resulting in efficient polynomials.

6

1.2 Contributions of the Dissertation

This dissertation proposes the RLIBM approach, a set of techniques to generate efficient

polynomial approximations that produce correctly rounded results of an elementary func-

tion f(x) for various representations. The contributions of this dissertation can be summa-

rized as follows:

1. We make a case for approximating the correctly rounded result of f(x) rather than

the real value of f(x). We demonstrate that the task of generating polynomials can

be framed as a linear programming (LP) problem. Our approach accounts for the

numerical errors when evaluating range reduction and output compensation func-

tions. Our approach guarantees that the resulting polynomials produce the correctly

rounded results for all inputs.

2. To scale our approach to 32-bit types, we present counterexample guided polynomial

generating with sampling. Additionally, we generate efficient piecewise polynomials

by splitting the input domain using few bits in the bit-pattern of the input.

3. We propose a novel approach to generate a single polynomial approximation that pro-

duces the correctly rounded results for multiple representations and rounding modes

by using the round to odd mode.

In the remainder of this section, we provide a brief description of each contribution

listed above and highlight the key ideas. We discuss these techniques in greater detail in

the subsequent chapters.

1.2.1 The RLIBM Approach for Correctly Rounded Polynomial Approximations

Our RLIBM approach makes a case for generating polynomials that directly approximate

the correctly rounded result of f(x) itself. Figure 1.1(a) illustrates our key intuition. A

finite precision representation T can only represent finitely many values (i.e., v1, v2, and

7

v1 v2 v3l h

f(x)

(a)

l ≤ c0 + c1x + c2x2 … ≤ h

(b)

rounds torounding interval of v2

Figure 1.1: (a) The values v1, v2, and v3 are representable values in a representation T. The
real value of f(x) for a given input x cannot be exactly represented in T and is rounded to v2.
Our approach identifies the rounding interval of v2 (shown in gray box). (b) Then, we generate
a polynomial approximation using the rounding interval (i.e., [l, h]) for each input x with an LP
formulation.

Convert
to H

Identify values
in H that

round to y

LP
Formulation

Input x
in T

y = Correctly
rounded
f(x) in T

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

An Approach to Generate Correctly Rounded Math Libraries for New Floating Point Variants 1:17

1 Function Main(f , T, H, X , RR, OC , OC�1, d):
2 L CalcRndIntervals(f , T, H, X)

3 if L = ; then return false
4 L0 CalcRedIntervals(f , L, T, H, RR, OC , OC�1)
5 if L0 = ; then return false
6 � CombineRedIntervals(L0)
7 if � = ; then return false
8 S , PH SynthesizePoly(�, d)
9 if S = true then return P

10 else return false

Fig. 7. Overall algorithm that creates the polynomial approximation P(x) that will produce the cor-
rectly rounded result. Each function, CalcIntervals, CalcRedIntervals, CombineRedIntervals, and
SynthesizePoly is explained later in this section.

1 Function CalcRndIntervals(f , T, H, X):
2 L ;
3 foreach x 2 X do
4 � RN (f (x),T)
5 I GetRndInterval(�, T, H)
6 if I = ; then return ;
7 L L [{(x , I)}
8 end
9 return L

10 Function GetRndInterval(�, T, H):
11 tl GetPrecVal(�, T)
12 l min{� 2 H|� 2 [tl ,�] and RN (�,T) = �}
13 tu GetSuccVal(�, T)
14 h max{� 2 H|� 2 [�, tu] and RN (�,T) = �}
15 return [l ,h]

Fig. 8. For each input x 2 X , CalcRndIntervals(f , T,H,X) identifies the interval I = [l ,h]where all values in
I rounds to the correctly rounded result f (x) for a given transcendental function f (x). The GetRndInterval(�,
T, H) function returns the interval I 2 H where all values in I rounds to �. GetPrecValue(�, T) returns the
preceding value of � in the T representation and GetSuccValue(�, T) returns the succeeding value of � in T.

(2) CalcRedIntervals: For each pair (x , Ix) 2 L, we compute the reduced input x 0. We also
compute the reduced interval I 0x = [l 0,h0] that de�nes the range of inputs for the output
compensation such that any value in I 0x is output compensated to a value in Ix . The pair (x 0, I 0x)
speci�es what the output of P(x 0) needs to be such thatA(x) rounds to �. CalcRedIntervals
returns a list L0 containing all such pair of constraints for all input x .

(3) CombineRedIntervals: Because all inputs are reduced to the reduced input x 0, there may be
multiple reduced intervals for each reduced input in L0. P(x 0)must produce a value within all
the reduced interval for A(x) to produce the correct value when rounded. Thus, we combine
all reduced interval for each reduced input x 0 and produce the pair (x 0,�)where � represents
the combined interval. CalcRedIntervals returns a list � containing the constraint pair
(x 0,�) for each reduced input x 0.

(4) SynthesizePoly: Each pair (x 0,�) 2 � species the constraint on the output of P(x 0). We
frame synthesizing P(x 0) that satis�es all constraints in � as an LP problem and generate a
correct P(x 0).

4.1 Calculating The Rounding Interval
The �rst step in our approach is to identify the values thatA(x)must produces such that the rounded
value of A(x) is equal to the correctly rounded result of � = f (x), i.e. RN (A(x),T) = RN (�,T), for

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

An Approach to Generate Correctly Rounded Math Libraries for New Floating Point Variants 1:19

1 Function CalculateL0(f , L, T, H, RR, OC , OC�1, d):
2 L0 ; foreach (xi , [li ,hi]) 2 L do
3 t1 OC�1

H
(li ,xi)

4 t2 OC�1
H
(hi ,xi)

5 if OCH is an increasing function then
6 � t1; � t2
7 else // OCH is a decreasing function
8 � t2; � t1
9 end

10 while OCH(� ,xi) < [li ,hi] do
11 � AdjHigher(� , H)
12 if � > � then return ;
13 end
14 while OCH(� ,xi) < [li ,hi] do
15 � AdjLower(� , H)
16 if � > � then return ;
17 end
18 L0 L0 [{(RRH(xi), [� , �])}
19 end
20 return L0

1 Function Calculate�(L0):
2 X 0 {� 0xi | (� 0xi , I 0xi) 2 L0}
3 � ;
4 foreach unique �i 2 X 0 do
5 �i ;
6 foreach (� 0x j , I 0x j) 2 L0 do
7 if �i = � 0x j then
8 �i �i [{I 0x j }
9 end

10 end
11 �i

—
I 0xj 2�i I

0
x j

12 if �i = ; then return ;
13 � � [{(�i ,�i)}
14 end
15 return �

Fig. 9. The function CalculateL’ transforms each constraint (xi , Ixi) 2 L that constrainsAf ,H(xi) into a new
constraint, (� 0xi , I 0xi), that constraints PH(� 0xi) such that Af ,H satisfies Af ,H(xi) 2 Ixi even in the presence of
range reduction as long as PH(� 0xi) 2 I 0xi . The function Calculate� combines multiple constraints with the
same reduced input, i.e. (� 0xi , I 0xi), (� 0x j , I 0x j) 2 L0 where � 0xi = � 0x j , into a single constraint and creates a final
list of constraints � for PH.

of I 0xi , i.e. [� , �] � I 0xi , ;. In particular, values near the boundary of the interval, i.e. � or � may
be a value such that OCH(� ,xi) < Ixi or OCH(�,xi) < Ixi . Therefore, we repeatedly check whether
the boundary values, � and � , is correctly output compensated to a value in Ixi while reducing the
boundary of [� , �] if they do not (lines 10-17). Finally, we store the �nal interval I 0xi = [� , �] where
OCH(� ,xi) 2 Ixi and OCH(� ,xi) 2 Ixi and the corresponding reduced input, �xi = RRH(xi) in L0

(line 18).

4.3 Calculating �

Once the list of constraints L0 is identi�ed, we merge the constraints (� 0x1 , I 0xi), . . . (� 0xi , I 0xi) 2 L0
where � 0x1 = · · · = � 0xi . Each of these constraints bound the output of PH(x) such that Af ,H(x)
produces the correct value for each input xi , that reduces to the same value � 0xi . The function
Calculate� in Figure 15 shows how we merge the constraints. First, for all constraints (� 0xi , I 0xi) 2
L0, we identify a list of unique reduced inputs, X 0 (line 1). For each unique reduced input � 2 X 0,
we identify all constraints (� 0xi , I 0xi) 2 L0 where � = �xi and group the intervals I 0xi into � (line
4-10). � can be considered as the list of constraint that bounds the output of PH(�). Therefore, we
create a uni�ed constraint by taking intersection of all intervals in � (line 11). If the intersected
interval, � is ;, then it means that there is no output PH(�) that satis�es all constraints in � and our
algorithm terminates by outputting it (line 12). Finally, Calculate� returns the list � containing
the merged constraints (�i ,�i) for each unique �i 2 X 0. The polynomial PH(x) should be generated
such that it satis�es the constraints �.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

An Approach to Generate Correctly Rounded Math Libraries for New Floating Point Variants 1:17

1 Function Main(f , T, H, X , RR, OC , OC�1, d):
2 L CalcRndIntervals(f , T, H, X)

3 if L = ; then return false
4 L0 CalcRedIntervals(f , L, T, H, RR, OC , OC�1)
5 if L0 = ; then return false
6 � CombineRedIntervals(L0)
7 if � = ; then return false
8 S , PH SynthesizePoly(�, d)
9 if S = true then return P

10 else return false

Fig. 7. Overall algorithm that creates the polynomial approximation P(x) that will produce the cor-
rectly rounded result. Each function, CalcIntervals, CalcRedIntervals, CombineRedIntervals, and
SynthesizePoly is explained later in this section.

1 Function CalcRndIntervals(f , T, H, X):
2 L ;
3 foreach x 2 X do
4 � RN (f (x),T)
5 I GetRndInterval(�, T, H)
6 if I = ; then return ;
7 L L [{(x , I)}
8 end
9 return L

10 Function GetRndInterval(�, T, H):
11 tl GetPrecVal(�, T)
12 l min{� 2 H|� 2 [tl ,�] and RN (�,T) = �}
13 tu GetSuccVal(�, T)
14 h max{� 2 H|� 2 [�, tu] and RN (�,T) = �}
15 return [l ,h]

Fig. 8. For each input x 2 X , CalcRndIntervals(f , T,H,X) identifies the interval I = [l ,h]where all values in
I rounds to the correctly rounded result f (x) for a given transcendental function f (x). The GetRndInterval(�,
T, H) function returns the interval I 2 H where all values in I rounds to �. GetPrecValue(�, T) returns the
preceding value of � in the T representation and GetSuccValue(�, T) returns the succeeding value of � in T.

(2) CalcRedIntervals: For each pair (x , Ix) 2 L, we compute the reduced input x 0. We also
compute the reduced interval I 0x = [l 0,h0] that de�nes the range of inputs for the output
compensation such that any value in I 0x is output compensated to a value in Ix . The pair (x 0, I 0x)
speci�es what the output of P(x 0) needs to be such thatA(x) rounds to �. CalcRedIntervals
returns a list L0 containing all such pair of constraints for all input x .

(3) CombineRedIntervals: Because all inputs are reduced to the reduced input x 0, there may be
multiple reduced intervals for each reduced input in L0. P(x 0)must produce a value within all
the reduced interval for A(x) to produce the correct value when rounded. Thus, we combine
all reduced interval for each reduced input x 0 and produce the pair (x 0,�)where � represents
the combined interval. CalcRedIntervals returns a list � containing the constraint pair
(x 0,�) for each reduced input x 0.

(4) SynthesizePoly: Each pair (x 0,�) 2 � species the constraint on the output of P(x 0). We
frame synthesizing P(x 0) that satis�es all constraints in � as an LP problem and generate a
correct P(x 0).

4.1 Calculating The Rounding Interval
The �rst step in our approach is to identify the values thatA(x)must produces such that the rounded
value of A(x) is equal to the correctly rounded result of � = f (x), i.e. RN (A(x),T) = RN (�,T), for

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

An Approach to Generate Correctly Rounded Math Libraries for New Floating Point Variants 1:19

1 Function CalculateL0(f , L, T, H, RR, OC , OC�1, d):
2 L0 ; foreach (xi , [li ,hi]) 2 L do
3 t1 OC�1

H
(li ,xi)

4 t2 OC�1
H
(hi ,xi)

5 if OCH is an increasing function then
6 � t1; � t2
7 else // OCH is a decreasing function
8 � t2; � t1
9 end

10 while OCH(� ,xi) < [li ,hi] do
11 � AdjHigher(� , H)
12 if � > � then return ;
13 end
14 while OCH(� ,xi) < [li ,hi] do
15 � AdjLower(� , H)
16 if � > � then return ;
17 end
18 L0 L0 [{(RRH(xi), [� , �])}
19 end
20 return L0

1 Function Calculate�(L0):
2 X 0 {� 0xi | (� 0xi , I 0xi) 2 L0}
3 � ;
4 foreach unique �i 2 X 0 do
5 �i ;
6 foreach (� 0x j , I 0x j) 2 L0 do
7 if �i = � 0x j then
8 �i �i [{I 0x j }
9 end

10 end
11 �i

—
I 0xj 2�i I

0
x j

12 if �i = ; then return ;
13 � � [{(�i ,�i)}
14 end
15 return �

Fig. 9. The function CalculateL’ transforms each constraint (xi , Ixi) 2 L that constrainsAf ,H(xi) into a new
constraint, (� 0xi , I 0xi), that constraints PH(� 0xi) such that Af ,H satisfies Af ,H(xi) 2 Ixi even in the presence of
range reduction as long as PH(� 0xi) 2 I 0xi . The function Calculate� combines multiple constraints with the
same reduced input, i.e. (� 0xi , I 0xi), (� 0x j , I 0x j) 2 L0 where � 0xi = � 0x j , into a single constraint and creates a final
list of constraints � for PH.

of I 0xi , i.e. [� , �] � I 0xi , ;. In particular, values near the boundary of the interval, i.e. � or � may
be a value such that OCH(� ,xi) < Ixi or OCH(�,xi) < Ixi . Therefore, we repeatedly check whether
the boundary values, � and � , is correctly output compensated to a value in Ixi while reducing the
boundary of [� , �] if they do not (lines 10-17). Finally, we store the �nal interval I 0xi = [� , �] where
OCH(� ,xi) 2 Ixi and OCH(� ,xi) 2 Ixi and the corresponding reduced input, �xi = RRH(xi) in L0

(line 18).

4.3 Calculating �

Once the list of constraints L0 is identi�ed, we merge the constraints (� 0x1 , I 0xi), . . . (� 0xi , I 0xi) 2 L0
where � 0x1 = · · · = � 0xi . Each of these constraints bound the output of PH(x) such that Af ,H(x)
produces the correct value for each input xi , that reduces to the same value � 0xi . The function
Calculate� in Figure 15 shows how we merge the constraints. First, for all constraints (� 0xi , I 0xi) 2
L0, we identify a list of unique reduced inputs, X 0 (line 1). For each unique reduced input � 2 X 0,
we identify all constraints (� 0xi , I 0xi) 2 L0 where � = �xi and group the intervals I 0xi into � (line
4-10). � can be considered as the list of constraint that bounds the output of PH(�). Therefore, we
create a uni�ed constraint by taking intersection of all intervals in � (line 11). If the intersected
interval, � is ;, then it means that there is no output PH(�) that satis�es all constraints in � and our
algorithm terminates by outputting it (line 12). Finally, Calculate� returns the list � containing
the merged constraints (�i ,�i) for each unique �i 2 X 0. The polynomial PH(x) should be generated
such that it satis�es the constraints �.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Entire input domain

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

An Approach to Generate Correctly Rounded Math Libraries for New Floating Point Variants 1:19

1 Function CalculateL0(f , L, T, H, RR, OC , OC�1, d):
2 L0 ; foreach (xi , [li ,hi]) 2 L do
3 t1 OC�1

H
(li ,xi)

4 t2 OC�1
H
(hi ,xi)

5 if OCH is an increasing function then
6 � t1; � t2
7 else // OCH is a decreasing function
8 � t2; � t1
9 end

10 while OCH(� ,xi) < [li ,hi] do
11 � AdjHigher(� , H)
12 if � > � then return ;
13 end
14 while OCH(� ,xi) < [li ,hi] do
15 � AdjLower(� , H)
16 if � > � then return ;
17 end
18 L0 L0 [{(RRH(xi), [� , �])}
19 end
20 return L0

1 Function Calculate�(L0):
2 X 0 {� 0xi | (� 0xi , I 0xi) 2 L0}
3 � ;
4 foreach unique �i 2 X 0 do
5 �i ;
6 foreach (� 0x j , I 0x j) 2 L0 do
7 if �i = � 0x j then
8 �i �i [{I 0x j }
9 end

10 end
11 �i

—
I 0xj 2�i I

0
x j

12 if �i = ; then return ;
13 � � [{(�i ,�i)}
14 end
15 return �

Fig. 9. The function CalculateL’ transforms each constraint (xi , Ixi) 2 L that constrainsAf ,H(xi) into a new
constraint, (� 0xi , I 0xi), that constraints PH(� 0xi) such that Af ,H satisfies Af ,H(xi) 2 Ixi even in the presence of
range reduction as long as PH(� 0xi) 2 I 0xi . The function Calculate� combines multiple constraints with the
same reduced input, i.e. (� 0xi , I 0xi), (� 0x j , I 0x j) 2 L0 where � 0xi = � 0x j , into a single constraint and creates a final
list of constraints � for PH.

of I 0xi , i.e. [� , �] � I 0xi , ;. In particular, values near the boundary of the interval, i.e. � or � may
be a value such that OCH(� ,xi) < Ixi or OCH(�,xi) < Ixi . Therefore, we repeatedly check whether
the boundary values, � and � , is correctly output compensated to a value in Ixi while reducing the
boundary of [� , �] if they do not (lines 10-17). Finally, we store the �nal interval I 0xi = [� , �] where
OCH(� ,xi) 2 Ixi and OCH(� ,xi) 2 Ixi and the corresponding reduced input, �xi = RRH(xi) in L0

(line 18).

4.3 Calculating �

Once the list of constraints L0 is identi�ed, we merge the constraints (� 0x1 , I 0xi), . . . (� 0xi , I 0xi) 2 L0
where � 0x1 = · · · = � 0xi . Each of these constraints bound the output of PH(x) such that Af ,H(x)
produces the correct value for each input xi , that reduces to the same value � 0xi . The function
Calculate� in Figure 15 shows how we merge the constraints. First, for all constraints (� 0xi , I 0xi) 2
L0, we identify a list of unique reduced inputs, X 0 (line 1). For each unique reduced input � 2 X 0,
we identify all constraints (� 0xi , I 0xi) 2 L0 where � = �xi and group the intervals I 0xi into � (line
4-10). � can be considered as the list of constraint that bounds the output of PH(�). Therefore, we
create a uni�ed constraint by taking intersection of all intervals in � (line 11). If the intersected
interval, � is ;, then it means that there is no output PH(�) that satis�es all constraints in � and our
algorithm terminates by outputting it (line 12). Finally, Calculate� returns the list � containing
the merged constraints (�i ,�i) for each unique �i 2 X 0. The polynomial PH(x) should be generated
such that it satis�es the constraints �.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Computed using an
oracle (i.e., MPFR library)

Polynomial
approximation

P(x’)

Input x
in H

Rounding
interval

[l, h]

Figure 1.2: The RLIBM’s approach to generate a polynomial approximation that produces the
correctly rounded result of f(x).

v3). Given an input x, if the real value of f(x) (highlighted with star) cannot be exactly

represented in T, then it is rounded to a value in T (i.e., v2). There is a range of values [l, h]

in the vicinity of v2 (highlighted in gray box) where all real values in the interval rounds to

v2. We call this interval the rounding interval. If we generate a polynomial that produces

a value in the rounding interval, then the result of the polynomial will always round to the

correctly rounded result (i.e., v2).

The basic RLIBM approach consists of three steps. Figure 1.2 pictorially shows each

step. As the goal of the RLIBM approach is to approximate the correctly rounded result of

f(x), the first step is to compute the correctly rounded result of f(x) for each input x in T.

We use an oracle (an arbitrary precision math library, i.e., MPFR math library) to compute

the real value of f(x) and round the value to T. Then, we identify the rounding interval [l, h]

for each input, where any value in the rounding interval rounds to the correctly rounded

8

result of f(x). Because the polynomial is evaluated in the higher precision representation

H, the rounding interval is also in H.

Each input x and its corresponding rounding interval [l, h] defines a constraint on the

output of the polynomial. The result of the polynomial P (x) = c0 + c1x+ c2x
2 + . . . must

be a value between l and h for the given input x to produce the correctly rounded result of

f(x):

l ≤ c0 + c1x+ c2x
2 + · · · ≤ h

The variables l, h, and x are constants in this inequality formula. The unknown vari-

ables, c0, c1, . . . , are the coefficients of the polynomial that we wish to generate. Using

the inequality formula for each input xi, we can create a system of linear inequalities that

encodes the problem of identifying the coefficients of a d-degree polynomial that produces

the correctly rounded results for all inputs:




l1

l2
...


 ≤




1 x1 x2
1 . . . xd1

1 x2 x2
2 . . . xd2

...
...

. . .
...







c0

c1

...

cd



≤




h1

h2

...




This system of linear inequalities is precisely a linear programming (LP) query without an

objective function. Hence, we use an LP solver to solve this formulation. The polynomial

constructed using the solution of the LP query produces the correctly rounded result of

f(x) for all inputs.

The rounding interval [l, h] for each input x that we identify is larger than [f(x) −

ε, f(x) + ε] where ε is the error bound of the correctly rounded polynomial approxima-

tion generated using prior approaches. Hence, RLIBM provides larger freedom to generate

polynomials that produce correctly rounded results. This freedom results in better perfor-

mance.

9

Range
Reduction

Infer the
Output of

Polynomial

Convert
to H

Identify values
in H that

round to y

LP
Formulation

Input x
in T

Input x
in H

y = Correctly
rounded
f(x) in T

Rounding
interval

[l, h]

Reduced
interval
[l’, h’]

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

An Approach to Generate Correctly Rounded Math Libraries for New Floating Point Variants 1:17

1 Function Main(f , T, H, X , RR, OC , OC�1, d):
2 L CalcRndIntervals(f , T, H, X)

3 if L = ; then return false
4 L0 CalcRedIntervals(f , L, T, H, RR, OC , OC�1)
5 if L0 = ; then return false
6 � CombineRedIntervals(L0)
7 if � = ; then return false
8 S , PH SynthesizePoly(�, d)
9 if S = true then return P

10 else return false

Fig. 7. Overall algorithm that creates the polynomial approximation P(x) that will produce the cor-
rectly rounded result. Each function, CalcIntervals, CalcRedIntervals, CombineRedIntervals, and
SynthesizePoly is explained later in this section.

1 Function CalcRndIntervals(f , T, H, X):
2 L ;
3 foreach x 2 X do
4 � RN (f (x),T)
5 I GetRndInterval(�, T, H)
6 if I = ; then return ;
7 L L [{(x , I)}
8 end
9 return L

10 Function GetRndInterval(�, T, H):
11 tl GetPrecVal(�, T)
12 l min{� 2 H|� 2 [tl ,�] and RN (�,T) = �}
13 tu GetSuccVal(�, T)
14 h max{� 2 H|� 2 [�, tu] and RN (�,T) = �}
15 return [l ,h]

Fig. 8. For each input x 2 X , CalcRndIntervals(f , T,H,X) identifies the interval I = [l ,h]where all values in
I rounds to the correctly rounded result f (x) for a given transcendental function f (x). The GetRndInterval(�,
T, H) function returns the interval I 2 H where all values in I rounds to �. GetPrecValue(�, T) returns the
preceding value of � in the T representation and GetSuccValue(�, T) returns the succeeding value of � in T.

(2) CalcRedIntervals: For each pair (x , Ix) 2 L, we compute the reduced input x 0. We also
compute the reduced interval I 0x = [l 0,h0] that de�nes the range of inputs for the output
compensation such that any value in I 0x is output compensated to a value in Ix . The pair (x 0, I 0x)
speci�es what the output of P(x 0) needs to be such thatA(x) rounds to �. CalcRedIntervals
returns a list L0 containing all such pair of constraints for all input x .

(3) CombineRedIntervals: Because all inputs are reduced to the reduced input x 0, there may be
multiple reduced intervals for each reduced input in L0. P(x 0)must produce a value within all
the reduced interval for A(x) to produce the correct value when rounded. Thus, we combine
all reduced interval for each reduced input x 0 and produce the pair (x 0,�)where � represents
the combined interval. CalcRedIntervals returns a list � containing the constraint pair
(x 0,�) for each reduced input x 0.

(4) SynthesizePoly: Each pair (x 0,�) 2 � species the constraint on the output of P(x 0). We
frame synthesizing P(x 0) that satis�es all constraints in � as an LP problem and generate a
correct P(x 0).

4.1 Calculating The Rounding Interval
The �rst step in our approach is to identify the values thatA(x)must produces such that the rounded
value of A(x) is equal to the correctly rounded result of � = f (x), i.e. RN (A(x),T) = RN (�,T), for

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

An Approach to Generate Correctly Rounded Math Libraries for New Floating Point Variants 1:19

1 Function CalculateL0(f , L, T, H, RR, OC , OC�1, d):
2 L0 ; foreach (xi , [li ,hi]) 2 L do
3 t1 OC�1

H
(li ,xi)

4 t2 OC�1
H
(hi ,xi)

5 if OCH is an increasing function then
6 � t1; � t2
7 else // OCH is a decreasing function
8 � t2; � t1
9 end

10 while OCH(� ,xi) < [li ,hi] do
11 � AdjHigher(� , H)
12 if � > � then return ;
13 end
14 while OCH(� ,xi) < [li ,hi] do
15 � AdjLower(� , H)
16 if � > � then return ;
17 end
18 L0 L0 [{(RRH(xi), [� , �])}
19 end
20 return L0

1 Function Calculate�(L0):
2 X 0 {� 0xi | (� 0xi , I 0xi) 2 L0}
3 � ;
4 foreach unique �i 2 X 0 do
5 �i ;
6 foreach (� 0x j , I 0x j) 2 L0 do
7 if �i = � 0x j then
8 �i �i [{I 0x j }
9 end

10 end
11 �i

—
I 0xj 2�i I

0
x j

12 if �i = ; then return ;
13 � � [{(�i ,�i)}
14 end
15 return �

Fig. 9. The function CalculateL’ transforms each constraint (xi , Ixi) 2 L that constrainsAf ,H(xi) into a new
constraint, (� 0xi , I 0xi), that constraints PH(� 0xi) such that Af ,H satisfies Af ,H(xi) 2 Ixi even in the presence of
range reduction as long as PH(� 0xi) 2 I 0xi . The function Calculate� combines multiple constraints with the
same reduced input, i.e. (� 0xi , I 0xi), (� 0x j , I 0x j) 2 L0 where � 0xi = � 0x j , into a single constraint and creates a final
list of constraints � for PH.

of I 0xi , i.e. [� , �] � I 0xi , ;. In particular, values near the boundary of the interval, i.e. � or � may
be a value such that OCH(� ,xi) < Ixi or OCH(�,xi) < Ixi . Therefore, we repeatedly check whether
the boundary values, � and � , is correctly output compensated to a value in Ixi while reducing the
boundary of [� , �] if they do not (lines 10-17). Finally, we store the �nal interval I 0xi = [� , �] where
OCH(� ,xi) 2 Ixi and OCH(� ,xi) 2 Ixi and the corresponding reduced input, �xi = RRH(xi) in L0

(line 18).

4.3 Calculating �

Once the list of constraints L0 is identi�ed, we merge the constraints (� 0x1 , I 0xi), . . . (� 0xi , I 0xi) 2 L0
where � 0x1 = · · · = � 0xi . Each of these constraints bound the output of PH(x) such that Af ,H(x)
produces the correct value for each input xi , that reduces to the same value � 0xi . The function
Calculate� in Figure 15 shows how we merge the constraints. First, for all constraints (� 0xi , I 0xi) 2
L0, we identify a list of unique reduced inputs, X 0 (line 1). For each unique reduced input � 2 X 0,
we identify all constraints (� 0xi , I 0xi) 2 L0 where � = �xi and group the intervals I 0xi into � (line
4-10). � can be considered as the list of constraint that bounds the output of PH(�). Therefore, we
create a uni�ed constraint by taking intersection of all intervals in � (line 11). If the intersected
interval, � is ;, then it means that there is no output PH(�) that satis�es all constraints in � and our
algorithm terminates by outputting it (line 12). Finally, Calculate� returns the list � containing
the merged constraints (�i ,�i) for each unique �i 2 X 0. The polynomial PH(x) should be generated
such that it satis�es the constraints �.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

An Approach to Generate Correctly Rounded Math Libraries for New Floating Point Variants 1:17

1 Function Main(f , T, H, X , RR, OC , OC�1, d):
2 L CalcRndIntervals(f , T, H, X)

3 if L = ; then return false
4 L0 CalcRedIntervals(f , L, T, H, RR, OC , OC�1)
5 if L0 = ; then return false
6 � CombineRedIntervals(L0)
7 if � = ; then return false
8 S , PH SynthesizePoly(�, d)
9 if S = true then return P

10 else return false

Fig. 7. Overall algorithm that creates the polynomial approximation P(x) that will produce the cor-
rectly rounded result. Each function, CalcIntervals, CalcRedIntervals, CombineRedIntervals, and
SynthesizePoly is explained later in this section.

1 Function CalcRndIntervals(f , T, H, X):
2 L ;
3 foreach x 2 X do
4 � RN (f (x),T)
5 I GetRndInterval(�, T, H)
6 if I = ; then return ;
7 L L [{(x , I)}
8 end
9 return L

10 Function GetRndInterval(�, T, H):
11 tl GetPrecVal(�, T)
12 l min{� 2 H|� 2 [tl ,�] and RN (�,T) = �}
13 tu GetSuccVal(�, T)
14 h max{� 2 H|� 2 [�, tu] and RN (�,T) = �}
15 return [l ,h]

Fig. 8. For each input x 2 X , CalcRndIntervals(f , T,H,X) identifies the interval I = [l ,h]where all values in
I rounds to the correctly rounded result f (x) for a given transcendental function f (x). The GetRndInterval(�,
T, H) function returns the interval I 2 H where all values in I rounds to �. GetPrecValue(�, T) returns the
preceding value of � in the T representation and GetSuccValue(�, T) returns the succeeding value of � in T.

(2) CalcRedIntervals: For each pair (x , Ix) 2 L, we compute the reduced input x 0. We also
compute the reduced interval I 0x = [l 0,h0] that de�nes the range of inputs for the output
compensation such that any value in I 0x is output compensated to a value in Ix . The pair (x 0, I 0x)
speci�es what the output of P(x 0) needs to be such thatA(x) rounds to �. CalcRedIntervals
returns a list L0 containing all such pair of constraints for all input x .

(3) CombineRedIntervals: Because all inputs are reduced to the reduced input x 0, there may be
multiple reduced intervals for each reduced input in L0. P(x 0)must produce a value within all
the reduced interval for A(x) to produce the correct value when rounded. Thus, we combine
all reduced interval for each reduced input x 0 and produce the pair (x 0,�)where � represents
the combined interval. CalcRedIntervals returns a list � containing the constraint pair
(x 0,�) for each reduced input x 0.

(4) SynthesizePoly: Each pair (x 0,�) 2 � species the constraint on the output of P(x 0). We
frame synthesizing P(x 0) that satis�es all constraints in � as an LP problem and generate a
correct P(x 0).

4.1 Calculating The Rounding Interval
The �rst step in our approach is to identify the values thatA(x)must produces such that the rounded
value of A(x) is equal to the correctly rounded result of � = f (x), i.e. RN (A(x),T) = RN (�,T), for

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

An Approach to Generate Correctly Rounded Math Libraries for New Floating Point Variants 1:19

1 Function CalculateL0(f , L, T, H, RR, OC , OC�1, d):
2 L0 ; foreach (xi , [li ,hi]) 2 L do
3 t1 OC�1

H
(li ,xi)

4 t2 OC�1
H
(hi ,xi)

5 if OCH is an increasing function then
6 � t1; � t2
7 else // OCH is a decreasing function
8 � t2; � t1
9 end

10 while OCH(� ,xi) < [li ,hi] do
11 � AdjHigher(� , H)
12 if � > � then return ;
13 end
14 while OCH(� ,xi) < [li ,hi] do
15 � AdjLower(� , H)
16 if � > � then return ;
17 end
18 L0 L0 [{(RRH(xi), [� , �])}
19 end
20 return L0

1 Function Calculate�(L0):
2 X 0 {� 0xi | (� 0xi , I 0xi) 2 L0}
3 � ;
4 foreach unique �i 2 X 0 do
5 �i ;
6 foreach (� 0x j , I 0x j) 2 L0 do
7 if �i = � 0x j then
8 �i �i [{I 0x j }
9 end

10 end
11 �i

—
I 0xj 2�i I

0
x j

12 if �i = ; then return ;
13 � � [{(�i ,�i)}
14 end
15 return �

Fig. 9. The function CalculateL’ transforms each constraint (xi , Ixi) 2 L that constrainsAf ,H(xi) into a new
constraint, (� 0xi , I 0xi), that constraints PH(� 0xi) such that Af ,H satisfies Af ,H(xi) 2 Ixi even in the presence of
range reduction as long as PH(� 0xi) 2 I 0xi . The function Calculate� combines multiple constraints with the
same reduced input, i.e. (� 0xi , I 0xi), (� 0x j , I 0x j) 2 L0 where � 0xi = � 0x j , into a single constraint and creates a final
list of constraints � for PH.

of I 0xi , i.e. [� , �] � I 0xi , ;. In particular, values near the boundary of the interval, i.e. � or � may
be a value such that OCH(� ,xi) < Ixi or OCH(�,xi) < Ixi . Therefore, we repeatedly check whether
the boundary values, � and � , is correctly output compensated to a value in Ixi while reducing the
boundary of [� , �] if they do not (lines 10-17). Finally, we store the �nal interval I 0xi = [� , �] where
OCH(� ,xi) 2 Ixi and OCH(� ,xi) 2 Ixi and the corresponding reduced input, �xi = RRH(xi) in L0

(line 18).

4.3 Calculating �

Once the list of constraints L0 is identi�ed, we merge the constraints (� 0x1 , I 0xi), . . . (� 0xi , I 0xi) 2 L0
where � 0x1 = · · · = � 0xi . Each of these constraints bound the output of PH(x) such that Af ,H(x)
produces the correct value for each input xi , that reduces to the same value � 0xi . The function
Calculate� in Figure 15 shows how we merge the constraints. First, for all constraints (� 0xi , I 0xi) 2
L0, we identify a list of unique reduced inputs, X 0 (line 1). For each unique reduced input � 2 X 0,
we identify all constraints (� 0xi , I 0xi) 2 L0 where � = �xi and group the intervals I 0xi into � (line
4-10). � can be considered as the list of constraint that bounds the output of PH(�). Therefore, we
create a uni�ed constraint by taking intersection of all intervals in � (line 11). If the intersected
interval, � is ;, then it means that there is no output PH(�) that satis�es all constraints in � and our
algorithm terminates by outputting it (line 12). Finally, Calculate� returns the list � containing
the merged constraints (�i ,�i) for each unique �i 2 X 0. The polynomial PH(x) should be generated
such that it satis�es the constraints �.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Reduced
input

x’

Entire input domain

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

An Approach to Generate Correctly Rounded Math Libraries for New Floating Point Variants 1:19

1 Function CalculateL0(f , L, T, H, RR, OC , OC�1, d):
2 L0 ; foreach (xi , [li ,hi]) 2 L do
3 t1 OC�1

H
(li ,xi)

4 t2 OC�1
H
(hi ,xi)

5 if OCH is an increasing function then
6 � t1; � t2
7 else // OCH is a decreasing function
8 � t2; � t1
9 end

10 while OCH(� ,xi) < [li ,hi] do
11 � AdjHigher(� , H)
12 if � > � then return ;
13 end
14 while OCH(� ,xi) < [li ,hi] do
15 � AdjLower(� , H)
16 if � > � then return ;
17 end
18 L0 L0 [{(RRH(xi), [� , �])}
19 end
20 return L0

1 Function Calculate�(L0):
2 X 0 {� 0xi | (� 0xi , I 0xi) 2 L0}
3 � ;
4 foreach unique �i 2 X 0 do
5 �i ;
6 foreach (� 0x j , I 0x j) 2 L0 do
7 if �i = � 0x j then
8 �i �i [{I 0x j }
9 end

10 end
11 �i

—
I 0xj 2�i I

0
x j

12 if �i = ; then return ;
13 � � [{(�i ,�i)}
14 end
15 return �

Fig. 9. The function CalculateL’ transforms each constraint (xi , Ixi) 2 L that constrainsAf ,H(xi) into a new
constraint, (� 0xi , I 0xi), that constraints PH(� 0xi) such that Af ,H satisfies Af ,H(xi) 2 Ixi even in the presence of
range reduction as long as PH(� 0xi) 2 I 0xi . The function Calculate� combines multiple constraints with the
same reduced input, i.e. (� 0xi , I 0xi), (� 0x j , I 0x j) 2 L0 where � 0xi = � 0x j , into a single constraint and creates a final
list of constraints � for PH.

of I 0xi , i.e. [� , �] � I 0xi , ;. In particular, values near the boundary of the interval, i.e. � or � may
be a value such that OCH(� ,xi) < Ixi or OCH(�,xi) < Ixi . Therefore, we repeatedly check whether
the boundary values, � and � , is correctly output compensated to a value in Ixi while reducing the
boundary of [� , �] if they do not (lines 10-17). Finally, we store the �nal interval I 0xi = [� , �] where
OCH(� ,xi) 2 Ixi and OCH(� ,xi) 2 Ixi and the corresponding reduced input, �xi = RRH(xi) in L0

(line 18).

4.3 Calculating �

Once the list of constraints L0 is identi�ed, we merge the constraints (� 0x1 , I 0xi), . . . (� 0xi , I 0xi) 2 L0
where � 0x1 = · · · = � 0xi . Each of these constraints bound the output of PH(x) such that Af ,H(x)
produces the correct value for each input xi , that reduces to the same value � 0xi . The function
Calculate� in Figure 15 shows how we merge the constraints. First, for all constraints (� 0xi , I 0xi) 2
L0, we identify a list of unique reduced inputs, X 0 (line 1). For each unique reduced input � 2 X 0,
we identify all constraints (� 0xi , I 0xi) 2 L0 where � = �xi and group the intervals I 0xi into � (line
4-10). � can be considered as the list of constraint that bounds the output of PH(�). Therefore, we
create a uni�ed constraint by taking intersection of all intervals in � (line 11). If the intersected
interval, � is ;, then it means that there is no output PH(�) that satis�es all constraints in � and our
algorithm terminates by outputting it (line 12). Finally, Calculate� returns the list � containing
the merged constraints (�i ,�i) for each unique �i 2 X 0. The polynomial PH(x) should be generated
such that it satis�es the constraints �.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Oracle Result

Polynomial
approximation

P(x’)

Figure 1.3: The RLIBM’s approach to generate a polynomial approximation that produces the cor-
rectly rounded result of f(x) when used with a range reduction strategy. We highlight the extension
from Figure 1.2 with the gray box.

1.2.2 The RLIBM Approach With Range Reduction

In general, generating polynomials for a small input domain is easier than the entire input

domain. Hence, elementary functions are often approximated with a combination of range

reduction and polynomial approximation. The original input x is reduced to a smaller

domain with the range reduction function. Subsequently, the polynomial approximation

function is used with the reduced input. The resulting value is adjusted with the output

compensation function to produce the final output. The entire approximation functionA(x)

of f(x) is a composition of these three functions. For example, the input domain for log2(x)

is (0,∞). Polynomials can approximate log2(x) for the smaller domain [1, 2) much more

accurately than the entire input domain. Hence, we reduce the original input x into the

reduced input x′ using x = x′ × 2k where x′ ∈ [1, 2) and k is an integer. We approximate

y′ = log2(x′) using a polynomial for the reduced domain [1, 2). Then, log2(x) for the

original input x is approximated by compensating the output y′ with y = y′ + e.

Range reduction, polynomial approximation, and output compensation functions are

evaluated in a finite precision representation. Hence, they can experience numerical errors.

To use polynomials with range reduction, the RLIBM approach adjusts the output intervals

for the polynomials to account for the numerical errors. Figure 1.3 pictorially shows the

modifications to handle range reductions. The additional steps that adjust the intervals are

highlighted with the gray box. In this setting, each original input and rounding interval con-

10

straint defines the output of the entire approximation of f(x) (i.e., A(x)) should produce.

We use the original inputs and the range reduction function to identify the list of inputs for

the polynomial. We call these inputs the reduced inputs. Similarly, we use the rounding

intervals and the output compensation function to infer the range of values that the poly-

nomial should produce. We call this range of values the reduced interval. If a polynomial

approximation produces a value in the reduced interval for each reduced input, then the

result when used with the output compensation function produces a value in the rounding

interval. With the reduced inputs and reduced intervals, we generate polynomial approxi-

mations using LP formulations. Further, we develop modified range reduction techniques

for some elementary functions to minimize cancellation errors in output compensation (see

Chapter 4 for more detail).

1.2.3 Scaling RLIBM To 32-bit Representations

The 32-bit representations have four billion inputs. Naively using the RLIBM approach

for 32-bit types can generate millions of constraints, which is beyond the capabilities of LP

solvers. Additionally, it may not be feasible to generate a single polynomial of a reasonable

degree that satisfies all constraints. It will most likely require a high-degree polynomial to

produce the correctly rounded result, which is not ideal for performance. Hence, we extend

the RLIBM approach with two techniques to generate efficient polynomial approximations

for 32-bit types: We propose to (1) use the counterexample guided polynomial generation

technique that samples inputs to handle a large number of constraints and (2) generate

piecewise polynomials for efficient implementations of elementary functions. Figure 1.4

illustrates the steps to generate polynomial approximations for 32-bit types.

Counterexample guided polynomial generation. To generate polynomial approximations

that produce the correctly rounded results for millions of inputs, it is not necessary to con-

sider every single input and its corresponding interval. We only need to reason about inputs

11

Sub-domain #1

Sub-domain #2

…

Counterexample Guided Polynomial Generation

Sample
x’

Generate
polynomial

Add incorrect
x’ to sample No Yes

Start
Polynomial #1

Polynomial #2

…Is polynomial
correct?

Domain Splitting for
Piecewise Polynomials

Input x
in T

Correctly
rounded
f(x) in T

Rounding
interval

[l, h]

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

An Approach to Generate Correctly Rounded Math Libraries for New Floating Point Variants 1:17

1 Function Main(f , T, H, X , RR, OC , OC�1, d):
2 L CalcRndIntervals(f , T, H, X)

3 if L = ; then return false
4 L0 CalcRedIntervals(f , L, T, H, RR, OC , OC�1)
5 if L0 = ; then return false
6 � CombineRedIntervals(L0)
7 if � = ; then return false
8 S , PH SynthesizePoly(�, d)
9 if S = true then return P

10 else return false

Fig. 7. Overall algorithm that creates the polynomial approximation P(x) that will produce the cor-
rectly rounded result. Each function, CalcIntervals, CalcRedIntervals, CombineRedIntervals, and
SynthesizePoly is explained later in this section.

1 Function CalcRndIntervals(f , T, H, X):
2 L ;
3 foreach x 2 X do
4 � RN (f (x),T)
5 I GetRndInterval(�, T, H)
6 if I = ; then return ;
7 L L [{(x , I)}
8 end
9 return L

10 Function GetRndInterval(�, T, H):
11 tl GetPrecVal(�, T)
12 l min{� 2 H|� 2 [tl ,�] and RN (�,T) = �}
13 tu GetSuccVal(�, T)
14 h max{� 2 H|� 2 [�, tu] and RN (�,T) = �}
15 return [l ,h]

Fig. 8. For each input x 2 X , CalcRndIntervals(f , T,H,X) identifies the interval I = [l ,h]where all values in
I rounds to the correctly rounded result f (x) for a given transcendental function f (x). The GetRndInterval(�,
T, H) function returns the interval I 2 H where all values in I rounds to �. GetPrecValue(�, T) returns the
preceding value of � in the T representation and GetSuccValue(�, T) returns the succeeding value of � in T.

(2) CalcRedIntervals: For each pair (x , Ix) 2 L, we compute the reduced input x 0. We also
compute the reduced interval I 0x = [l 0,h0] that de�nes the range of inputs for the output
compensation such that any value in I 0x is output compensated to a value in Ix . The pair (x 0, I 0x)
speci�es what the output of P(x 0) needs to be such thatA(x) rounds to �. CalcRedIntervals
returns a list L0 containing all such pair of constraints for all input x .

(3) CombineRedIntervals: Because all inputs are reduced to the reduced input x 0, there may be
multiple reduced intervals for each reduced input in L0. P(x 0)must produce a value within all
the reduced interval for A(x) to produce the correct value when rounded. Thus, we combine
all reduced interval for each reduced input x 0 and produce the pair (x 0,�)where � represents
the combined interval. CalcRedIntervals returns a list � containing the constraint pair
(x 0,�) for each reduced input x 0.

(4) SynthesizePoly: Each pair (x 0,�) 2 � species the constraint on the output of P(x 0). We
frame synthesizing P(x 0) that satis�es all constraints in � as an LP problem and generate a
correct P(x 0).

4.1 Calculating The Rounding Interval
The �rst step in our approach is to identify the values thatA(x)must produces such that the rounded
value of A(x) is equal to the correctly rounded result of � = f (x), i.e. RN (A(x),T) = RN (�,T), for

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

An Approach to Generate Correctly Rounded Math Libraries for New Floating Point Variants 1:17

1 Function Main(f , T, H, X , RR, OC , OC�1, d):
2 L CalcRndIntervals(f , T, H, X)

3 if L = ; then return false
4 L0 CalcRedIntervals(f , L, T, H, RR, OC , OC�1)
5 if L0 = ; then return false
6 � CombineRedIntervals(L0)
7 if � = ; then return false
8 S , PH SynthesizePoly(�, d)
9 if S = true then return P

10 else return false

Fig. 7. Overall algorithm that creates the polynomial approximation P(x) that will produce the cor-
rectly rounded result. Each function, CalcIntervals, CalcRedIntervals, CombineRedIntervals, and
SynthesizePoly is explained later in this section.

1 Function CalcRndIntervals(f , T, H, X):
2 L ;
3 foreach x 2 X do
4 � RN (f (x),T)
5 I GetRndInterval(�, T, H)
6 if I = ; then return ;
7 L L [{(x , I)}
8 end
9 return L

10 Function GetRndInterval(�, T, H):
11 tl GetPrecVal(�, T)
12 l min{� 2 H|� 2 [tl ,�] and RN (�,T) = �}
13 tu GetSuccVal(�, T)
14 h max{� 2 H|� 2 [�, tu] and RN (�,T) = �}
15 return [l ,h]

Fig. 8. For each input x 2 X , CalcRndIntervals(f , T,H,X) identifies the interval I = [l ,h]where all values in
I rounds to the correctly rounded result f (x) for a given transcendental function f (x). The GetRndInterval(�,
T, H) function returns the interval I 2 H where all values in I rounds to �. GetPrecValue(�, T) returns the
preceding value of � in the T representation and GetSuccValue(�, T) returns the succeeding value of � in T.

(2) CalcRedIntervals: For each pair (x , Ix) 2 L, we compute the reduced input x 0. We also
compute the reduced interval I 0x = [l 0,h0] that de�nes the range of inputs for the output
compensation such that any value in I 0x is output compensated to a value in Ix . The pair (x 0, I 0x)
speci�es what the output of P(x 0) needs to be such thatA(x) rounds to �. CalcRedIntervals
returns a list L0 containing all such pair of constraints for all input x .

(3) CombineRedIntervals: Because all inputs are reduced to the reduced input x 0, there may be
multiple reduced intervals for each reduced input in L0. P(x 0)must produce a value within all
the reduced interval for A(x) to produce the correct value when rounded. Thus, we combine
all reduced interval for each reduced input x 0 and produce the pair (x 0,�)where � represents
the combined interval. CalcRedIntervals returns a list � containing the constraint pair
(x 0,�) for each reduced input x 0.

(4) SynthesizePoly: Each pair (x 0,�) 2 � species the constraint on the output of P(x 0). We
frame synthesizing P(x 0) that satis�es all constraints in � as an LP problem and generate a
correct P(x 0).

4.1 Calculating The Rounding Interval
The �rst step in our approach is to identify the values thatA(x)must produces such that the rounded
value of A(x) is equal to the correctly rounded result of � = f (x), i.e. RN (A(x),T) = RN (�,T), for

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Entire input domain

Oracle Result

Input x
in H883

884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

An Approach to Generate Correctly Rounded Math Libraries for New Floating Point Variants 1:19

1 Function CalculateL0(f , L, T, H, RR, OC , OC�1, d):
2 L0 ; foreach (xi , [li ,hi]) 2 L do
3 t1 OC�1

H
(li ,xi)

4 t2 OC�1
H
(hi ,xi)

5 if OCH is an increasing function then
6 � t1; � t2
7 else // OCH is a decreasing function
8 � t2; � t1
9 end

10 while OCH(� ,xi) < [li ,hi] do
11 � AdjHigher(� , H)
12 if � > � then return ;
13 end
14 while OCH(� ,xi) < [li ,hi] do
15 � AdjLower(� , H)
16 if � > � then return ;
17 end
18 L0 L0 [{(RRH(xi), [� , �])}
19 end
20 return L0

1 Function Calculate�(L0):
2 X 0 {� 0xi | (� 0xi , I 0xi) 2 L0}
3 � ;
4 foreach unique �i 2 X 0 do
5 �i ;
6 foreach (� 0x j , I 0x j) 2 L0 do
7 if �i = � 0x j then
8 �i �i [{I 0x j }
9 end

10 end
11 �i

—
I 0xj 2�i I

0
x j

12 if �i = ; then return ;
13 � � [{(�i ,�i)}
14 end
15 return �

Fig. 9. The function CalculateL’ transforms each constraint (xi , Ixi) 2 L that constrainsAf ,H(xi) into a new
constraint, (� 0xi , I 0xi), that constraints PH(� 0xi) such that Af ,H satisfies Af ,H(xi) 2 Ixi even in the presence of
range reduction as long as PH(� 0xi) 2 I 0xi . The function Calculate� combines multiple constraints with the
same reduced input, i.e. (� 0xi , I 0xi), (� 0x j , I 0x j) 2 L0 where � 0xi = � 0x j , into a single constraint and creates a final
list of constraints � for PH.

of I 0xi , i.e. [� , �] � I 0xi , ;. In particular, values near the boundary of the interval, i.e. � or � may
be a value such that OCH(� ,xi) < Ixi or OCH(�,xi) < Ixi . Therefore, we repeatedly check whether
the boundary values, � and � , is correctly output compensated to a value in Ixi while reducing the
boundary of [� , �] if they do not (lines 10-17). Finally, we store the �nal interval I 0xi = [� , �] where
OCH(� ,xi) 2 Ixi and OCH(� ,xi) 2 Ixi and the corresponding reduced input, �xi = RRH(xi) in L0

(line 18).

4.3 Calculating �

Once the list of constraints L0 is identi�ed, we merge the constraints (� 0x1 , I 0xi), . . . (� 0xi , I 0xi) 2 L0
where � 0x1 = · · · = � 0xi . Each of these constraints bound the output of PH(x) such that Af ,H(x)
produces the correct value for each input xi , that reduces to the same value � 0xi . The function
Calculate� in Figure 15 shows how we merge the constraints. First, for all constraints (� 0xi , I 0xi) 2
L0, we identify a list of unique reduced inputs, X 0 (line 1). For each unique reduced input � 2 X 0,
we identify all constraints (� 0xi , I 0xi) 2 L0 where � = �xi and group the intervals I 0xi into � (line
4-10). � can be considered as the list of constraint that bounds the output of PH(�). Therefore, we
create a uni�ed constraint by taking intersection of all intervals in � (line 11). If the intersected
interval, � is ;, then it means that there is no output PH(�) that satis�es all constraints in � and our
algorithm terminates by outputting it (line 12). Finally, Calculate� returns the list � containing
the merged constraints (�i ,�i) for each unique �i 2 X 0. The polynomial PH(x) should be generated
such that it satis�es the constraints �.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Reduced
interval
[l’, h’]

Reduced
input

x’

Range Reduction

Figure 1.4: The RLIBM’s approach for generating a polynomial approximation that produces the
correctly rounded result of f(x) for 32-bit types.

with highly constrained intervals to ensure that we generate polynomials that satisfy these

constraints. The resulting polynomial will likely satisfy other constraints. Hence, we sam-

ple a few inputs and compute the rounding interval for the sampled inputs. If we intend

to use range reduction, we also identify the reduced inputs and intervals. We generate a

candidate polynomial that produces a value in the interval for each sampled input using LP

formulation. Next, we check if the candidate polynomial produces a value in the rounding

interval (or reduced interval) for all inputs (or reduced inputs). We add any counterexam-

ple inputs to the sample and repeat the process until the generated polynomial produces the

correctly rounded results for all inputs. This counterexample guided polynomial generation

process is inspired by counterexample guided inductive synthesis (CEGIS) [72, 123] used

in program synthesis.

Piecewise polynomials. When the number of inputs in the sample exceeds the capabil-

ity of our LP solver, the LP solver cannot generate a polynomial, or the generated poly-

nomial does not satisfy our performance constraint, we split the input domain [a, b] into

sub-domains [a, b′) and [b′, b]. Then, we generate a polynomial for each sub-domain using

counterexample guided polynomial generation. The domain is split in such a way that we

can use a few bits in the bit-pattern of the input to identify which polynomial to evaluate.

If the RLIBM approach cannot generate a polynomial for every sub-domain, then the input

domain is further split into smaller sub-domains. The final number of sub-domains depends

12

on the chosen elementary function and representation. Among the elementary functions we

tested for the 32-bit float representation, the RLIBM approach splits the original input do-

main into 26 sub-domains on average. This strategy allows the RLIBM approach to generate

piecewise polynomials with a low degree resulting in implementations that are faster than

mainstream math libraries.

1.2.4 A Single Approximation for Multiple Representations and Rounding Modes

The FP representation officially has five rounding modes defined by the IEEE-754 standard.

The correctly rounded result of f(x) for a given input x may be different depending on the

chosen rounding mode. One possible solution to produce the correctly rounded result for

each rounding mode is to adopt the strategy from CR-LIBM [29] or the above RLIBM

approach. They generate a correctly rounded polynomial approximation of f(x) for each

rounding mode. While this approach may be feasible for a single type, it can quickly

become overwhelming when we generate correctly rounded approximations for various

representations. It would be ideal if we can generate a single polynomial approximation

that produces the correctly rounded results for multiple rounding modes and precision con-

figurations.

We propose a novel approach to create such polynomial approximations. The key idea

is to create polynomials that approximate the correctly rounded result of f(x) with the

round-to-odd (rno) mode. The rno mode is a non-standard rounding mode that has been

used to avoid double rounding issues when performing primitive operations with extended

precision and subsequently rounding the result to a lower precision representation [9]. The

rno mode can be described as follows: If the real value of f(x) is exactly representable

in our target representation, then it is rounded to that value. Otherwise, it is rounded to

a value whose bit-string is odd when interpreted as an unsigned integer. Our contribution

is in recognizing that rno mode can be used to generate correctly rounded polynomial

approximations for multiple rounding modes. Chapter 6 provides more detail regarding the

13

Odd
interval

[l, h]

Input x
in H

Generate
Polynomial

Input x
in T

y = rno result
of f(x) in

T .

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

An Approach to Generate Correctly Rounded Math Libraries for New Floating Point Variants 1:19

1 Function CalculateL0(f , L, T, H, RR, OC , OC�1, d):
2 L0 ; foreach (xi , [li ,hi]) 2 L do
3 t1 OC�1

H
(li ,xi)

4 t2 OC�1
H
(hi ,xi)

5 if OCH is an increasing function then
6 � t1; � t2
7 else // OCH is a decreasing function
8 � t2; � t1
9 end

10 while OCH(� ,xi) < [li ,hi] do
11 � AdjHigher(� , H)
12 if � > � then return ;
13 end
14 while OCH(� ,xi) < [li ,hi] do
15 � AdjLower(� , H)
16 if � > � then return ;
17 end
18 L0 L0 [{(RRH(xi), [� , �])}
19 end
20 return L0

1 Function Calculate�(L0):
2 X 0 {� 0xi | (� 0xi , I 0xi) 2 L0}
3 � ;
4 foreach unique �i 2 X 0 do
5 �i ;
6 foreach (� 0x j , I 0x j) 2 L0 do
7 if �i = � 0x j then
8 �i �i [{I 0x j }
9 end

10 end
11 �i

—
I 0xj 2�i I

0
x j

12 if �i = ; then return ;
13 � � [{(�i ,�i)}
14 end
15 return �

Fig. 9. The function CalculateL’ transforms each constraint (xi , Ixi) 2 L that constrainsAf ,H(xi) into a new
constraint, (� 0xi , I 0xi), that constraints PH(� 0xi) such that Af ,H satisfies Af ,H(xi) 2 Ixi even in the presence of
range reduction as long as PH(� 0xi) 2 I 0xi . The function Calculate� combines multiple constraints with the
same reduced input, i.e. (� 0xi , I 0xi), (� 0x j , I 0x j) 2 L0 where � 0xi = � 0x j , into a single constraint and creates a final
list of constraints � for PH.

of I 0xi , i.e. [� , �] � I 0xi , ;. In particular, values near the boundary of the interval, i.e. � or � may
be a value such that OCH(� ,xi) < Ixi or OCH(�,xi) < Ixi . Therefore, we repeatedly check whether
the boundary values, � and � , is correctly output compensated to a value in Ixi while reducing the
boundary of [� , �] if they do not (lines 10-17). Finally, we store the �nal interval I 0xi = [� , �] where
OCH(� ,xi) 2 Ixi and OCH(� ,xi) 2 Ixi and the corresponding reduced input, �xi = RRH(xi) in L0

(line 18).

4.3 Calculating �

Once the list of constraints L0 is identi�ed, we merge the constraints (� 0x1 , I 0xi), . . . (� 0xi , I 0xi) 2 L0
where � 0x1 = · · · = � 0xi . Each of these constraints bound the output of PH(x) such that Af ,H(x)
produces the correct value for each input xi , that reduces to the same value � 0xi . The function
Calculate� in Figure 15 shows how we merge the constraints. First, for all constraints (� 0xi , I 0xi) 2
L0, we identify a list of unique reduced inputs, X 0 (line 1). For each unique reduced input � 2 X 0,
we identify all constraints (� 0xi , I 0xi) 2 L0 where � = �xi and group the intervals I 0xi into � (line
4-10). � can be considered as the list of constraint that bounds the output of PH(�). Therefore, we
create a uni�ed constraint by taking intersection of all intervals in � (line 11). If the intersected
interval, � is ;, then it means that there is no output PH(�) that satis�es all constraints in � and our
algorithm terminates by outputting it (line 12). Finally, Calculate� returns the list � containing
the merged constraints (�i ,�i) for each unique �i 2 X 0. The polynomial PH(x) should be generated
such that it satis�es the constraints �.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Entire input domain

Oracle Result

Polynomial
approximation

P(x)
Inputs x and
the rounding

intervals
[l, h] in H883

884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

An Approach to Generate Correctly Rounded Math Libraries for New Floating Point Variants 1:19

1 Function CalculateL�(f , L, T, H, RR, OC , OC�1, d):
2 L� � � foreach (xi , [li ,hi]) � L do
3 t1 � OC�1

H
(li ,xi)

4 t2 � OC�1
H
(hi ,xi)

5 if OCH is an increasing function then
6 � � t1; � � t2
7 else // OCH is a decreasing function
8 � � t2; � � t1
9 end

10 while OCH(� ,xi) � [li ,hi] do
11 � � AdjHigher(� , H)
12 if � > � then return �
13 end
14 while OCH(� ,xi) � [li ,hi] do
15 � � AdjLower(� , H)
16 if � > � then return �
17 end
18 L� � L� � {(RRH(xi), [� , �])}
19 end
20 return L�

1 Function Calculate�(L�):
2 X � � {� �xi | (� �xi , I �xi) � L�}
3 � � �
4 foreach unique �i � X � do
5 �i � �
6 foreach (� �x j , I �x j) � L� do
7 if �i = � �x j then
8 �i � �i � {I �x j }
9 end

10 end
11 �i �

�
I �xj ��i I

�
x j

12 if �i = � then return �
13 � � � � {(�i ,�i)}
14 end
15 return �

Fig. 9. The function CalculateL’ transforms each constraint (xi , Ixi) � L that constrainsAf ,H(xi) into a new
constraint, (� �xi , I �xi), that constraints PH(� �xi) such that Af ,H satisfies Af ,H(xi) � Ixi even in the presence of
range reduction as long as PH(� �xi) � I �xi . The function Calculate� combines multiple constraints with the
same reduced input, i.e. (� �xi , I �xi), (� �x j , I �x j) � L� where � �xi = � �x j , into a single constraint and creates a final
list of constraints � for PH.

of I �xi , i.e. [� , �] � I �xi � �. In particular, values near the boundary of the interval, i.e. � or � may
be a value such that OCH(� ,xi) � Ixi or OCH(�,xi) � Ixi . Therefore, we repeatedly check whether
the boundary values, � and � , is correctly output compensated to a value in Ixi while reducing the
boundary of [� , �] if they do not (lines 10-17). Finally, we store the �nal interval I �xi = [� , �] where
OCH(� ,xi) � Ixi and OCH(� ,xi) � Ixi and the corresponding reduced input, �xi = RRH(xi) in L�

(line 18).

4.3 Calculating �

Once the list of constraints L� is identi�ed, we merge the constraints (� �
x1 , I

�
xi), . . . (� �

xi , I
�
xi) � L�

where � �
x1 = · · · = � �

xi . Each of these constraints bound the output of PH(x) such that Af ,H(x)
produces the correct value for each input xi , that reduces to the same value � �

xi . The function
Calculate� in Figure 15 shows how we merge the constraints. First, for all constraints (� �

xi , I
�
xi) �

L�, we identify a list of unique reduced inputs, X � (line 1). For each unique reduced input � � X �,
we identify all constraints (� �

xi , I
�
xi) � L� where � = �xi and group the intervals I �xi into � (line

4-10). � can be considered as the list of constraint that bounds the output of PH(�). Therefore, we
create a uni�ed constraint by taking intersection of all intervals in � (line 11). If the intersected
interval, � is �, then it means that there is no output PH(�) that satis�es all constraints in � and our
algorithm terminates by outputting it (line 12). Finally, Calculate� returns the list � containing
the merged constraints (�i ,�i) for each unique �i � X �. The polynomial PH(x) should be generated
such that it satis�es the constraints �.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Sub-domain #1

Sub-domain #2

…

List of
inputs
x in T

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

An Approach to Generate Correctly Rounded Math Libraries for New Floating Point Variants 1:17

1 Function Main(f , T, H, X , RR, OC , OC�1, d):
2 L � CalcRndIntervals(f , T, H, X)

3 if L = � then return false
4 L� � CalcRedIntervals(f , L, T, H, RR, OC , OC�1)
5 if L� = � then return false
6 � � CombineRedIntervals(L�)
7 if � = � then return false
8 S , PH � SynthesizePoly(�, d)
9 if S = true then return P

10 else return false

Fig. 7. Overall algorithm that creates the polynomial approximation P(x) that will produce the cor-
rectly rounded result. Each function, CalcIntervals, CalcRedIntervals, CombineRedIntervals, and
SynthesizePoly is explained later in this section.

1 Function CalcRndIntervals(f , T, H, X):
2 L � �
3 foreach x � X do
4 � � RN (f (x),T)
5 I � GetRndInterval(�, T, H)
6 if I = � then return �
7 L � L � {(x , I)}
8 end
9 return L

10 Function GetRndInterval(�, T, H):
11 tl � GetPrecVal(�, T)
12 l �min{� � H|� � [tl ,�] and RN (�,T) = �}
13 tu � GetSuccVal(�, T)
14 h �max{� � H|� � [�, tu] and RN (�,T) = �}
15 return [l ,h]

Fig. 8. For each input x � X , CalcRndIntervals(f , T,H,X) identifies the interval I = [l ,h]where all values in
I rounds to the correctly rounded result f (x) for a given transcendental function f (x). The GetRndInterval(�,
T, H) function returns the interval I � H where all values in I rounds to �. GetPrecValue(�, T) returns the
preceding value of � in the T representation and GetSuccValue(�, T) returns the succeeding value of � in T.

(2) CalcRedIntervals: For each pair (x , Ix) � L, we compute the reduced input x �. We also
compute the reduced interval I �x = [l �,h�] that de�nes the range of inputs for the output
compensation such that any value in I �x is output compensated to a value in Ix . The pair (x �, I �x)
speci�es what the output of P(x �) needs to be such thatA(x) rounds to �. CalcRedIntervals
returns a list L� containing all such pair of constraints for all input x .

(3) CombineRedIntervals: Because all inputs are reduced to the reduced input x �, there may be
multiple reduced intervals for each reduced input in L�. P(x �)must produce a value within all
the reduced interval for A(x) to produce the correct value when rounded. Thus, we combine
all reduced interval for each reduced input x � and produce the pair (x �,�)where � represents
the combined interval. CalcRedIntervals returns a list � containing the constraint pair
(x �,�) for each reduced input x �.

(4) SynthesizePoly: Each pair (x �,�) � � species the constraint on the output of P(x �). We
frame synthesizing P(x �) that satis�es all constraints in � as an LP problem and generate a
correct P(x �).

4.1 Calculating The Rounding Interval
The �rst step in our approach is to identify the values thatA(x)must produces such that the rounded
value of A(x) is equal to the correctly rounded result of � = f (x), i.e. RN (A(x),T) = RN (�,T), for

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Reduced
inputs x’

and reduced
intervals [li’, hi’]

Counterexample Guided Polynomial Generation

Sample
x’

Generate
polynomial

Add incorrect
x’ to sample No Yes

Start
Polynomial #1

Polynomial #2

…

Inputs x and
the correctly

rounded
result y = f(x)

in T

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

An Approach to Generate Correctly Rounded Math Libraries for New Floating Point Variants 1:17

1 Function Main(f , T, H, X , RR, OC , OC�1, d):
2 L � CalcRndIntervals(f , T, H, X)

3 if L = � then return false
4 L� � CalcRedIntervals(f , L, T, H, RR, OC , OC�1)
5 if L� = � then return false
6 � � CombineRedIntervals(L�)
7 if � = � then return false
8 S , PH � SynthesizePoly(�, d)
9 if S = true then return P

10 else return false

Fig. 7. Overall algorithm that creates the polynomial approximation P(x) that will produce the cor-
rectly rounded result. Each function, CalcIntervals, CalcRedIntervals, CombineRedIntervals, and
SynthesizePoly is explained later in this section.

1 Function CalcRndIntervals(f , T, H, X):
2 L � �
3 foreach x � X do
4 � � RN (f (x),T)
5 I � GetRndInterval(�, T, H)
6 if I = � then return �
7 L � L � {(x , I)}
8 end
9 return L

10 Function GetRndInterval(�, T, H):
11 tl � GetPrecVal(�, T)
12 l �min{� � H|� � [tl ,�] and RN (�,T) = �}
13 tu � GetSuccVal(�, T)
14 h �max{� � H|� � [�, tu] and RN (�,T) = �}
15 return [l ,h]

Fig. 8. For each input x � X , CalcRndIntervals(f , T,H,X) identifies the interval I = [l ,h]where all values in
I rounds to the correctly rounded result f (x) for a given transcendental function f (x). The GetRndInterval(�,
T, H) function returns the interval I � H where all values in I rounds to �. GetPrecValue(�, T) returns the
preceding value of � in the T representation and GetSuccValue(�, T) returns the succeeding value of � in T.

(2) CalcRedIntervals: For each pair (x , Ix) � L, we compute the reduced input x �. We also
compute the reduced interval I �x = [l �,h�] that de�nes the range of inputs for the output
compensation such that any value in I �x is output compensated to a value in Ix . The pair (x �, I �x)
speci�es what the output of P(x �) needs to be such thatA(x) rounds to �. CalcRedIntervals
returns a list L� containing all such pair of constraints for all input x .

(3) CombineRedIntervals: Because all inputs are reduced to the reduced input x �, there may be
multiple reduced intervals for each reduced input in L�. P(x �)must produce a value within all
the reduced interval for A(x) to produce the correct value when rounded. Thus, we combine
all reduced interval for each reduced input x � and produce the pair (x �,�)where � represents
the combined interval. CalcRedIntervals returns a list � containing the constraint pair
(x �,�) for each reduced input x �.

(4) SynthesizePoly: Each pair (x �,�) � � species the constraint on the output of P(x �). We
frame synthesizing P(x �) that satis�es all constraints in � as an LP problem and generate a
correct P(x �).

4.1 Calculating The Rounding Interval
The �rst step in our approach is to identify the values thatA(x)must produces such that the rounded
value of A(x) is equal to the correctly rounded result of � = f (x), i.e. RN (A(x),T) = RN (�,T), for

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Oracle Result

Is polynomial
correct?

Range Reduction Domain Splitting for
Piecewise Polynomials

Figure 1.3: WIP: Workflow to generate polynomials for Tn+2 with rno mode.

counterexample guided polynomial generation. briefly explain counterexample guided.

our key insight is that we do not have to reason about every constraint. we only need highly

constrained interval. we sample some samples proportional to the number of constraints.

then we generate polynomial for the sample. we check if all constraints are satisfied, add

them if not. rinse and repeat. this is inspired by CEGIS from synthesis.

domain splitting. a single polynomial that produces correctly rounded results for all 32-

bit inputs has high degree. high degree polynomial is slow. hence, we split the input domain

into multiple sub-domains. polynomials are more efficient at approximating a function in

smaller domains. resulting polynomial will have lower degree. faster elementary function.

The key challenge in using piecewise polynomial is to efficiently identify which polyno-

mial to evaluate given an input. naively using branch statement is not optimal. we propose

to split the domain using the bit-pattern of the input. This allows to efficiently identify the

sub-domain index using bit-wise operation.

1.2.3 elementary functions for multiple representations and rounding modes

there are many representations and rounding modes now. using the prior approaches, we

have to generate a polynomial approximation for each representation and each rounding

mode. this takes a lot of effort.

rather, we propose an approach to generate a single polynomial approximation that

produces the correctly rounded results for multiple representations and rounding modes.

the key idea is to create polynomial that approximates the correctly rounded result of f(x)

with the rno mode. Our contribution is in recognizing that rno can be used to generate

6

Convert
to H883

884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

An Approach to Generate Correctly Rounded Math Libraries for New Floating Point Variants 1:19

1 Function CalculateL0(f , L, T, H, RR, OC , OC�1, d):
2 L0 ; foreach (xi , [li ,hi]) 2 L do
3 t1 OC�1

H
(li ,xi)

4 t2 OC�1
H
(hi ,xi)

5 if OCH is an increasing function then
6 � t1; � t2
7 else // OCH is a decreasing function
8 � t2; � t1
9 end

10 while OCH(� ,xi) < [li ,hi] do
11 � AdjHigher(� , H)
12 if � > � then return ;
13 end
14 while OCH(� ,xi) < [li ,hi] do
15 � AdjLower(� , H)
16 if � > � then return ;
17 end
18 L0 L0 [{(RRH(xi), [� , �])}
19 end
20 return L0

1 Function Calculate�(L0):
2 X 0 {� 0xi | (� 0xi , I 0xi) 2 L0}
3 � ;
4 foreach unique �i 2 X 0 do
5 �i ;
6 foreach (� 0x j , I 0x j) 2 L0 do
7 if �i = � 0x j then
8 �i �i [{I 0x j }
9 end

10 end
11 �i

—
I 0xj 2�i I

0
x j

12 if �i = ; then return ;
13 � � [{(�i ,�i)}
14 end
15 return �

Fig. 9. The function CalculateL’ transforms each constraint (xi , Ixi) 2 L that constrainsAf ,H(xi) into a new
constraint, (� 0xi , I 0xi), that constraints PH(� 0xi) such that Af ,H satisfies Af ,H(xi) 2 Ixi even in the presence of
range reduction as long as PH(� 0xi) 2 I 0xi . The function Calculate� combines multiple constraints with the
same reduced input, i.e. (� 0xi , I 0xi), (� 0x j , I 0x j) 2 L0 where � 0xi = � 0x j , into a single constraint and creates a final
list of constraints � for PH.

of I 0xi , i.e. [� , �] � I 0xi , ;. In particular, values near the boundary of the interval, i.e. � or � may
be a value such that OCH(� ,xi) < Ixi or OCH(�,xi) < Ixi . Therefore, we repeatedly check whether
the boundary values, � and � , is correctly output compensated to a value in Ixi while reducing the
boundary of [� , �] if they do not (lines 10-17). Finally, we store the �nal interval I 0xi = [� , �] where
OCH(� ,xi) 2 Ixi and OCH(� ,xi) 2 Ixi and the corresponding reduced input, �xi = RRH(xi) in L0

(line 18).

4.3 Calculating �

Once the list of constraints L0 is identi�ed, we merge the constraints (� 0x1 , I 0xi), . . . (� 0xi , I 0xi) 2 L0
where � 0x1 = · · · = � 0xi . Each of these constraints bound the output of PH(x) such that Af ,H(x)
produces the correct value for each input xi , that reduces to the same value � 0xi . The function
Calculate� in Figure 15 shows how we merge the constraints. First, for all constraints (� 0xi , I 0xi) 2
L0, we identify a list of unique reduced inputs, X 0 (line 1). For each unique reduced input � 2 X 0,
we identify all constraints (� 0xi , I 0xi) 2 L0 where � = �xi and group the intervals I 0xi into � (line
4-10). � can be considered as the list of constraint that bounds the output of PH(�). Therefore, we
create a uni�ed constraint by taking intersection of all intervals in � (line 11). If the intersected
interval, � is ;, then it means that there is no output PH(�) that satis�es all constraints in � and our
algorithm terminates by outputting it (line 12). Finally, Calculate� returns the list � containing
the merged constraints (�i ,�i) for each unique �i 2 X 0. The polynomial PH(x) should be generated
such that it satis�es the constraints �.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Identify odd
interval of y

Range Reduction
Domain Splitting
Counterexample Guided Polynomial Generation

is to adopt the strategy from CR-LIBM [19]. CR-LIBM generates a polynomial approx-

imation that produces the correctly rounded result in double each rounding mode. While

this may be feasible approximation for a single type (i.e., double for CR-LIBM), it can

quickly become overwhelming when we generate approximations for various representa-

tions. It would be ideal if we can generate a single polynomial approximation that produces

correctly rounded results for multiple rounding modes and precision configurations.

We propose a novel approach to create such polynomial approximations. The key idea

is to create polynomials that approximates the correctly rounded result of f(x) with the

round-to-odd (rno) rounding mode. The rno mode is a non-standard rounding mode that

has been used to avoid double rounding issues when performing primitive operations with

extended precision and subsequently rounding the result to a lower precision representa-

tion [5]. The rno mode can be described as follows: If the real value of f(x) is exactly

representable in our target representation, then it is rounded to that value. Otherwise, it

is rounded to a value where the bit-string is odd when interpreted as an unsigned inte-

ger. Our contribution is in recognizing that rno mode can be used to generate correctly

rounded polynomial approximations for multiple rounding modes. Section 6.3.2 provides

more detail regarding the rno mode.

Suppose that the goal is to generate correctly rounded polynomial approximation of

f(x) for all k bit representations Tk with any rounding modes where k is bounded (i.e.,

k  n). The largest Tk representation is Tn. Then, we propose to generate a polynomial

that produces the correctly rounded result of f(x) in the (n + 2)-bit representation Tn+2

with the rno mode. We prove that this polynomial produces correct results for Tk for any

standard rounding modes as long as Tk and Tn+2 have the same number of exponent bits.

We present the proof in Section 6.4.

Figure 1.5 presents the steps to generate a polynomial approximation that produces

the rno result in Tn+2. For each input in Tn, we compute the correctly rounded result of

f(x) in Tn+2 with the rno mode. Next, we identify a range of values that rounds to the

11

Figure 1.5: The RLIBM’s approach to generate polynomial approximations that produces the cor-
rectly rounded result for Tn+2 with rno mode.

rno mode.

Our goal is to generate correctly rounded polynomial approximation of f(x) for all k

bit representations Tk with any rounding mode where k is bounded (i.e., k ≤ n). The

largest Tk representation is Tn. We propose to generate a polynomial that produces the

correctly rounded result of f(x) in the (n+ 2)-bit representation Tn+2 with the rno mode.

We prove that this polynomial produces correct results for Tk for any standard rounding

modes as long as Tk and Tn+2 have the same number of exponent bits. We present the

proof in Chapter 6.

Figure 1.5 presents the steps to generate a polynomial approximation that produces the

rno result in Tn+2. For each input in Tn, we compute the correctly rounded result of f(x) in

Tn+2 with the rno mode. Next, we identify a range of values that rounds to the rno result.

We call this range of values the odd interval. Given a list of inputs and odd intervals, we use

the RLIBM approach to generate a polynomial approximation that produces the correctly

rounded result of f(x) in Tn+2 with the rno mode. To generate efficient approximations

for large representations, we combine the rno approach with range reduction and generate

piecewise polynomials using counterexample guided polynomial generation.

1.2.5 Prototype

Using the RLIBM approach, we generated multiple prototypes of correctly rounded ele-

mentary functions targeting various representations and rounding modes. RLIBM-16 con-

14

tains ten elementary functions for the 16-bit bfloat16 and posit16 types that produce cor-

rectly rounded results with the default, round-to-the-nearest-tie-goes-to-even (rne), round-

ing mode. RLIBM-32 contains ten correctly rounded elementary functions for the 32-bit

float and posit32 types with rne mode. Finally, RLIBM-ALL contains ten functions that

produce the correctly rounded rno results for the 34-bit FP representation. These func-

tions produce correctly rounded results for all FP representations ranging from 10-bits to

32-bits including bfloat16, TensorFloat32, and float types. RLIBM-ALL also contains ten

functions for posit representations. These functions produce correctly rounded results for

10-bit to 32-bit posit types. The functions in RLIBM-ALL support all standard rounding

modes. The resulting elementary functions are faster than mainstream math libraries while

producing correctly rounded results for all inputs in the target representations and rounding

modes. In particular, the floating point functions in RLIBM-ALL have 1.1×, 1.3×, and

1.9× speedup over glibc, Intel, and CR-LIBM math libraries, respectively.

1.3 Contributions to This Dissertation

The ideas and approaches in this dissertation are drawn from previously published papers

written with my advisor Santosh Nagarakatte and collaborators Mridul Aanjaneya and John

Gustafson. They are:

1. ”An Approach to Generate Correctly Rounded Math Libraries for New Floating Point

Variants,” [90] and its corresponding technical report [89] which introduces the initial

RLIBM approach to generate polynomials that approximate the correctly rounded

result of f(x) and how to handle numerical errors in range reduction.

2. ”High Performance Correctly Rounded Math Libraries for 32-bit Floating Point Rep-

resentations,” [93] and its corresponding technical report [96] which scales the RLIBM

approach for 32-bit types with domain splitting and counterexample guided polyno-

mial generation.

15

3. ”A Novel Polynomial Approximation Method to Produce Correctly Rounded Results

for Multiple Representations and Rounding Modes,” [95] which shows the RLIBM

approach to generate polynomials that produces correctly rounded results for multi-

ple representations and rounding modes.

1.4 Organization of This Dissertation

Chapter 2 presents details on the FP representation and the posit representation, the two tar-

get representations of the elementary functions that we generate. Additionally, it provides

background on prior approaches in approximating elementary functions and challenges in

producing correctly rounded results. Chapter 3 presents the RLIBM approach to generate

correctly rounded polynomial approximations of f(x) using LP formulation. Chapter 4

extends RLIBM to handle numerical errors in range reduction and output compensation.

Chapter 5 scales the RLIBM approach to generate piecewise polynomials for 32-bit types.

Chapter 6 presents our approach to generate a single polynomial approximation that pro-

duces correctly rounded results for multiple precision configurations and rounding modes

using the rno mode. Chapter 7 evaluates the correctness and performance of the elemen-

tary functions generated with RLIBM. Chapter 8 discusses the prior related work in creat-

ing efficient and accurate approximations of elementary functions. Chapter 9 concludes by

presenting future directions.

16

CHAPTER 2

BACKGROUND

In this chapter, we provide background on the floating point (FP) representation [27] and

the posit [55, 58] representation. The FP and posit representations are used to approximate

real numbers. We focus on these two representations because FP is the most widely used

representation. While posit was proposed in 2014, there is already excitement and interest

in exploring the posit representation in different domains [18, 45, 77, 102]. We describe

how to interpret an FP or posit bit-string to a real number, round an arbitrary real number

to a chosen representation, and the numerical errors that occur when using these represen-

tations. Next, we describe the state-of-the-art methodology in approximating elementary

functions, performing range reduction, and generating the polynomial approximation. Fi-

nally, we conclude by discussing challenges in generating correctly rounded approxima-

tions.

2.1 The Floating Point Representation

There are two important attributes in any representation that approximates real numbers:

dynamic range and precision. The dynamic range determines the range of values that a

representation can express, both values close to zero and values with large magnitude. The

precision of a representation measures how accurately a real value can be represented.

Given a limited number of bits n to represent real values, number system designers must

make a trade-off between the dynamic range and the precision.

The floating point (FP) representation, specified in the IEEE-754 standard [27], uses

a fixed number of bits to determine the dynamic and the precision of the representation.

They are identified using two parameters, the total number of bits in the representation n

and the number of exponent bits |E|. We denote a particular FP configuration with Fn,|E|.

17

S E1 … E8E2 F1 … F23F2 F3
sign exponent mantissa

(b) 32-bit float

S E1 … E5E2 F1 … F10F2 F3
sign exponent mantissa

(a) 16-bit half

S E1 … E11E2 F1 … F52F2 F3
sign exponent mantissa

(c) 64-bit double

Figure 2.1: Bit-string for the IEEE-754 FP representations. (a) 16-bit half. (b) 32-bit float. (c)
64-bit double.

There are three components in an FP bit-string: a sign bit S to represent whether an FP

value is positive or negative, |E|-bits to represent the exponent, and |F | = n − 1 − |E|

bits to represent the fractional value, known as the mantissa. The exponent bits determine

the dynamic range while the mantissa bits determine the precision of the FP representation.

Because FP has a fixed amount of precision (i.e. mantissa bits) for a given representation,

FP is known as a fixed-precision representation. There are three default FP configurations

specified by IEEE-754: 16-bit half (F16,5), 32-bit float (F32,8), and a 64-bit double (F64,11).

Figure 2.1 shows the bit-string representations for them.

2.1.1 Interpreting a Floating Point Bit-String

There are three categories of floating point values depending on the value of the exponent

bits when interpreted as an unsigned integer: normal values, denormal values, and special

case values. In all three categories, if the sign bit is 0 then the value is positive. If the sign

bit is 1, then the value is negative.

Normal values. The value represented by an FP bit-string is a normal value if the expo-

nent bits E are neither all ones nor all zeros, (i.e., 0 < x < 2|E| − 1). In such a case, the

value represented by the bit-string is equal to,

(−1)S × (1 +
F

2|F |
)× 2E−bias

where bias = 2|E|−1 − 1. E and F represent the exponent and mantissa bits interpreted as

an unsigned integer. The bit-string of normal values x in FP encodes the value represented

in a binary scientific notation x = (−1)s × m × 2e where e is the exponent value and

18

(a)
fractionexponentsign

(b)
fractionexponentsign

0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 1 1

(c)
fractionexponentsign

(d)
fractionexponentsign

0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 0 1

Figure 2.2: Examples of bit-patterns representing a (a) normal value, (b) denormal value,
(c) infinity, and (d) NaN in the 9-bit FP representation with 4 exponent bits (i.e., F9,4).

m ∈ [1, 2) is known as the significand. The mantissa bits F encodes the fractional part

of the significand without the leading one to the left of the radix point (i.e., 1.f1f2f3 . . .).

Additionally, the exponent bits E encode exponent value e as an unsigned integer. To

represent both negative and positive exponent, E is scaled with −bias. By encoding the

exponent as an unsigned integer that is scaled with bias, comparison of two FP values with

the same sign can be efficiently performed by comparing the bit-string of the values using

unsigned integer comparisons.

Example. Figure 2.2(a) presents the bit-string of a normal value in a 9-bit FP represen-

tation with four exponent bits (i.e., F9,4). In F9,4, bias = 24−1 − 1 = 7. This bit-string

represents the value,

(−1)0 × (1 +
14

24
)× 29−7 = (1 +

14

16
)× 22 = 1.875× 22 = 7.5

Denormal values. If all exponent bits in E are zeros, then the FP value is denormal. In

such a case, the value represented by the bit-string is equal to,

(−1)S × F

2|F |
× 21−bias

Denormal values are used to represent values close to zero. There is a gap between the

smallest representable normal value 21−bias and 0. By using denormal values, FP represen-

tations can represent values significantly smaller in magnitude compared to 21−bias. The

19

smallest denormal value representable in FP representation is 21−bias−|F |.

Example. Figure 2.2(b) presents the bit-string of a denormal value in F9,4. Since the

exponent bits are all zeros, it represents a denormalized value. The value encoded by the

bit-string in a binary scientific notation is,

(−1)1 × 3

24
× 21−7 = −1× 3

16
× 2−6 = −0.1875× 2−6 = −1.5× 2−9

This value is significantly closer to 0 compared to the smallest normal value in F9,4, which

is 21−bias = 2−6.

Special values. Finally, if all exponent bits are ones, then the FP value is a special value.

If all mantissa bits are zeros, then it represents ±∞ depending on the sign bit S. Fig-

ure 2.2(c) shows the bit-string of∞ in F9,4. In all other cases, it represents not-a-number

(NaN). NaNs are used to represent exceptional conditions such as the result of 0.0
0.0

or∞−∞.

Figure 2.2(d) shows a NaN value.

Due to the way FP representations are designed, an n-bit FP does not encode 2n unique

values. First, two bit-patterns represent 0: One where all bits are zero and another with

a 1 bit followed by n − 1 zeros. While these two values are sometimes referred to as

+0 and −0, they are semantically equivalent. Second, there are 2|F |+1 − 2 bit-patterns

that represent NaN in a given Fn,|E| configuration. In the 32-bit float, roughly 16 million

bit-patterns represent NaN.

2.1.2 Rounding a Real Number to the FP Representation

The total number of bits in an FP representation is finite. Many real values cannot be

exactly represented in a FP representation. According to the IEEE-54 standard, if a real

value vR cannot be exactly represented, then it is rounded to either the largest FP value

20

vsm (even)

All values in this
interval rounds to

vlg (odd)midpoint

All values in this
interval rounds to

(a) Round-to-nearest-tie-goes-to-even when vsm is even

vsm (odd)

All values in this
interval rounds to

vlg (even)midpoint

All values in this
interval rounds to

(b) Round-to-nearest-tie-goes-to-even when vlg is even

vsm

All values in this
interval rounds to

vlgmidpoint

All values in this
interval rounds to

(c) Round-to-nearest-tie-goes-away when x < 0

vsm

All values in this
interval rounds to

vlgmidpoint

All values in this
interval rounds to

(d) Round-to-nearest-tie-goes-away when x > 0

vsm

All values in this interval rounds to

vlg
(f) Round-toward-zero when x > 0

vsm vlg

All values in this interval rounds to

(e) Round-toward-zero when x < 0

vsm

All values in this interval rounds to

vlg
(h) Round-toward-negative-infinity

vsm vlg

All values in this interval rounds to

(g) Round-toward-postiive-infinity

Figure 2.3: When a real value vR is not exactly representable in T, then vR is rounded to one of
the two adjacent values vsm, vlg ∈ T depending on the rounding mode used. We show the range of
vR that rounds to vsm (blue box) and vlg (green box) if we use (a) rne mode when the bit-string of
vsm is even, (b) rne mode when the bit-string of vlg is even, (c) rna mode when x < 0, (d) rna
mode when x > 0, (e) rnz mode when x < 0, (f) rnz mode when x > 0, (g) rnp mode, and (h)
rnn mode.

smaller than vR (vsm) or the smallest FP value larger than vR (vlg).

vsm = max{v ∈ F | v ≤ vR}

vlg = min{v ∈ F | v ≥ vR}

Note that if vR is exactly representable in F, then vR = vsm = vlg. Otherwise, vR rounds

to vsm or vlg depending on the choice of the rounding mode, rm. We denote the operation

of rounding vR to an FP representation F using a rounding mode rm with the function

RNF,rm(vR).

21

Standard Rounding Modes for FP Representation The IEEE-754 standard specifies five

different rounding modes: round to the nearest, tie goes to even (rne), round to the near-

est, tie goes away (rna), round towards zero (rnz), round towards positive infinity (rnp),

and round towards negative infinity (rnn). The standard mandates the result of the basic

arithmetic operations (+,−,×,÷) and square root operation (
√
x) to be correctly rounded.

The rne mode: The round to the nearest, tie goes to even rounding mode rounds vR to

either vsm or vlg, depending on which value is closer to vR. If |vsm− vR| < |vlg − vR|, then

vR rounds to vsm. If |vsm − vR| > |vlg − vR|, then vR rounds to vlg. In the case that vR is

exactly in the middle of vsm and vlg (i.e., vR =
vsm+vlg

2
), vR is rounded to a value where the

bit-string representation is even when interpreted as an unsigned integer. The rne rounding

mode is the default and the most commonly used rounding mode. Figure 2.3(a) shows the

range of real values between vsm and vlg that rounds to vsm (blue region) and vlg (green

region) if the bit-string of vsm is even when interpreted as an unsigned integer. Similarly,

Figure 2.3(b) shows the range of real values that rounds to vsm and vlg if the bit-string of

vlg is even when interpreted as an unsigned integer.

The rnamode: Similar to the rnemode, the round to the nearest, tie goes away rounding

mode rounds vR to the closest FP value (i.e., either vsm or vlg). If |vsm − vR| < |vlg − vR|,

then vR rounds to vsm. If |vsm − vR| > |vlg − vR|, then vR rounds to vlg. In the case that

vR is exactly in the middle of vsm and vlg (vR =
vsm+vlg

2
), vR is rounded to a value that is

farther away from 0. Specifically, vR rounds to vlg if vR > 0 because

0 ≤ vsm < vR < vlg ≤ ∞

Similarly, vR rounds to vsm if vR < 0 because

−∞ ≤ vsm < vR < vlg ≤ 0

The rna rounding mode is also known as the human rounding since it resembles how we

round decimal numbers, i.e. 1.5 rounds up to 2 when rounded to the nearest integer while

22

1.4 rounds to 1. Figure 2.3(c) and (d) illustrates rounding with rna mode depending on

whether vR < 0 or vR > 0.

The rnz mode: In the round to zero mode, vR is rounded to the value that is closer to 0.

vR is rounded to vsm if x > 0 and vR is rounded to vlg if x < 0. The rnz mode is equivalent

to truncating the significand bits of vR that cannot fit into the mantissa bits, similar to how

real numbers are rounded to a machine integer. Figure 2.3(e) and (f) shows the range of real

values between vsm and vlg that rounds to vsm or vlg when vR < 0 and vR > 0, respectively.

The rnp mode: The round towards positive infinity mode always rounds vR to the larger

value vlg, the value that is closer to +∞. The rnp mode is also known as rounding up.

Figure 2.3(g) shows the range of vR’s that rounds to vsm or vlg using rnp mode.

The rnnmode: The round towards negative infinity mode always rounds vR to the smaller

value vsm, the value that is closer to −∞. The rnn mode is also known as rounding down.

Figure 2.3(h) shows the range of vR’s that rounds to vsm or vlg using rnn mode.

2.1.3 A Systematic Methodology for Rounding To the FP Representation

We describe a methodology to systematically round a real number vR. Special values ±∞

or NaN can be directly translated into F. As described above, we need to identify the two

values vsm and vlg in Fn,|E| representations that are adjacent to vR and decide which value

vR rounds to. We identify the four pieces of information (s, v−, rb, sticky) necessary to

correctly decide whether vR rounds to vsm or vlg. We call these pieces of information the

rounding components. The first component s represents the sign (1 or −1) that identifies

whether vR is positive or negative. The value v−, which we call the truncated value, rep-

resents the smaller magnitude value between vsm or vlg. The last two components rb and

sticky determines whether vR is equal to vsm, closer to vsm, in the middle of vsm and vlg,

closer to vlg, or equal to vlg.

23

b1

sign

call them the rounding components. Finally, based on the rounding components and the

chosen rounding mode, we round vR to vsm or vlg.

Rounding a real value vR to a float representation F follows five steps. First, we decom-

pose vR into vR = s⇥ |vR| where s = 1 if vR � 0 and s = �1 if vR < 0.

Representing vR with the infinite extended precision representation. Second, we encode

and compute the bit-string of |vR| into the representation F1 = F1,|E|. Intuitively, F1 uses

the same number of exponent bits as F but has infinite number of precision bits. We call

F1 the infinite extended precision representation of F. To identify the bit-string of |vR| in

F1, we first decompose |vR| into

|vR| = m⇥ 2e

If |vR| is a normal value, then m 2 [1, 2) and e is an integer representing the exponent of

|vR|. It is possible that |vR| is too large to encode into F1 even with infinite precision. This

happens when e � 2|E|�1. In such a case, e is too large to encode into the FP format with

using only |E| bits. If e � 2E � 1, then we set |vR| to the largest representable real value

in F1, which decomposes into e = 2E � 2, the largest exponent that F can represent, and

m = 1.9999... = 2.0. If |vR| is a denormal value, then e = 1�bias and m = |vR|
2e

. Next, we

encode the exponent value e and the significand m into the exponent bits E and mantissa

bits M , respectively, and concatenate the bit-strings with a leading zero bit to represent that

|vR| is a positive value:

B|vR| = 0E1E2 . . . E|E|M1M2 . . .

= 0b2b3 . . . b|E|+1b|E|+2 . . . bnbn+1bn+2 . . . (6.1)

Identifying vsm and vlg. Our third step is to identify the two values that vR can round to,

vsm and vlg. To identify these values, we first identify two values adjacent to |vR| in F,

127

Can be sumariged with
the five
steps

N

7fiE
gwriaiEEnEiitnInsin.bb moth
gh

N m bff
starts
from
62

b2 b3 b4 b5 … … bn bn+1 …

|E| exponent bits ∞ mantissa bits

(a)

0

sign

call them the rounding components. Finally, based on the rounding components and the

chosen rounding mode, we round vR to vsm or vlg.

Rounding a real value vR to a float representation F follows five steps. First, we decom-

pose vR into vR = s⇥ |vR| where s = 1 if vR � 0 and s = �1 if vR < 0.

Representing vR with the infinite extended precision representation. Second, we encode

and compute the bit-string of |vR| into the representation F1 = F1,|E|. Intuitively, F1 uses

the same number of exponent bits as F but has infinite number of precision bits. We call

F1 the infinite extended precision representation of F. To identify the bit-string of |vR| in

F1, we first decompose |vR| into

|vR| = m⇥ 2e

If |vR| is a normal value, then m 2 [1, 2) and e is an integer representing the exponent of

|vR|. It is possible that |vR| is too large to encode into F1 even with infinite precision. This

happens when e � 2|E|�1. In such a case, e is too large to encode into the FP format with

using only |E| bits. If e � 2E � 1, then we set |vR| to the largest representable real value

in F1, which decomposes into e = 2E � 2, the largest exponent that F can represent, and

m = 1.9999... = 2.0. If |vR| is a denormal value, then e = 1�bias and m = |vR|
2e

. Next, we

encode the exponent value e and the significand m into the exponent bits E and mantissa

bits M , respectively, and concatenate the bit-strings with a leading zero bit to represent that

|vR| is a positive value:

B|vR| = 0E1E2 . . . E|E|M1M2 . . .

= 0b2b3 . . . b|E|+1b|E|+2 . . . bnbn+1bn+2 . . . (6.1)

Identifying vsm and vlg. Our third step is to identify the two values that vR can round to,

vsm and vlg. To identify these values, we first identify two values adjacent to |vR| in F,

127

Can be sumariged with
the five
steps

N

7fiE
gwriaiEEnEiitnInsin.bb moth
gh

N m bff
starts
from
62

1 1 … 1 0 … 1 1 …

|E| exponent bits ∞ mantissa bits

(b)

Figure 2.4: (a) Bit-string of |vR| when represented in the infinite extended precision F∞, where
there are infinite number of bits for mantissa. (b) Bit-string of |vR| represented in F∞ when vR is
outside the dynamic range of Fn,|E|.

To identify the rounding components, we first decompose vR into vR = s×|vR| where s

is the first rounding component that represents the sign of vR. The value |vR| represents the

magnitude of vR. Next, we represent |vR| in the FP representation with an infinite number

of mantissa bits while having the same number of exponents. We call this representation

the infinite extended precision representation F∞. Intuitively, F∞ is similar to Fn,|E| but

has infinite amount of precision to exactly represent |vR|. The bit-string of |vR| in F∞

is pictorially illustrated in Figure 2.4(a). The first bit b1 represents the sign bit. Since

|vR| ≥ 0, b1 = 0. The bits b2 to b|E|+1 represent the exponent bits. The remaining bits

are mantissa bits. If the value of |vR| is larger than the dynamic range, then we represent

it with the largest representable value in F∞, where the exponent bits are equivalent to the

largest normal value in Fn,|E| and all mantissa bits are ones. The bit-string is illustrated

in Figure 2.4(b). Note that we cannot use∞ to represent |vR| because we need to make a

clear distinction between a real number and∞. The rnz mode never rounds a real value to

∞, rnp mode does not round negative real values to −∞, and rnn mode does not round

positive real values to∞.

Identifying the truncated value. To identify vsm and vlg, we identify two values v− and

v+ adjacent to |vR| in F. Intuitively, v− represents the largest value that is smaller than

or equal to |vR| and v+ represents the smallest value larger than |vR|. To identify v−, we

truncate B|vR| to n bits,

Bv− = 0b2b3b4 . . . bn−1bn

24

-v+ -v-

(a) Values that corresponds to rb and v- When vR < 0
midpoint

rb = 0rb = 1

v- v+

(b) Values that corresponds to rb and v- When vR ≥ 0
midpoint

rb = 0 rb = 1

-v+ -v-

(c) Values that corresponds to rb, sticky and v- When vR < 0
midpoint

rb = 0, sticky = 1rb = 1, sticky = 1

rb = 1, sticky = 0 rb = 0, sticky = 0

(d) Values that corresponds to rb, sticky and v- When vR ≤ 0
midpoint

rb = 0, sticky = 1 rb = 1, sticky = 1

rb = 0, sticky = 0 rb = 1, sticky = 0

v- v+

Figure 2.5: We show the range of real values that corresponds to the different values in the rounding
bit rb when (a) vR < 0 and (b) vR ≥ 0. Additionally, we show the range of values that corresponds
to the different values of rb and sticky bit sticky when (c) vR < 0 and (d) vR ≥ 0.

The value encoded by Bv− in F is v−, the largest value smaller than or equal to |vR|. We

call v− the truncated value, which is the second rounding component. Then, the succeeding

value of v− in Fn,|E| is v+, which can be obtained by adding 1 to the bit-string of v−. In the

context of rounding vR to Fn,|E|, v− and v+ have the following relationship,



−v+ < vR ≤ −v− if vR < 0 (s = −1)

v− ≤ vR < v+ if vR ≥ 0 (s = 1)

We can compute the two possible values that vR rounds to, vsm and vlg, using s, v−, and

v+. If vR is exactly representable in Fn,|E|, then |vR| = v−. Thus, vsm = vlg = s × v−. If

vR is not exactly representable in F, then v− < |vR| < v+. Hence, vsm = v− and vlg = v+

if s = 1 (when vR ≥ 0). Otherwise, vR is negative and vsm = −v+ and vlg = −v−.

Identifying the rounding bit. The two components s and v− alone only informs that

v− ≤ vR < v+ if s = 1 and −v+ < vR ≤ −v− if s = −1. For the rounding mode rnz,

these two components are sufficient to identify the correctly rounded result, since ±v− is

always closer to zero compared to ±v+. However, to determine the rounding decision for

rne and rna, we must find whether vR is closer to s×v−, closer to s×v+, or exactly in the

middle of the two values. To determine the rounding decision for rnp and rnn, we need to

identify whether vR is exactly representable with s× v−. Our next two steps are to identify

the rounding bit and sticky bit that will help us identify the relationship between vR, v−,

25

and v+.

We identify the rounding bit (rb) by extracting the (n + 1)st bit from B|vR|. Intuitively,

the rounding bit describes whether |vR| is closer to v− than v+. If the rounding bit is 0, then

|vR| is closer to v− (i.e., v− ≤ |vR| < v−+v+

2
). If the rounding bit is 1, then |vR| is either in

the middle or closer to v− (i.e., v
−+v+

2
≤ |vR| < v+). Figure 2.5(a) and (b) shows the range

of real values that corresponds to different values of v− and rb.

Identifying the sticky bit. While the rounding bit tells us whether |vR| is closer to v−, it

does not tell us whether |vR| is exactly equal to v− or is exactly in the middle of v− and

v+ (i.e., |vR| = v−+v+

2
). When looking at the bit-string B|vR|, |vR| is equal to v− when the

(n+ 1)st bit (rb) is zero and the remaining bits from (n+ 2)nd bits are all zeros. If rb = 0

and any bit afterwards is a one, then |vR| is not equal to v−. Likewise, |vR| is exactly in the

middle of v− and v+ when the (n+ 1)st bit is a one and the remaining bits from (n+ 2)nd

bits are all zeros in B|vR|. If rb = 1 and any bit afterwards is a one, then |vR| is closer to v+.

In both cases, we need to determine whether all bits in B|vR| starting from the (n+ 2)nd bits

are zeros or not. We define the sticky bit as the result of bitwise or operation on all bits in

B|vR| starting from the (n+ 2)nd bit:

sticky = bn+2 | bn+3 | bn+3 | . . .

where | is the bitwise or operation.

Using the four rounding components (s, v−, rb, and sticky), we can now determine

the relationship between |vR| and the two nearest FP values v− and v+ where v+ can be

computed from v−:




|vR| = v− if rb = 0 ∧ sticky = 0

v− < |vR| < v−+v+

2 if rb = 0 ∧ sticky = 1

|vR| = v−+v+

2 if rb = 1 ∧ sticky = 0

v−+v+

2 < |vR| < v+ if rb = 1 ∧ sticky = 1

26

-v+ -v-

rb = 0, sticky = 1rb = 1, sticky = 1
rb = 1, sticky = 0 rb = 0, sticky = 0

rb = 0, sticky = 1 rb = 1, sticky = 1
rb = 0, sticky = 0 rb = 1, sticky = 0

v- v+
(a) rne rounding when s = -1 and bit-string of v- is even (b) rne rounding when s = 1 and bit-string of v- is even

-v+ -v-

rb = 0, sticky = 1rb = 1, sticky = 1
rb = 1, sticky = 0 rb = 0, sticky = 0

(c) rne rounding when s = -1 and bit-string of v- is odd

rb = 0, sticky = 1 rb = 1, sticky = 1
rb = 0, sticky = 0 rb = 1, sticky = 0

v- v+
(d) rne rounding when s = 1 and bit-string of v- is odd

Figure 2.6: The rne mode using the rounding components. We illustrate the rounding decision
when vR is positive or negative and when v− is even or odd. The green interval represents all real
values that round to the FP value with green color (i.e., −v+ when vR < 0 and v− when vR ≥ 0).
Similarly, the blue interval represents all real values that round to the FP value with blue color (i.e.,
−v− when vR < 0 and v+ when vR ≥ 0) with blue.

Figure 2.5(e) and (f) pictorially show the range of values for vR that corresponds to the

different values of the rounding components.

Determining the correctly rounded result of vR. Finally, based on the four components

we identified, we identify the correctly rounded value of vR. In the rne mode, vR rounds

to the closest value. If rb = 0, then it indicates that |vR| is closer to v−, which means vR

is closer to s × v−. Thus, vR rounds to s × v−. If the rounding bit rb = 1 and the sticky

bit sticky = 1, then it indicates that |vR| is closer to v+ and vR rounds to s× v+. If |vR| is

exactly in the middle of v− and v+, (which also indicates that vR is exactly in the middle of

s× v− and s× v+), then the rounding bit rb = 1 and the sticky bit sticky = 0. vR rounds

to the value where the bit-string is even when interpreted as an unsigned integer. Finally, if

lb = 1, then the bit-string of v− is odd and vR rounds to s× v+. The rounding decision for

the rne mode can be formalized as follows,

RNF,rne(vR) =





s× v− if rb = 0

s× v− if rb = 1 ∧ sticky = 0 ∧ IsEven(v−)

s× v+ if rb = 1 ∧ sticky = 0 ∧ ¬IsEven(v−)

s× v+ if rb = 1 ∧ sticky = 1

27

-v+ -v-

rb = 0, sticky = 1rb = 1, sticky = 1
rb = 1, sticky = 0 rb = 0, sticky = 0

rb = 0, sticky = 1 rb = 1, sticky = 1
rb = 0, sticky = 0 rb = 1, sticky = 0

v- v+
(a) rna rounding when s = -1 (b) rna rounding when s = 1

-v+ -v-

rb = 0, sticky = 1rb = 1, sticky = 1
rb = 1, sticky = 0 rb = 0, sticky = 0

(c) rnz rounding when s = -1

rb = 0, sticky = 1 rb = 1, sticky = 1
rb = 0, sticky = 0 rb = 1, sticky = 0

v- v+
(d) rna rounding when s = 1

-v+ -v-

rb = 0, sticky = 1rb = 1, sticky = 1
rb = 1, sticky = 0 rb = 0, sticky = 0

(e) rnp rounding when s = -1

rb = 0, sticky = 1 rb = 1, sticky = 1
rb = 0, sticky = 0 rb = 1, sticky = 0

v- v+
(f) rnp rounding when s = 1

rb = 0, sticky = 1 rb = 1, sticky = 1
rb = 0, sticky = 0 rb = 1, sticky = 0

v- v+
(h) rnn rounding when s = 1

-v+ -v-

rb = 0, sticky = 1rb = 1, sticky = 1
rb = 1, sticky = 0 rb = 0, sticky = 0

(g) rnn rounding when s = -1

Figure 2.7: Rounding decisions for various rounding modes based on the rounding components.
The interval of real values colored with green round to the FP value colored green. Similarly, the
interval of real values colored with blue round to the FP value colored blue.

Figure 2.6 shows rounding decision of vR in rne based on different values of rounding

components. We highlight the range of values for vR that round to the smaller value (i.e.,

−v+ when s = −1 and v− when s = 1) with the green color and the range of values for vR

that round to the larger value (i.e., −v− when s = −1 and v+ when s = 1) with the blue

color.

The rna mode is similar to rne mode. If the rounding bit rb = 0, then it indicates that

vR is closer to s × v−. If the rounding bit rb = 1 and the sticky bit sticky = 1, then it

indicates that vR is closer to s × v+. If vR is exactly in the middle of s × v− and s × v+,

then the rounding bit rb = 1 and the sticky bit sticky = 0. We must round to the value that

is farther away from 0, which is always s× v+ because |vR| < v+. The rounding decision

28

for the rna mode can be summarized as follows,

RNF,rna(vR) =





s× v− if rb = 0

s× v+ if rb = 1 ∧ sticky = 0

s× v+ if rb = 1 ∧ sticky = 1

Figure 2.7(a) and (b) shows the rounding decision of vR in rna based on different values of

rounding components.

In the rnz mode, vR always rounds to the value closer to zero. Since v− is always

smaller than or equal to |vR| (i.e., v− ≤ |vR|), vR always rounds to s× v−:

RNF,rnz(vR) = s× v−

Figure 2.6(c) and (d) shows rounding decision of vR in rnz based on different values of

rounding components.

In the rnp rounding mode, vR always rounds to the larger value. If vR is exactly repre-

sentable with F, which is indicated by the rounding bit with rb = 0 and the sticky bit with

sticky = 0, then vR = s×v−. If vR is not exactly representable and is greater than or equal

to zero (i.e., s = 1) then vR rounds to v+ because vR < v+. Otherwise, vR rounds to −v−

since vR < 0 and vR < −v−. Formally,

RNF,rnp(vR) =





s× v− if rb = 0 ∧ sticky = 0

v+ if ¬(rb = 0 ∧ sticky = 0) ∧ s = 1

−v− if ¬(rb = 0 ∧ sticky = 0) ∧ s = −1

Figure 2.6(e) and (f) shows rounding decision of vR in rnp based on different values of

rounding components.

Finally in the rnn rounding mode, vR always rounds to the smaller value if it cannot

be exactly represented. If vR is exactly representable with F (i.e., rb = 0 and sticky = 0),

then vR is equal to s × v− (i.e., vR = s × v−). If vR is not exactly representable and is

greater than or equal to zero, then vR rounds to v− because v− < vR. Otherwise, vR rounds

29

S E1 … E8E2 F1 … F10F2
sign exponent mantissa

(b) TensorFloat32

S E1 … E8E2 F1 … F7F2
sign exponent mantissa

(a) Bfloat16

S E1 E5E2 F1 F2
sign exponent mantissa

(c) MSFP8

E3

16 bits 19 bits 8 bits

E3 E3 E4

Figure 2.8: Layout of (a) bfloat16, (b) TensorFloat32, and (c) MSFP8.

to −v+ since vR < 0 and in that case −v+ < vR. The rounding decision for rnn mode can

be formalized with,

RNF,rnn(vR) =





s× v− if rb = 0 ∧ sticky = 0

v− if ¬(rb = 0 ∧ sticky = 0) ∧ s = 1

−v+ if ¬(rb = 0 ∧ sticky = 0) ∧ s = −1

Figure 2.6(g) and (h) shows rounding decision of vR in rnn based on different values of

rounding components.

2.1.4 Different FP Configurations and Fixed-Precision Variants

The IEEE-754 standard specifies a set of configurations for different lengths of n to be

used in general including half (F16,5), float (F32,8), and double (F64,11) datatype. These

formats have been adopted widely since the introduction of the standard and most modern

commercial hardware architectures and programming languages support basic arithmetic

operations with these types. The float and double datatype have been used in scientific

applications for decades.

Other FP configurations. In the past few years, several new configurations of FP have

been proposed and used. Especially in machine learning and high performance computing

domains, the performance of computations, cost of data storage, and the data transfer rate

is paramount. Additionally, a wide dynamic range is more desirable compared to high pre-

cision to produce accurate results. Thus, FP configurations with small bit-length and wide

dynamic ranges have been proposed for these domains. Google proposed Bfloat16 [131]

(F16,8), which is a 16-bit representation with 8 bits of exponent. Similarly, NVidia proposed

30

(a) MSFP12

E1 E2 … E8

S F1 F2 F3

S F1 F2 F3

S F1 F2 F3

…sign mantissa
exponent

(a) Flex16+5 (Flexpoint)

E1 E2 … E5

F1 F2 F16

F1 F2 F16

F1 F2 F16

…sign mantissa
exponent

…

…

…

Figure 2.9: Layout of (a) MSFP12 and (b) Flex16+5, a Flexpoint configuration. Values in these
representations share the same exponent field. Each MSFP12 value stores its sign bit and mantissa
bits separately from the shared exponent field. Each Flexpoint value stores its mantissa bits sepa-
rately, where the mantissa bits encode both the sign and significand at the same time using a signed
integer format (i.e., the mantissa bits of a value v and its inverse −v are two’s complement of each
other).

tensorfloat32 [108] (F19,8), a 19-bit representation with 8 bits for exponent. Both bfloat16

and tensorfloat32 have the same number of exponent bits as the 32-bit float type. Microsoft

proposed MSFP8-11 [100], which are 8 to 11-bit FP configuration with 5 bits of exponent

(F8,5 to F11,5). MSFP8-11 has the same number of exponent bits as the 16-bit half type.

Figure 2.8 illustrates the bit-pattern of bfloat16, TensorFloat32, and MPSF8.

Non-standard FP representations. Microsoft proposed MSFP12-16 [116], a 12 to 16-bit

FP-like representation that slightly deviates from the FP semantics. Figure 2.9(a) shows

the layout of MSFP12 bit-strings. Abstractly, MSFP12-16 uses 8 bits of exponent and 3 to

7 bits of mantissa bits. In MSFP12-16, the sign bit and the exponent bits are encoded in the

same way that FP representation does. The mantissa bits encode the entire significand of

the value, similar to how denormal values are encoded in FP representations. The novelty

of MSFP12-16 is that it stores the bit-string of values with similar magnitude together.

Because these values have the same exponent bits, MSFP12-16 stores only one instance

of the exponent field. The sign bit and mantissa bits are stored separately for each value.

Additionally, MSFP12-16 can store values with different magnitudes together by adjusting

the mantissa bits (similar to denormal values in the FP representation).

Similarly, Flexpoint [78] proposed by Intel also stores the bit-string of multiple values

31

together. Figure 2.9(b) shows the layout of Flexpoint bit-strings. Flexpoint only maintains

exponent bits and mantissa bits. To represent negative values, the mantissa bits encode

the sign of the value using two’s complement. More specifically, the mantissa bits of a

Flexpoint value v and its additive inverse−v are two’s complement of each other. Flexpoint

groups the bit-string of multiple values and stores only one instance of the exponent bits.

The mantissa bits are adjusted to represent values of different magnitude. Both MSFP12-

16 and Flexpoint representations are proposed to minimize the amount of space required to

store data and create efficient hardware implementations for primitive operations.

Log number systems. The bit-string of a value x in log number systems (LNS) [44,

112, 130] encodes the logarithm of |x|, i.e., log2(|x|) = e + f where e is an integer and

f is a fractional value f ∈ [0, 1). Alternatively, we can interpret the LNS bit-string as

representing the value x = (−1)S×2e+f = (−1)S×2e×2f , where S is encoded by the sign

bit, e is encoded by the exponent bits, and f is encoded by the mantissa bits. Depending

on the specific LNS representation, the negative exponent value e < 0 is encoded with

exponent bits using offset (similar to bias in FP representation) or two’s complement form

(similar to signed integer).

For example, consider the bit-string of a value in F9,4 illustrated in Figure 2.2(a). This

bit-string represents the value 1.875×22 in F9,4. Now, let us interpret the same bit-string in

a 9-bit LNS representation with four exponent bits and four mantissa bits. For the ease of

exposition, we interpret the exponent bits with the same strategy as FP representations (i.e.,

using bias). In our 9-bit LNS representation, the exponent bits represent the value e = 2.

The mantissa bits are interpreted as f = 0.875, where the leading bit is zero. Hence, the

value represented by the bit-string in our 9-bit LNS representation is,

22+0.875 = 22.875 ≈ 7.336 . . .

The main advantage of LNS is that multiplication and division operations are more

efficient compared to FP representations. Without the loss of generality, let us suppose

32

S R1 R2 R|R|
sign regime

E1
exponent

… F1 F2 F|F|
fraction

…
guard

R E2 … Ees

n bits

Figure 2.10: Layout of an n-bit posit representation bit-pattern.

x1 = 2e1+f1 and x2 = 2e2+f2 are two positive values in a LNS representation. Then,

x1 × x2 can be computed by adding the values e1, e2, f1, and f2,

x1 × x2 = 2e1+f1 × 2e2+f2 = 2(e1+f1+e2+f2) = 2(e1+e2)+(f1+f2)

Thus, multiplying two values in LNS is as simple as adding the exponent bits and the

fraction bits separately. Division operation follows similarly. LNS is often used in signal

processing where multiplication is one of the most commonly used primitive operations for

Fourier transformations.

2.2 The Posit Representation

Posit [55, 58] is intended to be a stand-in replacement for FP. There are two notable dif-

ferences in posit compared to FP. First, the posit representation provides tapered precision

where different values have different amounts of precision. Specifically, posits represent

values near one with higher precision while providing a large dynamic range. Second,

an n-bit posit representation can represent more distinct values compared to FP. There is

excitement in exploring posits in several domains [18, 45, 77, 102]. Although commer-

cial hardware architectures do not support posit yet, there are hardware proposals for posit

arithmetic [69, 70, 136].

A posit representation Pn,es is identified by two parameters, the total number of bits n

and the maximum number of bits to represent the exponent es. There are five components

to a posit bit-string: a sign bit S, regime bits R, a regime guard bit R, up to es bits of

exponent bits E, and fraction bits F . Figure 2.10(a) shows each of the five components

in a posit bit-string. The number of regime bits, exponent bits, and fraction bits varies

33

depending on the value being represented. The posit representation uses a minimal number

of regime bits and exponent bits to express the magnitude of the value. The remaining bits

are used for the fraction to provide as much precision as possible. The posit standard [55]

specifies four standard configurations of posit, 8-bit posit8 (P8,0), 16-bit posit16 (P16,1),

32-bit posit32 (P32,2), and 64-bit posit64 (P64,3).

2.2.1 Decoding a Posit Bit-String

The first bit in a posit bit-string is the sign bit. If S = 0 then the represented value is

positive. If S = 1, then the value is negative. If the value is negative, then the bit-string

is decoded after performing two’s complement of the bit-string, similar to how a signed

integer is decoded. The next three components, R, R, and E are used to represent the

exponent of the value. Abstract, the regimeR is the super exponent. It extends the dynamic

range of the posit representation encoded by the exponent bits E. After the sign bit, the

next consecutive 1’s (or 0’s) represent the regime bits. The regime bits are only terminated

when it encounters an opposite bit 0 (or 1), known as the regime guard bit (R), or the

bit-string itself terminates. The size of R can be anywhere between 1 ≤ |R| ≤ n− 1.

If there are any remaining bits after the regime and regime guard bits, up to es of the

next bits (i.e., min{n − 1 − |R|, es} bits) represent the exponent bits E. In the case that

|E| < es (i.e., there were less than es remaining bits), then the exponent bits E is padded

with 0’s to the right until |E| = es. Finally, the remaining bits (i.e. (max{0, n− 1− |R| −

|E|}) bits) represent the fraction bits. If there is no remaining bit, then we assign a single 0

bit to F (F = 0).

2.2.2 Interpreting a Posit Bit-String

The sign of a posit value is determined using the sign bit, (−1)S . The regime and exponent

bits together contribute to the magnitude of the represented value. Let useed = 22es and k

34

(a)

0
sign regime exponent fractionguard

1 1 0 0 1 01 1

(b)

0
sign regime exponentguard

0 1 10 0 0 0 0

(c)

0
sign regime

1 1 1 1 1 1 1 1

Figure 2.11: (a) Bit-string representing the value 1.625 × 25 in 〈9, 2〉-posit. (b) Bit-string repre-
senting the value 2−22 in 〈9, 2〉-posit. (c) Bit-string representing the value 228 in 〈9, 2〉-posit.

be,

k =





−r the regime bits are 0′s

r − 1 the regime bits are 1′s

Then, the magnitude of the represented value is,

useedk × 2E = (22es)k × 2E = 22es×k+E

where E is interpreted as an unsigned integer. The largest magnitude that the exponent bits

can encode is 22es−1. This is exactly a half of useed (i.e., useed
2

). Thus, regime bits extend

this magnitude to extends the dynamic range of representable values.

The significand represented by the posit bit-string is calculated similarly to a normal

value in FP using the fraction bits F , which contributes 1 + F
2|F | to the final value. Finally,

the final value that a posit bit-string represents is:

(−1)s × useedk × 2E ×
(

1 +
F

2|F |

)
= (−1)s ×

(
1 +

F

2|F |

)
× 22es×k+E

There are two special bit-strings in each posit representation that do not follow the

above rule. The bit-string of all 0’s represents the value 0. The bit-string of a 1 followed by

all 0’s represents not-a-real (NaR). NaR represents all exceptional values.

35

Example 1 Consider the bit-string of the P9,2 configuration illustrated in Figure 2.11 (a),

with a total of 9 bits with up to 2 exponent bits. The useed in P9,2 is useed = 222 = 24 =

16. The bit-string is decomposed into S = 0, R = 11, R = 0, E = 01, and F = 101.

Because the regime bits (R) consist of consecutive 1’s, k = |R| − 1 = 2− 1 = 1. Finally,

the value represented by the bit-string is,

(−1)0 × useed1 × 21 ×
(

1 +
5

8

)
= (222)

1 × 21 × 1.625 = 1.625× 25

When a small number of regime bits are used, the represented value is closer to 1. More

bits are used to represent the fraction bits, leading to four precision bits (one implicit 1 bit

to the left of the radix point and three fraction bits in the significand).

Example 2 In some circumstances, posit bit-string may not have fraction bits or even

some exponent bits. Consider the bit-string oof a P9,2 value illustrated in Figure 2.11 (b).

The bit-string contains one exponent bit and no fraction bits. The bit-string decomposes

into S = 0, R = 000000, R = 1, E = 10, and F = 0. Because there is only one

exponent bit (1), we pad a 0 bit to the right of the exponent bit. Regime bits (R) consist of

consecutive 0’s, so k = −|R| = −6. The value represented by this bit-string is,

(−1)0 × useed−6 × 22 × (1 +
0

2
) = (222)

−6 × 22 × 1 = 2−24 × 22 = 2−22

When a larger number of regime bits are used to represent the magnitude of the value, a

smaller number of bits are allocated to fraction bits (in the case, 0 bits), leading to only one

precision bit.

Example 3 In extreme cases, the posit bit-string may consist of only a sign bit and regime

bits. Consider the bit-string of a P9,2 value in Figure 2.11 (c). There are only two com-

ponents in the bit-string, S = 0 and R = 11111111. In this case, both exponent bits and

36

fraction bits become zeros (i.e., E = 00 F = 0) and k = R−1 = 7. The value represented

by the bit-string is.

(−1)0 × useed7 × 20 × (1 +
0

2
) = (222)

7 × 1× 1 = 228.

Comparison with FP representation There are two key differences between posit and

FP. First, there is exactly one bit-pattern representing 0 and one bit-pattern representing

NaR. Hence, every bit-pattern in a given posit represents unique values. Second, given

the same number of bits, posit values have more precision than FP in some range of values

while providing a similar amount or more dynamic range. For example, let us compare

the standard 32-bit FP and posit configurations, which are float and posit32, respectively.

Float values have 24 bits of precision with dynamic range of [2−149, 2128). In comparison,

posit values have up to 27 bits of precision near 1 with the dynamic range of [2−120, 2120].

More specifically, posit values in the range [2−20, 220] have the same or more precision bits

compared to float values in the range. This range is known as the golden zone [37]. A

slightly different 32-bit posit configuration P32,3 provides up to 26 bits of precision, which

is still more than the precision of float, with a dynamic range of [2−240, 2240]. However,

as posit value approaches 0 or increases to a large value, the number of precision bits can

decrease to as little as 1 precision bit, as shown in Figure 2.11(c).

2.2.3 Rounding a Real Number to the Posit Representation

The posit standard supports only one rounding mode, round to the nearest, tie goes to even

(rne). If a real value vR is exactly representable in a posit representation Pn,es, then we

round vR to that value. If vR is not exactly representable, then it is rounded to either vsm,

the largest posit value smaller than or equal to vR, or vlg, the smallest value larger than

or equal to vR. The high-level idea of posit rounding is similar to rne rounding mode in

FP representations: vR rounds to the closer value between vsm or vlg. If vR is a midpoint

37

vsm
(a) Two adjacent posit values in

vlg

v� < vR. Otherwise, vR rounds to �v+ since vR < 0 and in that case �v+ < vR. The

rounding decision for rnn mode can be formalized with,

RNF,rnn(vR) =

8
>>>>><
>>>>>:

s⇥ v� if rb = 0 ^ sticky = 0

v� if 6 (rb = 0 ^ sticky = 0) ^ s = 1

�v+ if 6 (rb = 0 ^ sticky = 0) ^ s = 0

6.4.2 Rounding a Real Value to Posit Representation with rne Mode

[Fixme: To be in the background chapter.] Explain the rounding scheme for Posit as

well. It will use the exact same method of decomposing vR = s⇥ |vR|, computing the bit-

string of |vR| in the infinite extended precision, identifying v�, rb, and sticky, identify the

correctly rounded value v of |vR| using a deterministic algorithm, and then finally returning

s⇥ v, which is the rounded value of vR.

Pn,es

Pn+1,es

6.4.3 Round to Odd Rounding Mode (rno)

The Rounding to odd (rno) is a rounding mode specified neither in the IEEE-754 standard

or the standards in the posit representation. However, it has been proposed with a specific

purpose of producing the correctly rounded result of vR even with double rounding. To

explain more formally, let us define the representation Tn as we have at the beginning of

the chapter. If Tn is a FP representation, then Tn = Fn,|E| where n > |E|. If Tn is a

posit representation, then Tn = Pn,es where n � 2. Additionally, we define Tn+2 that

corresponds to Tn. If Tn is a FP representation, then Tn+2 = Fn+2,|E|. If Tn is a posit

representation, then Tn+2 = Pn,es. Intuitively, Tn+2 has two more bits than Tn while

having the same number of exponent bits. Then, performing a double rounding by first

rounding a real value vR to Tn+2 with rno rounding mode and then subsequently rounding

the result to Tn with any standard specified rounding mode rm produces the value as if

120

w0
(vsm)

(b) Values vsm and vlg in (w0 and w2)

w1 w2
(vlg)

v� < vR. Otherwise, vR rounds to �v+ since vR < 0 and in that case �v+ < vR. The

rounding decision for rnn mode can be formalized with,

RNF,rnn(vR) =

8
>>>>><
>>>>>:

s⇥ v� if rb = 0 ^ sticky = 0

v� if 6 (rb = 0 ^ sticky = 0) ^ s = 1

�v+ if 6 (rb = 0 ^ sticky = 0) ^ s = 0

6.4.2 Rounding a Real Value to Posit Representation with rne Mode

[Fixme: To be in the background chapter.] Explain the rounding scheme for Posit as

well. It will use the exact same method of decomposing vR = s⇥ |vR|, computing the bit-

string of |vR| in the infinite extended precision, identifying v�, rb, and sticky, identify the

correctly rounded value v of |vR| using a deterministic algorithm, and then finally returning

s⇥ v, which is the rounded value of vR.

Pn,es

Pn+1,es

6.4.3 Round to Odd Rounding Mode (rno)

The Rounding to odd (rno) is a rounding mode specified neither in the IEEE-754 standard

or the standards in the posit representation. However, it has been proposed with a specific

purpose of producing the correctly rounded result of vR even with double rounding. To

explain more formally, let us define the representation Tn as we have at the beginning of

the chapter. If Tn is a FP representation, then Tn = Fn,|E| where n > |E|. If Tn is a

posit representation, then Tn = Pn,es where n � 2. Additionally, we define Tn+2 that

corresponds to Tn. If Tn is a FP representation, then Tn+2 = Fn+2,|E|. If Tn is a posit

representation, then Tn+2 = Pn,es. Intuitively, Tn+2 has two more bits than Tn while

having the same number of exponent bits. Then, performing a double rounding by first

rounding a real value vR to Tn+2 with rno rounding mode and then subsequently rounding

the result to Tn with any standard specified rounding mode rm produces the value as if

120

w0
(vsm)

(c) w1 is midpoint between vsm and vlg

w1
(midpoint)

w2
(vlg)

Figure 2.12: Illustration of identifying the midpoint between two posit values vsm and vlg. (a)
Suppose there are two adjacent posit values vsm and vlg in Pn,es. (b) Then, the two values are exactly
representable in Pn+1,es (w0 and w2, respectively) and there is a value w1 ∈ Pn+1,es between w0

and w2. (c) The value w1 is the midpoint between vsm and vlg when rounding a real value vR to
Pn,es.

between vsm or vlg, then vR rounds to the value where the bit-string is even when interpreted

as an unsigned integer.

Definition of midpoint for posit representations. However, the definition of midpoint for

posit representations is slightly different compared to the midpoint in the rne rounding

mode for FP representations. In posit representations, the midpoint of two adjacent values

vsm and vlg in Pn,es is defined as the value in Pn+1,es between vsm and vlg. We illustrate

the midpoint for posit representations with Figure 2.12. Given two adjacent posit values

vsm and vlg in the posit representation Pn,es (shown in Figure 2.12(a)), both vsm and vlg

are exactly representable in Pn+1,es (the values w0 and w2, respectively in Figure 2.12(b)).

Additionally, there is another value w1 ∈ Pn+1,es between vsm and vlg. The value w1 is the

midpoint between vsm and vlg.

Once the midpoint between vsm and vlg are identified, then rounding a real value vR be-

tween vsm and vlg follows the rule similar to FP’s rne rounding mode. If vR is smaller than

the midpoint, then vR rounds to vsm. If vR is larger than the midpoint, then vR rounds to

38

2116
(even)

All values in this
interval rounds to

All values in this
interval rounds to

(b) Geometric rounding

2120
(odd)

2118
(midpoint)

1.0
(even)

All values in this
interval rounds to

All values in this
interval rounds to

(a) Arithmetic rounding

1.00…
(odd)

1.00…
(midpoint)

Figure 2.13: Illustration of posit rounding behavior when rounding a real value vR to P32,2. These
behaviors are present for all posit configurations. (a) In most cases, posit exhibits arithmetic round-
ing behavior. (b) However, in some special cases, posit exhibits geometric rounding behavior.

vlg. If vR is equal to the midpoint, then we round to the value where the bit-string represen-

tation in Pn,es is even when interpreted as an unsigned integer. This method of identifying

midpoint allows systematically rounding vR to a posit value to follow a similar strategy as

rounding vR to an FP value, while still maintaining the tapered-precision property.

Different behaviors in posit rounding. In the FP representation’s rne mode, the mid-

point of two adjacent values vsm and vlg is the arithmetic mean between the two values

(i.e., vsm+vlg
2

). Rounding a real value vR using the arithmetic mean of two adjacent values

as the midpoint is called arithmetic rounding. Instead, rounding vR using the geometric

mean of two adjacent values (i.e., √vsmvlg) as the midpoint is called geometric rounding.

Interestingly, posit rounding has both arithmetic rounding and geometric rounding depend-

ing on the magnitude of vR. In most cases, the midpoint is the arithmetic mean between vsm

and vlg, i.e. vsm+vlg
2

as illustrated in Figure 2.13(a). Specifically, this occurs when the last

bit of the midpoint in Pn+1,es represents a fraction bit. The values vsm, the midpoint, and vlg

increase arithmetically and rounding vR between vsm and vlg exhibit arithmetic rounding.

However, when vR is an extremal value, posit rounding can exhibit geometric rounding.

Figure 2.13(b) illustrates geometric rounding by rounding vR to P32,2 where vR is between

two largest representable posit values vsm = 2116 and vlg = 2120. The midpoint w1 between

vsm and vlg is 2118 where w1 is a factor of 4 larger than vsm and vlg is a factor of 4 larger

than w1. Hence, w1 is the geometric mean of vsm and vlg (i.e.
√

21162120 = 2118) and vR is

geometrically rounded to the nearest value. This occurs specifically when the last bit of the

39

0

All values in this
interval rounds to

(a) Saturation to minpos
2-120

All values larger than
2120 rounds to 2120

(b) Saturation to maxpos
2120

Figure 2.14: When rounding a real value vR to a posit representation (i.e., P32,2), there are two
types of special cases. Without the loss of generality, assume that vR ≥ 0. (a) All vR greater
than 0 and smaller than the smallest positive representable value minpox (i.e., minpos = 2−120)
rounds to minpos. (b) All vR greater than the largest positive representable value maxpos (i.e.,
maxpos = 2120 rounds to maxpos.)

midpoint in the Pn+1,es representation is either a regime bit, regime guard bit, or exponent

bits.

Special cases in posit rounding. Additionally, there are two classes of special cases when

rounding vR to a posit value. Without the loss of generality, let us assume that vR ≥ 0.

The special cases apply to negative vR similarly. In posit rounding, the only real value

that rounds to 0 is vR = 0 itself. Any value greater than 0 and smaller than the smallest

representable positive value (minpos) rounds to minpos. Figure 2.14(a) illustrates this

special case for the 32-bit standard posit representation P32,2. This special case ensures

that the rounded value preserves the sign of the original real value vR. In contrast, FP

rounding can underflow non-zero values to 0, losing the sign of vR.

Second, posit does not have a representation for ±∞. Any positive real value outside

of the dynamic range of posit representation is rounded to the largest representable positive

value, maxpos. Figure 2.14(b) illustrates this case for the 32-bit standard posit representa-

tion P32,2. The largest positive value in P32,2 is 2120. All values larger than 2120 rounds to

2120. Thus, posit rounding always rounds real values vR into a real posit value. In contrast,

the rne rounding mode in FP representations can overflow real values to ∞, making no

distinction between values that are∞ and values that are just too large to represent in the

chosen FP representation.

40

2.2.4 A Systematic Methodology for Rounding To Posit Representation

Rounding a real value vR to a posit value in Pn,es follows a similar strategy as rounding to

FP representations. Intuitively, we identify the four rounding components, s, v−, rb, and

sticky to identify the two values vsm and vlg in Pn,es that are adjacent to vR and decide

which value vR rounds to. To provide a brief of how to identify the rounding components,

we first decompose vR into vR = s × |vR| where s is the first rounding component that

represents the sign of vR. Next, we represent |vR| in the infinite extended precision rep-

resentation P∞, where P∞ has the same limit in the es bits but can have infinitely many

regime bits and fraction bits. Because the number of available regime and fraction bits is

unbounded, any real value can be exactly represented in P∞. Third, we truncate B|vR|, the

bit-string of |vR| in P∞, to n bits to obtain the truncated value v−, which is the second

rounding component. We identify the rounding bit by extracting the (n+ 1)st bit in B|vR| to

identify the third rounding component rb, the rounding bit. Finally, we perform a bit-wise

or operation on all bits in B|vR| starting from the (n+ 2)nd bit to identify the last rounding

component, sticky.

The truncated value v− is the largest value smaller than or equal to |vR|. Then v+, the

succeeding value of v− is the smallest value larger than |vR|. Additionally, the value that we

obtain by concatenating v− and the rounding bit rb, then decoding the resulting (n+ 1)-bit

bit-string in Pn+1,es is the midpoint of v− and v+. Thus, the four rounding components can

be used to determine the relationship between |vR| and the two nearest posit values:




|vR| = v− if rb = 0 ∧ sticky = 0

v− < |vR| < vmid if rb = 0 ∧ sticky = 1

|vR| = vmid if rb = 1 ∧ sticky = 0

vmid < |vR| < v+ if rb = 1 ∧ sticky = 1

where vmid is the midpoint between v− and v+.

41

-v+ = -minpos -v- = 0

v- = 0 and
(rb = 1 or sticky = 1)

v- = 0 and
rb = 0 and
sticky = 0

(a) Posit rounding near 0 when s = -1
v+ = minposv- = 0

v- = 0 and
(rb = 1 or sticky = 1)

v- = 0 and
rb = 0 and
sticky = 0

(b) Posit rounding near 0 when s = 1

Figure 2.15: (a) Illustration of rounding a real value vR to a posit value when −minpos ≤ vR < 0
where −minpos is the largest negative representable value. (b) Illustration of rounding a real value
vR to a posit value when 0 < vR ≤ minpos where minpos is the smallest positive representable
value. All real values in the green interval rounds to the posit value with the green color. All real
values in the blue interval rounds to the posit value with the blue color.

-v- = -maxpos

v- = maxpos
rb = 0 or 1

sticky = 0 or 1

(a) Posit rounding for values ≤ -maxpos
v- = maxpos

v- = maxpos
rb = 0 or 1

sticky = 0 or 1

(b) Posit rounding for values ≥ maxpos

Figure 2.16: (a) When vR is smaller than the smallest representable negative value in a posit
representation, i.e., vR ≤ −maxpos, then vR rounds to −maxpos. This case can be identified with
s = −1 and v− = maxpos. (b) When vR is larger than the largest representable positive value in
a posit representation, i.e., vR ≥ maxpos, then vR rounds to maxpos. This case can be identified
with s = 1 and v− = maxpos.

Determining the correctly rounded result of vR. We now explain the rounding decision

and the final rounded value of vR in the posit representation using the four rounding compo-

nents. First, we determine whether vR is a special case value in posit rounding. If v− = 0,

rb = 0, and sticky = 0, then vR = 0. In this case, vR rounds to 0. If v− = 0 and either

rb = 1 or sticky = 1, then it indicates that |vR| is larger than 0 but smaller than v+, the

smallest representable posit value minpos. Then, vR rounds to s× v+. Figure 2.15(a) and

(b) pictorially shows the rounding decision of vR to posit value based on different values of

rounding components when v− = 0.

Similarly, if v− is equal to the largest representable posit valuemaxpos, then it indicates

that |vR| is a value outside of the dynamic range of Pn,es. In posit rounding, values outside

of the dynamic range rounds to ±maxpos. Thus, vR rounds to s× v−. Figure 2.16(a) and

(b) illustrates the rounding decision of vR based on different values of rounding components

42

-v+ -v-

rb = 0, sticky = 1rb = 1, sticky = 1
rb = 1, sticky = 0 rb = 0, sticky = 0

rb = 0, sticky = 1 rb = 1, sticky = 1
rb = 0, sticky = 0 rb = 1, sticky = 0

v- v+
(a) Rounding when s = -1 and bit-string of v- is even (b) Rounding when s = 1 and bit-string of v- is even

-v+ -v-

rb = 0, sticky = 1rb = 1, sticky = 1
rb = 1, sticky = 0 rb = 0, sticky = 0

(c) Rounding when s = -1 and bit-string of v- is odd

rb = 0, sticky = 1 rb = 1, sticky = 1
rb = 0, sticky = 0 rb = 1, sticky = 0

v- v+
(d) Rounding when s = 1 and bit-string of v- is odd

midpoint midpoint

midpointmidpoint

Figure 2.17: The posit rounding rule using the rounding components for all vR within the dynamic
range of the posit representation. When an interval is colored green, all real values in the interval
rounds to the smaller value (i.e., −v+ when vR < 0 and v− when vR ≥ 0). Similarly, all real values
in the interval colored blue will round to the larger posit value (i.e.,−v− when vR < 0 and v+ when
vR ≥ 0).

when vR is outside of the dynamic range of the posit representation.

If vR is not a special case value, then vR is rounded using the same rule as the rne

rule in FP representations. If the rounding bit rb = 0, then it indicates that |vR| is smaller

than the midpoint vmid. In this case, vR rounds to s × v−. If the rounding bit rb = 1 and

the sticky bit sticky = 1, then it indicates that |vR| is greater than vmid and vR rounds to

s × v+. If |vR| is equal to the midpoint, then the rounding bit rb = 1 and the sticky bit

sticky = 0. In this case, we round to the value whose bit-string is even when interpreted

as an unsigned integer. In the posit representation, the bit-string of a posit value v and

its negative counterpart −v are two’s complement of each other. The two’s complement

operation preserves the parity of the bit-string. Thus, the bit-string of v− is even if and

only if the bit-string of −v− is even. It suffices to check the parity of v− to determine the

correct rounding decision. If rb = 1, sticky = 0, and v− is even, then vR rounds to s× v−.

Otherwise, vR rounds to s × v+. Figure 2.17 pictorially shows the rounding decision of

vR to a posit representation based on different values of rounding components. The posit

43

rounding decision including the special cases can be summarized as follows,

RNP,rne(vR) =





0 if v− = 0 ∧ rb = 0 ∧ sticky = 0

s× v+ if v− = 0 ∧ (rb = 1 ∨ sticky = 1)

s× v− if v− = maxpos

s× v− if vR is not special case ∧ rb = 0

s× v− if vR is not special case ∧ rb = 1 ∧ sticky = 0 ∧ IsEven(v−)

s× v+ if vR is not special case ∧ rb = 1 ∧ sticky = 0 ∧ ¬IsEven(v−)

s× v+ if vR is not special case ∧ rb = 1 ∧ sticky = 1

2.2.5 Posit Configurations and Posit Variants

The posit standard [55] suggests four standard configurations: The 8-bit posit8 (P8,0), 16-

bit posit16 (P16,1), 32-bit posit32 (P32,2), and 64-bit posit64 (P64,3). These configurations

are specifically chosen to provide both a wide dynamic range as well as high precision.

Apart from the standard posit representation, a tapered-precision log number system by

combining posit representations and LNS has been explored and shown to be effective in

the machine learning domain [74].

2.3 Numerical Errors in Finite Precision Representation

Because any FP representation can only represent a finite number of real values, the results

of primitive operations (i.e., rounding, addition, subtraction, multiplication, and division)

can experience rounding error. Modern hardware and libraries produce correctly rounded

results for these primitive operations. However, rounding errors can get amplified with

a certain combination of primitive operations because the intermediate results need to be

rounded [37, 52, 104]. We highlight three important classes of numerical errors that are

highly relevant to generating correctly rounded math libraries.

44

2.3.1 Rounding Error with Extremal Values.

Any representation T has a limit on the dynamic range. When we round a real value

vR outside of the dynamic range, then a significant amount of error between vR and the

rounded results can occur. There are three classes of such rounding errors depending on

the rounding mode: overflow, underflow, and saturation error.

Overflow error occurs when a value larger than the largest representable value in T is

rounded to ∞ (i.e. 2130 rounds to ∞ in the 32-bit float type using the rne mode). When

evaluating an expression in T, if an intermediate result encounters an overflow error, then

the final value of the expression will likely evaluate to∞, 0, or NaN . It can occur even if

the expression evaluates to a value representable by T if evaluated in reals. Underflow error

occurs when values close to 0 rounds to 0 (i.e. 2−150 rounds to 0 in the 32-bit float using the

rne mode). Although the absolute error of vR and 0 may be small, underflow error loses

the information on the sign of vR, which can be detrimental in some applications. Finally,

saturation error occurs when any value outside of the dynamic range rounds to either the

smallest or the largest representable value. Rounding posit values experience saturation

error.

All three types of error (overflow, underflow, and saturation error) can produce results

with significant error, which can make accurate approximation and error analysis difficult.

Thus, math libraries typically classify inputs that cause these errors into special cases and

directly return the correct result.

2.3.2 Double Rounding

Double rounding occurs when a value vR is first rounded to a representation T1 using a

rounding mode rm1, then rounded again to a smaller representation T2 using a rounding

mode rm2. In some cases, double rounding is harmless and produces the same result as if

rounding vR directly to T2 using rm2 rounding mode. However, with a certain combination

of rm1 and rm2, it is not guaranteed that double rounding produces the correctly rounded

45

Correct Rounding Double rounding error

FPn+1 w0 w1 w2

FPn v0 (odd) v1 (even)

Figure 2.18: An illustration of the double rounding error. Star represents a real value vR. Circles
represent the two values v1 and v2 adjacent to vR in an n-bit representation Tn. An (n + 1)-bit
representation Tn can exactly represent both v1 and v2 (w0 and w2, respectively). In addition, there
is another value w1 between w0 and w1, highlighted with the rhombus. Rounding vR to Tn+1 and
then subsequently rounding the result Tn produces a value different from directly rounding vR to
Tn.

result, known as the double rounding error. Intuitively, double rounding error occurs be-

cause the error in rounding vR to T1 is sometimes significant enough to affect the rounding

decision of rounding the value in T1 to T2. We illustrate double rounding error with Fig-

ure 2.18. Consider a case of rounding a real value vR (star) to an n-bit representation Tn.

There are two values v0 and v1 in Tn adjacent to vR. When we directly round vR to Tn

using the rne rounding mode, vR rounds to v0. Instead, let us perform double rounding

by first rounding vR to Tn+1, an (n + 1)-bit representation with 1 additional precision bit

compared to Tn. Tn+1 can exactly represent v0 and v1. Additionally, Tn+1 can exactly

represent another value w1 between v0 and v1. Using the rne rounding mode, vR rounds to

w1 in Tn+1. If we then round the result w1 to Tn using rne rounding mode, it rounds to v1

which is not the correctly rounded result of vR in Tn.

2.3.3 Cancellation Error

When two similar but inexact values are subtracted from each other, cancellation errors can

occur. These two similar values have the same exponent bits and several significant bits of

the fraction bits are the same. Subtracting the values result in the significant fraction bits

becoming zero. The result then depends on the least significant bits, which are inexact,

significantly increasing the error of the result. Cancellation error where all bits are wrong

with respect to the correct answer obtained by evaluating the expression in real numbers is

46

known as the catastrophic cancellation. Typically, catastrophic cancellation results in the

subtraction operation to produce 0 (when the correct answer should not be 0), leading to

difficulties in accurately evaluating mathematical expressions.

Illustration of catastrophic cancellation. Consider an example of evaluating the expres-

sion b2 − 4ac using F9,4 representation with rne mode, where a = 1.125, b = 2.0, and

c = 0.875. All three values are exactly representable. Mathematically, the result of the

expression is b2 − 4ac = 0.0625, a value that can also be exactly represented with F9,4.

If we evaluate b2− 4ac with a 9-bit FP representation F9,4, then b2 = 4.0 rounds to 4.0,

which is an exact result. However, 4ac = 3.9375 rounds to 4.0 because 3.9375 cannot be

exactly represented. This rounding error combined with the subtraction operation causes

catastrophic cancellation, producing an incorrect result 0 (compared to the correct result

0.0625). If this result is used to determine the number of roots in ax2 + bx+ c, then it can

have catastrophic consequences.

2.4 Prior Work on Approximating Elementary Functions

The state-of-the-art techniques in approximating an elementary function f(x) for a target

representation T involves two steps in general. First, mathematical reasoning and approx-

imation theory is used to derive a function AR(x) that approximates f(x) in real numbers.

Second, the approximation function AR(x) is implemented as AH(x) using a finite preci-

sion H that has higher precision than T.

2.4.1 Approximating AR(x)

Deriving AR(x) further involves three steps. First, we identify inputs that exhibit special

behavior (i.e., ±∞). Second, we use range reduction to reduce the entire input domain

[a, b] to a smaller domain [a′, b′] ∈ [a, b] and perform any other function transformations.

Depending on the range reduction and transformations used, the function that needs to be

47

approximated may be transformed into a different function g(x). Third, we generate a

polynomial P (x) that closely approximates g(x) in the domain [a′, b′].

Identifying special cases. There are three types of special cases. The first type includes

inputs that produce undefined values (i.e., NaN or NaR) or ±∞. For example, in the

case of f(x) = ex, f(x) = ∞ if x = ∞ and f(x) = 0 if x = −∞. The second type

consists of hard to compute results. For example, the only real number that rounds to 0

in the posit representation is 0 itself. In the case of approximating f(x) = ln(x) for posit

representations, it is simpler to classify x = 1 as a special case because ln(1) = 0 and the

slightest amount of error in approximation will round to a non-zero result.

The third type consists of inputs that produce interesting outputs when evaluating f(x).

These cases include inputs that produce results with underflow, overflow, saturation er-

ror, or ranges of inputs that produce the same rounded result RNT,rm(f(x)). For ex-

ample, when approximating f(x) = ex for the 32-bit float with the rne mode, all in-

puts x ∈ (−∞,−103.9 . . .] produce the result RNF,rne(e
x) = 0 (underflow), all inputs

x ∈ [88.72 . . . ,∞) produces results that round to∞ (overflow), and the results for inputs

between [−2.98 · · · × 10−8, 5.96 · · · × 10−8] rounds to 1.0. These inputs can be explicitly

filtered out by directly returning the result, significantly reducing the input domain where

we have to approximate f(x).

Range reduction. It is mathematically simpler to approximate f(x) for a small domain

of inputs. Therefore, most math libraries use range reduction to reduce the entire input

domain [a, b] into a smaller domain [a′, b′] before generating the polynomial approximation.

The basic intuition of range reduction is to reduce an input x ∈ [a, b] to a different value

x′ ∈ [a′, b′], where [a′, b′] ⊆ [a, b]. Then, the polynomial P (x) approximates the output y′

using the reduced input x′, y′ = P (x′). Finally, the output y′ is compensated to produce

the result for the original input x. The process of reducing the input is called the range

reduction (x′ = RR(x)) and compensating the output y′ to produce y is called output

48

compensation (y = OC(y′)).

Example of range reduction. Consider the function f(x) = log2(x) where the input

domain is defined over (0,∞). One way to reduce the range of inputs is to use the mathe-

matical identity log2(a×2b) = log2(a)+b. We decompose the input x into x = (1+x′)×2E

by representing x using the scientific notation. Here, x′ ∈ [0, 1) is the fractional part of the

significand and the exponent E is an integer. Using the identity,

log2(x) = log2((1 + x′)× 2E) = log2(1 + x′) + log2(2E) = log2(1 + x′) + E

The result of log2(x) can be approximated by computing log2(1 + x′) + E. Thus, we can

approximate log2(x) by first range reducing the input x into the reduced input x′. The

value E can be identified by computing the exponent of x. Then, we approximate g(x′) =

log2(1 + x′) using a polynomial approximation P (x′). Finally, we compensate the output

of P (x′) by computing P (x′) +E, where the value of E is dependent on the original input

x. The range reduction function, output compensation function, and the function we must

approximate can be summarized as follows,

RR(x) =
x

2E
− 1 OC(y′) = y′ + E g(x′) = log2(1 + x′)

This range reduction reduces the domain of inputs that P (x′) has to approximate from

(0,∞) to [0, 1). Note that even though our goal was to approximate log2(x), the function

that we have to approximate with P (x′) is g(x′) = log2(1 + x′). Math libraries often

exploit this property of range reduction to transform f(x) to another function g(x) that

may be easier to approximate.

Suitable range of reduced input domain. Reducing the size of the input domain means

that P (x′) needs to be accurate only for the reduced domain [a′, b′]. Compared to the entire

input domain, we may be able to generate lower degree polynomial approximation while

maintaining the same error threshold. In addition, if the range reduction reduces the domain

49

to within (−1, 1) (i.e., [a′, b′] ⊆ (−1, 1)) as shown in the above example, then the accuracy

of the polynomial approximation can be increased significantly higher. To understand the

intuition, consider the Taylor series expansion of log2(1 + x′),

log2(1 + x′) =
x′

ln(2)
− x′2

ln(4)
+

x′3

ln(8)
− x′4

ln(16)
+ . . .

While this infinite polynomial expansion is equivalent to log2(1 + x′), a finite-degree poly-

nomial (truncated after a number of terms) is an approximation of log2(1 + x′). The longer

the polynomial, the more accurate the approximation is. However, the convergence rate of

the polynomial expansion can vary significantly depending on the value of x′. If x′ is sig-

nificantly larger than 1, then the magnitude of each subsequent term keeps becoming larger

(i.e., x′i+1

ln(2)i+1 >
x′i

ln(2)i
) until i becomes large enough. Thus, the polynomial approximation

may even diverge from the result for several terms before converging to the result. It will

require a large degree polynomial to accurately approximate log2(1 + x′).

Comparatively, if x′ ∈ (−1, 1), then the magnitude of each subsequent term will be

smaller (i.e., x′i
ln(2)i

> x′i+1

ln(2)i+1). The lower degree terms contribute the most to the final

result. In such a case, the polynomial expansion converges much faster and we can approx-

imate log2(1 + x′) accurately with a polynomial of a small degree. Additionally, because

the magnitude of each subsequent term is much smaller, the subtraction will not experience

cancellation errors. Hence, it is ideal to design range reduction such that the reduced input

domain is a subset of (−1, 1) and ideally as close to 0 as possible.

Types of range reductions. There are two categories of range reductions: Multiplicative

reduction and additive reduction. A multiplicative range reduction occurs when the reduced

input x′ is computed using either a multiplication or a division, i.e. x′ = x×C for a constant

C. An additive range reduction occurs when the reduced input x′ is computed using either

an addition or a subtraction, i.e., x′ = x+ C.

Like any other computations, range reduction can also experience numerical error. Ad-

50

ditive reduction must be designed with extra care due to catastrophic cancellation. Con-

sider the elementary function sin(x) where the function is defined over the input domain

(−∞,∞). The sin(x) function is a periodic function with the mathematical identify

sin(x + 2π) = sin(x). Thus, we can decompose the input x into x = x′ + 2πk where

k is an input and x′ ∈ [0, 2π). Then, sin(x) can be computed with sin(x′). This range

reduction allows us to approximate sin(x) only for the input domain [0, 2π). In this range

reduction strategy, the reduced input x′ can be calculated with,

x′ = x− 2πk

However, because π is an irrational value, finite precision representations like FP or posit

cannot exactly represent π or 2πk. If both x and 2πk are significantly large values, then

x′− 2πk can experience catastrophic cancellation resulting in x′ = 0. The result of sin(x′)

will then be significantly different from sin(x).

Unlike the additive range reduction illustrated for sin(x), the range reduction for log2(x)

described above (i.e., x′ = x
2E
− 1) has been carefully reasoned and determined that it does

not experience numerical error when evaluated in FP representation. The expression x
2E

can be computed exactly. Additionally, the result of the expression is a value between 1

and 2, i.e., x
2E
∈ [1, 2). Sterbenz Lemma [126] states that the subtraction of any two FP

values x and y can be computed exactly as long as y
2
≤ x ≤ 2y. Thus, x

2E
− 1 can be

computed exactly.

Polynomial approximation. A common approach to approximate an elementary function

f(x) is with a polynomial function P (x). Compared to other iterative approximation meth-

ods, polynomial approximations can be implemented efficiently with addition, subtraction,

and multiplication operations only. Polynomial approximations are known to be one of the

most efficient approximation techniques.

There are two widely used approaches in generating polynomial approximations. The

least-squares approximation aims to minimize the L2-norm of the polynomial compared to

51

the real result of f(x),

min ||P (x)− f(x)||2 = min

√∫ b

a

(P (x)− f(x))2

The least-square approximation generates polynomials that minimize the average error.

Thus it is a useful technique to generate a polynomial that approximates unstable data

with outliers. However, because there is no bound on the error for a specific input (i.e.,

|P (xi) − f(xi)| for an arbitrary input xi in the input domain), it is not commonly used

to approximate elementary functions. In the context of math libraries, the goal lies in

minimizing the error for all inputs, rather than most inputs.

The more common approach to generate P (x) is the minimax approximation, which

aims to minimize the maximum error or L∞-norm,

min ||P (x)− f(x)||∞ = min sup
x∈[a,b]

|P (x)− f(x)|

where sup is the supremum function that identifies the maximum value in a set. Minimiz-

ing the L∞-norm provides a guarantee on the bound of the error for all inputs, making it

a more appealing approach for approximating mathematical functions. Thus, most prior

approaches in generating polynomial approximation use the minimax approach, based on

the Weierstrass approximation theorem and the Chebyshev alternating theorem [137]. The

Weierstrass approximation theorem proves the existence of a minimax polynomial: If f(x)

is a continuous real function in the input domain [a, b], there exists a polynomial P (x) such

that the maximum error is bounded, i.e., |f(x)− P (x)| < ε where ε > 0 for all x ∈ [a, b].

The Chebyshev alternating theorem extends the Weierstrass approximation theorem and

states that the polynomial of degree d that minimizes the maximum error is guaranteed to

have exactly d + 2 points where the error of P (x) at these points is the maximum and it

alternates in sign. Remez algorithm [114] is the state-of-the-art method in generating such

a polynomial. Remez algorithm also provides the maximum error of P (x), which can be

52

used to analyze the error bound of the approximation function.

2.4.2 Implementation in Finite Precision

Finally, the mathematically derived approximation AR(x) of an elementary function f(x)

is implemented in finite precision representation. Typically, the implementation uses a

higher precision representation than the intended target representation (T) to minimize the

error of the intermediate result when evaluating range reduction, output compensation, and

polynomial approximation. We use AH(x) to represent the implementation of AR(x) using

the representation H, which has higher precision than T (i.e., T ⊆ H). The result of AH(x)

is then rounded to T and produces the final result.

2.5 Challenges in Generating Correctly Rounded Functions by Approximating f(x)

An approximation function of f(x) is defined to be a correctly rounded function for T rep-

resentation with rm rounding mode if it evaluates to RNT,rm(f(x)) for all inputs x in the

input domain. There are two key challenges in generating correctly rounded approxima-

tion. First, because P (x′) is an approximation of f(x′), P (x′) incurs approximation error

εapprox = |P (x′)−f(x′)| > 0. Second, evaluatingAH(x) in a finite precision representation

incurs rounding error compared to AR(x): εround = |AR(x)− AH(x)| > 0.

Because P (x′) is an approximation of f(x′) and AH(x) is evaluated in finite precision,

it is impossible to reduce both εapprox and εround to zero. The total error ε,

ε = |AH(x)− f(x)| ≤ εapprox + εrounding

cannot be 0 for all inputs x. The approximation error can be reduced by increasing the

degree of polynomial approximation and the rounding error can be reduced by increasing

the precision of H. Because increasing the degree of the polynomial or the precision of

H results in performance slowdown, the math library developer has to make trade-offs

53

b2 = 0.9609375b1 = 0.95703125

)
0.958984375

Rounded result after
using float math library

Correct
Rounding 10x Result of float

math library

Figure 2.19: Horizontal axis represents a real number line. Given an input x =
−0.0181884765625 that is exactly representable in Bfloat16, b1 and b2 represent the two closest
Bfloat16 values to the real value of 10x = 0.958984357 The correctly rounded Bfloat16
value is b1 (black star). If an approximation of 10x has more than ε = 1.70 · · · × 10−8 error, then
the result may round to b2, which is an incorrect result. Using a correctly rounded 32-bit FP math
library to approximate 10x for Bfloat16 results in wrong results. When we use the 32-bit FP
library to compute 10x, it produces the value shown with red diamond, which then rounds to b2
producing an incorrect result.

between reducing error or increasing the performance.

Identifying the error bound for correctly rounded approximation Unfortunately, there

is no known general method to predict the error bound for ε such that the rounded re-

sult of the approximation (i.e., RNT,rm(AH(x))) is equal to the rounded result of f(x)

(i.e., RNT,rm(f(x))) for all inputs x. Since f(x) can be arbitrarily close to the round-

ing boundary of two representable values, the error ε may need to be arbitrarily small to

produce the correctly rounded result. To illustrate this problem, consider approximating

f(x) = 10x for bfloat16 (B) using rne mode with the input x = −0.0181884765625,

which is exactly representable in B. Figure 2.19 illustrates our example. The two closest

representable B = F16,8 values to the real value of 10x = 0.958984357 . . . is b1 and b2 in

Figure 2.19. Using the rne rounding mode, 10x rounds to b1 (highlighted with black start).

Consider the rounding boundary between b1 and b2. For any value v between b1 and b2,

if v < 0.958984375, then v rounds to b1. Otherwise, v rounds to b2. This infers that the

approximation of 10x must have an error less than

ε < |0.958984357 · · · − 0.958984375| = 1.70239 · · · × 10−8

54

Otherwise, 10x + ε will round to b2, producing an incorrectly rounded result. Thus, the

approximation function AH(x) must produce a value that has a relative error less than

1.77 · · · × 10−8, which requires roughly d−log2(1.77 · · · × 10−8)e = 26 precision bits

to determine the correctly rounded result. 26 precision bits are more than 3× the precision

of bfloat16 (which has 8 precision bits).

This problem is widely known as the table-maker’s dilemma [75], which states that

there does not exist a general method to predict the amount of precision (i.e., H) required

to compute the correctly rounded result in T for all inputs. The only way of determining

the necessary precision is to iteratively compute the real result of f(x) for all inputs and

manually analyzing the error bound [85].

Using existing math library. An alternative method to create a math library for a repre-

sentation T is to use an existing math library for T′ where T ⊆ T′. We can convert the

input x to x′ ∈ T′, use the math library for T′, and round the result back to the target repre-

sentation T. This strategy is especially appealing if a correct math library for T′ exists and

T′ has significantly more precision than T. If this strategy is viable, we can even employ

the same strategy to create math libraries for different representations T1,T2,T3, · · · ⊆ T′,

thus opening the possibility to use a math library for T′ as a generic math library.

However, using a correctly rounded math library designed for T′ does not guarantee a

correctly rounded result for T because of double rounding error. Our example with Fig-

ure 2.19 illustrates this problem. If we use a math library for 32-bit float (F) that produces

correctly rounded results with rne mode to approximate 10x, then it produces the value

y′ = 0.958984375 (represented with red diamond in 2.19). In the context of the float

math library, y′ is the correctly rounded result, i.e., y′ = RNF,rne(10x). However, when we

round y′ to bfloat16 because y′ cannot be exactly represented in bfloat16, then y′ rounds to

RNB,rne(y
′) = b2, which is not the correctly rounded result. Therefore,

(RNB,rne(RNF, rne)(10x)) 6= (b1 = RNB,rne(10x))

55

Due to double rounding error, using an existing high precision math library to create a

lower precision math library does not guarantee to produce the correctly rounded result for

all inputs, unless the math library is specifically created to be a generic math library.

Summary. The FP representation is a fixed-precision representation that is the most widely

used to approximate real numbers. The Posit representation is a tapered-precision represen-

tation that has been gaining excitement as a possible alternative of FP for its wide dynamic

range and high precision near 1. Real values that cannot be exactly represented in the FP

or the posit representation can be rounded to the FP or posit value with one of the five

rounding modes using the rounding components (s, v−, rb, sticky). Any computation in

finite precision can experience numerical errors caused by overflow, underflow, saturation,

double rounding, and cancellation error.

In the past, math libraries were generated using the minimax approach that gener-

ates polynomials that approximate the real value of f(x). To generate efficient polyno-

mials, range reductions are used to reduce the entire input domain into a small domain.

Generating a correctly rounded math library by mathematically approximating f(x) is

challenging because the error of the approximation may have to be arbitrarily small (i.e.

ε = |AR(x)−f(x)|). Evaluating the approximation function with finite precision arithmetic

(AH(x)) incurs evaluation error, also makes the problem harder. Additionally, approximat-

ing an elementary function for T using a higher precision math library does not guarantee

a correctly rounded result due to double rounding error. Thus, either we have to create a

separate math library for each desired representation Ti, or create a generic math library

designed specifically to generate correctly rounded results for various representations.

56

CHAPTER 3

THE RLIBM APPROACH FOR CORRECTLY ROUNDED POLYNOMIAL

APPROXIMATIONS

In this chapter, we describe our approach to generate polynomial approximations that pro-

duce the correctly rounded results of elementary functions f(x). Existing methods generate

polynomials that approximate the real value of the elementary function f(x) and produce

wrong results due to approximation and rounding error in the implementation. In contrast,

we advocate for generating polynomials by approximating the correctly rounded value of

f(x) (i.e., the real value f(x) directly rounded to the target representation). The novelty of

our approach is that it provides more freedom in generating efficient polynomials that pro-

duce correctly rounded results. Then, we frame the problem of generating the polynomial

that produces the correctly rounded result as a linear programming problem. The approach

and intuition presented in this chapter is the foundation for the remaining chapters when

generating polynomials with range reduction (Chapter 4), generating piecewise polyno-

mials (Chapter 5), and generating polynomial approximations for multiple representations

and rounding modes (Chapter 6).

3.1 Approximating The Correctly Rounded Result

A correctly rounded result of an elementary function f(x) is defined as the value produced

by computing the real value of f(x) and rounding it to the target representation. While there

has been a large body of work to create accurate approximations of elementary functions [8,

15, 17, 20, 22, 30, 46, 56, 60, 71, 80, 97, 103, 119, 128, 135, 135], developing elementary

functions that produce correctly rounded results for all inputs is still a challenging problem.

There are a few correctly rounded math library for the commonly used float and double

datatype [29, 65, 101, 146], but widely used math libraries [51, 67] do not produce correctly

57

y2y1 f(x)

Correctly Rounded

y0

Available freedom
when approximating f(x)

y2y1 f(x)

Correctly Rounded

y0

Available freedom
when approximating x1

(a) (b)

Figure 3.1: Illustration of the amount of freedom available (red box) in generating polynomials
that produce correctly rounded results when (a) approximating the real value of f(x) and (b) ap-
proximating the correctly rounded result itself. We show the real value of f(x) with a star. The
correctly rounded result of f(x) is shown with a filled circle.

rounded results for all inputs.

Prior approaches generate polynomials that minimize the maximum error among all

input points compared to the real value of the elementary function f(x), known as the

minimax approach. Remez algorithm [114] is a procedure to identify such minimax poly-

nomials. The primary challenge in generating a correctly rounded polynomial approxima-

tion using the minimax approach is that the error of the polynomial approximation (i.e.,

|P (x)− f(x)|) may need to be arbitrarily small. When the real value of f(x) is arbitrarily

close to the rounding boundary of two adjacent values in the target representation, even

a small amount of error can produce the wrong result. We illustrate this problem with

Figure 3.1(a), where we show the task of approximating f(x) (star) and producing the cor-

rectly rounded result in our target representation using the rne rounding mode, where the

correctly rounded result is y1 (filled circle). Because f(x) lies close to the midpoint be-

tween y1 and y2, the two adjacent values in our target representation, there is only a small

amount of freedom in generating a polynomial that produces the correctly rounded result

(red box). This challenge stems from the fundamental disconnect between the goal of math

libraries and the purpose of the minimax approach. The goal of math libraries is to pro-

duce the correctly rounded result while the goal of the minimax approach is to generate a

polynomial that approximates the exact value of f(x) in real number.

58

Key idea #1: Approximate the correctly rounded result. Our key idea is to generate

a polynomial that approximates the correctly rounded result of f(x). We illustrate the

advantage of our approach with Figure 3.1(b). By approximating the correctly rounded

result y1, our polynomial approximation can produce any value that will round to y1 when

rounded to our target representation (red box). There is a range of values [l, h] in the

vicinity of y1 where all values in the interval rounds to the correctly rounded result y1. We

call this range of values the rounding interval. As long as we generate a polynomial that

produces a value in [l, h], the result of the polynomial rounds to the correctly rounded result

y1. This insight provides much more freedom to generate a correctly rounded polynomial

approximation. Our key idea is inspired by the Minefield method [56]. Our contribution

lies in developing techniques to systematically and automatically generate a polynomial

that produces the correctly rounded results, which we describe below.

Key idea #2: Generating the polynomial as a linear programming (LP) problem. Each

input x and the corresponding rounding interval [l, h] defines a constraint on the coefficients

of the polynomial P (x) that we wish to generate. The result of the polynomial P (x) must

be a value between l and h to produce the correctly rounded results of f(x) (i.e., y1) for

a given input x. Specifically, the constraint pair (x, [l, h]) is a linear constraint on the

coefficients of the polynomial P (x):

l ≤ c0 + c1x+ c2x
2 + · · · ≤ h

Abstractly, a polynomial with the coefficients that satisfy the above constraint will produce

the correctly rounded result of f(x) for the input x. Now our problem is to generate a

polynomial that satisfies all linear constraints specified by the constraint pair (x, [l, h]) for

each input x in the target representation. Hence, we frame the problem of generating a

polynomial that produces the correctly rounded result as a linear programming (LP) prob-

lem. We construct a system of linear inequalities that solves for the coefficients of the

polynomial that satisfy all linear constraints (x, [l, h]) and use an LP solver to solve for the

59

coefficients. The polynomial constructed with the resulting coefficients, when evaluated in

real numbers, is guaranteed to produce the correctly rounded result of f(x).

Key idea #3: Search and refine technique. Evaluating the resulting polynomial in a fi-

nite precision representation, however, does not guarantee to produce the correctly rounded

result. Thus, we propose a search-and-refine technique. Initially, we generate a candidate

polynomial that satisfies all constraints (x, [l, h]) when evaluated in real numbers. If eval-

uating the polynomial in a chosen finite precision representation does not satisfy any con-

straint, then we iteratively restrict the interval [l, h] to a smaller interval and solve for the

polynomial. We repeat the process until we identify a polynomial that produces the cor-

rectly rounded result when evaluated in the finite precision representation, or the LP solver

determines that it is infeasible to find such a polynomial.

3.2 Illustration Of Our Approach

We provide an end-to-end example of generating a polynomial approximation of ln(x)

that produces the correctly rounded results for all inputs in a 5-bit FP representation with

2 exponent bits (i.e., FP5 = F5,2) using the rne mode. We show this example only to

illustrate our approach and insight. In practice, creating a look-up table with pre-computed

results is more beneficial for a 5-bit FP. The steps of our approach are shown in Figure 3.2

and the resulting polynomial is shown in Figure 3.4.

The ln(x) function is defined over the input domain (0,∞). There are 11 values ranging

from 0.25 to 3.5 in FP5 within the input domain. The remaining 25 − 11 = 21 values are

special case inputs where the result is not a real number:

The correctly rounded result of ln(x) =





−∞ if x = 0

∞ if x =∞

NaN if x < 0 or x = NaN

60

0.25 0.5 0.75 1.0 1.25 1.5 1.75 2 2.5 3 3.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

ln(x)
5 result
Upper bound
Lower bound

(a)

−1.625 ≤ P (0.25) ≤ −1.375
−0.875 < P (0.5) < −0.625
−0.375 < P (0.75) < −0.125
−0.125 ≤ P (1.0) ≤ 0.125
0.125 < P (1.25) < 0.375
0.375 ≤ P (1.5) ≤ 0.625
0.375 ≤ P (1.75) ≤ 0.625
0.625 < P (2.0) < 0.875
0.875 ≤ P (2.5) ≤ 1.125
0.875 ≤ P (3.0) ≤ 1.125
1.125 < P (3.5) < 1.375

(b)




−1.625
−0.874 . . .
−0.374 . . .
−0.125
0.125 . . .

0.375
0.375

0.625 . . .
0.875
0.875

1.125 . . .




≤




1 0.25 0.252 0.253

1 0.5 0.52 0.53

1 0.75 0.752 0.753

1 1.0 1.02 1.03

1 1.25 1.252 1.253

1 1.5 1.52 1.53

1 1.75 1.752 1.753

1 2.0 2.02 2.03

1 2.5 2.52 2.53

1 3.0 3.02 3.03

1 3.5 3.52 3.52







c0

c1

c2

c3


 ≤




−1.375
−0.625 . . .
−0.125 . . .

0.125
0.374 . . .

0.625
0.625

0.874 . . .
1.125
1.125

1.374 . . .




(c)

Figure 3.2: Our approach for ln(x) with FP5. (a) For each input x in FP5, we accurately compute
the correctly rounded result (black circle) and identify intervals around the result so that all values
round to it. (b) The set of constraints that must be satisfied by the polynomial for the reduced input.
(c) LP formulation for generating a polynomial of degree three that satisfies the constraints in (b).
The resulting polynomial is shown in Figure 3.4.

61

()[]
1.0

(0b00100)
0.75

(0b00011)
1.25

(0b00101)
1.5

(0b00110)
0.875 1.3751.125

Figure 3.3: This figure shows the real number line and several adjacent FP5 values, 0.75, 1.0, 1.25,
and 1.5. Any real value in the blue interval [0.875, 1.125], rounds to 1.0 in FP5 with RNE mode.
Similarly, any value in the green interval (1.125, 1.375) rounds to 1.25.

These special cases can be implemented with a simple check followed by returning the

correct result.

3.2.1 Computing the Correctly Rounded Result.

Once the special case inputs are filtered, there are 11 FP5 inputs in the input domain

[0.25, 3.5]. The inputs are shown on the x-axis in Figure 3.2(a). Our first step is to identify

the correctly rounded result of ln(x) for these 11 inputs. We use an oracle (i.e., MPFR math

library [46]) to compute the real value of ln(x) and round the result to FP5. Figure 3.2(a)

shows the correctly rounded result for each of the inputs with black dots.

3.2.2 Identifying the Rounding Interval

The polynomial approximation of ln(x) is evaluated in a higher precision representation

compared to FP5. In our example, we will use the double representation to evaluate the

polynomial. Our next step is to identify a range of values that rounds to the correctly

rounded result when rounded to FP5 with rne mode. We call this range of values the

rounding interval. If our polynomial produces a value within the rounding interval, then

the result will round to the correctly rounded value,RNFP5,rne(ln(x)). Figure 3.2(a) shows

the rounding interval for each result using the blue (upper bound) and orange (lower bound)

square bracket.

Suppose that we want to compute the rounding interval for 1.0, which is the correctly

rounded result of ln(2.5). To identify the lower bound l of the rounding interval, we first

identify the preceding value of 1.0 in FP5, which is 0.75. Then, we identify l between 0.75

62

and 1.0 such that all values v ≥ l rounds to 1.0. More formally,

l = min{v | 0.75 ≤ v ≤ 1.0 ∧RNFP5,RNE(v) = 1.0}

In our case, l = 0.875. Similarly, to identify the upper bound h in the rounding interval,

we identify the succeeding value of 1.0 in FP5, which is 1.25. Then, we identify the upper

bound h between 1.0 and 1.25 such that all values smaller than or equal to h rounds to 1.0:

u = max{v | 1.0 ≤ v1.25 ∧RNFP5,RNE(v) = 1.0}

In this case, h = 1.125. Hence, the rounding interval for 1.0 is [l, h] = [0.875, 1.125].

Figure 3.3 shows the rounding interval of 1.0 with a blue box and the rounding interval of

1.25 with a yellow box for FP5. The bit-string of 1.25 in FP5 is odd when interpreted as an

unsigned integer. From the definition of rne mode, 1.125 rounds to 1.0 and 1.375 rounds

to 1.5. All real values larger than 1.125 and smaller than 1.375 rounds to 1.25. Because all

of our computations are evaluated with double, we identify the rounding interval of 1.25 in

double. Hence, the rounding interval of 1.25 in double is [l+, h−], where l+ is the smallest

double value larger than 1.125 and h− is the largest double value smaller than 1.375.

3.2.3 Generating a Polynomial Approximation

The rounding intervals specify constraints on the output of the polynomial P (x) for each

input x, where P (x) is our approximation function. Based on the intervals we computed,

if P (x) produces a value within the rounding interval, the result is guaranteed to round to

the correctly rounded result in FP5. Figure 3.2(b) shows the constraints for P (x) for each

input. Thus, our goal is to generate P (x) that satisfies all of the constraints.

To generate a polynomial P (x) of degree 3, we encode the problem as an LP problem

that solves for the coefficients of P (x). We create a system of linear inequalities that specify

the constraints of P (x) (Figure 3.2(c)) and use an LP solver to solve for the coefficients

of P (x) that satisfies all the constraints. If the LP solver produces a solution, the resulting

polynomial P (x) created using the coefficients (Figure 3.4(a)) satisfies all the constraints

63

P (x) = c0 + c1x+ c2x
2 + c3x

3

c0 = −2.084401709401708657765 . . .

c1 = 3.1251526251526207111908 . . .

c2 = −1.191697191697188351611 . . .

c3 = 0.66056166056165438460 . . .

(a)

1 2 3

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

ln(x)
P(x)
Upper bound
Lower bound

(b)

Figure 3.4: Continuation from Figure 3.2, where we approximate ln(x) for F5. (a) The coefficients
generated by the LP solver for the polynomial. (b) Generated polynomial satisfies the constraints.

(shown with a black line in Figure 3.4(b)). Finally, we verify that P (x) indeed produces

the correctly rounded result by evaluating the polynomial and comparing the result against

the correctly rounded result for all inputs.

3.3 The RLIBM Approach To Generate Correctly Rounded Polynomial Approxima-

tion

We formally define the correctly rounded result of f(x). Given an elementary function

f(x), a target representation T, a rounding mode rm, and an input domain X = [a, b] ⊆

T, our goal is to generate an approximation function of f(x) that produces the correctly

rounded result for all inputs in X .

Definition 3.1. A value v is the correctly rounded result of an elementary function f(x) for

the representation T and rounding mode rm, if v = RNT,rm(f(x)).

Based on Definition 3.1, the correctly rounded result of f(x) is unique for the chosen

representation and rounding mode for each input x. More formally, there does not exist

two distinct values v1 6= v2 where both v1 and v2 are correctly rounded results of f(x) for

64

Algorithm 3.1: Our approach to generate a polynomial approximation PH(x) of degree
d that produces the correctly rounded result of f in the target representation T, for all
inputs X ⊆ T. On successfully finding a polynomial, it returns (true, PH). Other-
wise, it returns (false, DNE) where DNE means that the polynomial Does-Not-Exist.
CalcRndIntervals and GeneratePoly are shown in Algorithm 3.2 and Algo-
rithm 3.4, respectively.
1 Function CorrectlyRoundedPoly(f , T, H, X , d):
2 L← CalcRndIntervals(f , T, H, X)
3 if L = ∅ then return (false, DNE)
4 S, PH ← GeneratePoly(L, d)
5 if S = true then return (true, PH)
6 else return (false, DNE)

an input x.

We propose an approach to produce a polynomial approximation that produces the cor-

rectly rounded result of f(x) when rounded to the target representation T. The polynomial

is evaluated in a higher precision representation H compared to T to evaluate the polyno-

mial accurately. We use P (x) to represent the polynomial generated with our approach that

is evaluated in real numbers. We use PH(x) to represent P (x) evaluated in H. The result of

PH(x) is rounded to T to produce the final result. Our goal is to ensure that PH(x) produces

the correctly rounded result of f(x) in T.

3.3.1 High-Level Overview of The RLIBM Approach

Our approach to generate PH(x) is illustrated in Algorithm 3.1. Our approach assumes the

existence of an oracle that generates the real result of f(x). The oracle is used to com-

pute the correctly rounded result of f(x) in T. We also assume that the special case inputs

are already filtered out from the input domain X . The special cases are identified using

mathematical identities of f(x). The target representation T, the rounding mode rm to

round the result to T, the higher precision representation H to evaluate the approximation

function, and the degree d of the polynomial are inputs provided by the math library devel-

oper. Since our approach applies for any rounding mode rm, the remainder of the chapter

assumes that rm = rne and omits the discussion of specific rounding mode. Hence, we

65

Algorithm 3.2: For each input x ∈ X , CalcRndIntervals identifies the in-
terval I = [l, h] where all values in I round to the correctly rounded result. The
GetRndInterval function takes the correctly rounded result y and returns the in-
terval I ⊆ H where all values in I round to y. GetPrecValue(y, T) returns the value
preceeding y in T. GetSuccValue(y, T) returns the value succeeding y in T.
1 Function CalcRndIntervals(f , T, H, X):
2 L← ∅
3 foreach x ∈ X do
4 y ← RNT,rne(f(x))
5 I ← GetRndInterval(y, T, H)
6 L← L ∪ {(x, I)}
7 end
8 return L
9 Function GetRndInterval(y, T, H):

10 y− ← GetPrecVal(y, T)
11 l← min{v ∈ H|v ∈ (y−, y] and RNT(v) = y}
12 y+ ← GetSuccVal(y, T)
13 h← max{v ∈ H|v ∈ [y, y+) and RNT(v) = y}
14 return [l, h]

use the term RNT(x) to describe rounding a real value x to the representation T using a

preferred rounding mode (in our case, rne).

Our algorithm consists of two main steps. First, we compute the correctly rounded

result of f(x), y = RNT(f(x)), for each input x using the oracle. Then, we compute

an interval I = [l, h] ⊆ H where all values v ∈ I rounds to y. The interval I describes

all the values that that our polynomial P (x) can produce such that P (x) rounds to the

correctly rounded result. Thus, the pair (x, I) specifies the input-output constraint of P (x).

The function CalcRndIntervals in Algorithm 3.1 returns a list L that contains the

constraints (x, I) for all inputs x ∈ X . Second, we generate the polynomial P (x) of

degree d that satisfies all constraints (x, I) ∈ L using linear programming. We make

sure that evaluating the polynomial in H (i.e., PH(x)) also satisfies all the constraints in

L. The function GeneratePoly returns the polynomial PH, if our approach identifies

a polynomial of degree d that satisfies all constraints. Otherwise, it returns a message

indicating that it was not successful in identifying such a polynomial. We now describe

these two steps in more detail.

66

3.3.2 Computing the Rounding Intervals

Given an elementary function f(x), the RLIBM approach identifies the values that PH(x)

must produce so that the rounded value of PH(x) is equivalent to the correctly rounded

result of f(x) for each input. We call this interval the rounding interval. Because our

polynomial is evaluated in H, we look for the interval I in H. For each input x, if our

polynomial evaluated in H produces a value in the corresponding rounding interval I , then

the result is guaranteed to round to the correctly rounded result y. Thus, the pair (x, I)

for each input x defines constraints on the output of PH(x) such that rounding the result

produces the correctly rounded result.

Algorithm 3.2 presents our approach to compute the constraints (x, I). For each input

x in the input domain X , we compute f(x) with real numbers using an oracle and round

the result to the target precision T to produce the correctly rounded result y (line 4). Next,

we compute the rounding interval of y. The rounding interval can be computed as follows.

First, we identify y−, the preceding value of y in T (line 9). Next, we find the minimum

value l ∈ H between y− and y that rounds to y (line 10). The value l defines the lower bound

of the rounding interval. Similarly for the upper bound, we identify y+, the succeeding

value of y in T (line 11). Then, we find the maximum value h ∈ H between y and y+

that rounds to y (line 12). The value h is the upper bound of the rounding interval. Thus,

the interval [l, h] is the rounding interval of y (line 3) and the pair (x, [l, h]) specifies the

constraint on the output of AH(x) to produce the correctly rounded result for the input x.

We generate such constraints for all inputs in the input domain X and produce a list of

these constraints L (line 6).

Efficiently computing the rounding interval. The function GetRndInterval in Al-

gorithm 3.2 presents a naive method of computing the rounding interval. Abstract, we

identify y−, the value preceding y in H. Then, we find the smallest value l between y− and

y that rounds to y in T. Similarly, we identify y+, the value succeeding y in H. Next, we

67

Algorithm 3.3: Given a 32-bit float (F) value v, GetRndIntervalFP32 computes
the rounding interval of v with RNE rounding mode. The final rounding interval [l, h]
is in the context of the 64-bit double type (D).
1 Function GetRndIntervalFP32(v):
2 v− ← GetPrecVal(v, F)
3 if v− = −∞ then v− = −2128

4 l← v−+v
2

5 v+ ← GetSuccVal(v, F)
6 if v+ =∞ then v+ = 2128

7 h← v+v+

2
8 if bit-string of v is odd when interpreted as unsigned integer then
9 l← GetSuccVal(l, D)

10 h← GetPrecVal(h, D)
11 end
12 return [l, h]

find the largest value h between y and y+ that rounds to y in T. The interval [l, h] is the

rounding interval of y. This naive approach may be an expensive process if H has substan-

tially larger precision compared to T. For example, if T is the IEEE-754 standard 32-bit

float type F = F32,8 and H is the IEEE-754 standard 64-bit double type D = F64,11, then

there are at least 229 double values between two adjacent float values.

Identifying the rounding intervals can be performed efficiently by identifying the round-

ing boundaries of values in T using the properties of H, T, and the rounding mode rm. To

illustrate this idea, we present an algorithm to efficiently compute the rounding interval in

double [l, h] ∈ D for the float value v ∈ F with the rounding mode rne (Algorithm 3.3).

This algorithm can be adapted to compute the rounding interval of various H, T, and rm.

The efficient technique identifies v−, the preceding float value of v and computes the

rounding boundary l between v− and v (lines 2-4). Among the values between v− and

v, all values smaller than l should round to v− and all values larger than l should round

to v. The rounding boundary l can be computed efficiently with l = v−+v
2

, because the

rne mode in FP rounds to the nearest float value. The rounding boundary is the arithmetic

mean between v− and v. The value l is exactly representable in double. Similarly, we

identify v+, the succeeding float value of v and round boundary h between v and v+ using

68

the formula h = v+v+

2
(lines 5-7). The conditional statements in lines 3 and 6 make sure

that we compute the correct rounding boundary when v is the smallest negative value (line

3) or the largest positive value (line 6) where the adjacent value of v is ±∞.

Next, based on the rounding boundary, we determine whether the rounding boundary l

and h themselves should be included in the rounding interval. Because l and h is the exact

mid-point between v and its adjacent float values (i.e. v− and v+, respectively), we have to

decide on the tie goes to even part of rne, based on the bit-string of v. If the bit-string of v

is even when interpreted as an unsigned integer, the rounding interval of v is [l, h] (line 11).

Otherwise, the rounding interval is (l, h). In this case, we identify the succeeding value

of l in double and the preceding value of h in double (lines 8-10) and return the interval

between these two values.

3.3.3 Generating the Polynomial With an LP Formulation

Each constraint (x, [l, h]) ∈ L specifies that PH(x) must satisfy the property l ≤ PH(x) ≤

h. This constraint ensures that PH(x) produces the correctly rounded result when rounded

to T. Each constraint (x, [l, h]) on P (x) can be expressed in the form:

l ≤ c0 + c1x+ c2x
2 + · · ·+ cdx

d ≤ h

In the above expression, the values x, l, and h are constants and we must identify the

coefficients c0, c1, . . . , cd that satisfy the constraints. Thus, in the perspective of finding the

coefficients, the constraint (x, [l, h]) is a linear constraint. We can express all constraints in

(xi, [li, hi]) ∈ L with a single system of linear inequalities as shown below,




l1

l2
...

l|L|



≤




1 x1 x2
1 . . . xd1

1 x2 x2
2 . . . xd2

...
...

. . .
...

1 x|L| . . . xd|L|







c0

c1

c2

...

cd




≤




h1

h2

...

h|L|




69

This system of linear inequalities is a linear programming (LP) problem. We can use an LP

solver to solve for the coefficients that satisfy all constraints. Since LP solvers produce so-

lutions in real numbers, the polynomial P (x) created with the coefficients when evaluated

with real numbers satisfies all constraints in L. Thus, the result of P (x) is guaranteed to

round to the correctly rounded result for all inputs.

Accounting for numerical error when evaluating P (x) in H. The numerical errors that

occur when evaluating the polynomial P (x), generated with our approach, in H can cause

the result of PH(x) to not satisfy some constraints in L. Suppose that we generate a poly-

nomial P (x) that satisfies a constraint (x, [l, h]) ∈ L, such that evaluating the polynomial

in real numbers produces the value h (i.e., PR(x) = h). However, if we evaluate the poly-

nomial in H, it can be the case that PH(x) to lie outside of the rounding interval (i.e.,

PH(x) > h), due to the numerical error in finite precision arithmetic. Hence, when we

generate P (x) that satisfies all constraints (x, [l, h]), we must account for the numerical

errors to ensure that PH(x) evaluates to a value in the rounding interval.

To address this challenge, we propose a search-and-refine technique. We first use the

LP solver to solve for the coefficients of P (x) by encoding the constraints (x, [l, h]) and

generate a candidate polynomial that produces a value in the rounding interval when eval-

uated with real numbers. Next, we evaluate the polynomial in H for each input x and

check whether PH(x) produces a value in the rounding interval. If PH(x) does not satisfy

a constraint (x, [l, h]) ∈ L, then we refine the rounding interval [l, h] to a smaller interval

[l′, h′] ⊆ [l, h]. If PH(x) < l, then we increase the lower bound l and if PH(x) > h, we

decrease the upper bound h. We use the LP solver again to generate the coefficients of

PH(x) that satisfies the refined constraint (x, [l′, h′]) instead of (x, [l, h]). This process is

repeated until either PH(x) satisfies all constraints in L or the LP solver returns with no

solution.

Algorithm 3.4 provides the algorithm for generating the coefficients of the polynomial

70

Algorithm 3.4: GeneratePoly generates a polynomial PH(x) of degree d that satis-
fies all constraints in L when evaluated in H. If it cannot generate such a polynomial,
then it returns false. LPSolve solves for the real number coefficients of a polynomial
PR(x) using an LP solver where PR(x) satisfies all constraints in L when evaluated
in real number. CreatePolynomial creates PH(x) that evaluates the polynomial
PR(x) in H. The Verify function checks whether the generated polynomial PH(x)
satisfies all constraints in L when evaluated in H and refines the interval for each con-
straint that PH(x) does not satisfy.
1 Function GeneratePoly(L, H, d):
2 L′ ← L
3 while true do
4 C ← LPSolve(L′, d)
5 if C = ∅ then return (false, DNE)
6 PH ← CreatePolynomial(C, d, H)
7 L′ ← Verify(PH, L, L′, H)
8 if L′ = ∅ then return (true, PH)
9 end

10 Function Verify(PH, L, L′, H):
11 IsCorrect← true
12 foreach (x, [l, h], [l′, h′]) ∈ {(x, I, I ′) | (x, I) ∈ L, (x, I ′) ∈ L′} do
13 if PH(x) < l then
14 L′ ← L′ − {(x, [l′, h′])}
15 l← GetSuccVal(σ, H)
16 L′ ← L′ ∪ {(x, [l, h′])}
17 IsCorrect← false

18 else if PH(x) > h then
19 L′ ← L′ − {(x, [l′, h′])}
20 h← GetPrecVal(h′, H)
21 L′ ← L′ ∪ {(x, [l′, h])}
22 IsCorrect← false

23 end
24 end
25 if IsCorrect then return ∅
26 else return L′

using the LP solver. L′ keeps track of the refined constraints that we compute during the

search-and-refine process. Initially, we copy the constraints L into L′ (line 2). We use the

list L′ to generate the polynomial and L to verify that the generated polynomial satisfies the

input-and-rounding-interval constraints. If the polynomial generated using the LP solver

does not satisfy L, then we restrict the intervals in L′.

We encode the constraints in L′ into a system of linear inequalities and use an LP solver

71

to solve for the coefficients of the polynomial of degree d that satisfies the constraints in L′

when evaluated with real numbers (line 4). If the LP solver determines that there is no solu-

tion (i.e., there exists no polynomial that satisfies the constraints in L′), then our algorithm

concludes that it is not possible to generate a polynomial that produces correctly rounded

results and terminates (line 5). In this case, the math library developers can increase the

degree of the polynomial d or the precision of H and restart the whole process. Otherwise,

we use the solved coefficients and create PH(x) that evaluates P (x) in H by rounding all

coefficients to H and performing all operations in H (line 6).

The polynomial PH(x) is a candidate solution for AH(x). We verify that PH(x) indeed

satisfies all constraints in L (line 7) by evaluating PH(x) and checking the result is within

the rounding interval [l, h] for each input x (line 11 - 21). If PH(x) satisfies all constraints in

L, then our algorithm concludes with success and returns PH(x) (line 8). However, if there

exists a constraint (x, [l, h]) in L, where PH(x) evaluates to a value outside of the rounding

interval [l, h], then we restrict the refined constraint (x, [l, h′]) in L′ that corresponds to the

same input x. If PH(x) is smaller than the lower bound l of the rounding interval, then we

restrict the lower bound l′ of the refined interval in L′ to the value succeeding l′ in H (lines

12-16). This process forces the P (x) that we generate in the next iteration to produce a

value larger than l′, increasing the likelihood of PH(x) to produce a value larger than or

equal to l. Likewise, if PH(x) is larger than the upper bound l of the rounding interval in

L, then we restrict the upper bound h′ of the refined interval in L′ to the value preceding h′

in H (lines 17-21).

We repeatedly generate a new candidate polynomial with the refined constraints L′

until the new polynomial satisfies all constraints in L or the LP solver determines that it is

infeasible. If a refined constraint (x, [l′, h′]) ∈ L′ is restricted to the point where l′ > h′

(or [l′, h′] = ∅), then the LP solver will automatically determine that there is no feasible

solution. When our algorithm successfully returns a polynomial, then PH(x) is guaranteed

to produce a value that rounds to the correctly rounded result of f(x) in T.

72

3.4 Summary

We propose a novel approach to generate polynomial approximations of elementary func-

tions that produces the correctly rounded result for all inputs. To produce the correctly

rounded result of f(x), we make a case for approximating the correctly rounded result

itself, not the real value of f(x). With this insight, our approach generates polynomial

approximations by identifying the maximum amount of freedom available to generate the

correctly rounded result for each input. We identify the rounding interval for each input

x where all values in the interval rounds to the correctly rounded result of f(x). This in-

terval defines the amount of freedom to generate the polynomial. The rounding interval

for each input defines a linear constraint for the polynomial approximation to produce the

correctly rounded results. Hence, we frame the problem of generating the polynomial as

an LP problem and use the LP solver to generate the polynomial. When our approach

successfully generates a polynomial, then the polynomial is guaranteed to produce the cor-

rectly rounded result of f(x) for all inputs. Our approach can automatically produce such

polynomials.

This key idea is the foundation for generating efficient and correct polynomial approxi-

mations, which we present in the subsequent chapters. Combining with range reduction and

domain splitting can generate lower degree polynomials while still producing the correctly

rounded results, thus increasing the performance (described in Section 4 and Section 5).

An extension of the approach (described in Section 6) can generate a single polynomial

approximation that produces the correctly rounded result for multiple representations and

rounding modes. The math library created using our approach combined with the tech-

niques presented in subsequent chapters produce correctly rounded results for all inputs

and are faster than mainstream libraries.

73

CHAPTER 4

THE RLIBM APPROACH WITH RANGE REDUCTION

As discussed in the previous chapter, our insight is to approximate the correctly rounded

result rather than the real value of f(x). If the degree of the polynomial is sufficiently

large, then a single polynomial can produce the correctly rounded result of f(x) for all

inputs. In practice, however, polynomials are often used with range reduction strategies to

create efficient approximations. Range reductions significantly reduce the input domain of

f(x) into a much smaller domain. Polynomial approximations are efficient at approximat-

ing elementary functions in a smaller domain. Hence, a much lower degree polynomial

approximation can be used to produce the correctly rounded result of f(x) for all inputs.

In this chapter, we present our approach to generate polynomial approximations that

produce the correctly rounded results of f(x) when used with range reduction strategies.

The main challenge lies in the fact that we now have to account for the numerical errors that

arise in the range reduction and the output compensation functions. Our strategy is to infer

the range of values that the polynomial should produce such that, when used with the range

reduction strategy, it produces the correctly rounded results for all inputs. Additionally, we

present the range reduction strategies we use to approximate several elementary functions.

Some of these strategies are developed specifically with the goal of minimizing numerical

errors.

4.1 Generating Polynomial Approximations With Range Reduction

Our approach that we discussed in Chapter 3 can generate polynomial approximations for

any target representation as long as there is no limit on the degree of the polynomial and the

representation H we use to evaluate the polynomial has sufficiently high precision. How-

ever, evaluating a high degree polynomial is not efficient especially if H is a representation

74

that is not natively supported in the hardware, thus having to use software simulation for

all primitive operations. Our goal is not only to generate correctly rounded approximations

of f(x), but also an efficient approximation.

A widely adopted strategy to increase the performance of an approximation of elemen-

tary functions is to use range reduction along with polynomial approximation, as described

in Chapter 2. In essence, range reduction reduces the domain of the function we must ap-

proximate to a smaller domain. As polynomials are much more efficient in approximating

elementary functions in a small domain, this allows us to generate a lower degree polyno-

mial, which can be evaluated efficiently. With a well designed range reduction, the perfor-

mance benefit of using a lower degree polynomial far outweighs the additional overhead

incurred from using range reduction. Hence, developing efficient range reduction strategies

have been researched for many years [12, 25, 32, 40, 42, 48, 103, 117, 133, 134, 135, 141]

and all mainstream math libraries use range reduction whenever possible.

Using a range reduction strategy, an approximation A(x) of an elementary function

f(x) has three components. (1) A range reduction function that reduces an original input

x from the entire input domain to a reduced input x′ in a smaller domain, (2) a polynomial

approximation function that uses the reduced input x′ to approximate a function g(x′), and

(3) an output compensation function that compensates the approximation of g(x′) using the

reduced input x′ to produce the approximation of f(x) with the original input x. Depend-

ing on the range reduction strategy, the function g(x′) approximated by the polynomial

approximation may not be the same as f(x).

Challenges in generating polynomial approximations that work with range reductions.

The primary challenge in generating a polynomial approximation that produces the cor-

rectly rounded result of f(x) in the target representation T, when used with range reduc-

tion strategy, is the fact that the polynomial must account for the numerical error that occur

when evaluating the range reduction and the output compensation function. As range re-

75

duction, polynomial approximation, and output compensation functions are evaluated in a

finite precision representation H, it is impossible to eliminate numerical errors for an ar-

bitrary range reduction strategy. Thus, naively generating polynomial approximations for

g(x′) will not guarantee to produce correctly rounded results for all inputs. Prior work

mathematically analyzes the error of approximation functions and verifies that elementary

functions produce correctly rounded results [21, 29, 34, 38, 59, 62, 82, 83, 145].

Our approach. We propose a novel approach to generate polynomial approximations

with range reduction strategies. Our key insight is to infer the list of the inputs and the

range of values that our polynomial should produce. Our approach identifies these inputs

and range of values using the following strategy. First, for each input x in T, we compute

the correctly rounded result of f(x) in T and identify the rounding interval [l, h]. The list

of inputs x and its corresponding rounding interval [l, h] now constrains the output of the

entire approximation A(x) such that it produces the correctly rounded result of f(x) in T.

Next, we infer the inputs x′ and the range of values [l′, h′] that our polynomial approx-

imation should produce using the range reduction and the output compensation function

based on x and [l, h]. We call x′ the reduced input and [l′, h′] the reduced interval. During

this step, we also account for the numerical errors that occur with the range reduction and

the output compensation function. The list of reduced input and interval pairs (x′, [l′, h′])

constrains the polynomial such that it produces the correctly rounded of f(x) in T when

used with range reduction strategy and evaluated in H. With the list of these constraints,

we frame the problem of generating the polynomial as LP problem and use LP solver to

create the polynomial. Our approach is compatible with a wide variety of range reduc-

tion strategies, handling both univariate and multivariate output compensation functions.

Additionally, we designed several range reduction strategies that minimize the amount of

numerical error by eliminating cancellation errors.

Using our approach and range reduction strategies that we designed, we created a

76

prototype, RLIBM-16, containing several elementary functions for bfloat16 and posit16

representations. Our automatic approach in generating polynomial approximations has

been pivotal in generating efficient polynomials. Our elementary functions are faster than

mainstream math libraries repurposed for bfloat16 and posit16 while producing correctly

rounded results for all inputs as detailed in Chapter 7. In contrast, mainstream math li-

braries do not produce correctly rounded bfloat16 results for all inputs. Our prototype is

the first correctly rounded math library for bfloat16.

4.2 Illustration

We illustrate an end-to-end example of our approach for creating a correctly rounded ap-

proximation function for ln(x) for the FP5 representation with RNE rounding mode using

range reduction. Note that our goal is the same as the example from Chapter 3, but now

with range reduction and polynomial approximation. There are two purposes in our ex-

ample: (1) to show that range reduction allows us to generate a lower degree polynomial

that produces correctly rounded results when used with the output compensation function

and (2) to illustrate our approach in generating a polynomial that accounts for the numerical

error while evaluating the output compensation function in a finite precision representation.

4.2.1 Range Reduction for ln(x)

The ln(x) function is defined over the input domain (0,∞). There are 11 values ranging

from 0.25 to 3.5 in F5,2 within (0,∞). The remaining 21 values are special case inputs.

These special cases can be implemented with a simple check followed by returning the

correct result. Our strategy for generating a polynomial approximation for ln(x) is by

approximating ln(x) using log2(x). We perform range reduction and output compensation

using two mathematical identities,

ln(x) =
log2(x)

log2(e)
, log2(x× yz) = log2(x) + zlog2(y)

77

We decompose the input x into x = x′ × 2m where x′ is the significand of the input

ranging from x′ ∈ [1, 2) and m ∈ Z is the integer exponent of x. Then, ln(x) can be

computed using,

ln(x′ × 2m) =
log2(x′ × 2m)

log2(e)
=
log2(x′) +mlog2(2)

log2(e)
=
log2(x′) +m

log2(e)

Based on the above equation, we construct the range reduction function RR(x), the

output compensation function OC(y′), and the function that we need to approximate g(x′)

as follows,

RR(x) = x′ OC(y′) =
y′ +m

log2(e)
g(x′) = log2(x′)

Using this range reduction strategy, we approximate ln(x) by first using RR(x) to re-

duce the original input to the reduced input x′. Next, we use a polynomial approximation

y′ = P (x′) that approximates g(x′) for x′ ∈ [1, 2). Since P (x′) approximates g(x′) with

the reduced input x′, we use the output compensation function OC(y′) to generate an ap-

proximation of ln(x) for the original input x. More formally,

ln(x) ≈ OC(P (RR(x)))

Our goal now is to generate a polynomial approximation P (x′) that produces the cor-

rectly rounded results when used with the range reduction and output compensation func-

tion. Mathematically, P (x′) approximates log2(x′) for the reduced inputs x′ in the domain

[1, 2).

4.2.2 Identifying Correctly Rounded Results and Rounding Intervals

There are a total of 11 inputs in the input domain (0,∞). Our first step is to identify a

range of values that our entire approximation function should produce for each input, such

that the result rounds to the correctly rounded results. For each of the 11 inputs, we use

an oracle (i.e., MPFR math library) to compute y, the correctly rounded result of ln(x) in

FP5. Figure 4.1(a) shows the 11 inputs in the x-axis and the correctly rounded result for

each input with a black dot.

78

0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.5 3.0 3.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

ln(x)
5 result
Upper bound
Lower bound

(a)

0.25
1.0

0.5
1.0

0.75
1.5

1.0
1.0

1.25
1.25

1.5
1.5

1.75
1.75

2.0
1.0

2.5
1.25

3.0
1.5

3.5
1.75

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

(b)

0.25
(1.0)

0.5
(1.0)

1.0
(1.0)

2.0
(1.0)

−0.4

−0.2

0.0

0.2

0.4

(c)

0.25
1.0

0.5
1.0

0.75
1.5

1.0
1.0

1.25
1.25

1.5
1.5

1.75
1.75

2.0
1.0

2.5
1.25

3.0
1.5

3.5
1.75

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

(d)

Figure 4.1: Our approach for ln(x) for F5,2 with range reduction. (a) For each input x in FP5, we
compute the correctly rounded results (black circle) and the rounding interval. (b) For each input
and the corresponding rounding interval, we perform range reduction to obtain the reduced input
(The number below each value on the x-axis). We also show the reduced interval for each input.
Multiple inputs can map to the same reduced input after range reduction (intervals with the same
color). In such scenarios, we combine the reduced intervals by computing the common region in
the intervals. (c) We highlight the common region in intervals that correspond to the reduced input
1.0. (d) We highlight the common region in intervals that correspond to each reduced input with the
darker color. The combined intervals are shown in Figure 4.2.

79

We perform the range reduction, output compensation, and polynomial evaluation using

double precision. The double result of the approximation function is rounded to FP5. Thus,

we identify the rounding interval [l, h], a range of double values that rounds to the correctly

rounded result, for each input. Figure 4.1(a) shows the rounding interval for each input with

a bracket. The orange bracket represents the lower bound and the blue bracket represents

the upper bound of the rounding interval.

4.2.3 Computing the Reduced Input and the Reduced Interval

Our approximation function takes an input x and uses the range reduction RR(x) to pro-

duce the reduced input x′. The reduced input x′ is used with a polynomial approximation

P (x′) to produce the output y′. Finally, the output y′ is compensated with the output com-

pensation function OC(y′) to produce the final output y. The pair, (x, [l, h]) computed in

the previous step constrains the output of the output compensation function such that our

approximation for the elementary function as a whole produces the correctly rounded re-

sults. The next step is to use each (x, [l, h]) and infer all the inputs for P (x′) and the range

of values that P (x′) should produce such that it produces the correctly rounded results when

used with the output compensation function. The inputs to P (x′) are the reduced inputs.

To compute the reduced input, we perform range reduction on each input x in the origi-

nal input domain. Figure 4.1(b) shows the reduced input on the x-axis, below the original

input.

Next, we identify a range of values that P (x′) should produce for each input, such

that P (x′) produces the correctly rounded results when used with the output compensation

function. We call this range of values the reduced interval. We infer the reduced intervals

using the rounding interval [l, h] for each input and the output compensation function. In

our example whereOC(y′) is a continuous and bijective function over the real numbers, we

can use the inverse of the output compensation function to identify the reduced intervals.

80

For the input x = 3.5 = 1.75× 21, the output compensation function is,

OC(y′) =
y′ + 1

log2(e)

and the inverse of the output compensation function is,

OC−1(y) = y × log2(e)− 1

We use the inverse function and the rounding interval [l, h] to compute the candidate

reduced interval, [l′, h′] by computing l′ = OC−1(l) and h′ = OC−1(h). Next, we restrict

the reduced interval [l′, h′] to account for the numerical error that occurs when evaluating

the output compensation function with the double type. We verify whether the result of the

output compensation function with l′ (i.e., OC(l′)) and with h′ (i.e., OC(h′)) lies in [l, h]

when evaluated in double. If it does not, then we iteratively restrict the reduced interval

[l′, h′] to a smaller interval until both OC(l′) and OC(h′) results in [l, h] when evaluated in

double. The vertical bars in Figure 4.1(b) show the reduced input and reduced interval for

each original input x.

4.2.4 Combining the Reduced Intervals

Multiple inputs from the original input domain can map to the same reduced input after

range reduction. In Figure 4.1(b), the inputs, reduced inputs, and reduced intervals corre-

sponding the same reduced input are colored with the same color. Consider Figure 4.1(c),

which depicts the reduced intervals for just four inputs x1 = 0.25, x2 = 0.5, x3 = 1.0, and

x4 = 2.0. All four inputs map to the same reduced input x′ = 1.0. However, the reduced

intervals that we computed for x1, x2, x3, and x4 are [l′1, h
′
1], [l′2, h

′
2], [l′3, h

′
3], and [l′4, h

′
4],

respectively. The reduced intervals are not identical because the intervals are computed to

account for the output compensation function and any numerical error that may occur when

evaluating OC(y′) in double.

The reduced interval for x1 indicate that P (1.0) must produce a value in [l′1, h
′
1] such

that the final result, after evaluating the output compensation function in double, will round

81

1.0 1.25 1.5 1.75

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

(a)

−0.098 . . . ≤ P (1.00) ≤ 0.016 . . .

0.262 . . . ≤ P (1.25) ≤ 0.541 . . .

0.541 . . . ≤ P (1.50) ≤ 0.623 . . .

0.623 . . . ≤ P (1.75) ≤ 0.901 . . .

(b)

Figure 4.2: Continuation from Figure 4.1. (a) The combined reduced intervals by computing the
common regions in the reduced intervals that correspond to the same reduced inputs from Figure 4.1.
(b) The set of constraints that must be satisfied by the polynomial to produce the correctly rounded
results when used with the output compensation function. The LP formulation and the resulting
polynomial are shown in Figure 4.3.

to the correctly rounded result of ln(0.25). Similarly, the reduced interval for x2 indicate

that P (1.0) must produce a value in [l′2, h
′
2] such that the final result rounds to the correctly

rounded result of ln(0.5). The reduced interval for each of the four inputs xi, for i ∈

{1, 2, 3, 4}, indicate that P (1.0) must produce a value in [l′i, h
′
i] such that the final result

rounds to the correct result of ln(xi). Thus, P (1.0) must satisfy all four reduced intervals

[l′i, h
′
i]:

P (1.0) ∈ [l′1, h
′
1] ∩ [l′2, h

′
2] ∩ [l′3, h

′
3] ∩ [l′4, h

′
4]

Hence, we combine all reduced intervals that correspond to the same reduced input by

computing the common interval. Figure 4.1(c) shows the common interval for the reduced

input x′ = 1.0 using the darker brown color. Figure 4.1(d) shows the common interval

for each reduced input using a darker shade of the color. Once the common intervals are

combined, we are left with one combined reduced interval for each unique reduced input

x′. The combined intervals for each reduced input are shown in Figure 4.2(a).

82




−0.098 . . .
0.262 . . .
0.541 . . .
0.623 . . .


 ≤




1 1
1 1.25
1 1.5
1 1.75



[
c0

c1

]
≤




0.016 . . .
0.541 . . .
0.623 . . .
0.901 . . .




(a)

P (x) = c0 + c1x

c0 = −1.0331383243 . . .

c1 = 1.04943264311 . . .

(b)

1.0 1.25 1.5 1.75

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

P(x) = c0 + c1x
Output Range for P(1.0)
Output Range for P(1.25)
Output Range for P(1.5)
Output Range for P(1.75)

(c)

Figure 4.3: Continuation from Figure 4.2. (a) The LP formulation to generate a monomial that
satisfies all the constraints. (b) The coefficients generated by the LP solver. (c) Generated monomial
satisfies all constraints.

4.2.5 Generating a Polynomial Approximation

The combined intervals specify the constraints on the output of the polynomial P (x′) for

each reduced input x′, such that the result when used with output compensation function in

double results in the correctly rounded results for all original inputs. Figure 4.2(b) numeri-

cally shows the constraints for P (x′) for each reduced input.

To synthesize a polynomial P (x′) for the degree d, we encode the problem as an LP

problem, similar to our approach in Chapter 3. We look for a polynomial that satisfies the

constraints for each reduced input. Figure 4.3(a) shows the LP formulation for generating

a monomial (polynomial of degree 1) that satisfies all constraints in Figure 4.2(b). The

generated monomial (in Figure 4.3(b)) satisfies all constraints as shown in Figure 4.3(c).

The use of range reduction allows us to generate lower degree polynomial (i.e. degree 1

in this example) compared to generating a polynomial for the entire input domain (i.e.,

polynomial of degree 3 in Chapter 3).

83

4.3 Range Reduction Strategies for Various Elementary Functions

We now describe range reduction strategies that we used to generate approximations for

various elementary functions. We group families of functions with similar range reduction

strategies (e.g., loga(x) or ax). For each family of functions, we describe two range reduc-

tions. We first describe a simple range reduction strategy suitable for representations with a

small number of bits (i.e. bfloat16). Second, we describe a more sophisticated range reduc-

tion strategy that is attractive for a larger bitwidth. The sophisticated strategies typically

require pre-computed look-up tables or approximations of multiple functions to signifi-

cantly reduce the input domain to generate low degree polynomial while also producing

the correctly rounded result for all inputs.

4.3.1 Logarithm functions (loga(x))

The logarithm functions loga(x) is defined over the input domain (0,∞). In general, all

range reductions for loga(x) use the mathematical identity,

loga(t× 2m) = loga(t) +mloga(2)

to initially reduce the input domain by decomposing the input x into x = t × 2m where

t ∈ [1, 2) is the significand of x and m ∈ Z is the integer exponent of x. Then, loga(x) can

be computed with,

loga(x) = loga(t) +mloga(2)

Using this range reduction, we must approximate loga(t) for the inputs t ∈ [1, 2).

Basic Range Reduction of loga(x)

To further reduce the input domain and, we use a slightly modified version of Cody and

Waite’s range reduction [25]. It uses the mathematical property of logarithms, loga(x) =

log2(x)
log2(a)

to approximate logarithm functions using the approximation of log2(x):

loga(x) =
log2(t)

log2(a)
+m

log2(2)

log2(a)
=
log2(t) +m

log2(a)

84

As a second step, we introduce a new variable x′ = t−1
t+1

. The variable t can be expressed

as a function of x′ using the following mathematical reasoning:

x′ =
t− 1

t+ 1

tx′ + x′ = t− 1

t− tx′ = 1 + x′

t(1− x′) = 1 + x′

t =
1 + x′

1− x′

We substitute t in log2(t) with 1+x′
1−x′ :

g(x′) = log2(t) = log2

(
1 + x′

1− x′
)

The polynomial expansion of g(x′) is an odd polynomial, i.e. P (x) = c1x + c3x
3 +

c5x
5 . . . and converges rapidly as the number of terms increases. Combining all steps, we

decompose loga(x) to,

loga(x) =
log2

(
1+x′
1−x′

)
+m

log2(a)

The range reduction function x′ = RR(x), the output compensation function y =

OC(y′), and the function that we need to approximate, y′ = g(x′) can be summarized as

follows,

RR(x) = x′ =
t− 1

t+ 1
g(x′) = y′ = log2

(
1 + x′

1− x′
)

OC(y′, x) =
y′ +m

log2(a)

where t and m is identified by decomposing x = t × 2m. With this range reduction tech-

nique, we need to approximate g(x′) for the reduced input domain x′ ∈ [0, 1
3
).

Sophisticated Range Reduction for loga(x)

To significantly reduce the input domain for large representations, we use a table-based

approach [134] to perform range reduction for loga(x) functions. We reduce the range of t

85

Algorithm 4.1: ComplexLogG1 uses the sophisticated range reduction strategy to approx-
imate the elementary function loga(x) for inputs x ≥ 1. GetSignificand and GetExp

returns the significand and the exponent value of x, respectiively. Algorithm 4.2 presents the
algorithm to approximate loga(x) for inputs 0 < x < 1.

1 Function ComplexLogG1(x):
2 t← GetSignificand(x); m← GetExp(x)
3 J ← b128(t− 1)c
4 F ← 1 + J

128
5 f ← t− F
6 x′ ← f

F // Reduced input x′ is a value in [0, 1
128)

7 y′ ← g(x′) // g(x′) approximates loga(1 + x′)

8 y ← y′ + loga(F) +mloga(2) // Output compensation

9 return y

by transforming t into t = F + f where F is a discrete variable with F = 1 + J
128

, J is a

value in the set {0, 1, 2, . . . , 127} and f is a continuous variable in the range of f ∈ [0, 1
128

).

Intuitively, F is the value represented by the first 8 bits of the significand m and f is the

value represented by the rest of the bits. Then, loga(t) can be computed with,

loga(t) = loga (F + f) = loga

(
F

(
1 +

f

F

))
= loga(F) + loga

(
1 +

f

F

)

If we denote the reduced input x′ = f
F

, then loga(t) can be computed with,

loga(t) = loga(F) + loga (1 + x′)

The reduced input x′ is in the range of [0, 1
128

). The computation x′ = f
F

can be effi-

ciently performed by computing f × 1
F

if the value 1
F

is computed ahead of time and the

values are stored in a look-up table (128 values). Additionally, since there are 128 possible

values for F and loga(F) is a constant for a given base a, we pre-compute the values for

loga(F) (128 values for each base a) and store them in a look-up tables. We approximate

loga(1 + x′) for the reduced input domain x′ ∈ [0, 1
128

) with a polynomial.

Algorithm 4.1 summarizes the sophisticated range reduction strategy for loga(x), show-

ing the range reduction (lines 2-6), polynomial approximations (line 7), and output com-

pensation function (line 8).

86

Eliminating Cancellation Error

The values of loga(2) cannot be exactly represented with finite precision representations

for all bases a ∈ Z except for a = 2. The approximation error for loga(2) can be amplified

by m if the magnitude of m is large. Additionally, if m = −1, the output compensation

function may experience cancellation error because y′ + loga(F) ≥ 0 and mloga(2) < 0.

The magnitude of y′ + loga(F) and mloga(2) may be similar and have different signs,

leading to cancellation error and significant amount of numerical error when evaluating the

output compensation function with finite precision.

We use a different range reduction strategy when m < 0 to avoid cancellation error.

Once the original input x is decomposed to x = t × 2m where t ∈ [1, 2) is the significand

andm is the exponent of x, we check whetherm < 0. If it is, we modify the decomposition

to x = t
2
× 2m+1. If we denote t′ = t

2
and m′ = m + 1, then x = t′ × 2m

′ . We further

reduce the range of t′ by transforming t′ into t′ = F ′ − f ′ where F ′ is a discrete variable

1 − J ′
256

, J ′ is a value in the set {0, 1, 2, . . . , 127}, and f ′ is a continuous variable in the

range of f ′ ∈ [0, 1
256

]. Then, loga(t′) can be computed with,

loga(t
′) = loga(F

′ − f ′) = loga

(
F ′
(

1− f ′

F ′

))
= loga(F

′) + loga

(
1− f ′

F ′

)

If we denote the reduced input x′ = − f ′

F ′ , then x′ is in the range of [− 1
128
, 0]. The function

loga(x) can be computed with,

loga(t
′) = loga(F

′) + loga(1 + x′) +m′loga(2)

All three terms loga(F ′), loga(1+x′), andm′loga(2) are non-positive values and adding

these three values do not experience cancellation error. The computation x′ = − f ′

F ′ can be

efficiently performed by computing−f ′× 1
F ′ if the value 1

F ′ is computed ahead of time and

stored in a look-up table (128 values). Additionally, since there are 128 possible values for

F ′ and loga(F ′) is constant for a given base a, we also pre-compute the values for loga(F ′)

and store them in a look-up table (128 values for each base a). We approximate loga(1+x′)

for the reduced input domain x′ ∈ [− 1
128
, 0] with a polynomial.

87

Algorithm 4.2: ComplexLogL1 uses the sophisticated range reduction strategy to approxi-
mate the elementary function loga(x) for inputs 0 < x < 1.

1 Function ComplexLogL1(x):
2 t′ ← GetSignificand(x)÷ 2; m′ ← GetExp(x) + 1 // t′ ∈ [0.5, 1)

3 J ′ ← 255− b256t′c // J ′ ∈ {0, 1, . . . , 127}
4 F ′ ← 1− J ′

256
5 f ′ ← F ′ − t′
6 x′ ← − f ′

F ′ // Reduced input x′ is a value in [− 1
128 , 0]

7 y′ ← g(x′) // g(x′) approximates loga(1 + x′)

8 y ← y′ + loga(F
′) +m′loga(2) // Output compensation

9 return y

Algorithm 4.2 summarizes the sophisticated range reduction strategy of loga(x) for the

input 0 < x < 1, showing the range reduction (lines 2-6), polynomial approximations (line

7), and output compensation function (line 8).

4.3.2 Exponential functions (ax)

The exponential function ax is mathematically defined for the input domain x ∈ (−∞,∞).

For small target representations, we use range reduction that reduces the input domain to

a reduced input domain x′ ∈ [0, 1). For large target representations, we use table-based

range reduction to reduce the input domain further.

Basic Range Reduction for ax

For small representations, we approximate all exponential functions with 2x. As a first step,

we use the mathematical property ax = 2xlog2(a) to decompose any exponential function to

a function of 2x. Second, we decompose the value xlog2(a) into the integral part i and the

remaining fractional part x′ ∈ [0, 1), i.e. xlog2(a) = i+ x′. More formally,

i = bxlog2(a)c, x′ = xlog2(a)− i

where bvc is a floor function that rounds v down to an integer. Finally, using the property

2x+y = 2x2y, ax decomposes to

ax = 2xlog2(a) = 2i+x
′
= 2x

′
2i

88

The above decomposition allows us to approximate any exponential function by approxi-

mating 2x for x ∈ [0, 1). Multiplication by 2i can be computed efficiently using bit-wise

operations by increasing the exponent value of 2x
′ in the bit-string of the higher precision

representation used to evaluate the approximation function. The range reduction function

x′ = RR(x), the output compensation function y = OC(y′, x), and the function we need

to approximate y′ = g(x′) can be summarized as follows:

RR(x) = x′ = xlog2(a)−bxlog2(a)c, g(x′) = y′ = 2x
′
, OC(y′, x) = y′2bxlog2(a)c

With this range reduction technique, we need to approximate 2x
′ for the reduced input

domain x′ ∈ [0, 1).

Sophisticated Range Reduction for ax

The table-based range reduction for exponential functions ax [133] is applicable for all

bases a. Our goal in the table-based range reduction is to use the mathematical identities

ax+y = axay and axloga(2) = 2x to efficiently compute ax. Suppose that we somehow

decompose the input x into x = tloga(2) + r where t is an integer and r is the remainder

of the value, r = x− tloga(2). Then, ax can be computed with,

ax = atloga(2)+r = atloga(2)ar = 2tar

In such a case, we need to approximate ar and multiplication by 2t can be efficiently com-

puted using bit-wise operations. We use this decomposition twice in the range reduction.

To reduce the input x we transform x into x = tloga(2) + j
64
loga(2) + x′ where t

is an integer, j is a value in a set {0, 1, 2, . . . , 63} and |t′| ≤ loga(2)
64

. Intuitively, t can be

computed by identifying the integral part of the value x
loga(2)

. The value j
64

can be computed

by identifying the first 6 fractional bits of x
loga(2)

. Lastly, x′ can be computed by identifying

the remaining value, x′ = x− tloga(2)− j
64
loga(2).

The scaling by loga(2) allows us to create efficient output compensation formula. The

89

Algorithm 4.3: ComplexExp uses the sophisticated range reduction strategy to approximate
the elementary function ax for all inputs x.

1 Function ComplexExp(x):
2 if x < 0 then t← d x

loga(2)e else t← b x
loga(2)c // Integer cast (rnz mode)

3 t1← x− tloga(2)
4 if t1 < 0 then j ← dt1× 64

loga(2)e else j ← bt1× 64
loga(2)c

5 x′ ← t1− j
64 loga(2) // Reduced input x′ is a value in [− loga(2)

64 , loga(2)64]

6 y′ ← g(x′) // g(x′) approximates ax
′

7 y ← 2t × 2
j
64 × y′ // Output compensation

8 return y

value of ax can be computed with,

ax = atloga(2)+ j
64
loga(2)+x′ = atloga(2) × a j

64
loga(2) × ax′ = 2t × 2

j
64 × ax′

Multiplication by 2n can be computed efficiently using bit-wise operations. We pre-compute

and store the values of 2
j
64 in a look-up table (i.e. 64 values in total) and approximate ax′

for the input domain of x′ ∈ [− loga(2)
64

, loga(2)
64

]. Algorithm 4.3 summarizes the sophisti-

cated range reduction strategy for ax, showing the range reduction (lines 2-5), polynomial

approximations (line 6), and output compensation function (line 7).

4.3.3 Hyperbolic Sine Function (sinh(x))

Mathematically, the sinh(x) is defined for the input domain x ∈ (−∞,∞). We use a

table-based range reduction inspired from CR-LIBM [30] for sinh(x) using the hyper-

bolic identities sinh(a + b) = sinh(a)cosh(b) + cosh(a)sinh(b) and cosh(a + b) =

cosh(a)cosh(b) + sinh(a)sinh(b).

Basic Range Reduction for sinh(x)

Using the property sinh(−x) = −sinh(x), the result of sinh(x) can be computed with

s× sinh(|x|) where s = 1 if x >= 0 and s = −1 if x < 0. We first transform the input x

into |x| with x = s× |x|. Next, we decompose |x| into two parts:

|x| = kln(2) + x′

90

where k ≥ 0 is an integer and x′ ∈ [0, ln(2)). The intuition for scaling the values of k with

ln(2) will be explained below. If we denote K = kln(2), then sinh(|x|) can be computed

with,

sinh(|x|) = sinh(K + x′) = sinh(K)cosh(x′) + cosh(K)sinh(x′)

Because the magnitude of sinh(x) increases exponentially, the result of sinh(x) lies

outside of the dynamic range for most values of the original input x. Hence, the values

of k are limited even for relatively large precision representations (i.e. 32-bit float). We

identify all possible values for k, pre-compute sinh(K) and cosh(K) for each k, and store

the values into look-up tables.

We approximate two functions g1(x′) = sinh(x′) and g2(x′) = cosh(x′) for the reduced

inputs x′ ∈ [0, ln(2)). The function sinh(x) can be computed with,

sinh(x) = s× (sinh(K)cosh(x′) + cosh(K)sinh(x′))

Finally, the range reduction x′ = RR(x), output compensation y = OC(y′1, y
′
2), and the

two functions that we must approximate (y′1 = g1(x′) and y′2 = g2(x′)) can be summarized

as follows:

RR(x) = x′ = |x| − kln(2),

g1(x′) = y′1 = sinh(x′), g2(x′) = y′2 = cosh(x′)

OC(y′1, y
′
2) = s× (sinh(kln(2))× y′2 + cosh(kln(2))× y′1) ,

where s and k are identified from the decomposition x = s×kln(2)+x′ as described above.

Note that the output compensation function requires approximation of two functions, g1(x′)

and g2(x′).

91

Sophisticated Range Reduction for sinh(x)

Using the property sinh(−x) = −sinh(x), we decompose the input x into |x| with x =

s×|x|, where s is the sign of the original input x. Next, we decompose |x| into three parts:

|x| = kln(2) +
j

64
ln(2) + x′

where both k and j are integers, k ≥ 0, 0 ≤ j < 64, and x′ is a value in [0, ln(2)
64

).

Intuitively, k can be computed by identifying the integral part of |x|
ln(2)

, j can be computed

by identifying the first 6 bits in the fractional part of |x|
ln(2)

, and x′ can be computed with the

remainder, i.e. x′ = |x| − kln(2) − j
64
ln(2). If we denote K = kln(2) and J = j

64
ln(2),

then sinh(|x|) can be computed with,

sinh(|x|) = SH × cosh(x′) + CH × sinh(x′)

SH = sinh(K)× cosh(J) + cosh(K)× sinh(J)

CH = cosh(K)× cosh(J) + sinh(K)× sinh(J)

We pre-compute the values of sinh(J), cosh(J), sinh(K), and cosh(K) and store the

values in look-up tables. There are only 64 possible values for J . The values of K are also

limited, if we filter all inputs that cause the value of sinh(x) to go outside of the dynamic

range of the target finite-precision representation as special case inputs. For example, in the

case of 32-bit float, the real value of sinh(x) goes outside of the dynamic range of 32-bit

float for all inputs x where |x| > 130ln(2). Thus, the values of k do not exceed 129 and

the size of the look-up tables for sinh(K) and cosh(K) is 130 entries each.

Alternatively, we can choose to compute the values of sinh(K) and cosh(K) manually

using the following properties,

sinh(x) =
ex − e−x

2
cosh(x) =

ex + e−x

2

92

Algorithm 4.4: ComplexSinh uses the sophisticated range reduction strategy to approxi-
mate the elementary function sinh(x) for all inputs x.

1 Function ComplexSinh(x):
2 if x < 0 then s← 1 else s← 0

3 k ← b |x|ln(2)c
4 t1← |x| − kln(2)
5 j ← bt1× 64

ln(2)c
6 x′ ← t1− j

64 ln(2) // Reduced input x′ is a value in [0, ln(2)64]

7 y′1 ← g1(x′) // g1(x′) approximates sinh(x′)

8 y′2 ← g2(x′) // g2(x′) approximates cosh(x′)

9 SH ← sinh(kln(2))cosh(j
64 ln(2)) + cosh(kln(2))sinh(j

64 ln(2))

10 CH ← sinh(kln(2))sinh(j
64 ln(2)) + cosh(kln(2))cosh(j

64 ln(2))
11 y ← (−1)s (SH × y′2 + CH × y′1) // Output compensation

12 return y

Then, sinh(K) and cosh(K) can be computed as follows,

sinh(K) = sinh(kln(2)) = 2k−1 − 2−k−1

cosh(K) = cosh(kln(2)) = 2k−1 + 2−k−1

Although sinh(K) and cosh(K) cannot be exactly represented with finite-precision

representations for all K, the correctly rounded value of sinh(K) and cosh(K) for a

higher-precision representations can be computed efficiently using bit-wise operations, ad-

ditions, or subtractions. This strategy can be effective for representations with a large

dynamic range such as the double type.

We approximate two functions g1(x′) = sinh(x′) and g2(x′) = cosh(x′) for the reduced

inputs x′ ∈ [0, ln(2)
64

). Algorithm 4.4 summarizes the sophisticated range reduction strategy

for sinh(x), showing the range reduction (lines 2-6), polynomial approximations (line 7-8),

and output compensation function (lines 9-11).

93

4.3.4 Hyperbolic Cosine Function (cosh(x))

Mathematically, the cosh(x) is defined for the input domain x ∈ (−∞,∞). The range

reduction for cosh(x) uses a similar strategy as sinh(x) (described in Section 4.3.3) to

reduce the input x. We use a table-based range reduction inspired from CR-LIBM for

cosh(x) using the hyperbolic identities sinh(a + b) = sinh(a)cosh(b) + cosh(a)sinh(b)

and cosh(a+ b) = cosh(a)cosh(b) + sinh(a)sinh(b).

Basic Range Reduction for cosh(x)

The cosh(x) function has a property, cosh(−x) = cosh(x). The result of cosh(x) can

be computed with cosh(|x|). Using this property, we decompose the original input x into

x = s × |x| where s is the sign of the input. Next, we decompose |x| into two parts,

|x| = kln(2) + x′ where k ≥ 0 is an integer and x′ is a value in x′ ∈ [0, ln(2)). If we

denote K = kln(2), then cosh(x) can be computed with,

cosh(x) = cosh(K + x′) = sinh(K)sinh(x′) + cosh(K)cosh(x′)

We pre-compute and store the values of sinh(K) and cosh(K) in a look-up table and

approximate two functions g1(x′) = sinh(x′) and g2(x′) = cosh(x′) for the reduced in-

puts x′ ∈ [0, ln(2)). Finally, the range reduction x′ = RR(x), output compensation

y = OC(y′1, y
′
2), and the two functions that we must approximate (y′1 = g1(x′) and

y′2 = g2(x′)) for cosh(x) can be summarized as follows:

RR(x) = x′ = |x| − kln(2)

g1(x′) = y′1 = sinh(x′), g2(x′) = y′2 = cosh(x′),

OC(y′1, y
′
2) = sinh(kln(2))× y′1 + cosh(kln(2))× y′2

where k is identified from the decomposition |x| = kln(2) + x′ as described above.

94

Algorithm 4.5: ComplexCosh uses the sophisticated range reduction strategy to approxi-
mate the elementary function cosh(x) for all inputs x.

1 Function ComplexCosh(x):
2 k ← b |x|ln(2)c
3 t1← |x| − kln(2)
4 j ← bt1× 64

ln(2)c
5 x′ ← t1− j

64 ln(2) // Reduced input x′ is a value in [0, ln(2)64]

6 y′1 ← g1(x′) // g1(x′) approximates sinh(x′)

7 y′2 ← g2(x′) // g2(x′) approximates cosh(x′)

8 SH ← sinh(kln(2))cosh(j
64 ln(2)) + cosh(kln(2))sinh(j

64 ln(2))

9 CH ← sinh(kln(2))sinh(j
64 ln(2)) + cosh(kln(2))cosh(j

64 ln(2))
10 y ← SH × y′1 + CH × y′2 // Output compensation

11 return y

Sophisticated Range Reduction for cosh(x)

We first decompose the input x into x = s× |x| where s is the sign of the original input x.

The result of cosh(x) can be computed with cosh(|x|). Next, we decompose |x| into three

parts similar to how we decompose the input |x| for sinh(x):

|x| = kln(2) +
j

64
ln(2) + x′

Both k and j are integers, k ≥ 0, 0 ≤ j < 64, and x′ is a real number value in [0, ln(2)
64

).

If we denote K = kln(2) and J = j
64
ln(2), then cosh(|x|) can be computed with,

cosh(x) = SH × sinh(x′) + CH × cosh(x′)

SH = sinh(K)× cosh(J) + cosh(K)× sinh(J)

CH = cosh(K)× cosh(J) + sinh(K)× sinh(J)

We pre-compute and store the values of sinh(K), cosh(K), sinh(J), and cosh(J) in

lookup tables. Alternatively, sinh(K) and cosh(K) can be computed manually using the

methodology described in Section 4.3.3. We approximate both g1(x′) = sinh(x′) and

g2(x′) = cosh(x′) for the reduced inputs x′ ∈ [0, ln(2)
64

). Algorithm 4.5 summarizes the

sophisticated range reduction strategy for sinh(x), showing the range reduction (lines 2-

95

Algorithm 4.6: BasicSinpi uses the basic range reduction strategy to approximate the
elementary function sinpi(x) for all inputs x.

1 Function BasicSinpi(x):
2 j ← x− 2bx2 c
3 k ← bjc
4 l← j − k
5 if l ≤ 0.5 then l′ ← l else l′ ← 1.0− l
6 x′ ← l′ // The reduced input x′ is a value in [0, 0.5]

7 y′ ← g(x′) // Polynomial approximation g(x′) approximates sinpi(x′)

8 y ← (−1)ky′ // Output compensation function

9 return y

5), polynomial approximations (line 6-7), and output compensation function (lines 8-10).

4.3.5 Trigonometric Sinpi Function (sinpi(x))

The sinpi(x) function is equivalent to sin(πx). Compared to the sin(x) function, per-

forming range reduction accurately for sinpi(x) is considered straight-forward, because

sinpi(x) has a period of length 2. Decomposing the original input x into a value v within

a period of oscillation (i.e., [0, 2]) can be computed exactly with finite precision arithmetic

since v can be computed with v = x − 2i for an integer i. Comparatively, sin(x) has a

period of size 2π. Decomposing an arbitrary original input x into a value v within a period

(i.e., [0, 2π]) exactly is impossible using finite precision arithmetic since v = x − 2π × i

for an integer i, but π cannot be represented exactly. Thus, many math libraries provide

approximations of sinpi(x) along with sin(x).

Basic Range Reduction for sinpi(x)

The range reduction of sinpi(x) for small representations leverages the periodicity of

sinpi(x) to reduce the input. First, we transform the input x into x = 2i + j where i

is an integer and j ∈ [0, 2). Then, sinpi(x) = sinpi(j) due to periodicity. Next, we de-

compose j into j = k + l where k ∈ {0, 1} is the integral part of j and l ∈ [0, 1) is the

96

Algorithm 4.7: ComplexSinpi uses the sophisticated range reduction strategy to approxi-
mate the elementary function sinpi(x) for all inputs x.

1 Function ComplexSinpi(x):
2 j ← x− 2bx2 c
3 k ← bjc
4 l← j − k
5 if l ≤ 0.5 then l′ ← l else l′ ← 1.0− l // l′ is a value in [0, 0.5]

6 n← b512l′c
7 x′ ← l′ − n

512 // Reduced input x′ is a value in [0, 1
512]

8 y′1 ← g1(x′) // g1(x′) approximates sinpi(x′)

9 y′2 ← g2(x′) // g2(x′) approximates cospi(x′)

10 y ← (−1)k ×
(
sinpi

(
n

512

)
y′2 + cospi

(
n

512

)
y′1
)

// Output compensation

11 return y

fractional part. The value sinpi(j) can be computed with,

sinpi(j) = (−1)k × sinpi(l)

Third, we use the fact that sinpi(x) between x = [0.5, 1) is a mirror of sinpi(x) between

x = [0, 0.5] and decompose l into,

l′ =




l if l ≤ 0.5

1.0− l if l > 0.5

With this decomposition, sinpi(l) can be computed with sinpi(l) = sinpi(l′). For small

representations, we use the value l′ as the reduced input (i.e. x′ = l′). Then, we can

approximate sinpi(x) using the formula,

sinpi(x) = (−1)k × sinpi(x′)

Algorithm 4.6 summarizes the basic range reduction strategy for sinpi(x), showing the

range reduction (lines 2-6), polynomial approximation (line 7), and output compensation

function (line 8).

Sophisticated Range Reduction for sinpi(x)

The range reduction of sinpi(x) for large representations is based on the basic range reduc-

tion strategy and further reduces the transformed input l′ in the domain l′ ∈ [0, 0.5] using

97

table-based range reduction [135]. We split l′ into l′ = n
512

+x′ where n is a discrete variable

in the set {0, 1, . . . , 256} and x′ is a continuous variable in [0, 1
512

]. The value of sinpi(l′)

can be computed using the trigonometric identity sinpi(a + b) = sinpi(a)cospi(b) +

cospi(a) + sinpi(b):

sinpi(l′) = sinpi
(n

512

)
cospi(x′) + cospi

(n

512

)
sinpi(x′)

We pre-compute and store the values of sinpi
(
n

512

)
and cospi

(
n

512

)
in lookup tables (i.e.

total of 512 values). We approximate g1(x′) = sinpi(x′) and g2(x′) = cospi(x′) for the

reduced input domain x′ ∈ [0, 1
512

].

Algorithm 4.7 summarizes the sophisticated range reduction strategy for sinpi(x),

showing the range reduction (lines 2-7), polynomial approximations (line 8-9), and out-

put compensation function (line 10).

4.3.6 Trigonometric Cospi Function (cospi(x))

The cospi(x) function is equivalent to cos(πx). Many math libraries provide approxima-

tions for cospi(x) function along with cos(x). It is a periodic function where the period

of oscillation has a length of 2. Thus, cospi(x) can be approximated accurately even for

large inputs because the input x can be exactly reduced to a value v within a period of

oscillation (i.e. [0, 2]) using the formula v = x− 2i for an integer i. Similar to the sinpi(x)

function, the range reduction of cospi(x) for small representations leverage the periodicity

of cospi(x) and the range reduction for large representations use table-based technique.

Basic Range Reduction for cospi(x)

First, we transform the input x into x = 2i + j where i is an integer and j ∈ [0, 2). Due

to the periodicity, cospi(x) = cospi(j). Second, we decompose j into j = k + l where

k ∈ {0, 1} is the integral part of j and l ∈ [0, 1) is the fractional part. Using the property

cospi(1 + x) = −cospi(x), the value cospi(j) can be computed with,

cospi(j) = (−1)k × cospi(l)

98

Algorithm 4.8: BasicCospi uses the basic range reduction strategy to approximate the
elementary function cospi(x) for all inputs x.

1 Function BasicCospi(x):
2 j ← x− 2bx2 c
3 k ← bjc
4 l← j − k
5 if l ≤ 0.5 then l′ ← l else l′ ← 1.0− l
6 if l ≤ 0.5 then m← 0 else m← 1
7 x′ ← l′ // The reduced input x′ is a value in [0, 0.5]

8 y′ ← g(x′) // Polynomial approximation g(x′) approximates cospi(x′)

9 y ← (−1)k(−1)my′ // Output compensation function

10 return y

Third, we reduce l using the fact that cospi(x) between [0.5, 1) is a mirror image of

cospi(x) between [0, 0.5] with the opposite sign. We decompose l into m and l′ where:

m =





0 if l ≤ 0.5

1 if l > 0.5

l′ =




l if l ≤ 0.5

1.0− l if l > 0.5

With this decomposition, cospi(l) can be computed with cospi(l) = (−1)m × cospi(l′).

For small representations, we use the value l′ as the reduced input (i.e., x′ = l′). Then, we

can approximate cospi(x) using the formula,

cospi(x) = (−1)k × (−1)m × cospi(x′)

We approximate g(x′) = cospi(x′) for the reduced input domain x′ ∈ [0, 0.5].

Algorithm 4.8 summarizes the basic range reduction strategy for cospi(x), showing the

range reduction (lines 2-7), polynomial approximation (line 8), and output compensation

function (line 9).

Sophisticated Range Reduction for cospi(x)

The range reduction of cospi(x) for large representations is based on the basic range re-

duction strategy. The transformed input l′ ∈ [0, 0.5] is further reduced to a value in smaller

domain using table-based range reduction. One way of reducing l′ into smaller value is to

decompose it into l′ = a+ b, where a >= 0 and b >= 0, and use the trigonometric identity

99

cospi(a + b) = cospi(a)cospi(b) − sinpi(a)sinpi(b). However, this strategy can cause

cancellation error especially when the values of cospi(a)cospi(b) and sinpi(a)sinpi(b) are

similar in magnitude and has the same sign.

Instead, we transform l′ into x′ and n such that,

l′ =





x′ if l′ < 1
512 (in this case, n = 0)

n
512 − x′ otherwise

where n is an integer value in the set {0, 1, 2, . . . , 256} and x′ is a fractional value in

[0, 1
512

]. Then, cospi(l′) can be computed with the trigonometric identity cospi(a − b) =

cospi(a)copsi(b) + sinpi(a)sinpi(b),

cospi(l′) =





cospi(x′) (because n = 0) if l′ < 1
512

cospi(n
512)× cospi(x′) + sinpi(n

512)× sinpi(x′) otherwise

This formula is monotonically increasing for all inputs x′ and does not experience cancella-

tion error because cospi(n
512

), sinpi(n
512

), cospi(x′), and sinpi(x′) are non-negative for all

possible combination of n and x′. We pre-compute and store the values of sinpi
(
n

512

)
and

cospi
(
n

512

)
in lookup tables for a total of 514 values. We approximate g1(x′) = sinpi(x′)

and g2(x′) = cospi(x′) for the reduced input domain x′ ∈ [0, 1
512

].

Algorithm 4.9 summarizes the sophisticated range reduction strategy for cospi(x), show-

ing the range reduction (lines 2-8), polynomial approximations (line 9-10), and output

compensation function (lines 11-12).

4.4 Our Approach For Generating Polynomials With Range Reduction

Our goal in this chapter is to generate a polynomial approximation P (x) that produces the

correctly rounded result of f(x) in the target representation T using a particular rounding

mode rm when used with range reduction strategies. Depending on the range reduction

100

Algorithm 4.9: ComplexCospi uses the sophisticated range reduction strategy to approxi-
mate the elementary function cospi(x) for all inputs x.

1 Function ComplexCospi(x):
2 j ← x− 2bx2 c
3 k ← bjc
4 l← j − k
5 if l ≤ 0.5 then l′ ← l else l′ ← 1.0− l // l′ is a value in [0, 0.5]

6 if l ≤ 0.5 then m← 0 else m← 1
7 n← d512l′e
8 if l′ < 1

512 then x′ ← l′ else x′ ← n
512 − l′ // x′ is a value in [0, 1

512]

9 y′1 ← g1(x′) // g1(x′) approximates sinpi(x′)

10 y′2 ← g2(x′) // g2(x′) approximates cospi(x′)

11 if l′ < 1
512 then y ← (−1)k(−1)my′2 // Output compensation

12 else y ← (−1)k(−1)m
(
cospi

(
n

512

)
y′2 + sinpi

(
n

512

)
y′1
)

13 return y

strategy, the output compensation function may be univariate (requires us to approximate

a single function, i.e., range reduction used for loga(x)) or multivariate (requires us to ap-

proximate multiple functions, i.e., range reduction used for sinh(x)). In this section, we

describe how to generate polynomial approximations of f(x) with univariate output com-

pensation functions to explain our key insights and approach. In Section 4.5, we present a

more general technique to handle multivariate output compensation functions.

We use the notation AH(x) to represent the approximation of the elementary function

f(x) produced with our approach while evaluating all internal computation with the higher

precision representation H. The result of AH(x) is then rounded to the target representation

T to produce the final result. AH(x) is composed of three components: (1) the range

reduction function x′ = RRH(x) that reduces the original input into the reduced input in a

smaller domain, (2) the polynomial approximation y′ = PH(x′) using the reduced input x′,

and (3) the output compensation function y = OCH(y′) that compensates the output y′ to

produce the approximation of f(x). More formally,

AH(x) = OCH(PH(RRH(x)))

The result of AH(x) (i.e., y) is rounded to T to produce the final result. Given a range

reduction strategy, the task of creating AH(x) that produces the correctly rounded result of

101

f(x) for all inputs involves generating an appropriate polynomial PH(x′).

There are two challenges in generating PH(x′) such that the final result of AH(x) pro-

duces the correctly rounded results. First, the polynomial must account for the range reduc-

tion and the output compensation function. Specifically, PH(x′) must produce a value that

rounds to the correctly rounded result of f(x) when used with the output compensation

function OCH(y′). If we were to approximate f(x) without range reduction (i.e., Chap-

ter 3), the rounding interval [l, h] of each input x directly defined the values that our desired

polynomial approximation should produce. However, with range reduction, the rounding

interval for each input defines the constraint on the output of the AH(x) as a whole (i.e.,

AH(x) ∈ [l, h] for each x). The original input x is transformed via the range reduction

function and the output of the PH(x) is altered by the output compensation function. We

can no longer directly use the constraints (x, [l, h]) to generate polynomial approximations.

Second, the polynomial also needs to account for the numerical error in evaluating the

range reduction and output compensation function in H(x).

Hence, we infer the inputs x′ for PH(x′) and the range of values [l′, h′] that PH(x′)

should produce based on the original input x, the rounding interval [l, h], the range re-

duction function, and the output compensation function. We call the input x′ the reduced

input and the interval [l′, h′] the reduced interval. The reduced inputs and their correspond-

ing reduced intervals define input-and-output constraints for PH(x′) such that the result of

PH(x′) used with the output compensation function produces correctly rounded results. We

call the constraint pair (x′, [l′, h′]) the reduced constraint. Once the reduced constraints are

identified for all inputs, we can then encode the problem of generating a polynomial that

satisfies all reduced constraints into a system of linear inequalities and use an LP solver to

generate PH(x′).

102

Algorithm 4.10: Our approach to generate a polynomial approximation PH(x) that pro-
duces the correctly rounded result for all inputs when used with univariate output compen-
sation function. On successfully finding a polynomial, it returns (true, PH). Otherwise,
it returns (false, DNE) where DNE means that the polynomial Does-Not-Exist. Functions,
CalcReducIntervals and CombineReducIntervals are shown in Algorithm 4.11
and Algorithm 4.12, respectively.

1 Function CorrectlyRoundedPoly(f , T, H, X , d, RRH, OCH):
2 L← CalcRndIntervals(f , T, H, X)
3 if L = ∅ then return (false, DNE)
4 L′ ← CalcReducIntervals(L, H, RRH, OCH)
5 if L′ = ∅ then return (false, DNE)
6 L∗ ← CombineReducIntervals(L′)
7 if L∗ = ∅ then return (false, DNE)
8 S, PH ← GeneratePoly(L∗, d)
9 if S = true then return (true, PH)

10 else return (false, DNE)

4.4.1 High-level Overview of the RLIBM Approach For Univariate Output Compen-

sation Functions

Our approach for generating the the polynomial PH(x′) is shown in Algorithm 4.10. Our

approach assumes the existence of an oracle, which produces the real value of f(x). The

polynomial approximation is closely related to the specific range reduction strategy. Hence,

we also require the range reductionRRH(x′) and the output compensation functionOCH(y′)

from the math library developer. Additionally, our approach requires the output compen-

sation function OC(y′) to be invertible (i.e., continuous and bijective) to automatically

identify the reduced intervals. In our experience, we found that all univariate output com-

pensation functions that we have used are invertible. Finally, the degree of the polynomial

is an input provided by the math library designer.

Our approach extends from the approach described in Chapter 3. First, we compute

the correctly rounded result of f(x) (i.e. RNT,rm(f(x))) for each input x using our oracle.

Then, we identify the rounding interval [l, h] ∈ H where all values in the interval rounds

to the correctly rounded result using the steps described in Chapter 3 (line 2). The pair

(x, [l, h]) specifies that the final result ofAH(x) must produce a value in [l, h] (i.e.,AH(x) ∈

103

[l, h]) for the result to round to the correctly rounded result.

Second, for each input x, we compute the reduced input x′ using range reduction. Then,

we infer the reduced interval [l′, h′] for each pair (x, [l, h]) in L using the output com-

pensation function (line 4). Abstractly, the reduced intervals [l′, h′] constrains the output

of the polynomial PH(x′) such that the result, when used with the output compensation

function, will produce a value in the rounding interval [l, h]. The final result of the out-

put compensation function will then round to the correctly rounded result of f(x) in T.

CalcReducIntervals in Algorithm 4.11 returns a list L′ containing the the pair of

reduced input and interval (x′, [l′.h′]) for each pair (x, [l, h]) in L.

Third, multiple inputs from the original input domain x can map to the same reduced

input after range reduction. Hence, there can be multiple reduced intervals corresponding

to the same reduced input x′. Thus, we combine all reduced intervals that correspond to the

same reduced input x′ by identifying the common region and produce a pair (x′, [l∗, h∗]) for

each reduced input x′ (line 6). CombineReducIntervals in Algorithm 4.12 returns

a list L∗ containing the constraint pair (x′, [l∗, h∗]). Finally, we generate a polynomial of

degree d using LP formulation so that all constraints in L∗ are satisfied using the approach

described in Section 3.3.3 (line 8).

Note that our approach for generating PH(x) with range reduction involves two addi-

tional steps compared to the steps in Chapter 3. The first step that identifies the rounding

interval for AH(x) (CalcRndIntervals) and the last step that generates a polynomial

that satisfies certain constraints (GeneratePoly) are identical. The two additional steps

involve identifying the reduced inputs, reduced intervals, and combining reduced intervals.

In the remainder of the section, we focus our efforts in presenting these steps.

4.4.2 Identifying Reduced Inputs and Reduced Intervals

Once we compute the rounding intervals [l, h] for each original input x, the intervals con-

strain the values that our entire approximation AH(x) should produce such that it produces

104

the correctly rounded result of f(x) (i.e. RNT(AH(x)) = RNT(f(x))), for each input

x ∈ X . Our next step is to identify the inputs x′ to the polynomial PH(x′) and the range of

values [l′, h′] that the polynomial should produce such that AH(x) produces the correctly

rounded results. We call x′ the reduced input and the interval [l′, h′] the reduced interval.

The original input x is reduced to a reduced input x′ using the range reduction function

(x′ = RR(x)). The reduced input x′ is used as the input to the polynomial PH(x′) which

produces the value y′. Hence, the input to the polynomial can be computed by applying the

range reduction x′ = RR(x) to each original input x.

Next, we need to identify the reduced interval for each reduced input x′. The output of

the polynomial y′ is used as the input to the output compensation function y = OC(y′). The

resulting value y is the final output of AH(x). More specifically, AH(x) = OCH(PH(x′)).

To produce the correctly rounded result, y has to be a value in the rounding interval [l, h].

Hence, we use the inverse of the output compensation function (y′ = OC−1(y)) along with

the rounding interval to infer the reduced interval. This strategy is feasible if the output

compensation function is continuous and bijective.

With real numbers, it is straightforward to compute the reduced interval by using the

inverse output compensation function (i.e., [l′, h′] = [OC−1(l), OC−1(h)]). The result of

the output compensation evaluated in real numbers using any value in this reduced interval

will round to the correctly rounded results. However, the output compensation function is

evaluated in a finite precision representation, H, which may cause numerical errors. Thus,

we take numerical errors into account by restricting the reduced interval and ensure that the

result of the output compensation function, when evaluated in H, produces the correctly

rounded results for all values in the reduced interval.

Algorithm 4.11 presents our approach in computing the reduced constraints (x′, [l′, h′])

for each (x, [l, h]) ∈ L . For each original input x, we use the range reduction function

to compute the reduced input x′ (line 4). To compute the reduced interval [l′, h′], we first

evaluate the values v1 = OC−1
H (l) and v2 = OC−1

H (h), where OC−1
H (y) evaluates the

105

Algorithm 4.11: CalcReducIntervals computes the reduced input x′ and the re-
duced interval [l′, h′] for each constraint pair (x, [l, h]) in L. The reduced constraint pair
(x′, [l′, h′]) specifies the bound on the output of PH(x′) such that it produces the correct
value for the input x when used with the output compensation function.
1 Function CalcReducIntervals(L, H, RRH, OCH):
2 L′ ← ∅
3 foreach (x, [l, h]) ∈ L do
4 x′ ← RRH(x)

// Set initial reduced interval

5 if OCH is an increasing function then
6 [α, β]← [OC−1

H (l, x), OC−1
H (h, x)]

7 else [α, β]← [OC−1
H (h, x), OC−1

H (l, x)]
// Increase the lower bound if necessary

8 while OCH(α, x) /∈ [l, h] do
9 α← GetSuccVal(α, H)

10 if α > β then return ∅
11 end

// Decrease the upper bound if necessary

12 while OCH(β, x) /∈ [l, h] do
13 β ← GetPrecVal(β, H)
14 if α > β then return ∅
15 end
16 L′ ← L′ ∪ {(x′, [α, β])}
17 end
18 return L′

inverse of the output compensation function with H. We set a candidate reduced interval

[α, β] = [v1, v2] if the output compensation function is an increasing function (lines 5-6)

or [α, β] = [v2, v1] if the output compensation function is a decreasing function (line 7).

Next, we restrict the interval [α, β] to account for the numerical error that occurs when

evaluating OCH(y′). We verify whether the output compensated value of the lower bound

(i.e., OCH(α)) results in [l, h]. If it does not, we replace α with the succeeding value in H.

We repeat the process until OCH(α) results in the rounding interval (lines 8-10). Similarly,

we verify whether the output compensated value of the upper bound (i.e., OCH(β)) results

in [l, h]. If it does not, we replace β with the preceding value in H. We repeat the process

until OCH(β) results in [l, h] (lines 11-13). If α > β at any point in our process, then

106

it indicates that there does not exist a polynomial that will produce the correctly rounded

result when used with the output compensation function. In such a case, the math library

developer must design a different range reduction strategy or increase the precision of H.

If the resulting interval [α, β] 6= ∅, then [α, β] is the reduced interval (i.e., [l′, h′] =

[α, β]). The reduced constraint pair (x′, [l′, h′]) for each (x, [l, h]) specifies the constraint

on the values that PH(x′) should produce, such that AH(x) ∈ [l, h]. We create a list L′

containing all reduced constraints (line 16).

4.4.3 Combining the Reduced Constraints

Each reduced constraint (x′i, [l
′
i, h
′
i]) ∈ L′ corresponds to a constraint (xi, [li, hi]) ∈ L and

specifies a bound on the output of PH(x′i) ∈ [l′i, h
′
i] to ensure that AH(xi) ∈ [li, hi]. The

range reduction function reduces the original input xi from the entire input domain of f(x)

into a reduced input x′i in a smaller reduced domain. Hence, it is possible for multiple orig-

inal inputs to be range reduced to the same reduced input. More formally, there can exist

multiple constraints (x1, [l1, h1]), (x2, [l2, h2]), · · · ∈ L where x∗ = RR(x1) = RR(x2) =

. . . . Consequently, L′ can contain multiple reduced constraints with the same reduced input

(x∗, [l′1, h
′
1]), (x∗, [l′2, h

′
2]), · · · ∈ L′. These reduced constraints specify that the polynomial

PH(x∗) must produce a value in [l′1, h
′
1] to guarantee that AH(x1) ∈ [l1, h1] and it should

also produce a value in [l′2, h
′
2] to guarantee that AH(x2) ∈ [l2, h2]. Hence, for each unique

reduced input x∗, the polynomial must satisfy all reduced constraints corresponding to x∗,

i.e., PH(x∗) ∈ [l′1, h
′
1] ∩ [l′2, h

′
2] ∩ If there are multiple reduced constraints with the

same reduced input, we combine the reduced intervals corresponding to the same reduced

inputs by computing the common interval.

The function CombineReducIntervals in Algorithm 4.12 describes our technique

that combines all reduced constraints with the same reduced input. For each unique reduced

input x∗ in the set of reduced constraints L′ (line 2-4), we identify all reduced intervals that

correspond to x∗ (line 5). Then, we identify the combined interval [l∗, h∗] by computing

107

Algorithm 4.12: CombineReducIntervals combines any reduced constraints
with the same reduced input, i.e. (x′1, [l

′
1, h
′
1]) and (x′2, [l

′
2, h
′
2]) where x′1 = x′2 into

a single combined constraint (x′1, [l
∗, h∗]) by computing the common interval range in

[l′1, h
′
1] and [l′2, h

′
2].

1 Function CombineReducIntervals(L′):
2 X∗ ← {x′ | (x′, I ′) ∈ L′}
3 L∗ ← ∅
4 foreach x∗ ∈ X∗ do
5 Ω← {[l′, h′] | (x∗, [l′, h′]) ∈ L′}
6 [l∗, h∗]← ⋂

[l′,h′]∈Ω[l′, h′]

7 if [l∗, h∗] = ∅ then return ∅
8 L∗ ← L∗ ∪ {(x∗, [l∗, h∗])}
9 end

10 return L∗

the intersection between the reduced intervals (line 6). If the combined interval is empty,

then it indicates that there is no value that PH(x′) can produce, such that it produces the

correctly rounded results of f(x) for all inputs when used with output compensation func-

tion. Otherwise, we create a combined constraint pair (x∗, [l∗, h∗]) for each unique reduced

input x∗ and produce a list of constraints L∗ (line 8).

Each combined constraint (x′, [l′, h′]) ∈ L∗ specifies that PH(x′) should satisfy l′ ≤

PH(x′) ≤ h′. This constraint ensures that the result of the output compensation function

using PH(x′) produces the correctly rounded result for all inputs,

RNT,rm(OCH(PH(x′))) = RNT,rm(f(x))

Our final step encodes the problem of solving for a polynomial that satisfies all combined

constraints in L∗ into a system of linear inequalities and uses an LP solver to generate a

polynomial that satisfies all constraints in L∗. We use the same methodology described in

Chapter 3 (GenreatePoly in Algorithm 3.4) to generate such polynomial.

4.5 The RLIBM Approach For Multivariate Output Compensation Functions

We now describe our approach to generate a polynomial approximation PiH(x′) that pro-

duce the correctly rounded results of an elementary function f(x) in our target representa-

108

tion T when used with multivariate output compensation functions. Some range reduction

strategy (i.e., sinh(x)) uses multivariate output compensation function, where the output

compensation functions require multiple functions to be approximated,

y′ = OCH(g1(x′), g2(x′), . . .)

where gi(x′) are the functions that we have to approximate with polynomial approxima-

tions. Our goal is to synthesize the polynomial approximations PiH(x′) for each gi(x′).

With multiple polynomial approximations and multivariate output compensation function,

the entire approximation of f(x) can be formally defined as,

AH(x) = OCH(P1H(x′), P2H(x′), . . .)

where x′ is the reduced input computed with x′ = RRH(x). Similar to the approach we

used in generating polynomial approximation for univariate output compensation function,

our strategy involves identifying the reduced intervals [l′i, h
′
i] for each PiH(x) and for each

reduced input x′. The reduced intervals for each PiH(x′) define the values that PiH(x′)

should produce such that the result of the output compensation function produces the cor-

rectly rounded results. Then, the reduced inputs and the reduced intervals for each PiH(x′)

can be used to frame the problem of generating PiH(x′) that satisfies the reduced constraint

pair (x′, [l′i, h
′
i]) as a linear programming problem and use an LP solver to generate each

polynomial.

Challenges in identifying reduced intervals with multivariate output compensation func-

tion. There are two main challenges in generating reduced intervals for each Pi(x′) in

the context of multivariate output compensation function. First, the output compensation

function is a multivariate function with one output (i.e., y = OC(y′1, y
′
2, . . .)). Hence, the

inverse function does not exist, based on the Inverse Function Theorem [124]. We cannot

use the same approach described in Section 4.4 to infer the reduced intervals with inverse

output compensation function. Second, we must ensure that the size of the reduced in-

109

Algorithm 4.13: Our approach to generate polynomials PiH(x′) that approximate gi(x′) in
the multivariate output compensation function. On successfully finding polynomials, it returns
a polynomial for each gi(x′), where the output of the polynomial used with the output compen-
sation function produces the correctly rounded results. Otherwise, it returns (false, DNE) where
DNE means that the polynomial Does-Not-Exist. CalcReducIntervalsMulti is shown
in Algorithm 4.14.

1 Function CorrectlyRoundedPolyMulti(f , T, H, X , d, RRH, OCH):
2 L← CalcRndIntervals(f , T, H, X)
3 if L = ∅ then return (false, DNE)
4 L′ ← CalcReducIntervalsMulti(L, H, RRH, OCH)
5 Result← ∅
6 foreach (gi, L

′
i) ∈ L′ do

7 if L′i = ∅ then return (false, DNE)
8 L∗i ← CombineReducIntervals(L′i)
9 if L∗i = ∅ then return (false, DNE)

10 S, PiH ← GeneratePoly(L∗i , d)
11 if S = false then return (false, DNE)
12 Result← Result ∪ (gi, Pi)

13 end
14 return (true,Result)

terval [l′i, h
′
i] for each Pi(x′) is large enough to provide sufficient freedom for generating

polynomial approximations.

To address these challenges, we initially set the reduced interval for each PiH(x′) with

a singleton value [vi, vi]. The intuition is to identify at least a single value where the output

compensation function produces the correctly rounded results. Each value vi for PiH(x′)

guarantees that the result of the output compensation function using the singleton values

will produce the correctly rounded result of f(x). Next, we incrementally widen the re-

duced intervals [l′i, h
′
i] for each PiH(x′) at the same time to ensure that the relative size of

the reduced intervals is equal to each other. If the output compensation function is mono-

tonically increasing and our methodology returns reduced intervals, then evaluating the

output compensation function using any values in the reduced intervals is guaranteed to

produce the correctly rounded result.

110

4.5.1 High-level Overview of the RLIBM Approach For Multivariate Output Com-

pensation Function

The top-level algorithm for generating polynomials that produce the correctly rounded re-

sults when used with multivariate output compensation function is shown in Algorithm 4.13.

Our algorithm generates a polynomial PiH(x′) for each gi(x′) that must be approximated

to use the output compensation function (line 12-13). If we are unable to find a polynomial

for a particular gi(x′) (line 11), then the developer of the math library should explore a

different range reduction strategy, use a higher precision representation for H, or generate

a higher degree polynomial.

The approach to generate polynomials for multivariate output compensation function

has four main steps. First, we compute the correctly rounded result of f(x) for each in-

put x using an oracle (line 2). Then, we identify the rounding interval [l, h] ∈ H where

all values in the interval rounds to the correctly rounded result. The first step returns a

list L containing the constraint pair (x, [l, h]) for each input x. Each constraint (x, [l, h])

constrains the output of our entire approximation AH(x) such that it produces the correctly

rounded result of f(x).

Second, for each constraint (x, [l, h]), we identify the reduced input x′ and the reduced

intervals [l′i, h
′
i] for each polynomial PiH(x′) at the same time (line 4). The reduced con-

straint pairs (x′, [l′i, h
′
i]) for each PiH(x′) specify that if PiH(x′) produces a value in the re-

duced interval, then the polynomials used with the output compensation function will pro-

duce the correctly rounded results. CalcReducIntervalsMulti in Algorithm 4.14

returns a list L′ containing the list of reduced constraints L′i for each function gi(x′).

Third, for each list L′i, we combine all reduced intervals that correspond to the same

reduced input x′ using the strategy described in Section 4.4.3 to make sure that there is one

combined interval [l∗i , h
∗
i] for each unique x′ (line 7). Finally, we generate the polynomials

PiH(x′) that approximates gi(x′) using the list of combined constraints L∗i . In the remainder

of this section, we present our algorithm to identify reduced intervals for each polynomial

111

Algorithm 4.14: CalcRedIntervalsMulti computes the reduced interval [l′i, h
′
i] and

the reduced input x′ corresponding to input x for each function gi(x′) used in the output com-
pensation. If our polynomial approximation for gi(x′) produces a value in [l′i, h

′
i], then we can

generate the correctly rounded result for x. The function returns a list with (x′, [l′i, h
′
i]) for each

gi.
1 Function CalcReducIntervalsMulti(L, RRH, OCH):
2 if OCH is not monotonic function then return ∅
3 G← {list of functions used in OCH}
4 foreach gi ∈ G do Li ← ∅
5 foreach (x, [l, h]) ∈ L do
6 x′ ← RRH(x)
7 V ← {RNH(gi(x

′)) | gi ∈ G}
8 if OCH(V, x) /∈ [l, h] then return ∅
9 I ′ ← {[v, v] | v ∈ V } // Singleton reduced interval for each gi(x

′)

10 while true do
// Decrease the lower bounds l′i simulataneously

11 A← {GetPrecVal(l′i, H) | [l′i, h′i] ∈ I ′}
12 if OCH(A, x) /∈ [l, h] then break
13 I ′ ← {[GetPrecVal(I ′i, H), h′i] | [l′i, h′i] ∈ I ′}
14 end
15 while true do

// Increase the upper bounds h′i simulataneously

16 B ← { GetSuccVal(h′i, H) | [l′i, h′i] ∈ I ′}
17 if OCH(B, x) /∈ [l, h] then break
18 I ′ ← {[I ′i, GetSuccVal(h′i, H)] | [l′i, h′i] ∈ I ′}
19 end
20 foreach [l′i, h

′
i] ∈ I ′ do

21 Li ← Li ∪ (x′, [l′i, h
′
i])

22 end
23 end
24 return {(gi,Li) | gi ∈ G}

PiH(x′).

4.5.2 Identifying Reduced Inputs and Intervals For Each Polynomial

After computing the rounding intervals from the first step (line 2 in Algorithm 4.13), we

have a list of constraints (x, [l, h]) that our entire approximation function AH(x) must sat-

isfy for each input x to produce the correctly rounded results. The multivariate output

compensation function requires us to approximate multiple functions gi(x′). The polyno-

mial approximations of each gi(x′) must produce values such that evaluating the output

112

compensation function using these values produces the correctly rounded result of f(x).

The goal of our second step is to identify the reduced inputs and the reduced intervals for

each PiH(x′).

Algorithm 4.14 presents the process of identifying the reduced input and intervals.

The reduced inputs can be computed using the range reduction function on each input

x (line 6). To compute the reduced intervals, we use a two-step approach. First, for

each reduced input x′, we identify a single value vi for each gi(x′) using an oracle. Us-

ing vi’s with the output compensation function produces the correctly rounded result (i.e.,

OCH(v1, v2, . . .) ∈ [l, h]). The purpose of vi’s is to be the starting point in identifying the

reduced intervals. If the representation H has high enough precision, then using the cor-

rectly rounded result of gi(x′) in H (i.e., vi = RNH(gi(x
′))) with the output compensation

function will produce the correctly rounded result (line 7). If the result of output com-

pensation using RNH(gi(x
′)) does not produce the correctly rounded result, then either the

precision of H should be increased or the range reduction strategy should be redesigned.

An alternative approach that we have found useful in some cases is to search for a value in

the vicinity of gi(x′) in H that can be used for vi. In our experience, the values (i.e., vi) that

produce the correctly rounded result when used with output compensation were at most

one or two H values away from gi(x
′). Using vi, we create a candidate reduced interval

[l′i.h
′
i] = [vi, vi] for each gi(x′) (line 9). These singleton intervals satisfy the most impor-

tant invariant of a reduced interval: Any value within the reduced intervals (i.e., vi’s) must

guarantee to produce the correctly rounded result when used with the output compensation

function.

Based on the candidate reduced interval [l′i, h
′
i] for each PiH(x′), our next step is to

identify the maximum amount of freedom available to generate PiH(x′). We check if we

can decrease the lower bound of the intervals for each PiH(x′) at the same time. We itera-

tively check if using the preceding values of l′i in H with the output compensation function

produces a value in the rounding interval [l, h]. If it does, then we widen the reduced in-

113

terval by replacing l′i with the preceding value of li. We repeat the process until using the

preceding values of l′i with the output compensation function does not produce a value in

[l, h] (lines 10-13).

Similarly, we check if we can increase the upper bound of the intervals for each PiH(x′).

We compute the succeeding value of h′i and check if the output compensation function using

these values will produce a value in [l, h]. If it does, then we widen the reduced interval by

replacing each h′i with the succeeding value of h′i. We repeat this process until the output

compensation function using the succeeding value of h′i does not produce a value in [l, h]

(lines 14-17). This process identifies the reduced intervals [l′i, h
′
i] for each PiH(x′) where

using any value within the interval with the output compensation function produces the

correctly rounded results. Additionally, it ensures that the relative size of [l′i, h
′
i] for each

PiH(x′) for a given input x is the same, providing a similar amount of freedom between

each polynomial.

Identifying the lower bound and the upper bound of the reduced inputs can be computed

more efficiently. Because the output compensation function is monotonically increasing,

the final lower bounds can be identified by performing a binary search between vi and the

minimum representable value of H. Similarly, the final upper bounds can be identified by

performing a binary search between vi and the maximum representable value of H. Thus,

widening the reduced intervals requires at most n iterations where n is the number of bits

in H.

Finally, we store the reduced constraints (x′, [l′i, h
′
i]) for each function gi(x′) in a list L′i

(line 19) and return L′i for all gi(x′) (line 20). Our approach then combines the reduced

intervals that map to the same reduced inputs and produces a polynomial that satisfies all

constraints using LP formulation.

114

4.6 Summary

A common strategy to generate an efficient polynomial approximation of an elementary

function f(x) is to use range reduction strategies, which reduce the input domain of the

function into a smaller domain. Thus, a low degree polynomial can be used to produce

correctly rounded results. Generating polynomial approximations that produce correctly

rounded results when used with range reduction is a difficult task. Both the range reduction

function and the output compensation function are evaluated in finite precision representa-

tions and can experience numerical errors.

In this chapter, we propose a novel technique to generate efficient and correctly rounded

approximation functions in the presence of range reduction. Our key insight is to infer the

inputs and the range of values that our polynomial approximation should produce using

the rounding interval of the correctly rounded results of f(x), the range reduction function,

and the output compensation functions. Once such a list of inputs and the range of out-

put values for the desired polynomial is identified, then we can use an LP formulation to

specify the constraints for our polynomial and use an LP solver to generate the polynomial,

as described in Chapter 3. When our approach successfully generates polynomials, then

the polynomials used with the output compensation function are guaranteed to produce the

correctly rounded results for all inputs. Our approach supports various complex range re-

duction strategies where the output compensation functions require approximations of one

or more functions. We also propose improved range reduction strategies for several ele-

mentary functions to eliminate cancellation errors in the output compensation functions,

increasing the numerical stability. Our methodology automatically generates a polynomial

given an elementary function f(x), the range reduction function, and the output compen-

sation function, thus requiring little assistance from math library developers.

115

CHAPTER 5

THE RLIBM APPROACH FOR 32-BIT REPRESENTATIONS

In this chapter, we scale the RLIBM approach described in the previous chapters to produce

correctly rounded results for 32-bit representations. The primary challenge in generating

polynomial approximations for 32-bit representations is that there are four billion inputs

and the result must be significantly more accurate compared to 16-bit representations. To

address these challenges, we propose two enhancements. First, we use counterexample

guided polynomial generation to handle millions of constraints. Second, we generate ef-

ficient piecewise polynomials by splitting the input domain using the bit-pattern of the

inputs.

5.1 Scaling Our Approach to 32-Bit Representations

The IEEE-754 standard 32-bit float type is one of the most commonly used datatypes for

three reasons. (1) Most commercial hardware supports efficient float arithmetic. (2) It pro-

vides a reasonable amount of dynamic range (approximately [10−45, 1038)) and precision

(roughly 6 decimal digits) for many scientific applications. (3) It requires half the storage

space compared to the 64-bit double, another configuration supported in common hard-

ware, providing faster data transfer. Unfortunately, widely used math libraries (i.e., glibc’s

and Intel’s libm) do not produce correctly rounded results of elementary functions for all

inputs in the 32-bit float.

There are two primary challenges in scaling the RLIBM approach to 32-bit represen-

tations. First, 32-bit representations have four billion inputs. Even after range reduction,

there may be millions of reduced inputs. LP formulations with millions of constraints are

beyond the capabilities of the state-of-the-art LP solvers. Second, it may not be possible

to generate a single polynomial with a reasonable degree that satisfies all the constraints.

116

Although a high-degree polynomial can produce correct results for all 32-bit inputs, such

a polynomial may not be ideal from a performance viewpoint. It is desirable to use lower-

degree polynomial considering the performance of the math library. Hence, we extend the

RLIBM approach with two techniques. First, we propose counterexample guided poly-

nomial generation technique that samples inputs to handle a large number of constraints.

Second, we generate piecewise polynomials to create efficient polynomial approximations.

Piecewise polynomials. Given a list of inputs in the domain [a, b], we first try to generate

a single polynomial that produces the correctly rounded result for all inputs using the coun-

terexample guided polynomial generation. If we are unable to generate a polynomial or

the polynomial does not satisfy our performance constraint, then we split the input domain

[a, b] into sub-domains [a, b′) and [b′, b] and generate a polynomial for each sub-domain. To

identify the inputs that belong to each sub-domain, we use bits in the bit-string of the input.

If we still cannot generate polynomials with a reasonable degree for each sub-domain, then

we iteratively split the original input domain into smaller sub-domains until we can gener-

ate a piecewise polynomial that produces the correctly rounded results for all inputs. By

using bit-patterns to identify sub-domains and generating low degree polynomial for each

sub-domain, our strategy produces efficient piecewise polynomials.

Counterexample guided polynomial generation. Even after splitting the input domain,

there may still be millions of inputs in each sub-domain. Thus, we sample a small por-

tion of inputs in the sub-domain to generate a polynomial. Our intuition is that it is not

necessary to reason about all constraints to generate a polynomial that produces correctly

rounded results for all inputs. It is sufficient to reason about inputs with highly constrained

intervals. Our counterexample guided polynomial generation technique uses the following

process. First, we sample some inputs in the sub-domain and generate a candidate poly-

nomial that satisfies the constraints in the sample. Next, we check whether the candidate

polynomial satisfies all constraints in the sub-domain. We add any constraints not satisfied

117

sign

S E1 E2 F1 F2 F3

exponent mantissa

Figure 5.1: Bit-string representation of a 6-bit FP (FP6) with 2 exponent bits and 3 mantissa bits.

by the polynomial to the sample. We repeat the process until the generated polynomial sat-

isfies all constraints in the sub-domain or the LP solver determines that it cannot generate

a polynomial that satisfies all constraints in the sample. If the LP solver cannot generate

a polynomial or there are too many inputs in the sample, we split the input domain into

smaller sub-domains and repeat the process. The counterexample guided polynomial gen-

eration is inspired by the counterexample guided inductive synthesis (CEGIS) [72, 123]

used in program synthesis.

5.2 Illustration

We show an end-to-end example of creating piecewise polynomials that produce the cor-

rectly rounded results of ln(x) in a 6-bit FP representation (FP6) that has two exponent bits

and three mantissa bits (Figure 5.1). In our illustration, we use the double representation

to perform all internal computation. This example is illustrated for pedagogical reasons

to highlight our approach in splitting sub-domains and performing counterexample guided

polynomial generation. In practice, it is more beneficial to create a look-up table containing

the results of ln(x) in FP6 as there are only 26 = 64 values.

The elementary function ln(x) is defined over the input domain (−∞,∞). There are

23 FP6 values ranging from 0.125 to 3.75 in the input domain. The remaining FP6 values

are considered as special cases. If x = 0, then we return ln(x) = −∞. When x =∞, then

we return ln(x) = ∞. If x < 0 or x = NaN , then the function ln(x) is not defined and

we return NaN .

Our approach to generating piecewise polynomials for FP6 involves three steps. First,

we identify the correctly rounded result of ln(x) in FP6 and its rounding interval for each

118

0.5 1.0 1.5 2.0 2.5 3.0 3.5
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

log(x)
Rounding intervals
FP6 result

Figure 5.2: We show the function ln(x) with black line. The correctly rounded result of ln(x)
for each input in FP6 is shown with a black circle. The gray boxes represent the rounding intervals
of each correctly rounded result. We split the entire input domain into two sub-domains: the first
sub-domain including inputs from 0.125 to 1.875 (purple background) and the second sub-domain
including inputs from 2.0 to 3.5 (green background). We then generate a polynomial that produces
correct results for each sub-domain.

input. Next, we need to generate polynomial approximations for ln(x). While it is possible

to generate a single polynomial of degree 5 for the entire input domain, our goal is to gen-

erate efficient polynomials. Instead of a single polynomial, we generate a piecewise poly-

nomial where each polynomial has a lower degree, thus increasing performance. Hence,

our second step splits the input domain into smaller sub-domains. Third, we perform coun-

terexample guided polynomial generation to obtain a polynomial for each sub-domain. At

the end of this process, each polynomial produces the correctly rounded result for all inputs

in its corresponding sub-domain. Since there are only 23 inputs in FP6 for ln(x), we do

not use range reduction for exposition.

Identifying the correctly rounded result and rounding intervals. Similar to the approaches

described in previous chapters, we compute the correctly rounded result of ln(x) using an

oracle for each input x in FP6. Then, we identify the rounding interval [l, h] in double rep-

resentation where all values in the interval rounds to the correctly rounded result. Our goal

is to generate piecewise polynomials that produce a value in the rounding interval for each

input x. Figure 5.2 shows the correctly rounded result of ln(x) in FP6 (black circle) and

119

0.125 (0x3fc0000000000000)

common bit

0 0 1 1 1 1 1 1 1 1 0 …

3.75 (0x400e000000000000) 0 1 0 0 0 0 0 0 0 0 0 …

sub-domain index

common bit sub-domain index

(a)

(b)

Figure 5.3: To approximate ln(x) for FP6, we create piecewise polynomials with 2 sub-domains.
We use a bit in the double representation of the input to identify the sub-domain for each polynomial.
(a) shows the smallest input for ln(x) in FP6 which corresponds to the first sub-domain. (b) shows
the largest input which corresponds to the second sub-domain.

the corresponding rounding interval (gray area) for each input in FP6. Each pair (x, [l, h])

defines a constraint on the piecewise polynomials that we want to generate.

5.2.1 Domain Splitting

Once we have a list of constraints (x, [l, h]), the next step is to generate polynomial ap-

proximations for ln(x). Initially, we try to generate a single polynomial for the entire input

domain using the counterexample guided polynomial generation. If we cannot generate

a single polynomial or the polynomial does not meet the performance threshold, then we

split the input domain into sub-domains and generate piecewise polynomials. We iteratively

split the domain into smaller sub-domains until we can generate polynomials that produce

the correctly rounded results for all inputs and satisfies the performance requirement.

Let us suppose that we are going to split the input domain into 2 sub-domains and

generate a polynomial approximation for each sub-domain. We use the bit-pattern of the

input in the double representation to identify the sub-domain. All inputs for ln(x) are

positive values. In FP representations, the first bit of the bit-string represents the sign

bit. Thus, the most significant bit (the first bit) among all inputs is identical, as shown in

Figure 5.3(a) and (b). We use the next bit (the second bit), to identify the inputs that belong

to each of the two sub-domains. All inputs such as x = 0.125 (Figure 5.3(a)) where the

120

−2.125 ≤ P (0.125) ≤ −1.9375

−1.4375 < P (0.25) < −1.3125

−0.5625 ≤ P (0.625) ≤ −0.4375

−0.0625 ≤ P (1.0) ≤ 0.0625

0.5625 < P (1.875) < 0.6875

(a)

0.25 0.50 0.75 1.00 1.25 1.50 1.75

−2.0

−1.5

−1.0

−0.5

0.0

0.5

P(x) = c0 + c1x+ … + c4x4

Satisfied intervals
Sampled intervals
Intervals not satisfied by P(x)

(b)

−2.125 ≤ P (0.125) ≤ −1.9375

−1.4375 < P (0.25) < −1.3125

−0.5625 ≤ P (0.625) ≤ −0.4375

−0.0625 ≤ P (1.0) ≤ 0.0625

0.4375 ≤ P (1.75) ≤ 0.5625

0.5625 < P (1.875) < 0.6875

(c)

0.25 0.50 0.75 1.00 1.25 1.50 1.75

−2.0

−1.5

−1.0

−0.5

0.0

0.5

P(x) = c0 + c1x+ … + c4x4

Satisfied intervals
Sampled intervals

(d)

Figure 5.4: The procedure to generate a polynomial for the first sub-domain. (a) We initially sam-
ple five constraints and generate a candidate 4th degree polynomial that satisfies these constraints.
(b) The generated polynomial satisfies all constraints except for the input x = 1.75. (c) We add
the constraint corresponding to the input x = 1.75 to the sample and generate another polyno-
mial that satisfies the six constraints. (d) The second polynomial satisfies all constraints in the first
sub-domain.

second bit is 0 is grouped into the first sub-domain. There are 15 inputs ranging from 0.125

to 1.875 in the first sub-domain. Similarly, all inputs similar to x = 3.75 (Figure 5.3(b))

where the second bit is 1 is grouped into the second sub-domain. There are 8 inputs ranging

from 2.0 to 3.75 in the second sub-domain. The graph in Figure 5.2 shows the two sub-

domains with different background colors, purple for the first sub-domain and green for the

second sub-domain.

121

5.2.2 Polynomial Generation for Each Sub-Domain.

The final step is to generate a polynomial for each sub-domain. This polynomial must

produce a value within the rounding interval [l, h] for each input x in the sub-domain. In

the first sub-domain, there are 15 such inputs and the corresponding rounding intervals.

Initially, we sample a portion of the inputs in the first sub-domain. Figure 5.4(a) shows the

five inputs that we sample. We encode the inputs and the rounding intervals as linear con-

straints, create an LP query, and use an LP solver to generate a candidate polynomial that

satisfies the constraints in the sample. Figure 5.4(b) shows a candidate 4th degree polyno-

mial. Next, we check whether the candidate polynomial produces a value in the rounding

interval for all inputs in the sub-domain. There is an input where the polynomial does not

produce a value within the reduced interval, highlighted with the red box Figure 5.4(b).

We add this counterexample input to the sample (Figure 5.4(c)). The polynomial created

using the new sample satisfies all the constraints in the first sub-domain, as shown in Fig-

ure 5.4(d).

Using the same approach, we generate a polynomial for the second sub-domain. Fig-

ure 5.5(a) shows the initial sample of three inputs and the constraints. The 1st degree

polynomial generated using the sample of inputs does not produce a value in the rounding

interval for an input in the second sub-domain. (Figure 5.5(b)). We add this counterexam-

ple to the sample (Figure 5.5(c)) and generate another candidate polynomial that satisfies

the four constraints (Figure 5.5(d)). This polynomial does produce a value in the round-

ing interval for all inputs in the second sub-domain. The final piecewise polynomial that

produces the correctly rounded results of f(x) for all 23 inputs is shown in Figure 5.6

5.3 Our Approach to Generate Piecewise Polynomials

Algorithm 5.1 provides a high-level overview of our approach to generate piecewise poly-

nomials that produce correctly rounded results for all inputs in a given 32-bit representation

122

0.6875 ≤ P (2) ≤ 0.8125

8.125 < P (2.5) < 0.9375

1.3125 < P (3.75) < 1.4375

(a)

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75

0.6

0.8

1.0

1.2

1.4

P(x) = c0 + c1x
Sampled intervals
Satisfied intervals
Intervals not satisfied

(b)

0.6875 ≤ P (2) ≤ 0.8125

0.6875 ≤ P (2.25) ≤ 0.8125

8.125 < P (2.5) < 0.9375

1.3125 < P (3.75) < 1.4375

(c)

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75

0.6

0.8

1.0

1.2

1.4

P(x) = c0 + c1x
Sampled intervals
Satisfied intervals

(d)

Figure 5.5: The procedure to generate a polynomial for the second sub-domain. (a) We initially
sample three constraints and generate a candidate 1st degree polynomial that satisfies these con-
straints. (b) The generated polynomial satisfies all constraints except for the input x = 2.25. (c)
We add the constraint corresponding to the input x = 2.25 to the sample and generate another poly-
nomial that satisfies the four constraints. (d) The second polynomial satisfies all constraints in the
second sub-domain.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

P(x) for the first sub-domain
P(x) for the second sub-domain
Rounding intervals

Figure 5.6: Illustration of the piecewise polynomials produced with our approach. Each polyno-
mial produces the correctly rounded results of ln(x) for all inputs in the corresponding sub-domain.

123

Algorithm 5.1: CorrectPiecewise computes piecewise polynomials of degree d. The
generated polynomials produce the correctly rounded result of f(x) for each input in the cor-
responding sub-domain when used with output compensation function. GenPiecewise is
shown in Algorithm 5.2.

1 Function CorrectPiecewise(f , T, H, X , d, RRH, OCH):
2 L← CalcRndIntervals(f , T, H, X)
3 if L = ∅ then return (false, DNE)
4 L′ ← CalcReducIntervals(L, H, RRH, OCH)
5 if L′ = ∅ then return (false, DNE)
6 L∗ ← CombineReducIntervals(L′)
7 if L∗ = ∅ then return (false, DNE)

// Change from Chapter 4: Generates piecewise polynomial

8 Ψ← GenPiecewise(L∗, d)
9 return (true, Ψ)

T. Algorithm 5.1 extends the RLIBM approach from Chapter 4. Given an elementary func-

tion f(x) and a list of inputs X , we compute the correctly rounded result of f(x) and

identify the rounding interval in H for each result (line 2). Then, using the range reduction

function and output compensation function, we identify the reduced inputs x′ and reduced

intervals [l′, h′] (lines 4-7). The pair (x′, [l′, h′]) for each x′ specifies a constraint on the

output of the polynomial approximation that we want to generate. If the polynomial ap-

proximation produces a value in the reduced interval, then it will produce the correctly

rounded result for all inputs when used with the output compensation function. Instead

of generating a single polynomial, the extended RLIBM approach generates a piecewise

polynomial using domain splitting and counterexample guided polynomial generation (line

8). We first iteratively split the domain of the reduced input into multiple sub-domains

(Algorithm 5.2). Then, we use counterexample guided polynomial generation which uses

a small portion of constraints to generate a polynomial that produces a value in the reduced

interval for all inputs in the sub-domain (Algorithm 5.3). In the remainder of the section,

we focus on describing our domain splitting and counterexample guided polynomial gen-

eration in more detail. We assume that we have already identified the list of reduced inputs

and intervals.

124

5.3.1 Domain Splitting for Efficient Piecewise Polynomials

Once we compute the list of constraints L∗ containing reduced inputs x′ and its correspond-

ing reduced intervals [l′, h′], our goal is to generate polynomials that satisfy the constraints

in L∗. Even after range reduction, there can be millions of constraints in L∗. Given a suffi-

ciently high degree d, the counterexample guided polynomial generation technique which

we describe in Section 5.3.2 can generate a single polynomial. However, a high degree

polynomial is not efficient. Hence, we generate piecewise polynomials with lower degrees.

We split the reduced input domain into sub-domains and generate a polynomial for each

sub-domain. Each polynomial only needs to satisfy the constraints in the corresponding

sub-domain, leading to a lower degree and better performance when evaluating the poly-

nomial. For best performance, effectively splitting the input domain is essential. We must

avoid the situation where the performance gain in evaluating lower degree polynomial is

outweighed by the overhead of identifying which polynomial to evaluate for a given in-

put. Hence, we group the reduced inputs into sub-domains based on the bit-pattern of the

reduced inputs in H.

Algorithm 5.2 illustrates our approach to generate piecewise polynomials. Abstractly,

our strategy is to split the entire input domain into 2n sub-domains and use n bits of the

bit-pattern of x′ to group the reduced inputs. Considering the bit-string of the reduced

input x′ in H, the first bit is the sign bit and the next several bits represent the exponent

bits. Additionally, range reduction reduces the input in T to a value in a small domain

[a, b]. Thus, it is likely that the first several bits of the bit-string are identical for all reduced

inputs. We use the next n bits to group the reduced inputs into each sub-domain.

Some range reduction techniques can create both positive and negative reduced inputs.

The bit-string of positive and negative reduced inputs in H will not have any common

bits because the first bit distinguishes between negative and positive values. Hence, we

separate the reduced inputs and their corresponding reduced interval into two groups: L−

that contains negative reduced inputs, and L+ that contains positive reduced inputs (lines 2

125

Algorithm 5.2: GenPiecewise generates piecewise polynomials that produce a value in the
reduced interval for all reduced inputs in L. It initially attempts to produce a single polynomial
for the entire reduced input domain. If unsuccessful, then it splits the domain into multiple
sub-domains. SplitDomain splits the reduced input domain into sub-domains based on the
bit-pattern of the reduced inputs in H. CeGPolyGen generates a polynomial for each sub-
domain, which is shown in Algorithm 5.3.

1 Function GenApproxFunc(L, d):
2 L− ← {(x′, [l′, h′]) ∈ L | x′ < 0}
3 L+ ← {(x′, [l′, h′]) ∈ L | x′ ≥ 0}
4 Ψ− ← GenApproxHelper(L−, d)
5 Ψ+ ← GenApproxHelper(L+, d)
6 return {Ψ−,Ψ+}
7 Function GenApproxHelper(L, d):
8 n← 0
9 while true do

10 ∆ = SplitDomain(L, n)
11 (status,Ψ) = GenPiecewise(∆, d)
12 if status = true then return Ψ
13 n← n+ 1

14 end
15 Function GenPiecewise(∆, d):
16 Ψ← ∅
17 foreach ∆i ∈ ∆ do
18 (status,Ψi)← CeGPolyGen(∆i, d)
19 if status = false then return (false, ∅)
20 Ψ← Ψ ∪Ψi

21 end
22 return (true, Ψ)

and 3). Then create polynomial approximations for each L− and L+ (lines 4 and 5).

When the list L has either positive reduced inputs (i.e., L = L+) or negative reduced

inputs (i.e., L = L−), we try to generate a single polynomial of degree d that produces a

value in the reduced interval for each reduced input x′ in L (line 11). If we cannot generate

such a polynomial, then we split the reduced input domain into sub-domains (lines 9-13).

The reduced input domain is split into 2n sub-domains (line 10). To split the domain, we

identify the smallest reduced input x′min and the largest reduced input x′max in L, excluding

the reduced input 0. The range reduction function is evaluated in the higher precision

representation H and reduces the entire original input domain into a smaller domain. This

126

0 (0x0000000000000000) 0 0 0 0 0 0 0 0 0 0 0 …

5.98… x 10-8 (0x3e70101010101010) 0 0 1 1 1 1 1 0 0 1 1 …

common bits sub-domain index

7.81… x 10-3 (0x3f7fffe000000000) 0 0 1 1 1 1 1 1 0 1 1 …

sub-domain index

1

1

common bits

0

Figure 5.7: Bit-pattern of the reduced inputs 0, x′min, and x′max in the double type (H) when
splitting the reduced input domain of ln(x) for 32-bit float (T) after using the range reduction
strategy described in Chapter 4. The first 7 bits in the bit-pattern of x′min and x′max are identical.
To split the input domain into 25 sub-domains, we use the next 5 bits of the bit-pattern to group
reduced inputs into each sub-domain.

may lead to a significant gap between 0 and the nearest reduced input in L. If we do

not exclude 0 when splitting the domain, several sub-domains will be assigned for the

reduced inputs between 0 and its nearest reduced input, resulting in empty sub-domains.

Hence, when we determine the bit-pattern to split the input domain, we exclude 0 from

consideration to evenly place the reduced inputs into each sub-domain.

The reduced inputs (excluding 0) in L are likely to have common bits in the sign bit and

the exponent bits since the inputs are in a small domain. We identify the consecutive bits

that are identical in the bit-string representation of x′min and x′max in the higher precision

representation H, starting from the most significant bit. Then, we use the next n bits to

identify the sub-domain. We group all reduced inputs and reduced intervals that share the

same bit-pattern of the n bits into the same sub-domain ∆i, indexed by the n-bit used for

sub-domain identification. The reduced input 0 is grouped into ∆0, as the bit-pattern of 0

is composed of all 0 bits.

Illustration Consider an example where our goal is to generate polynomials approxima-

tions of ln(x) for 32-bit float. Mathematically, the range reduction for ln(x) described in

Chapter 4 reduces the input domain into [0, 1
128

). When we reduce the 32-bit float inputs

into reduced inputs, there is a significant gap between 0 and the nearest reduced input.

Specifically, the reduced input domain is {0} ∪ [5.98 · · · × 10−8, 7.81 · · · × 10−3]. Hence,

127

x′min = 5.98 · · · × 10−8 and x′max = 7.81 · · · × 10−3.

Figure 5.7 shows the bit-pattern of 0, x′min, and x′max in the higher precision represen-

tation, 64-bit double. There is a significant gap between 0 and x′min as there are roughly

4.5 × 1018 bit-patterns between the two values. The first 7 bits in the bit-patterns of x′min

and x′max are identical. To create 25 sub-domains, we use the next 5 bits in the bit-string.

The reduced input 0 is then assigned to the 0th sub-domain.

Once the sub-domains and the reduced inputs corresponding to each sub-domain are

identified, we try to generate a polynomial of degree d that satisfies the constraints in each

sub-domain ∆i (line 18 in Algorithm 5.2). If we cannot generate a polynomial for at least

one sub-domain, then we split the reduced input into 2n+1 sub-domains and repeat the

process. Once we generate a polynomial for each sub-domain, the coefficients of the poly-

nomials are stored in a table, indexed by the bit-pattern used to identify the sub-domain.

Using bit-patterns of the reduced input in H allows us to efficiently identify the sub-domain

given a reduced input. It requires a single masking operation and a shift operation.

5.3.2 Counterexample Guided Polynomial Generation

Even after range reduction and domain splitting, there can be millions of reduced inputs

and reduced intervals in each sub-domain. With the current hardware technology, even

the state-of-the-art LP solvers can only handle thousands of constraints. To address this

challenge, we propose counterexample guided polynomial generation with sampling. Our

insight is that it is not necessary to reason about every single constraint in the sub-domain,

as illustrated in Section 5.2. As we are approximating continuous elementary functions,

the reduced intervals of adjacent reduced inputs are gradually increasing or decreasing. If a

polynomial satisfies the constraint for a given reduced input, then it is likely that the same

polynomial satisfies the constraint for nearby inputs, except when the reduced intervals of

the nearby inputs are significantly constrained. Thus, as long as we use highly constrained

intervals, the generated polynomial will produce a value in the interval for all inputs in the

128

Algorithm 5.3: GenPolynomial attempts to find a polynomial of degree d that satisfies
the reduced input and interval constraints in ∆i using our counterexample guided sampling ap-
proach. If it is infeasible to find a polynomial of degree d or the size of the sample exceeds
a threshold, then it returns (false, ∅). GeneratePoly generates the coefficients of a polyno-
mial that satisfies all constraints in S using the LP solver (described in Section 3.3). Check
validates that the polynomial generated using the sample satisfies all reduced input and interval
constraints.
1 Function GenPolynomial(∆i, d):
2 S ← Sample(∆i)
3 while true do
4 (status,Ψi)← GeneratePoly(S, H, d)
5 if status = false then return (false, ∅)
6 (Done,S)← Check(Ψi, ∆i, S)
7 if Done = true then return (true,Ψi)
8 if |S| > threshold then return (false, ∅)
9 end

10 Function Check(Ψi, ∆i, S):
11 Done← true
12 foreach (x′, [l′, h′]) ∈ ∆i do
13 if not l′ ≤ Ψi(x

′) ≤ h′ then
14 S ← {(x′, [l′, h′])} ∪ S
15 Done← false

16 end
17 end
18 return (Done,S)

sub-domain.

Algorithm 5.3 shows the counterexample guided polynomial generation technique. It

accepts a list of reduced constraints [x′, [l′, h′]] in the sub-domain ∆i and the degree d of

the polynomial that we wish to generate. The list of constraints in ∆i is stored in increasing

order of x′. Our goal is to generate a polynomial of degree d that produces a value in the

interval [l′, h′] for each reduced input in ∆i. We choose a small portion of constraints in

∆i (line 2) by uniformly sampling the constraints based on the distribution of the reduced

inputs. If there are a significant number of reduced inputs in a small region of the sub-

domain, our process samples more inputs from that region. We also add constraints where

the size of the reduced interval is smaller than a certain bound ε, which can be specified by

the math library developer.

129

Next, we generate a candidate polynomial that satisfies all the constraints in the sample

using the LP formulation (line 4). If it is not possible to generate a polynomial of degree

d that satisfies all constraints in the sample, we split the reduced input domain into smaller

sub-domains and repeat the entire process. Otherwise, we check whether the candidate

polynomial satisfies all constraints in the sub-domain ∆i (lines 12-17). If there is any con-

straint not satisfied by the polynomial, then the constraints are added to the sample (lines

13-15). We repeat the process of generating candidate polynomials until the polynomial

satisfies all constraints in ∆i (line 7). At any point, if the number of constraints in the

sample exceeds a certain threshold, we determine that we cannot generate a polynomial of

degree d (line 8).

5.3.3 Storing the Coefficients of Piecewise Polynomials

At the end of our process, we obtain two piecewise polynomials, Ψ− that produces the

correctly rounded results of all inputs that reduce to negative reduced inputs and Ψ+ that

produces the correctly rounded results of all inputs that reduce to positive reduced inputs.

The two piecewise polynomials are stored in a separate table.

Each polynomial Ψi in a piecewise polynomial Ψ (i.e., Ψ = Ψ− or Ψ = Ψ+) is indexed

using the bit-pattern, i, used to group reduced inputs to the corresponding sub-domain. The

polynomial has a degree of d or smaller,

Ψi = ci,0 + ci,1x+ ci,2x
2 + · · ·+ ci,dx

d

If Ψi has a degree d′ < d, then all coefficients after the d′th term are zeros. If there are no

reduced inputs in a particular sub-domain with index i, then all coefficients in Ψi are zeros.

If there is a term ci,jx
j where ci,j = 0 across all polynomials in Ψ, i.e., when polynomial

approximations are even or odd, then we remove the term to avoid unnecessary overhead

when evaluating the polynomial. Finally, the coefficients of each Ψi in Ψ are stored in a

two-dimensional look-up table. The coefficients corresponding to each Ψiin Ψ are indexed

with i. Each coefficient ci,j in Ψi is indexed with j. Using this strategy, we can efficiently

130

retrieve the coefficients of a polynomial Ψi and use the same implementation to evaluate

different Ψi’s.

5.3.4 Implementing the Elementary Function

We now describe how to implement the elementary function of f(x) that produces the cor-

rectly rounded result for all inputs in T using the generated piecewise polynomials Ψ− and

Ψ+, the range reduction function RR(x), and the output compensation function OC(y′).

All internal computations are performed in the higher precision representation H. Given

an input x ∈ T, we determine whether x is a special case input, which can be imple-

mented using a series of branch statements. If x is a special case input, then we return

the corresponding result. Next, we convert the input x to H and perform range reduction

x′ = RR(x) to obtain the reduced input. We identify the sign of x′ to determine which

piecewise polynomial to use. If x′ < 0, then we retrieve the look-up table for Ψ−. Other-

wise, we retrieve the look-up table for Ψ+.

Once we retrieve the look-up table for the correct piecewise polynomial Ψ for x′, our

next goal is to retrieve the polynomial that corresponds to x′ by identifying the index of

the sub-domain that x′ belongs to. At implementation time, we already know the size

(i.e., 2n) of the piecewise polynomial Ψ. We use the strategy described in Section 5.3.1 to

identify the n-bit bit-pattern of x′ in H. This process can be efficiently implemented using

a single bitwise and operation and a shift right operation. We use this bit-pattern to

index into the look-up table and retrieve the coefficients of the polynomial Ψi. We evaluate

y′ = Ψi(x
′) and then use y′ to evaluate the output compensation function y = OC(y′). The

value y is in the higher precision representation H. Thus we round y to T, which is the

correctly rounded result of f(x) in the representation T.

131

5.4 Summary

In this chapter, we present our approach for generating piecewise polynomials to create

efficient and correctly rounded implementations. This approach is aimed towards generat-

ing correctly rounded polynomial approximations for 32-bit representations. We propose

two extensions to the RLIBM approach. First, we split the input domain into multiple sub-

domains using bit-patterns in the input and generate a polynomial for each sub-domain.

Second, we use counterexample guided polynomial generation to handle millions of in-

puts. Our approach has been instrumental in generating elementary functions for 32-bit

float and posit32. Our functions produce correctly rounded results for all inputs in 32-bit

representations and are faster than mainstream math libraries.

132

CHAPTER 6

A SINGLE POLYNOMIAL THAT PRODUCES CORRECT RESULTS FOR

MULTIPLE REPRESENTATIONS AND ROUNDING MODES

The previous chapters describe our approach to generate correctly rounded polynomial ap-

proximations for a specific FP representation and a single rounding mode. The generated

polynomials do not guarantee to produce the correctly rounded results for a different repre-

sentation or even a different rounding mode, due to double rounding error. In this chapter,

we propose a novel approach to generate polynomial approximations that produce correctly

rounded results for multiple representations and rounding modes. Our key idea is to ap-

proximate the correctly rounded result for an (n+ 2)-bit representation using the round to

odd (rno) rounding mode. The rno rounding mode has properties that avoid double round-

ing issues. We formally prove that the resulting polynomial approximation will produce

correctly rounded results for multiple representations and all standard rounding modes.

6.1 Case For Generic Math Libraries

Using our approaches described in the previous chapters, we have been successful in gener-

ating polynomial approximations of f(x) that produce correctly rounded results for a given

representation and a rounding mode. Since the posit standard specifies one rounding mode,

round to the nearest tie goes to even (i.e., rne), one polynomial approximation suffices

for each given representation. In the IEEE-754 standard for FP representations, there are

five standard rounding modes, rne, rna, rnz, rnp, and rnn mode. To produce correctly

rounded results of f(x) for different rounding modes, we can generate one polynomial ap-

proximation for each rounding mode. Five approximation functions for a given elementary

function and an FP representation are reasonable to generate, especially if we consider only

a few widely used representations.

133

Recently, new variations of FP with smaller bit-length have been proposed with vary-

ing amount of dynamic range and precision, including bfloat16 [76], FlexPoint [78], ten-

sorfloat32 [108], MSFP [100, 116], log number systems [44, 74, 112, 130], and the Posit

representation [55, 58]. Some of these variants are different configurations of FP while

some others (i.e., posits) are completely new number systems. All of these representa-

tions require math libraries to approximate elementary functions if we are to use them in

scientific applications. Generating math libraries for multiple variants of representations

requires significant effort and time, especially for different rounding modes.

Our goal is to generate a single approximation of an elementary function that produces

correctly rounded results for multiple representations and rounding modes. The primary

challenge is in identifying the values that the polynomial approximations should produce.

For example, consider the task of creating a math library for the float representation that

produces correctly rounded results with all rounding modes. A naive attempt at accom-

plishing this task may use a correctly rounded double math library such as CR-LIBM which

produces the correctly rounded result in the double type with rne rounding mode. The

double result can be rounded to the float type using the chosen rounding mode. Due to the

double rounding error, however, the final result will not be equal to the correctly rounded

result of f(x) for float for all inputs. If the real value of f(x) is extremely close to the

rounding boundary of two adjacent float values, then the error caused by rounding f(x) to

double using rne rounding mode can be significant enough to produce the wrong result for

float. We empirically show that this approach of using a correctly rounded math library for

double indeed produces wrong float results in Chapter 7.

Our key idea. Instead of generating a correctly rounded elementary function for each

representation and each rounding mode, it would be ideal to generate a single polynomial

approximation that produces the correctly rounded result of an elementary function for

multiple representations and rounding modes. We propose a novel approach to generate

134

such polynomials! Our key insight is to approximate the correctly rounded result of an

elementary function f(x) in the round to odd (rno) rounding mode. The rno rounding

mode has previously been explored to avoid the double rounding error when performing

primitive operations in extended precision and then subsequently rounding the result to

the smaller precision representation [9]. The rno mode can be described as follows. If a

real value is exactly representable in the target representation, it is rounded to the value

in the representation. Otherwise, rno rounds the real value to the nearest value in the

target representation where the bit-string is odd when interpreted as an unsigned integer.

Abstractly, the rnomode avoids double rounding error because it retains all the information

necessary to identify the correctly rounded value of the original real value. Our contribution

lies in recognizing that the rno mode has the properties which can be used to generate

correctly rounded elementary functions for multiple representations and rounding modes.

We provide more information on the rno mode in Section 6.3.1.

Our approach generates polynomial approximations that produce the correctly rounded

result of f(x) in the (n + 2)-bit representation Tn+2 with the rno mode. This polynomial

approximation produces the correctly rounded result for all k bit representation Tk with

any standard rounding modes, as long as k ≤ n and the number of exponent bits of Tk is

the same as Tn+2. We formally define the Tn+2 and Tk for FP and posit representations in

Section 6.3 and prove that the polynomial that we generate produces the correctly rounded

results for Tk with all standard rounding modes in Section 6.4.

High-level overview of our approach. To generate the polynomial approximation that

produces the correctly rounded result of f(x) in Tn+2 with the rno mode, we extend the

approach described in the previous chapters. We first compute the correctly rounded result

of f(x) in Tn+2 representation with the rno mode using an oracle to produce yrno. Using

the correctly rounded result, we identify a range of values that round to yrno when rounded

to Tn+2 with the rno mode. We call this interval the odd interval. When a polynomial

135

(a)

S E0
mantissaexponentsign

E1 F0 F1

(b)

S E0
mantissaexponentsign

E1 F0

(c)

S E0
mantissaexponentsign

E1 F0 F1 F2 F3

Figure 6.1: (a) Layout of the bit-pattern of the (a) 5-bit FP5, (b) 4-bit FP4, and (c) 7-bit FP7 used
in our illustration. All three representations have two exponent bits.

generates a value in the odd interval, then the polynomial is guaranteed to produce the

correctly rounded result of f(x) for all Tk using any standard rounding modes. Next, our

goal is to generate a polynomial that produces a value in the odd interval for each input. One

of the challenges in generating the polynomial is the existence of singleton odd intervals.

This can occur when the real value of f(x) for a particular input x is exactly representable

in Tn+2 and the bit-string of the value in Tn+2 is even when interpreted as an unsigned

integer. Because generating a polynomial that produces a singleton value for a particular

input is challenging, we use mathematical properties to identify the set of inputs resulting

in a singleton interval and develop an efficient implementation to compute the result. We

generate a polynomial that produces a value in the odd interval for the remaining inputs

and non-singleton odd intervals.

Using this approach, we created a math library with ten elementary functions for FP

and ten elementary functions for posit, which we call RLIBM-ALL. The FP functions in

RLIBM-ALL produce the correctly rounded result in the 34-bit FP representation, F34,8,

with the rno mode. They produce the correct results for all FP representations ranging

from the 10-bit F10,8 to the 32-bit F32,8 for all standard IEEE-754 rounding modes. These

representations include bfloat16, TensorFloat32, and float types. The posit functions in

RLIBM-ALL produce the correctly rounded result in the 34-bit posit representation, P34,2,

with the rno mode. They produce the correct results for all posit representations ranging

from the 2-bit P2,2 to the 32-bit P32,2, the standard 32-bit posit configuration.

136

6.2 Illustration

We provide an end-to-end example of creating a single polynomial that produces the cor-

rectly rounded results of ln(x) for a 5-bit FP with 2 exponent bits (FP5) and a 4-bit FP

with 2 exponent bits (FP4) using the standard rounding modes (i.e., rne, rna, rnz, rnp,

and rnn). Figure 6.1(a) and (b) shows the layout of the bit-string of FP5 values and FP4

values, respectively. We present our example with FP5 and FP4 to illustrate our approach

and describe the insights. In practice, creating a look-up table with pre-computed results is

more beneficial for FP5 and FP4 as there are only 32 and 16 bit-patterns, respectively.

The ln(x) function is defined over the input domain (0,∞). There are 11 values ranging

from 0.25 to 3.5 in FP5 within the input domain. The remaining 25 − 11 = 21 value are

special case inputs. Similarly in FP4, there are 5 values ranging from 0.5 to 3.0 within the

input domain. The remaining 24− 5 = 11 values are special case inputs. The special cases

can be filtered with a simple check followed by returning the correct result.

6.2.1 A Strawman Approach

Before presenting our approach, we present a strawman approach to generate a polynomial

for FP4 and FP5. The strawman approach highlights the challenges of generating polyno-

mial approximations for multiple representations and rounding modes. Let us pick an input

x = 1.5 that can be represented by both FP5 and FP4. Figure 6.2 shows the real value of

ln(1.5) (gray star) and the correctly rounded result for FP5 and FP4 with different round-

ing modes. Consider the first row in Figure 6.2, which shows the correctly rounded result

of FP5 with the rne mode (black circle). To produce this value, our polynomial approxi-

mation has to produce a value in the rounding interval of ln(1.5), for the rne result. The

second row in Figure 6.2 shows the correctly rounded result of FP5 with the rna mode and

the rounding interval to produce the correctly rounded rna result. The subsequent rows

show the correctly rounded result and the rounding interval for other rounding modes of

137

FP5 and rne

FP5 and rnp

FP5 and rnn

Interval for
FP7 and rno

FP4 and rne
0.50

0.50.250 0.75

0.50.250

0.5

0.75

0.750.250

0.25 0.50.375 0.4375 0.750

FP5 and rnz
0.50.250 0.75

FP5 and rna
0.50.250 0.75

FP4 and rna
0.50

FP4 and rnz
0.50

FP4 and rnp
0.50

FP4 and rnn

Figure 6.2: We show the correctly rounded result of ln(1.5) in FP5 and FP4 with all five rounding
modes. The gray star represents the real value of ln(1.5). Values that are representable in FP5, FP4,
and FP7 are shown with circle, square, and rhombus, respectively. The black solid color represents
the correctly rounded result and the gray interval shows the rounding interval. The last row shows
the odd interval where all values in the interval rounds to the correctly rounded results of ln(1.5) in
FP7 with the rno rounding. The odd interval is a subset of all rounding intervals for FP5 and FP4
with five standard rounding modes.

FP5 and FP4. It is possible for a single polynomial to produce the correctly rounded result

of ln(1.5) for both FP5 and FP4 with all five rounding modes if it produces a value within

all ten rounding intervals. A strawman approach for generating a generic polynomial is to

compute the rounding intervals for all possible combinations of target representations and

rounding modes and identify the common region in all rounding intervals. However, this

requires a significant amount of computation especially as the number of target representa-

tions increase.

138

6.2.2 Generating A Polynomial Approximation With the rno Mode.

To create a single polynomial, we generate a polynomial that produces the correctly rounded

results in FP7 with the round to odd (rno) mode, where FP7 is a 7-bit FP representation

with two exponent bits (Figure 6.1(c)). The rno rounding mode can be summarized as fol-

lows. If a real value is exactly representable in FP7, then we represent it with the FP7 value.

Otherwise, the real value rounds to an adjacent FP7 value where the bit-string is odd when

interpreted as an unsigned integer (i.e., the last bit is 1). The rno mode is a non-standard

rounding mode proposed to address double rounding issues with primitive arithmetic op-

erations when using rne rounding mode [9]. We show that rno can be used to generate

correctly rounded results with all standard rounding modes. In Section 6.4, we prove that

a polynomial that produces the correctly rounded results for a (n + 2)-bit representation

with the rno mode also produces the correctly rounded results for all k bit representations

with any standard rounding modes as long as the representation has the same number of

exponent bits |E| and |E| + 1 < k ≤ n. In our illustration, all three representations (i.e.,

FP4, FP5, and FP7) have two exponent bits. When we generate a polynomial that produces

correctly rounded results of ln(x) in FP7 with the rno mode, the result of the polynomial

will round to the correctly rounded result of FP5 and FP4 for all rounding modes.

Additionally, computing the correctly rounded result of ln(x) in FP7 with the rnomode

and identifying the range of values that round to this result is an efficient way to compute the

common interval described above. The last row in Figure 6.2 shows the correctly rounded

result of ln(1.5) in FP7 with the rno mode (black rhombus) and the interval of values that

round to the correctly rounded result (blue region). We call this interval the odd interval.

The odd interval for ln(1.5) is common in all ten rounding intervals shown above. Thus, as

long as we generate a polynomial that produces a value in the odd interval for each input,

the polynomial will produce the correctly rounded result of ln(x) for both FP5 and FP4

with any five rounding modes.

Our approach works because the FP7 representation can represent three additional val-

139

FP5 and rne

FP5 and rnp

FP5 and rnn

FP4 and rne

Interval for
FP7 and rno

-0.5 0.25-0.25 0

-0.5 0.25-0.25

-0.5 0.25-0.25

-0.5

0

0

0

0-0.25 0.250.0625-0.0625-0.5

FP5 and rnz
-0.5 0.25-0.25 0

FP5 and rna
-0.5 0.25-0.25 0

Figure 6.3: We show the correctly rounded result of ln(1.0) in FP5 and FP4 with all five rounding
modes. The gray star represents the real value of ln(1.0). Values that are representable in FP5, FP4,
and FP7 are shown with circle, square, and rhombus, respectively. The black solid color represents
the correctly rounded result and the gray interval shows the rounding interval. The last row shows
the odd interval (a singleton value) where all values in the interval rounds to the correctly rounded
results of ln(1.0) in FP7 with the rno mode. The odd interval is a subset of all rounding intervals
for FP5 and FP4 with five standard rounding modes.

ues between two adjacent FP5 values and the rno result in FP7 holds enough information

to produce the correctly rounded result of various representations (including FP4 and FP5)

and rounding modes (including the five standard rounding modes). Consequently, the odd

interval is typically smaller than the common intervals among FP4 and FP5 with all round-

ing modes. For instance, the common intervals for ln(1.5) illustrated in Figure 6.2 is

[0.375, 0.5) while the odd interval for ln(1.5) is (0.375, 0.5). We provide more information

regarding the rno mode in Section 6.3.1. The proof in Section 6.4 shows that our approach

with the rno mode applies in general for any representation with n bits.

6.2.3 Generating Generic Polynomial Approximations

To generate a polynomial approximation for FP4 and FP5, we compute the correctly rounded

result of ln(x) in FP7 with the rno mode for each input in FP5 and identify the odd inter-

vals. Since all values in FP4 are representable in FP5, it is sufficient to compute the odd

140

intervals for the inputs in FP5. In our illustration, we evaluate the polynomials with double

precision. Hence, we identify the odd interval in the double precision. If the bit-string of

the correctly rounded result of ln(x) in FP7 with the rno mode is even when interpreted as

an unsigned integer, then the odd interval is a singleton consisting of the correctly rounded

result itself. For example, the odd interval of ln(1.0) = 0 is a singleton value because 0 is

exactly representable in FP7 and the bit-string is even. We pictorially show the rounding

intervals of ln(1.0) for FP4 and FP5 with different rounding modes as well as the odd inter-

val for FP7 in Figure 6.3. If the correctly rounded result of ln(x) in FP7 with the rno mode

is odd, then we can identify the odd interval as follows. We identify the preceding value l

and the succeeding value h of the correctly rounded result in FP7. Then, the open interval

(l, h) is the odd interval in real numbers. Since we evaluate the polynomial with double

precision, we identify the range of values in double within the odd interval. We compute

the succeeding value of l in double, which we denote as l+, and the preceding value of h in

double, which we denote as h−. The closed interval [l+, h−] is the odd interval in double

for the input x. Figure 6.4(a) shows the odd intervals for each input in FP5.

In some instances, such as ln(1.0) = 0, the odd interval may be composed of a single

value. Generating a polynomial that produces a single value, while also producing a value

in the odd interval for all other inputs, is a challenging problem. This is especially true

considering that the polynomial is evaluated in double, a finite precision representation.

Hence, we treat these inputs similarly to special case inputs and exclude them from the

list of inputs that we must approximate. For the ln(x) function in FP7, there is only one

input x = 1.0 with singleton odd interval. Other elementary functions for higher precision

representations may have multiple inputs with singleton odd intervals. In Section 6.3.7, we

present our approach to identify such inputs and efficiently compute the correctly rounded

results using mathematical properties of the elementary functions. Figure 6.4(b) shows the

final list of ten inputs and the corresponding odd interval, excluding the input with singleton

interval, that our polynomial must approximate.

141

0.25 0.5 0.75 1.25 1.5 1.75 2.0 2.5 3.0 3.51.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Generic Intervals

(a)

−1.5 < P (0.25) < −1.375

−0.75 < P (0.5) < −0.625

−0.375 < P (0.75) < −0.25

0.125 < P (1.25) < 0.25

0.375 < P (1.5) < 0.5

0.5 < P (1.75) ≤ 0.625

0.625 < P (2.0) < 0.75

0.875 < P (2.5) < 1.0

1.0 < P (3.0) ≤ 1.125

1.25 < P (3.5) < 1.375

(b)

Figure 6.4: (a) shows the odd interval for each input in FP7. The odd interval for the input x = 1.0
is a singleton interval, [0, 0]. (b) The set of constraints that must be satisfied by our polynomial to
produce the correctly rounded results of ln(x) for FP7 with rno mode. Note that the case for input
x = 1.0 is missing because generating a polynomial approximation that produces P (1.0) = 0.0 is
challenging. Thus, we classify the input 1.0 as a special case.

P (x) = c0 + c1x+ c2x
2 + c3x

3 + c4x
4

c0 = −2.2907925 . . .

c1 = 4.2825369 . . .

c2 = −2.6750194 . . .

c3 = 8.1274281 . . .

c4 = −9.0132090 . . .

(a)

0.25 0.5 0.75 1.25 1.5 1.75 2.0 2.5 3.0 3.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

P(x) = c0 + c1x+ c2x2 + c3x3 + c4x4

Generic Intervals

(b)

Figure 6.5: (a) The coefficients generated by the LP solver for the polynomial that produces cor-
rectly rounded results of ln(x) for all inputs in FP7 with rno mode. (b) Generated polynomial
produces a value in the odd interval for all inputs.

Our next step is to generate a polynomial that produces a value in the odd interval

for all inputs. Since there are only 10 non-special case inputs, we can use the approach

described in Chapter 3 and frame the problem of identifying a polynomial that produces

a value in the odd interval as an LP problem and use an LP solver to find a 4th degree

polynomial. Figure 6.5(a) shows the resulting polynomial and the coefficients generated

by the LP solver. Since the polynomial produces a value in the odd interval (illustrated in

142

Figure 6.5(b)), the result will round to the correctly rounded result of ln(x) for FP4 and FP5

with all five standard rounding modes. To generate polynomial approximations for larger

representations, we can combine this approach with range reduction, domain splitting, and

counterexample guided polynomial generation described in Chapter 4 and Chapter 5.

6.3 The RLIBM Approach to Generate Generic Polynomials

We now formally define the problem. Let Tn be either an n-bit FP (Tn = Fn,|E|) or posit

(Tn = Pn,es) representation. Let Tk be a representation where Tk has no more precision

bits compared to Tn with the same number of exponent bits. Specifically, Tk = Fk,|E|

where |E|+1 < k ≤ n if Tn is a FP representation and Tk = Pk,|E| where 2 ≤ k ≤ n if Tn

is a posit representation. Note that all values exactly representable in Tk are also exactly

representable in Tn (i.e., Tk ⊆ Tn) for both FP and posit representation. Finally, we define

rm to be a standard rounding mode rm ∈ {rne, rna, rnz, rnp, rnn}. For exposition, the

posit rounding mode can be considered as the rne mode. Our goal is to generate a polyno-

mial approximation P (x) of an elementary function f(x) that produces correctly rounded

results for all inputs in any representation Tk and any rounding mode rm. Specifically,

rounding the result of P (x) to any representation Tk with rm rounding mode must result

in the same value as computing f(x) in real numbers and rounding the result to Tk with

rm rounding mode, for all inputs in Tk,

RNTk,rm(P (x)) = RNTk,rm(f(x))

To produce the correctly rounded results for Tk with rm rounding mode, our approach

approximates the correctly rounded result of f(x) in the Tn+2 representation with the round

to odd (rno) rounding mode. Depending on the target representation, Tn+2 is defined

as follows. If Tk is an FP representation, then Tn+2 = Fn+2,|E| is an (n + 2)-bit FP

representation with |E| bits for the exponent. If Tk is a posit representation, then Tn+2 =

Pn+2,es is an (n+2)-bit posit representation with at most es exponent bits. The key intuition

143

is that the result in Tn+2 with the rno mode maintains a sufficient amount of information

to identify the correctly rounded result of f(x) in Tk with any rounding mode. Section 6.4

formally proves that a polynomial that produces the correctly rounded result of f(x) in

Tn+2 with the rno mode will also produce the correctly rounded result for all Tk using any

rm.

To generate such a polynomial, we extend the approach described in the previous chap-

ters to work for the rno mode. We compute the correctly rounded result of f(x) in Tn+2

with the rno mode for each input in Tn. Next, we identify a range of values that round

to the correctly rounded result when they are rounded to Tn+2 using the rno mode. We

call this range of values the odd interval. Each input in Tn and its corresponding odd in-

terval defines the constraint on the output of the polynomial we wish to generate. Hence,

we can use the approach described in Chapter 3 to generate polynomials that satisfy these

constraints by framing the problem as an LP problem and using an LP solver to identify

the coefficients of the polynomial.

6.3.1 The Round to Odd (rno) Rounding Mode

As we make a case for approximating f(x) for Tn+2 with the rno mode, we now define the

rno mode and describe how to systematically round a real value with the rno mode using

the rounding components described in Chapter 2. We also provide a more detailed intuition

on why rounding the rno result with Tn+2 produces the correctly rounded result in Tk with

any standard rounding modes.

The round to odd rounding mode is a non-standard rounding mode proposed to address

double rounding errors in primitive operations [9]. Previously, it was explored specifically

for the rne mode for computation with the extended precision and then rounding the result

to the target representation. Given a real value vR, the rno mode rounds vR to the target

representation T using the following strategy. If vR is exactly representable with a value

in T, i.e., v ∈ T, then vR rounds to v. Otherwise, vR rounds to the nearest value in T

144

w0 (even) w1 (odd) w2 (even) w3 (odd) w4 (even) w5 (odd) w6 (even)

Only w0 rounds to w0 Only w2 rounds to w2 Only w4 rounds to w4 Only w6 rounds to w6

Values between w0 and w2
rounds to w1

Values between w2 and w4
rounds to w3

Values between w4 and w6
rounds to w5

Figure 6.6: We show the rounding of real values vR to a representation T with the rno mode. The
values w0, w1, . . . , w6 are adjacent values in T. The values highlighted with red color (i.e., w1, w3,
and w5) represent values where the bit-string representation is odd when interpreted as unsigned
integer. The orange, purple, and gray boxes represent ranges of real values that round to w1, w3,
and w5, respectively.

where the bit-string of the value is odd when interpreted as an unsigned integer. Figure 6.6

pictorially describes the rnomode. The valuesw0, w1, . . . , w6 are adjacent values in T. The

values highlighted with red color (i.e., w1, w3, and w5) represent values with odd bit-string.

Similarly, the values highlighted with black color (i.e., w0, w2, w4, and w6) represent values

with the even bit-string. The only real values that round to w0, w2, w4, or w6 are the values

w0, w2, w4, and w6 themselves, respectively. Otherwise, the real value rounds to the nearest

value in T where the bit-string is odd (i.e., w1, w3, and w5). Based on the definition of rno,

we can systematically round vR to T with the rno mode using the rounding components

(s, v−, rb, sticky),

vrno = RNT,rno(vR) =




s× v− if IsOdd(v−) ∨ (rb = 0 ∧ sticky = 0)

s× v+ otherwise

where v+ is the succeeding value of v− in T. The definition of the rno mode is the same

for both FP and posit representations.

Our contribution. Our contribution is to use the rno mode to generate correctly rounded

elementary functions for multiple representations and rounding modes. Specifically, a poly-

nomial that produces the correctly rounded result of f(x) in Tn+2 with the rno mode will

also produce the correctly rounded result of f(x) in Tk with any standard rounding modes.

145

Theorem 6.1. Let f(x) be the real value of an elementary function given an input x and

vrno = RNTn+2,rno(f(x)). Let v be a value in the odd interval of vrno such that for all v,

RNTn+2,rno(v) = vrno. Choose a rounding mode rm ∈ {rne, rna, rnz, rnp, rnn}. Then,

RNTk,rm(v) = RNTk,rm(f(x))

We also provide an efficient procedure to create a polynomial approximation that pro-

duces a value in the odd interval for each input x. By Theorem 6.1, rounding any value v

in the odd interval to Tk using a rounding mode rm is guaranteed to produce the correctly

rounded result of f(x) in Tk with the same rounding mode rm.

6.3.2 Why Does The rno Result Avoid Double Rounding Error?

Let us provide an intuition of why rounding with the rno mode avoids double rounding

error in Figure 6.7. Any values v0 and v1 that is representable in Tn is exactly representable

in Tn+2 (i.e., w0 and w4). Further, there are three additional values (i.e., w1, w2, and w3) in

Tn+2 between w0 and w4. The value w2 is the midpoint between w0 and w4. Similarly, the

value w1 is the midpoint between w0 and w2 while w3 is the midpoint between w2 and w4.

In the rno mode, all values between w0 and w2 rounds to w1. Similarly, any value between

w2 and w4 rounds to w3. Figure 6.7(a) illustrates the result of rounding a real value (red

star) directly to Tn with the rnemode (solid black arrow) and the result of double rounding

by first rounding the real value to Tn+2 with the rno mode and subsequently rounding the

result to Tn using the rne mode (blue dotted arrow). It can be seen, double rounding with

the rno mode produces the same value as if directly rounding the real value to Tn using the

rne mode. Similarly, Figure 6.7(b) through (e) illustrates that double rounding with rno

produces the same value as rounding the real value directly to Tn using other four standard

rounding modes.

To round a real value vR to Tn using one of the five standard rounding modes, we

must identify the relationship between vR and the two adjacent values v0 and v1 in Tn, as

explained in Chapter 2. There are five categories of such relationships:

146

w0 w1 w2 w3 w4

mode rm. If we substitute vR with the exact result of f(x) for a given input x 2 Tn, then

it is guaranteed that,

RNTk,rm(RNTn+2,rno(f(x))) = RNTk,rm(f(x))

Let us denote yrno to be the result of RNTn+2,rno(f(x)). Then, if our approximation

function A(x) produces yrno for all inputs x 2 Tn, then A(x) rounds to the correctly

rounded result of f(x) for all representations Tk with any rounding mode rm. Since any

exactly representable value in Tk are also exactly representable in Tn, it is sufficient for

us to make sure that A(x) produces yrno for all x 2 Tn. Technically, the interval that

contains a single value, [yrno, yrno], is a generic interval for x. However, generating A(x)

that produces a value in [yrno, yrno] (where the only option is to produce yrno) for all x 2 Tn

is infeasible. Thus, our next step is to find a range of values near yrno that is guaranteed to

round to the correctly rounded result of f(x) for all Tk and rm.

6.4.5 Formal Reasoning On the Odd Interval of vrno

Theorem 6.12 tells us that performing double rounding by first rounding vR to Tn+2 using

rno mode,

vrno = RNTn+2,rno(vR)

and then subsequently rounding vrno to Tk using a rounding mode rm produces vrm, the

value that we obtain when rounding vR directly to Tk using the same rounding mode rm,

vrm = RNTk,rm(vR)

RNTk,rm(vrno) = vrm

Now, let us formally define the odd interval of vrno. The odd interval of vrno is a range

of values [lrno, hrno] where any value v in the interval rounds to vrno when rounded to Tn+2

148

mode rm. If we substitute vR with the exact result of f(x) for a given input x 2 Tn, then

it is guaranteed that,

RNTk,rm(RNTn+2,rno(f(x))) = RNTk,rm(f(x))

Let us denote yrno to be the result of RNTn+2,rno(f(x)). Then, if our approximation

function A(x) produces yrno for all inputs x 2 Tn, then A(x) rounds to the correctly

rounded result of f(x) for all representations Tk with any rounding mode rm. Since any

exactly representable value in Tk are also exactly representable in Tn, it is sufficient for

us to make sure that A(x) produces yrno for all x 2 Tn. Technically, the interval that

contains a single value, [yrno, yrno], is a generic interval for x. However, generating A(x)

that produces a value in [yrno, yrno] (where the only option is to produce yrno) for all x 2 Tn

is infeasible. Thus, our next step is to find a range of values near yrno that is guaranteed to

round to the correctly rounded result of f(x) for all Tk and rm.

6.4.5 Formal Reasoning On the Odd Interval of vrno

Theorem 6.12 tells us that performing double rounding by first rounding vR to Tn+2 using

rno mode,

vrno = RNTn+2,rno(vR)

and then subsequently rounding vrno to Tk using a rounding mode rm produces vrm, the

value that we obtain when rounding vR directly to Tk using the same rounding mode rm,

vrm = RNTk,rm(vR)

RNTk,rm(vrno) = vrm

Now, let us formally define the odd interval of vrno. The odd interval of vrno is a range

of values [lrno, hrno] where any value v in the interval rounds to vrno when rounded to Tn+2

148

v1v0

(e) Round towards negative infinity

w0 w1 w2 w3 w4
v1v0

w0 w1 w2 w3 w4
v1v0

w0 w1 w2 w3 w4

mode rm. If we substitute vR with the exact result of f(x) for a given input x 2 Tn, then

it is guaranteed that,

RNTk,rm(RNTn+2,rno(f(x))) = RNTk,rm(f(x))

Let us denote yrno to be the result of RNTn+2,rno(f(x)). Then, if our approximation

function A(x) produces yrno for all inputs x 2 Tn, then A(x) rounds to the correctly

rounded result of f(x) for all representations Tk with any rounding mode rm. Since any

exactly representable value in Tk are also exactly representable in Tn, it is sufficient for

us to make sure that A(x) produces yrno for all x 2 Tn. Technically, the interval that

contains a single value, [yrno, yrno], is a generic interval for x. However, generating A(x)

that produces a value in [yrno, yrno] (where the only option is to produce yrno) for all x 2 Tn

is infeasible. Thus, our next step is to find a range of values near yrno that is guaranteed to

round to the correctly rounded result of f(x) for all Tk and rm.

6.4.5 Formal Reasoning On the Odd Interval of vrno

Theorem 6.12 tells us that performing double rounding by first rounding vR to Tn+2 using

rno mode,

vrno = RNTn+2,rno(vR)

and then subsequently rounding vrno to Tk using a rounding mode rm produces vrm, the

value that we obtain when rounding vR directly to Tk using the same rounding mode rm,

vrm = RNTk,rm(vR)

RNTk,rm(vrno) = vrm

Now, let us formally define the odd interval of vrno. The odd interval of vrno is a range

of values [lrno, hrno] where any value v in the interval rounds to vrno when rounded to Tn+2

148

mode rm. If we substitute vR with the exact result of f(x) for a given input x 2 Tn, then

it is guaranteed that,

RNTk,rm(RNTn+2,rno(f(x))) = RNTk,rm(f(x))

Let us denote yrno to be the result of RNTn+2,rno(f(x)). Then, if our approximation

function A(x) produces yrno for all inputs x 2 Tn, then A(x) rounds to the correctly

rounded result of f(x) for all representations Tk with any rounding mode rm. Since any

exactly representable value in Tk are also exactly representable in Tn, it is sufficient for

us to make sure that A(x) produces yrno for all x 2 Tn. Technically, the interval that

contains a single value, [yrno, yrno], is a generic interval for x. However, generating A(x)

that produces a value in [yrno, yrno] (where the only option is to produce yrno) for all x 2 Tn

is infeasible. Thus, our next step is to find a range of values near yrno that is guaranteed to

round to the correctly rounded result of f(x) for all Tk and rm.

6.4.5 Formal Reasoning On the Odd Interval of vrno

Theorem 6.12 tells us that performing double rounding by first rounding vR to Tn+2 using

rno mode,

vrno = RNTn+2,rno(vR)

and then subsequently rounding vrno to Tk using a rounding mode rm produces vrm, the

value that we obtain when rounding vR directly to Tk using the same rounding mode rm,

vrm = RNTk,rm(vR)

RNTk,rm(vrno) = vrm

Now, let us formally define the odd interval of vrno. The odd interval of vrno is a range

of values [lrno, hrno] where any value v in the interval rounds to vrno when rounded to Tn+2

148

v1v0

(d) Round towards positive infinity

w0 w1 w2 w3 w4
v1v0

w0 w1 w2 w3 w4
v1v0

w0 w1 w2 w3 w4

mode rm. If we substitute vR with the exact result of f(x) for a given input x 2 Tn, then

it is guaranteed that,

RNTk,rm(RNTn+2,rno(f(x))) = RNTk,rm(f(x))

Let us denote yrno to be the result of RNTn+2,rno(f(x)). Then, if our approximation

function A(x) produces yrno for all inputs x 2 Tn, then A(x) rounds to the correctly

rounded result of f(x) for all representations Tk with any rounding mode rm. Since any

exactly representable value in Tk are also exactly representable in Tn, it is sufficient for

us to make sure that A(x) produces yrno for all x 2 Tn. Technically, the interval that

contains a single value, [yrno, yrno], is a generic interval for x. However, generating A(x)

that produces a value in [yrno, yrno] (where the only option is to produce yrno) for all x 2 Tn

is infeasible. Thus, our next step is to find a range of values near yrno that is guaranteed to

round to the correctly rounded result of f(x) for all Tk and rm.

6.4.5 Formal Reasoning On the Odd Interval of vrno

Theorem 6.12 tells us that performing double rounding by first rounding vR to Tn+2 using

rno mode,

vrno = RNTn+2,rno(vR)

and then subsequently rounding vrno to Tk using a rounding mode rm produces vrm, the

value that we obtain when rounding vR directly to Tk using the same rounding mode rm,

vrm = RNTk,rm(vR)

RNTk,rm(vrno) = vrm

Now, let us formally define the odd interval of vrno. The odd interval of vrno is a range

of values [lrno, hrno] where any value v in the interval rounds to vrno when rounded to Tn+2

148

mode rm. If we substitute vR with the exact result of f(x) for a given input x 2 Tn, then

it is guaranteed that,

RNTk,rm(RNTn+2,rno(f(x))) = RNTk,rm(f(x))

Let us denote yrno to be the result of RNTn+2,rno(f(x)). Then, if our approximation

function A(x) produces yrno for all inputs x 2 Tn, then A(x) rounds to the correctly

rounded result of f(x) for all representations Tk with any rounding mode rm. Since any

exactly representable value in Tk are also exactly representable in Tn, it is sufficient for

us to make sure that A(x) produces yrno for all x 2 Tn. Technically, the interval that

contains a single value, [yrno, yrno], is a generic interval for x. However, generating A(x)

that produces a value in [yrno, yrno] (where the only option is to produce yrno) for all x 2 Tn

is infeasible. Thus, our next step is to find a range of values near yrno that is guaranteed to

round to the correctly rounded result of f(x) for all Tk and rm.

6.4.5 Formal Reasoning On the Odd Interval of vrno

Theorem 6.12 tells us that performing double rounding by first rounding vR to Tn+2 using

rno mode,

vrno = RNTn+2,rno(vR)

and then subsequently rounding vrno to Tk using a rounding mode rm produces vrm, the

value that we obtain when rounding vR directly to Tk using the same rounding mode rm,

vrm = RNTk,rm(vR)

RNTk,rm(vrno) = vrm

Now, let us formally define the odd interval of vrno. The odd interval of vrno is a range

of values [lrno, hrno] where any value v in the interval rounds to vrno when rounded to Tn+2

148

v1v0

(c) Round towards zero

w0 w1 w2 w3 w4
v1v0

w0 w1 w2 w3 w4
v1v0

w0 w1 w2 w3 w4

mode rm. If we substitute vR with the exact result of f(x) for a given input x 2 Tn, then

it is guaranteed that,

RNTk,rm(RNTn+2,rno(f(x))) = RNTk,rm(f(x))

Let us denote yrno to be the result of RNTn+2,rno(f(x)). Then, if our approximation

function A(x) produces yrno for all inputs x 2 Tn, then A(x) rounds to the correctly

rounded result of f(x) for all representations Tk with any rounding mode rm. Since any

exactly representable value in Tk are also exactly representable in Tn, it is sufficient for

us to make sure that A(x) produces yrno for all x 2 Tn. Technically, the interval that

contains a single value, [yrno, yrno], is a generic interval for x. However, generating A(x)

that produces a value in [yrno, yrno] (where the only option is to produce yrno) for all x 2 Tn

is infeasible. Thus, our next step is to find a range of values near yrno that is guaranteed to

round to the correctly rounded result of f(x) for all Tk and rm.

6.4.5 Formal Reasoning On the Odd Interval of vrno

Theorem 6.12 tells us that performing double rounding by first rounding vR to Tn+2 using

rno mode,

vrno = RNTn+2,rno(vR)

and then subsequently rounding vrno to Tk using a rounding mode rm produces vrm, the

value that we obtain when rounding vR directly to Tk using the same rounding mode rm,

vrm = RNTk,rm(vR)

RNTk,rm(vrno) = vrm

Now, let us formally define the odd interval of vrno. The odd interval of vrno is a range

of values [lrno, hrno] where any value v in the interval rounds to vrno when rounded to Tn+2

148

mode rm. If we substitute vR with the exact result of f(x) for a given input x 2 Tn, then

it is guaranteed that,

RNTk,rm(RNTn+2,rno(f(x))) = RNTk,rm(f(x))

Let us denote yrno to be the result of RNTn+2,rno(f(x)). Then, if our approximation

function A(x) produces yrno for all inputs x 2 Tn, then A(x) rounds to the correctly

rounded result of f(x) for all representations Tk with any rounding mode rm. Since any

exactly representable value in Tk are also exactly representable in Tn, it is sufficient for

us to make sure that A(x) produces yrno for all x 2 Tn. Technically, the interval that

contains a single value, [yrno, yrno], is a generic interval for x. However, generating A(x)

that produces a value in [yrno, yrno] (where the only option is to produce yrno) for all x 2 Tn

is infeasible. Thus, our next step is to find a range of values near yrno that is guaranteed to

round to the correctly rounded result of f(x) for all Tk and rm.

6.4.5 Formal Reasoning On the Odd Interval of vrno

Theorem 6.12 tells us that performing double rounding by first rounding vR to Tn+2 using

rno mode,

vrno = RNTn+2,rno(vR)

and then subsequently rounding vrno to Tk using a rounding mode rm produces vrm, the

value that we obtain when rounding vR directly to Tk using the same rounding mode rm,

vrm = RNTk,rm(vR)

RNTk,rm(vrno) = vrm

Now, let us formally define the odd interval of vrno. The odd interval of vrno is a range

of values [lrno, hrno] where any value v in the interval rounds to vrno when rounded to Tn+2

148

v1v0

w0 w1 w2 w3 w4
v1v0

w0 w1 w2 w3 w4
v1v0

(b) Round to the nearest, tie goes away

w0 w1 w2 w3 w4

mode rm. If we substitute vR with the exact result of f(x) for a given input x 2 Tn, then

it is guaranteed that,

RNTk,rm(RNTn+2,rno(f(x))) = RNTk,rm(f(x))

Let us denote yrno to be the result of RNTn+2,rno(f(x)). Then, if our approximation

function A(x) produces yrno for all inputs x 2 Tn, then A(x) rounds to the correctly

rounded result of f(x) for all representations Tk with any rounding mode rm. Since any

exactly representable value in Tk are also exactly representable in Tn, it is sufficient for

us to make sure that A(x) produces yrno for all x 2 Tn. Technically, the interval that

contains a single value, [yrno, yrno], is a generic interval for x. However, generating A(x)

that produces a value in [yrno, yrno] (where the only option is to produce yrno) for all x 2 Tn

is infeasible. Thus, our next step is to find a range of values near yrno that is guaranteed to

round to the correctly rounded result of f(x) for all Tk and rm.

6.4.5 Formal Reasoning On the Odd Interval of vrno

Theorem 6.12 tells us that performing double rounding by first rounding vR to Tn+2 using

rno mode,

vrno = RNTn+2,rno(vR)

and then subsequently rounding vrno to Tk using a rounding mode rm produces vrm, the

value that we obtain when rounding vR directly to Tk using the same rounding mode rm,

vrm = RNTk,rm(vR)

RNTk,rm(vrno) = vrm

Now, let us formally define the odd interval of vrno. The odd interval of vrno is a range

of values [lrno, hrno] where any value v in the interval rounds to vrno when rounded to Tn+2

148

mode rm. If we substitute vR with the exact result of f(x) for a given input x 2 Tn, then

it is guaranteed that,

RNTk,rm(RNTn+2,rno(f(x))) = RNTk,rm(f(x))

Let us denote yrno to be the result of RNTn+2,rno(f(x)). Then, if our approximation

function A(x) produces yrno for all inputs x 2 Tn, then A(x) rounds to the correctly

rounded result of f(x) for all representations Tk with any rounding mode rm. Since any

exactly representable value in Tk are also exactly representable in Tn, it is sufficient for

us to make sure that A(x) produces yrno for all x 2 Tn. Technically, the interval that

contains a single value, [yrno, yrno], is a generic interval for x. However, generating A(x)

that produces a value in [yrno, yrno] (where the only option is to produce yrno) for all x 2 Tn

is infeasible. Thus, our next step is to find a range of values near yrno that is guaranteed to

round to the correctly rounded result of f(x) for all Tk and rm.

6.4.5 Formal Reasoning On the Odd Interval of vrno

Theorem 6.12 tells us that performing double rounding by first rounding vR to Tn+2 using

rno mode,

vrno = RNTn+2,rno(vR)

and then subsequently rounding vrno to Tk using a rounding mode rm produces vrm, the

value that we obtain when rounding vR directly to Tk using the same rounding mode rm,

vrm = RNTk,rm(vR)

RNTk,rm(vrno) = vrm

Now, let us formally define the odd interval of vrno. The odd interval of vrno is a range

of values [lrno, hrno] where any value v in the interval rounds to vrno when rounded to Tn+2

148

(odd) v1v0 (even)

w0 w1 w2 w3 w4 w0 w1 w2 w3 w4

(a) Round to the nearest, tie goes to even

(odd) v1v0 (even) (odd) v1v0 (even)

Figure 6.7: Illustration to show that rno result in Tn+2 maintains sufficient information to produce
the correctly rounded result in Tn with the (a) rne, (b) rna, (c) rnz, (d) rnp, and (e) rnn mode.
The real value is represented with a red star. Values v0 and v1 are two adjacent values in Tn. Tn+2

can exactly represent v0 and v1 (i.e., w0 and w4, respectively). Additionally, Tn+2 can represent
three more values between v0 and v1 (i.e., w1, w2, and w3). The dotted blue arrows show the double
rounding from a real value to Tn+2 with rnomode and then subsequently rounding the result to Tn.
Sold black arrow shows the result of directly rounded the real value to Tn.

147

• vR = v0.

• v0 < vR < w2.

• vR = w2.

• w2 < vR < v1.

• vR = v1.

where w2 represents the midpoint between v0 and v1. Double rounding error occurs when

the intermediate rounded result loses the information regarding the relationships between

vR, v0, and v1. However, rounding vR to Tn+2 using the rno mode preserves this relation-

ship. All values between v0 and w2 rounds to w1, which is still a value between v0 and

w2. A real value that is exactly equal to w2 is rounded to w2. All values between w2 and

v1 rounds to w3, which is still a value between w2 and v1. Hence, double rounding with

the rno mode produces the same value as if rounding vR directly to Tn. Moreover, by our

definition of odd interval, any value v in the odd interval of the correctly rounded result

of vR in Tn+2 with the rno mode will round to the same value in Tk using rm mode as if

rounding vR directly to Tk using rm mode. Figure 6.7 shows the odd intervals using the

gray area. It can be seen that if we round any value within the gray area to Tn using the

standard rounding modes, then the result will be the same as if rounding the real value in

red star directly to Tn.

6.3.3 Generating Polynomials for Tn+2 with the rno Mode

Our strategy to create a polynomial approximation that produces correctly rounded results

of f(x) in Tk with any standard rounding modes is to generate a polynomial that produces

the correctly rounded results for Tn+2 with the rno mode. Algorithm 6.1 provides a high-

level sketch of our approach to generate such a polynomial. Given an elementary function

f(x) and a list of inputs X in the Tn representation (i.e., X ⊆ Tn), our first step is to

148

Algorithm 6.1: A sketch of our approach to generate piecewise polynomial of degree d for the
elementary function f(x) in Tn+2 using rno mode. The resulting polynomial when used with
range reduction strategy (RRH and OCH) produces the correctly rounded results for all inputs
with all Tk and standard rounding modes. CalcResultsInRNO computes the rno result of
f(x) in Tn+2 using oracle (shown in Algorithm 6.2). CalcOddIntervals computes the odd
interval for each input x and the set S containing inputs with singleton odd interval. (shown in
Algorithm 6.3). Using the list of inputs and odd intervals, we use the approach described in
Chapter 5 to generate the piecewise polynomial (lines 5 - 9).

1 Function GenericPolynomial(f , Tn+2, H, X , d, RRH, OCH):
2 O ← CalcResultsInRNO(f , Tn+2, X)
3 (L, S)← CalcOddIntervals(O, Tn+2, H)
4 if L = ∅ then return (false, ∅, DNE)

// Generate piecewise polynomial using the approach from

Chapter 5

5 L′ ← CalcReducIntervals(L, H, RRH, OCH)
6 if L′ = ∅ then return (false, DNE)
7 L∗ ← CombineReducIntervals(L′)
8 if L∗ = ∅ then return (false, DNE)
9 Ψ← GenPiecewise(L∗, d)

10 return (true, S,Ψ)

compute the correctly rounded result of f(x) in Tn+2 with the rno mode to produce yrno

for each input x ∈ X (line 2). Algorithm 6.2 shows our algorithm to compute yrno for each

input.

Next, we compute the odd interval of each result yrno (line 3). Any value in the odd in-

terval rounds to yrno. The algorithm to compute the odd interval is shown in Algorithm 6.3.

There can be inputs where the corresponding odd interval is a singleton. By the definition

of the rno mode and the odd interval, this occurs when the real value of f(x) is exactly

representable in Tn+2 and the bit-string of f(x) in Tn+2 is even. Generating polynomial

approximations that produce the exact value of f(x) is a difficult problem. Hence, we

identify inputs with singleton odd intervals using mathematical properties of elementary

functions and handle them as special cases (Section 6.3.7). Once we compute the odd in-

tervals for each input, then we can use the approach described in Chapter 5 to generate

piecewise polynomials with counterexample guided polynomial generation that produces

the correctly rounded result of f(x) when used with range reduction strategies (lines 5-9).

149

Algorithm 6.2: CalcResultsInRNO computes the correctly rounded result of f(x) in
Tn+2 using the rno rounding mode for each input x ∈ X . FGetRComp returns the round-
ing components for rounding y to Tn+2.

1 Function CalcResultsInRNO(f , Tn+2, X):
2 O ← ∅;
3 foreach x ∈ X do
4 y = f(x);
5 (s, v−, rb, sticky)← RComp(y, Tn+2);
6 if IsOdd(v−)∨(rb = 0 ∧ sticky = 0) then
7 yrno ← s× v−
8 end
9 else

10 v+ ← GetSuccVal(v−, Tn+2);
11 yrno ← s× v+;
12 end
13 O ← O ∪ (x, yrno);
14 end
15 return O

At the end of this process, we have two components to produce correctly rounded results

for f(x). First, our approach generates a set S containing the inputs x whose odd interval

is a singleton. We implement a check to these inputs and return the pre-computed results

for them. A naive approach is to store the list of these inputs x and the pre-computed

result of f(x) into a look-up table and implement the check using branch conditions or

switch statements. To create a faster implementation, we use mathematical properties of

the elementary functions to implement these checks (Section 6.3.7). Second, our approach

produces piecewise polynomials that produce the correctly rounded results for all inputs

when rounded to any Tk with all standard rounding modes. We now describe our approach

in computing the rno result of f(x) and their odd intervals in Tn+2.

6.3.4 Computing the rno result of f(x) in Tn+2

The first step in our approach is to identify the correctly rounded result yrno for each input

x ∈ X . Algorithm 6.2 illustrates our steps to compute the rno result of f(x) in Tn+2. We

compute the real value y = f(x) for each input x using an oracle (line 4). Then, we obtain

150

Algorithm 6.3: CalcOddIntervals computes the odd intervals for each input x based
on the correctly rounded result yrno in Tn+2. The list S is a set of inputs with singleton odd
interval. The list L contains inputs and the corresponding odd intervals where the interval is
not a singleton. GetPrecVal(a, T) returns the value preceding a in the representation T.
GetSuccVal(a, T) returns the value succeeding a in the representation T.

1 Function CalcOddIntervals(O, Tn+2, H):
2 foreach (x, yrno) ∈ O do
3 L← ∅
4 S ← ∅
5 if IsEven(yrno) then
6 S ← S ∪ (x, yrno)
7 end
8 else
9 y− ← GetPrecVal(yrno, Tn+2)

10 l← GetSuccVal(y−, H)
11 y+ ← GetSuccVal(yrno, Tn+2)
12 h← GetPrecVal(y+, H)
13 L← L ∪ (x, [l, h])

14 end
15 return (L, S)

16 end

the rounding components (s, v−, rb, sticky) as described in Section 2.1.3 (line 5). If the

real value y is exactly representable in Tn+2 (i.e., rb = 0 and sticky = 0) or the truncated

value v− is odd, then the rno result is s× v− (line 7). Otherwise, the rno result is s× v+,

where v+ is the succeeding value of v− in Tn+2.

6.3.5 Computing the Odd Intervals

Once the correctly rounded result yrno of f(x) in Tn+2 using the rno mode is computed

for each x, the next step is to identify a range of values such that producing any value in

the interval rounds to yrno. We call this interval the odd interval. Because the range reduc-

tion, polynomial evaluation, and output compensation are evaluated in a higher precision

representation H, we compute the odd interval in H. Algorithm 6.3 illustrates our steps to

compute the odd interval.

If the bit-string of yrno in Tn+2 is even when interpreted as an unsigned integer, then

the odd interval is a singleton. The only value that rounds to yrno with the rno mode is yrno

151

itself. Generating a polynomial approximation that produces the exact singleton value yrno

is a challenging problem. These singletons restrict the amount of freedom available for

polynomial generation approaches described in previous chapters. Hence, we filter these

inputs and store the input x and the exact result yrno separately in the set S (line 7). In

Section 6.3.7, we describe our approach to identify the inputs with singleton odd intervals

and efficiently compute the result using mathematical properties of the elementary function.

If the bit-string of yrno is odd when interpreted as an unsigned integer, then all values in

H that are strictly greater than the preceding value of yrno in Tn+2 (lines 9-10) and strictly

less than the succeeding value of yrno in Tn+2 (lines 11-12) forms the odd interval. Any

value in the odd interval rounds to yrno when rounded to Tn+2 using the rno mode. The

odd interval in this case is not a single interval. We compute the odd intervals for each

input and store them in the list L (line 14).

Generating piecewise polynomial using the odd interval. The final step is to generate

piecewise polynomials that produce a value in the odd interval for each input. Each in-

put and its odd interval, (x, [l, h]) ∈ L specifies the constraint on the polynomial that we

want to generate. We can use the approach described in Chapter 5 to generate the piece-

wise polynomial that satisfies the constraints in L. Our approach also supports generating

polynomials with range reduction strategies described in Chapter 4 as well.

6.3.6 Implementing the Elementary Function

At the end of this process, our approach produces two components: (1) a set S containing

inputs whose odd interval is a singleton and (2) a polynomial approximation of f(x) that

produces the correctly rounded result of f(x) in Tn+2 with the rno mode for all inputs

(excluding the inputs in S). We implement the elementary function f(x) as follows. Given

an input x, we first check whether x is an input with a singleton odd interval. If so, we

can use the set S to obtain the result. Section 6.3.7 describes our approach to perform

152

this check and compute the result efficiently. Otherwise, we use the generated polynomial

approximation to produce the result. We use range reduction RRH to compute the reduced

input, use the reduced input the evaluate the polynomial, and use output compensation

OCH to obtain the result. We round the result of output compensation to Tk using a user

specified rounding mode to produce the final result. By Theorem 6.1, we guarantee that our

implementation produces the correctly rounded result of f(x) for any Tk with any standard

rounding modes for all inputs x ∈ Tk.

6.3.7 Efficiently Identifying Inputs With Singleton Generic Interval

One of the challenges in generating polynomials that produce a value in the odd interval

is that there are inputs with singleton odd intervals containing only yrno. To remedy this

problem, our approach treats all inputs x where the odd interval is a singleton as special

case inputs. Our approach identifies these inputs and the exact result of f(x) in a special

case set S. If the number of special case inputs in S is small, then we can check whether

an input is a special case using a series of branch conditions or switch statements with

minimal performance overhead. However, if there are hundreds of special case inputs,

then this strategy will incur overhead, significantly slowing down the performance of the

approximation function. Thus, our goal is to efficiently identify these inputs.

Mathematically identifying inputs with singleton odd interval. For many elementary

functions, it is possible to mathematically identify whether an input may result in a sin-

gleton odd interval and identify the exact result of f(x). Observe that both Tn and Tn+2

are finite precision representations. Hence, all values in Tn and Tn+2 are rational values.

The only case where the real value of an elementary function f(x) is exactly representable

in Tn+2 for an input in Tn is if the input is a rational value and the result of f(x) is a ratio-

nal value. For many elementary functions, there are only a few rational inputs that produce

rational results. For example, ex is a transcendental function where the only rational input

153

that produces a rational result is the input x = 0 resulting in e0 = 1.0. The problem of

identifying rational inputs that produce rational outputs for various elementary functions is

well studied [1, 5, 26, 106].

To identify inputs in Tn with a single odd interval, we first use mathematical proper-

ties of elementary functions f(x) to identify all rational inputs such that f(x) is a rational

value. Then, we check if these rational inputs and the corresponding rational results are

exactly representable in Tn and Tn+2, respectively. If it is, the odd interval of yrno corre-

sponding to the rational input may be a singleton interval. We classify these rational inputs

as special cases. Finally, we develop a programmatic approach to efficiently identify the

inputs without using a series of branch statements and compute the exact result of f(x).

We now describe the mathematical properties that we use to identify inputs with single-

ton odd intervals and programmatic approaches to efficiently identify these inputs and the

corresponding results.

Exponential function ex. From Lindemann-Weierstrass theorem [5], if the input x is

rational and non-zero, then ex cannot be a rational value. Thus, x = 0 is the only input

where ex is exactly representable in Tn+2 with e0 = 1. We use a single branch statement to

check whether an input x = 0 and return the value ex = 1.

Exponential function 2x. To determine inputs x ∈ Tn that produces rational result of 2x,

we first break the input x down into x = f + i where f ∈ [0, 1.0) represents the fractional

part of x and the integer i represents the integral part of x. Then, the function 2x can be

broken down into the following formula,

2x = 2f+i = 2f2i

Our first goal is to find the rational inputs x where 2x = 2f2i is a rational value. The value

2i is guaranteed to be a non-zero rational value since i is an integer. For the product 2f2i to

be a rational value, the value 2f must be a rational value. Since f is also a rational value,

154

f can be broken down into f = p
q

where p and q are both positive integers. Additionally,

because f ∈ [0, 1), it must be the case that p < q. Then,

2f = 2
p
q =

q
√

2p

The value 2p is an integer. The qth root of an integer is either an integer or an irrational

value [26]. For the value q
√

2p to be an integer, it must be the case that 2p is an integer and

p is a multiple of q. Since p < q, it must be the case that p = 0 and f = 0
q

= 0. Thus, the

only rational inputs where 2x is a rational value is when x is an integer i and the fractional

value f = 0.

Next, to identify all inputs x ∈ Tn where 2x is exactly representable in Tn+2, we

identify all integer inputs x ∈ Tn and check whether 2x is exactly representable in Tn+2.

If 2x is exactly representable in Tn+2, then x is an input that can have a singleton generic

interval and x is classified as a special case input. In the case when Tn is a 32-bit float,

Tn+2 can represent all values of 2x for x between −151 ≤ x ≤ 127. Thus, the special case

inputs x ∈ Tn are all integers between −151 and 127 (279 inputs in total),

x ∈ Z ∧ −151 ≤ x ≤ 127

Checking whether an input x ∈ Tn is an integer can be performed efficiently using bit-

wise operations. Similarly, computing the final result 2x can be performed with bit-wise

operations.

Exponential function 10x. Similar to the 2x function, the only rational inputs x that result

in a rational result of 10x is when x is an integer. The reasoning can be followed similarly

to the case for 2x. Additionally, the result of 10x for negative inputs x (i.e., 10−1 = 0.1)

cannot be exactly represented in Tn+2. Thus, the only inputs x ∈ Tn where 10x can be

exactly represented in Tn+2 are positive integers. In contrast to 2x, 10x grows much faster

and there are only a few inputs in Tn for which 10x is exactly representable in Tn+2. When

155

Tn is a 32-bit float, there are exactly 12 integer inputs ranging from 0 to 11 where 10x is

exactly representable in Tn+2. Although there is no efficient methodology in computing

10x even for integer inputs, we can use a switch statement to check whether an input is one

of the twelve special case inputs and return the correct result.

Natural log function ln(x). The result of the function ln(x) is always irrational if an

input x is rational and not equal to zero. This property can be proven using the Lindemann-

Weierstrass theorem [5]. Let us suppose that we have a rational value x 6= 1 where y =

ln(x) 6= 0 is also a rational value. Since y is a non-zero rational value, ey must be an

irrational value from Lindemann-Weierstrass theorem [5]. However,

ey = eln(x) = x

This creates a contraction because we assumed that x is a rational value. Hence, it must be

the case that y is an irrational value.

Thus, the only special case input x ∈ Tn is the input x = 1 where ln(x) is exactly

representable in Tn+2 with ln(1) = 0. We use a single branch statement to check whether

an input x = 1 and returning the value ln(1) = 0.

Log base two function log2(x). To determine rational inputs x that produces rational

result of log2(x), let us suppose that log2(x) = p
q

for positive integers p and q. Then, it

follows that

x = 2
p
q = q
√

2p

The value 2p is an integer. The qth root of an integer is either an integer or an irrational

value [26]. For x to be rational, x has to be an integer. For x to be an integer, 2p has to be a

perfect qth power of x. Hence, x must be an integer of the form 2i where i is an integer. We

use bitwise operations to check if the input x is a power of two, i.e., 2i. If it is, we return

the value i, which can be efficiently computed using bitwise operations.

156

Log base 10 function log10(x). Similar to log2(x), log10(x) produces a rational result

when x is a power of 10 (i.e., x = 10i where i is an integer). Additionally, Tn cannot

exactly represent negative power of 10 (i.e., 10−1 = 0.1). While there is no efficient way

of identifying whether an arbitrary value x is a power of 10, there are a limited number of

inputs in Tn that are power of 10. In 32-bit float (i.e., F32,8), there are only 11 such values

ranging from 100 to 1010. For each inputs 10i where 0 ≤ i ≤ 10, the result log10(10i) = i

is exactly representable in Tn+2 (i.e., F34,8). We use a look-up table to store the inputs and

its corresponding result in Tn+2 and implement the check in a switch statement.

The hyperbolic sine function sinh(x). As an extension of the Lindemann-Weierstrass

theorem, if the input x is rational and non-zero, then y = sinh(x) cannot be a rational

value [106]. The only input x ∈ Tn where sinh(x) is exactly representable in Tn+2 is the

input x = 0 where sinh(0) = 0. We use a single branch statement to check whether an

input x = 0 and returning the value sinh(0) = 0.

The hyperbolic cosine function cosh(x). Similar to the hyperbolic sine function, if the

input x is rational and non-zero, then y = cosh(x) cannot be a rational value. The only

input x ∈ Tn where cosh(x) is exactly representable in Tn+2 is the input x = 0 with

cosh(0) = 1. We use a single branch statement to check whether an input x = 0 and

returning the value cosh(0) = 1.

Trigonometric sinpi function sinpi(x) = sin(πx). The function sinpi(x) is equal to

sin(πx). By Niven’s theorem [106], the only rational values of x between 0 ≤ x ≤ 1
2

where sinpi(x) is also rational number are one of three values:

sinpi(x) =





0 if x = 0

1
2 if x = 1

6

1 if x = 1
2

157

Among these inputs 1
6

is not exactly represented in Tn. When we extend the domain of x

to the set of all inputs, there are only three categories of inputs in x ∈ Tn where the result

of sinpi(x) is representable in Tn+2:

sinpi(x) =





0 if x is an integer

1 if x ≡ 1
2 mod 2.0

−1 if x ≡ 3
2 mod 2.0

We implement the modulo operation efficiently using integer operations. Consider the

case when Tn is a 32-bit float. Without the loss of generality, let us only consider positive

inputs in Tn. First, because float has 23 precision bits, when x is broken down into the

binary scientific notation x = m × 2e, m can have up to 23 fraction bits. Thus, all inputs

x ∈ Tn greater than or equal to 223 are guaranteed to be integer values and the result of

sinpi(x) for these values are always 0. Next, if x < 223, then we compute 2x in float and

round the result to a 32-bit integer to obtain the value t. In essence, this operation truncates

the value 2x to the integral part of 2x and removes the fractional part. Because 2x < 224,

the rounded result is exactly representable in 32-bit integer. If t and 2x are identical, then x

is guaranteed to be either an integer or a multiple of 0.5, indicating that x is a special case

input. We compute the result of sinpi(x) based on t:

sinpi(x) =





0 if t ≡ 0 mod 2

1 if t ≡ 1 mod 4

−1 if t ≡ 3 mod 4

Trigonometric cospi function cospi(x) = cos(πx). Similar to the sinpi function, the only

input x in Tn where cospi(x) = cos(πx) is also rational can be classified as one of the three

158

categories:

cospi(x) =





1 if x is an even integer

−1 if x is an odd integer

0 if fraction(x) = 0.5

These checks can be performed efficiently using a similar strategy illustrated for the sinpi(x)

function.

6.4 Proof of Tn+2 Result with rno Producing Correctly Rounded Result for Tk

We now provide a proof of Theorem 6.1. Through this proof, we show that the result

produced by our polynomial approximation, which approximates the correctly rounded

result of f(x) in Tn+2 with rno rounding mode, will round to the correctly rounded result

for Tk using any standard rounding modes. Our proof for Theorem 6.1 applies to both

FP and posit representations. We first prove properties of the rno rounding mode and the

rounding components we use to round real values to Tk. Then, we use these properties

to prove Theorem 6.1. When we refer to the bit-string of vR, we refer to it in the infinite

extended precision representation, T∞. When we refer to the bit-string of vrno, the rno

result of vR in Tn+2, we refer to it in the Tn+2 representation.

Lemma 1. Let vrno = RNT,rno(vR). Then, vrno preserves the sign of vR.

The value zero is exactly representable in Tn+2. In both FP and posit representations,

the bit-string of zero is even when interpreted as an unsigned integer. Thus, the only real

value that rounds to zero when using rno is zero itself. All positive real values round to a

positive value in Tn+2 and all negative real values round to a positive value in Tn+2 when

using rno. Hence, vrno preserves the sign of vR.

Lemma 2. Let vrno = RNT,rno(vR). Then, the first n+1 bits in |vrno| and |vR| are identical.

We prove the lemma with the rounding components (s, v−, rb, sticky) used for round-

ing vR to vrno in Tn+2 using rno. The value v− is the truncated value of |vR|. Hence, all

159

0

0 b2 … bn+1 1=

b2 b3 … bn+1 1 bn+3

6.4 Proof of Tn+2 Result with rno Producing Correctly Rounded Result for Tk

We now provide a proof of Theorem 6.12. Through this proof, we show that the result

produced by our polynomial approximation, which approximates the correctly rounded

result of f(x) in Tn+2 with rno rounding mode, will round to the correctly rounded result

for Tk. Our proof for Theorem 6.12 applies to both FP and posit representations. We first

prove properties of the rno rounding mode and the rounding components we use to round

real values to Tk. Then, we use these properties to prove Theorem 6.12. When we refer to

the bits of vR, we refer to it in the infinite extended precision representation, T1.

6.4.1 Properties of rno Rounding Mode

There are three important properties of rno that we must discuss to prove Theorem 6.12.

We present each property and the proofs for them.

Lemma 1. The rno result vrno in Tn+2 preserves the sign of vR.

The value zero is exactly representable in Tn+2. In both FP and posit representations,

the bit-string of zero is even when interpreted as unsigned integer. Thus, the only real value

that rounds to zero when using rno is zero itself. All positive real values round to a positive

value in Tn+2 and all negative real values round to a positive value in Tn+2 when using rno.

Hence, vrno preserves the sign of vR.

Lemma 2. Let vrno = RNT,rno(vR). Then, the first n+1 bits in |vrno| and |vR| are identical.

We prove the lemma with the rounding components (s, v�, rb, sticky) used for round-

ing vR to vrno in Tn+2 using rno. The value v� is the truncated value of |vR|. Hence, all

n + 2 bits in v� and the first n + 2 bits in |vR| are identical. The value |vR| rounds to

either v� or the succeeding value v+ in Tn+2. We split our proof into two cases, when the

bit-string of v� is odd and when it is even.

If the bit-string of v� is odd, then |vrno| = v� by the definition of rno. Hence, all n+2

bits of |vrno| and |vR| are identical. If the bit-string of v� is even, then the last bit of v� is

186

b3

6.4 Proof of Tn+2 Result with rno Producing Correctly Rounded Result for Tk

We now provide a proof of Theorem 6.12. Through this proof, we show that the result

produced by our polynomial approximation, which approximates the correctly rounded

result of f(x) in Tn+2 with rno rounding mode, will round to the correctly rounded result

for Tk. Our proof for Theorem 6.12 applies to both FP and posit representations. We first

prove properties of the rno rounding mode and the rounding components we use to round

real values to Tk. Then, we use these properties to prove Theorem 6.12. When we refer to

the bits of vR, we refer to it in the infinite extended precision representation, T1.

6.4.1 Properties of rno Rounding Mode

There are three important properties of rno that we must discuss to prove Theorem 6.12.

We present each property and the proofs for them.

Lemma 1. The rno result vrno in Tn+2 preserves the sign of vR.

The value zero is exactly representable in Tn+2. In both FP and posit representations,

the bit-string of zero is even when interpreted as unsigned integer. Thus, the only real value

that rounds to zero when using rno is zero itself. All positive real values round to a positive

value in Tn+2 and all negative real values round to a positive value in Tn+2 when using rno.

Hence, vrno preserves the sign of vR.

Lemma 2. Let vrno = RNT,rno(vR). Then, the first n+1 bits in |vrno| and |vR| are identical.

We prove the lemma with the rounding components (s, v�, rb, sticky) used for round-

ing vR to vrno in Tn+2 using rno. The value v� is the truncated value of |vR|. Hence, all

n + 2 bits in v� and the first n + 2 bits in |vR| are identical. The value |vR| rounds to

either v� or the succeeding value v+ in Tn+2. We split our proof into two cases, when the

bit-string of v� is odd and when it is even.

If the bit-string of v� is odd, then |vrno| = v� by the definition of rno. Hence, all n+2

bits of |vrno| and |vR| are identical. If the bit-string of v� is even, then the last bit of v� is

186

6.4 Proof of Tn+2 Result with rno Producing Correctly Rounded Result for Tk

We now provide a proof of Theorem 6.12. Through this proof, we show that the result

produced by our polynomial approximation, which approximates the correctly rounded

result of f(x) in Tn+2 with rno rounding mode, will round to the correctly rounded result

for Tk. Our proof for Theorem 6.12 applies to both FP and posit representations. We first

prove properties of the rno rounding mode and the rounding components we use to round

real values to Tk. Then, we use these properties to prove Theorem 6.12. When we refer to

the bits of vR, we refer to it in the infinite extended precision representation, T1.

6.4.1 Properties of rno Rounding Mode

There are three important properties of rno that we must discuss to prove Theorem 6.12.

We present each property and the proofs for them.

Lemma 1. The rno result vrno in Tn+2 preserves the sign of vR.

The value zero is exactly representable in Tn+2. In both FP and posit representations,

the bit-string of zero is even when interpreted as unsigned integer. Thus, the only real value

that rounds to zero when using rno is zero itself. All positive real values round to a positive

value in Tn+2 and all negative real values round to a positive value in Tn+2 when using rno.

Hence, vrno preserves the sign of vR.

Lemma 2. Let vrno = RNT,rno(vR). Then, the first n+1 bits in |vrno| and |vR| are identical.

We prove the lemma with the rounding components (s, v�, rb, sticky) used for round-

ing vR to vrno in Tn+2 using rno. The value v� is the truncated value of |vR|. Hence, all

n + 2 bits in v� and the first n + 2 bits in |vR| are identical. The value |vR| rounds to

either v� or the succeeding value v+ in Tn+2. We split our proof into two cases, when the

bit-string of v� is odd and when it is even.

If the bit-string of v� is odd, then |vrno| = v� by the definition of rno. Hence, all n+2

bits of |vrno| and |vR| are identical. If the bit-string of v� is even, then the last bit of v� is

186

(a)

…bn+4

v- Rbit Sticky

0

0 b2 … bn+1 0=

b2 b3 … bn+1 0

6.4 Proof of Tn+2 Result with rno Producing Correctly Rounded Result for Tk

We now provide a proof of Theorem 6.12. Through this proof, we show that the result

produced by our polynomial approximation, which approximates the correctly rounded

result of f(x) in Tn+2 with rno rounding mode, will round to the correctly rounded result

for Tk. Our proof for Theorem 6.12 applies to both FP and posit representations. We first

prove properties of the rno rounding mode and the rounding components we use to round

real values to Tk. Then, we use these properties to prove Theorem 6.12. When we refer to

the bits of vR, we refer to it in the infinite extended precision representation, T1.

6.4.1 Properties of rno Rounding Mode

There are three important properties of rno that we must discuss to prove Theorem 6.12.

We present each property and the proofs for them.

Lemma 1. The rno result vrno in Tn+2 preserves the sign of vR.

The value zero is exactly representable in Tn+2. In both FP and posit representations,

the bit-string of zero is even when interpreted as unsigned integer. Thus, the only real value

that rounds to zero when using rno is zero itself. All positive real values round to a positive

value in Tn+2 and all negative real values round to a positive value in Tn+2 when using rno.

Hence, vrno preserves the sign of vR.

Lemma 2. Let vrno = RNT,rno(vR). Then, the first n+1 bits in |vrno| and |vR| are identical.

We prove the lemma with the rounding components (s, v�, rb, sticky) used for round-

ing vR to vrno in Tn+2 using rno. The value v� is the truncated value of |vR|. Hence, all

n + 2 bits in v� and the first n + 2 bits in |vR| are identical. The value |vR| rounds to

either v� or the succeeding value v+ in Tn+2. We split our proof into two cases, when the

bit-string of v� is odd and when it is even.

If the bit-string of v� is odd, then |vrno| = v� by the definition of rno. Hence, all n+2

bits of |vrno| and |vR| are identical. If the bit-string of v� is even, then the last bit of v� is

186

b3

6.4 Proof of Tn+2 Result with rno Producing Correctly Rounded Result for Tk

We now provide a proof of Theorem 6.12. Through this proof, we show that the result

produced by our polynomial approximation, which approximates the correctly rounded

result of f(x) in Tn+2 with rno rounding mode, will round to the correctly rounded result

for Tk. Our proof for Theorem 6.12 applies to both FP and posit representations. We first

prove properties of the rno rounding mode and the rounding components we use to round

real values to Tk. Then, we use these properties to prove Theorem 6.12. When we refer to

the bits of vR, we refer to it in the infinite extended precision representation, T1.

6.4.1 Properties of rno Rounding Mode

There are three important properties of rno that we must discuss to prove Theorem 6.12.

We present each property and the proofs for them.

Lemma 1. The rno result vrno in Tn+2 preserves the sign of vR.

The value zero is exactly representable in Tn+2. In both FP and posit representations,

the bit-string of zero is even when interpreted as unsigned integer. Thus, the only real value

that rounds to zero when using rno is zero itself. All positive real values round to a positive

value in Tn+2 and all negative real values round to a positive value in Tn+2 when using rno.

Hence, vrno preserves the sign of vR.

Lemma 2. Let vrno = RNT,rno(vR). Then, the first n+1 bits in |vrno| and |vR| are identical.

We prove the lemma with the rounding components (s, v�, rb, sticky) used for round-

ing vR to vrno in Tn+2 using rno. The value v� is the truncated value of |vR|. Hence, all

n + 2 bits in v� and the first n + 2 bits in |vR| are identical. The value |vR| rounds to

either v� or the succeeding value v+ in Tn+2. We split our proof into two cases, when the

bit-string of v� is odd and when it is even.

If the bit-string of v� is odd, then |vrno| = v� by the definition of rno. Hence, all n+2

bits of |vrno| and |vR| are identical. If the bit-string of v� is even, then the last bit of v� is

186

6.4 Proof of Tn+2 Result with rno Producing Correctly Rounded Result for Tk

We now provide a proof of Theorem 6.12. Through this proof, we show that the result

produced by our polynomial approximation, which approximates the correctly rounded

result of f(x) in Tn+2 with rno rounding mode, will round to the correctly rounded result

for Tk. Our proof for Theorem 6.12 applies to both FP and posit representations. We first

prove properties of the rno rounding mode and the rounding components we use to round

real values to Tk. Then, we use these properties to prove Theorem 6.12. When we refer to

the bits of vR, we refer to it in the infinite extended precision representation, T1.

6.4.1 Properties of rno Rounding Mode

There are three important properties of rno that we must discuss to prove Theorem 6.12.

We present each property and the proofs for them.

Lemma 1. The rno result vrno in Tn+2 preserves the sign of vR.

The value zero is exactly representable in Tn+2. In both FP and posit representations,

the bit-string of zero is even when interpreted as unsigned integer. Thus, the only real value

that rounds to zero when using rno is zero itself. All positive real values round to a positive

value in Tn+2 and all negative real values round to a positive value in Tn+2 when using rno.

Hence, vrno preserves the sign of vR.

Lemma 2. Let vrno = RNT,rno(vR). Then, the first n+1 bits in |vrno| and |vR| are identical.

We prove the lemma with the rounding components (s, v�, rb, sticky) used for round-

ing vR to vrno in Tn+2 using rno. The value v� is the truncated value of |vR|. Hence, all

n + 2 bits in v� and the first n + 2 bits in |vR| are identical. The value |vR| rounds to

either v� or the succeeding value v+ in Tn+2. We split our proof into two cases, when the

bit-string of v� is odd and when it is even.

If the bit-string of v� is odd, then |vrno| = v� by the definition of rno. Hence, all n+2

bits of |vrno| and |vR| are identical. If the bit-string of v� is even, then the last bit of v� is

186

(b)

…

v- Rbit Sticky

0 0

0

0 b2 … bn+1 1=

b2 b3 … bn+1 0

6.4 Proof of Tn+2 Result with rno Producing Correctly Rounded Result for Tk

We now provide a proof of Theorem 6.12. Through this proof, we show that the result

produced by our polynomial approximation, which approximates the correctly rounded

result of f(x) in Tn+2 with rno rounding mode, will round to the correctly rounded result

for Tk. Our proof for Theorem 6.12 applies to both FP and posit representations. We first

prove properties of the rno rounding mode and the rounding components we use to round

real values to Tk. Then, we use these properties to prove Theorem 6.12. When we refer to

the bits of vR, we refer to it in the infinite extended precision representation, T1.

6.4.1 Properties of rno Rounding Mode

There are three important properties of rno that we must discuss to prove Theorem 6.12.

We present each property and the proofs for them.

Lemma 1. The rno result vrno in Tn+2 preserves the sign of vR.

The value zero is exactly representable in Tn+2. In both FP and posit representations,

the bit-string of zero is even when interpreted as unsigned integer. Thus, the only real value

that rounds to zero when using rno is zero itself. All positive real values round to a positive

value in Tn+2 and all negative real values round to a positive value in Tn+2 when using rno.

Hence, vrno preserves the sign of vR.

Lemma 2. Let vrno = RNT,rno(vR). Then, the first n+1 bits in |vrno| and |vR| are identical.

We prove the lemma with the rounding components (s, v�, rb, sticky) used for round-

ing vR to vrno in Tn+2 using rno. The value v� is the truncated value of |vR|. Hence, all

n + 2 bits in v� and the first n + 2 bits in |vR| are identical. The value |vR| rounds to

either v� or the succeeding value v+ in Tn+2. We split our proof into two cases, when the

bit-string of v� is odd and when it is even.

If the bit-string of v� is odd, then |vrno| = v� by the definition of rno. Hence, all n+2

bits of |vrno| and |vR| are identical. If the bit-string of v� is even, then the last bit of v� is

186

b3

6.4 Proof of Tn+2 Result with rno Producing Correctly Rounded Result for Tk

We now provide a proof of Theorem 6.12. Through this proof, we show that the result

produced by our polynomial approximation, which approximates the correctly rounded

result of f(x) in Tn+2 with rno rounding mode, will round to the correctly rounded result

for Tk. Our proof for Theorem 6.12 applies to both FP and posit representations. We first

prove properties of the rno rounding mode and the rounding components we use to round

real values to Tk. Then, we use these properties to prove Theorem 6.12. When we refer to

the bits of vR, we refer to it in the infinite extended precision representation, T1.

6.4.1 Properties of rno Rounding Mode

There are three important properties of rno that we must discuss to prove Theorem 6.12.

We present each property and the proofs for them.

Lemma 1. The rno result vrno in Tn+2 preserves the sign of vR.

The value zero is exactly representable in Tn+2. In both FP and posit representations,

the bit-string of zero is even when interpreted as unsigned integer. Thus, the only real value

that rounds to zero when using rno is zero itself. All positive real values round to a positive

value in Tn+2 and all negative real values round to a positive value in Tn+2 when using rno.

Hence, vrno preserves the sign of vR.

Lemma 2. Let vrno = RNT,rno(vR). Then, the first n+1 bits in |vrno| and |vR| are identical.

We prove the lemma with the rounding components (s, v�, rb, sticky) used for round-

ing vR to vrno in Tn+2 using rno. The value v� is the truncated value of |vR|. Hence, all

n + 2 bits in v� and the first n + 2 bits in |vR| are identical. The value |vR| rounds to

either v� or the succeeding value v+ in Tn+2. We split our proof into two cases, when the

bit-string of v� is odd and when it is even.

If the bit-string of v� is odd, then |vrno| = v� by the definition of rno. Hence, all n+2

bits of |vrno| and |vR| are identical. If the bit-string of v� is even, then the last bit of v� is

186

(c)

…

v- Rbit Sticky

0 1

be the case that the bits bi = ci for all bits bi and ci where 2  i  n+2 and all bits starting

from cn+3, cn+4, . . . are all zero’s,

B|vR| = 0b2b3 . . . bnbn+1bn+2000 . . .

In such a case, ReduxOr{ci | i � n+ 2} is equal to performing reduction or operation on

bn+2 with infinite number of zeros,

ReduxOr{ci | i � n+ 2} = bn+2 | 0 | 0 | 0 | · · · = bn+2

which is equal to bn+2, the last bit of B|vrno|.

If vrno 6= vR, which means |vrno| 6= |vR|, then it must be the case that the last bit B|v|

is a one because rno mode rounds all |vR| that cannot be exactly represented to an a value

where the bit-string is odd when interpreted as an unsigned integer,

B|vrno| = 0b2b3 . . . bnbn+11

Additionally, |vrno| 6= |vR| indicates that all bits after the (n + 2)nd bit in B|vR| are not all

zeros. Because if all bits after the (n + 2)nd bit in B|vR| are all zeros, then |vrno| and |vR|

would be equal to each other. Thus, ReduxOr{ci | i � n + 2} = 1, which is equal to

bn+2 = 1.

Combining both Theorem 6.2 and Theorem 6.3 describes the entire bit-string of |vrno|:

Corollary 6.4. Let vrno be the rounded result of vR in Tn+2 with the rno rounding mode

(vrno = RNTn+2,rno(vR)). Since rno rounding mode preserves the sign of vR, it should also

be the case that,

|vrno| = RNTn+2,rno(|vR|)

Let B|vR| be the bit-string representation of |vR| in T1 where

B|vR| = 0b1b2b3 . . . bnbn+1bn+2 . . .

Then, B|vrno|, the bit-string representation of |vrno| in Tn+2 is equal to

B|vrno| = 0b1b2b3 . . . bnbn11t

where t = ReduxOr{bi | i � n+ 2}.

131

0 c2 c3 c4 … … … cn cn+1 cn+2 cn+3 … …

0 b2 b3 b4 … … … bn bn+1 0 0 0

(a)

bn+2

=

be the case that the bits bi = ci for all bits bi and ci where 2  i  n+2 and all bits starting

from cn+3, cn+4, . . . are all zero’s,

B|vR| = 0b2b3 . . . bnbn+1bn+2000 . . .

In such a case, ReduxOr{ci | i � n+ 2} is equal to performing reduction or operation on

bn+2 with infinite number of zeros,

ReduxOr{ci | i � n+ 2} = bn+2 | 0 | 0 | 0 | · · · = bn+2

which is equal to bn+2, the last bit of B|vrno|.

If vrno 6= vR, which means |vrno| 6= |vR|, then it must be the case that the last bit B|v|

is a one because rno mode rounds all |vR| that cannot be exactly represented to an a value

where the bit-string is odd when interpreted as an unsigned integer,

B|vrno| = 0b2b3 . . . bnbn+11

Additionally, |vrno| 6= |vR| indicates that all bits after the (n + 2)nd bit in B|vR| are not all

zeros. Because if all bits after the (n + 2)nd bit in B|vR| are all zeros, then |vrno| and |vR|

would be equal to each other. Thus, ReduxOr{ci | i � n + 2} = 1, which is equal to

bn+2 = 1.

Combining both Theorem 6.2 and Theorem 6.3 describes the entire bit-string of |vrno|:

Corollary 6.4. Let vrno be the rounded result of vR in Tn+2 with the rno rounding mode

(vrno = RNTn+2,rno(vR)). Since rno rounding mode preserves the sign of vR, it should also

be the case that,

|vrno| = RNTn+2,rno(|vR|)

Let B|vR| be the bit-string representation of |vR| in T1 where

B|vR| = 0b1b2b3 . . . bnbn+1bn+2 . . .

Then, B|vrno|, the bit-string representation of |vrno| in Tn+2 is equal to

B|vrno| = 0b1b2b3 . . . bnbn11t

where t = ReduxOr{bi | i � n+ 2}.

131

0 c2 c3 c4 … … … cn cn+1 cn+2 cn+3 … …

be the case that the bits bi = ci for all bits bi and ci where 2  i  n+2 and all bits starting

from cn+3, cn+4, . . . are all zero’s,

B|vR| = 0b2b3 . . . bnbn+1bn+2000 . . .

In such a case, ReduxOr{ci | i � n+ 2} is equal to performing reduction or operation on

bn+2 with infinite number of zeros,

ReduxOr{ci | i � n+ 2} = bn+2 | 0 | 0 | 0 | · · · = bn+2

which is equal to bn+2, the last bit of B|vrno|.

If vrno 6= vR, which means |vrno| 6= |vR|, then it must be the case that the last bit B|v|

is a one because rno mode rounds all |vR| that cannot be exactly represented to an a value

where the bit-string is odd when interpreted as an unsigned integer,

B|vrno| = 0b2b3 . . . bnbn+11

Additionally, |vrno| 6= |vR| indicates that all bits after the (n + 2)nd bit in B|vR| are not all

zeros. Because if all bits after the (n + 2)nd bit in B|vR| are all zeros, then |vrno| and |vR|

would be equal to each other. Thus, ReduxOr{ci | i � n + 2} = 1, which is equal to

bn+2 = 1.

Combining both Theorem 6.2 and Theorem 6.3 describes the entire bit-string of |vrno|:

Corollary 6.4. Let vrno be the rounded result of vR in Tn+2 with the rno rounding mode

(vrno = RNTn+2,rno(vR)). Since rno rounding mode preserves the sign of vR, it should also

be the case that,

|vrno| = RNTn+2,rno(|vR|)

Let B|vR| be the bit-string representation of |vR| in T1 where

B|vR| = 0b1b2b3 . . . bnbn+1bn+2 . . .

Then, B|vrno|, the bit-string representation of |vrno| in Tn+2 is equal to

B|vrno| = 0b1b2b3 . . . bnbn11t

where t = ReduxOr{bi | i � n+ 2}.

131

0 b2 b3 b4 … … … bn bn+1

(b)

bn+2

0 c2 c3 c4 … … … cn cn+1 cn+2

rounded value of vR with s ⇥ |vrno|. Intuitively, Theorem 6.2 states that all but last bit in

the bit-string of |vrno| (B|vrno|) is identical to the first n+ 1 bit in B|vR|.

Proof. We split the proofs into two cases: (1) When vrno = vR in which case |vrno| =

|vR| because rno rounding preserves the sign and (2) when vrno 6= vR in which case |vrno| 6=

|vR|. First, we express the bit-string B|vrno| and B|vR| with,

B|vrno| = 0b2b3 . . . bnbn+1bn+2

B|vR| = 0c2c3 . . . cncn+1cn+2cn+3 . . .

The representation T1 has the same number of exponent bits as Tn+2 but with infinite

precision. The bit-string representation of |vrno| in the infinite extended precision T1 is

equivalent to B|vrno| with infinite number of 0’s concatenated to the right,

B1
|vrno| = 0b2b3 . . . bnbn+1bn+2000 . . .

(1) If vrno = vR (which means |vrno| = |vR|), then it must be the case that the bit-string

representation of |vrno| and |vR| in the same representation T1 is the same, i.e. B1
|vrno| =

B|vR|. Otherwise, B1
|vrno| and B|vR| represent two distinctly different values. Thus, it must

be the case that the bits bi = ci for all bits bi and ci where 2  i  n + 2. Thus, the first

n + 1 bits in B1
|vrno| and B|vR| are identical, and by extension, the first n + 1 bits in B|vrno|

and B|vR| are identical.

(2) When vrno 6= vR (which means |vrno| 6= |vR|), the proof is further split into two

cases. We first define Bv� to be the first n+2 bits of B|vR| and v� to be the value represented

by Bv� in Tn+2. The value v� represents the largest value smaller than or equal to |vR|. We

reason about the case when (2.1) Bv� is odd and (2.2) Bv� is even separately.

(2.1) If Bv� is odd, then |vR| rounds to v� based on the definition of rno rounding

mode, thus |vrno| = v� and B|vrno| = Bv� . Since Bv� is the first n + 2 bits in B|vR|, the

first n+ 1 bits of B|vrno| and B|vR| are identical.

(2.2) If Bv� is even, then |vR| rounds to |vrno| = v+, where v+ is the succeeding value

147

=

rounded value of vR with s ⇥ |vrno|. Intuitively, Theorem 6.2 states that all but last bit in

the bit-string of |vrno| (B|vrno|) is identical to the first n+ 1 bit in B|vR|.

Proof. We split the proofs into two cases: (1) When vrno = vR in which case |vrno| =

|vR| because rno rounding preserves the sign and (2) when vrno 6= vR in which case |vrno| 6=

|vR|. First, we express the bit-string B|vrno| and B|vR| with,

B|vrno| = 0b2b3 . . . bnbn+1bn+2

B|vR| = 0c2c3 . . . cncn+1cn+2cn+3 . . .

The representation T1 has the same number of exponent bits as Tn+2 but with infinite

precision. The bit-string representation of |vrno| in the infinite extended precision T1 is

equivalent to B|vrno| with infinite number of 0’s concatenated to the right,

B1
|vrno| = 0b2b3 . . . bnbn+1bn+2000 . . .

(1) If vrno = vR (which means |vrno| = |vR|), then it must be the case that the bit-string

representation of |vrno| and |vR| in the same representation T1 is the same, i.e. B1
|vrno| =

B|vR|. Otherwise, B1
|vrno| and B|vR| represent two distinctly different values. Thus, it must

be the case that the bits bi = ci for all bits bi and ci where 2  i  n + 2. Thus, the first

n + 1 bits in B1
|vrno| and B|vR| are identical, and by extension, the first n + 1 bits in B|vrno|

and B|vR| are identical.

(2) When vrno 6= vR (which means |vrno| 6= |vR|), the proof is further split into two

cases. We first define Bv� to be the first n+2 bits of B|vR| and v� to be the value represented

by Bv� in Tn+2. The value v� represents the largest value smaller than or equal to |vR|. We

reason about the case when (2.1) Bv� is odd and (2.2) Bv� is even separately.

(2.1) If Bv� is odd, then |vR| rounds to v� based on the definition of rno rounding

mode, thus |vrno| = v� and B|vrno| = Bv� . Since Bv� is the first n + 2 bits in B|vR|, the

first n+ 1 bits of B|vrno| and B|vR| are identical.

(2.2) If Bv� is even, then |vR| rounds to |vrno| = v+, where v+ is the succeeding value

147

be the case that the bits bi = ci for all bits bi and ci where 2  i  n+2 and all bits starting

from cn+3, cn+4, . . . are all zero’s,

B|vR| = 0b2b3 . . . bnbn+1bn+2000 . . .

In such a case, ReduxOr{ci | i � n+ 2} is equal to performing reduction or operation on

bn+2 with infinite number of zeros,

ReduxOr{ci | i � n+ 2} = bn+2 | 0 | 0 | 0 | · · · = bn+2

which is equal to bn+2, the last bit of B|vrno|.

If vrno 6= vR, which means |vrno| 6= |vR|, then it must be the case that the last bit B|v|

is a one because rno mode rounds all |vR| that cannot be exactly represented to an a value

where the bit-string is odd when interpreted as an unsigned integer,

B|vrno| = 0b2b3 . . . bnbn+11

Additionally, |vrno| 6= |vR| indicates that all bits after the (n + 2)nd bit in B|vR| are not all

zeros. Because if all bits after the (n + 2)nd bit in B|vR| are all zeros, then |vrno| and |vR|

would be equal to each other. Thus, ReduxOr{ci | i � n + 2} = 1, which is equal to

bn+2 = 1.

Combining both Theorem 6.2 and Theorem 6.3 describes the entire bit-string of |vrno|:

Corollary 6.4. Let vrno be the rounded result of vR in Tn+2 with the rno rounding mode

(vrno = RNTn+2,rno(vR)). Since rno rounding mode preserves the sign of vR, it should also

be the case that,

|vrno| = RNTn+2,rno(|vR|)

Let B|vR| be the bit-string representation of |vR| in T1 where

B|vR| = 0b1b2b3 . . . bnbn+1bn+2 . . .

Then, B|vrno|, the bit-string representation of |vrno| in Tn+2 is equal to

B|vrno| = 0b1b2b3 . . . bnbn11t

where t = ReduxOr{bi | i � n+ 2}.

131

0 b2 b3 b4 … … … bn bn+1 bn+2

be the case that the bits bi = ci for all bits bi and ci where 2  i  n+2 and all bits starting

from cn+3, cn+4, . . . are all zero’s,

B|vR| = 0b2b3 . . . bnbn+1bn+2000 . . .

In such a case, ReduxOr{ci | i � n+ 2} is equal to performing reduction or operation on

bn+2 with infinite number of zeros,

ReduxOr{ci | i � n+ 2} = bn+2 | 0 | 0 | 0 | · · · = bn+2

which is equal to bn+2, the last bit of B|vrno|.

If vrno 6= vR, which means |vrno| 6= |vR|, then it must be the case that the last bit B|v|

is a one because rno mode rounds all |vR| that cannot be exactly represented to an a value

where the bit-string is odd when interpreted as an unsigned integer,

B|vrno| = 0b2b3 . . . bnbn+11

Additionally, |vrno| 6= |vR| indicates that all bits after the (n + 2)nd bit in B|vR| are not all

zeros. Because if all bits after the (n + 2)nd bit in B|vR| are all zeros, then |vrno| and |vR|

would be equal to each other. Thus, ReduxOr{ci | i � n + 2} = 1, which is equal to

bn+2 = 1.

Combining both Theorem 6.2 and Theorem 6.3 describes the entire bit-string of |vrno|:

Corollary 6.4. Let vrno be the rounded result of vR in Tn+2 with the rno rounding mode

(vrno = RNTn+2,rno(vR)). Since rno rounding mode preserves the sign of vR, it should also

be the case that,

|vrno| = RNTn+2,rno(|vR|)

Let B|vR| be the bit-string representation of |vR| in T1 where

B|vR| = 0b1b2b3 . . . bnbn+1bn+2 . . .

Then, B|vrno|, the bit-string representation of |vrno| in Tn+2 is equal to

B|vrno| = 0b1b2b3 . . . bnbn11t

where t = ReduxOr{bi | i � n+ 2}.

131

0 c2 c3 c4 … … … cn cn+1 cn+2 cn+3 … …

be the case that the bits bi = ci for all bits bi and ci where 2  i  n+2 and all bits starting

from cn+3, cn+4, . . . are all zero’s,

B|vR| = 0b2b3 . . . bnbn+1bn+2000 . . .

In such a case, ReduxOr{ci | i � n+ 2} is equal to performing reduction or operation on

bn+2 with infinite number of zeros,

ReduxOr{ci | i � n+ 2} = bn+2 | 0 | 0 | 0 | · · · = bn+2

which is equal to bn+2, the last bit of B|vrno|.

If vrno 6= vR, which means |vrno| 6= |vR|, then it must be the case that the last bit B|v|

is a one because rno mode rounds all |vR| that cannot be exactly represented to an a value

where the bit-string is odd when interpreted as an unsigned integer,

B|vrno| = 0b2b3 . . . bnbn+11

Additionally, |vrno| 6= |vR| indicates that all bits after the (n + 2)nd bit in B|vR| are not all

zeros. Because if all bits after the (n + 2)nd bit in B|vR| are all zeros, then |vrno| and |vR|

would be equal to each other. Thus, ReduxOr{ci | i � n + 2} = 1, which is equal to

bn+2 = 1.

Combining both Theorem 6.2 and Theorem 6.3 describes the entire bit-string of |vrno|:

Corollary 6.4. Let vrno be the rounded result of vR in Tn+2 with the rno rounding mode

(vrno = RNTn+2,rno(vR)). Since rno rounding mode preserves the sign of vR, it should also

be the case that,

|vrno| = RNTn+2,rno(|vR|)

Let B|vR| be the bit-string representation of |vR| in T1 where

B|vR| = 0b1b2b3 . . . bnbn+1bn+2 . . .

Then, B|vrno|, the bit-string representation of |vrno| in Tn+2 is equal to

B|vrno| = 0b1b2b3 . . . bnbn11t

where t = ReduxOr{bi | i � n+ 2}.

131

0 b2 b3 b4 … … … bn bn+1

(c)

bn+2

0 c2 c3 c4 … … … cn cn+1 0

rounded value of vR with s ⇥ |vrno|. Intuitively, Theorem 6.2 states that all but last bit in

the bit-string of |vrno| (B|vrno|) is identical to the first n+ 1 bit in B|vR|.

Proof. We split the proofs into two cases: (1) When vrno = vR in which case |vrno| =

|vR| because rno rounding preserves the sign and (2) when vrno 6= vR in which case |vrno| 6=

|vR|. First, we express the bit-string B|vrno| and B|vR| with,

B|vrno| = 0b2b3 . . . bnbn+1bn+2

B|vR| = 0c2c3 . . . cncn+1cn+2cn+3 . . .

The representation T1 has the same number of exponent bits as Tn+2 but with infinite

precision. The bit-string representation of |vrno| in the infinite extended precision T1 is

equivalent to B|vrno| with infinite number of 0’s concatenated to the right,

B1
|vrno| = 0b2b3 . . . bnbn+1bn+2000 . . .

(1) If vrno = vR (which means |vrno| = |vR|), then it must be the case that the bit-string

representation of |vrno| and |vR| in the same representation T1 is the same, i.e. B1
|vrno| =

B|vR|. Otherwise, B1
|vrno| and B|vR| represent two distinctly different values. Thus, it must

be the case that the bits bi = ci for all bits bi and ci where 2  i  n + 2. Thus, the first

n + 1 bits in B1
|vrno| and B|vR| are identical, and by extension, the first n + 1 bits in B|vrno|

and B|vR| are identical.

(2) When vrno 6= vR (which means |vrno| 6= |vR|), the proof is further split into two

cases. We first define Bv� to be the first n+2 bits of B|vR| and v� to be the value represented

by Bv� in Tn+2. The value v� represents the largest value smaller than or equal to |vR|. We

reason about the case when (2.1) Bv� is odd and (2.2) Bv� is even separately.

(2.1) If Bv� is odd, then |vR| rounds to v� based on the definition of rno rounding

mode, thus |vrno| = v� and B|vrno| = Bv� . Since Bv� is the first n + 2 bits in B|vR|, the

first n+ 1 bits of B|vrno| and B|vR| are identical.

(2.2) If Bv� is even, then |vR| rounds to |vrno| = v+, where v+ is the succeeding value

147

=

0 c2 c3 c4 … … … cn cn+1 1

of v�. The bit-string representation of Bv� is equivalent to the first n + 2 bits of B|vR|.

Additionaly, the (n+ 2)nd bit is zero since Bv� is even:

Bv� = 0c2c3 . . . cncn+10

The bit-string representation of the succeeding value v+ is odd where the first n + 1 bits

are identical to Bv� ,

Bv+ = 0c2c3 . . . cncn+11

In our case, |vrno| = v+ and it must be the case that B|vrno| = Bv+ . The first n + 1 bits of

Bv+ are the same as the first n + 1 bits of Bv� . The first n + 2 bits of Bv� are identical to

the first n+ 2 bits of B|vR|. Thus, the first n+ 1 bits of B|vrno| is identical to the first n+ 1

bits of B|vR|.

While Theorem 6.2 reasons about the first n + 1 bits in the bit-string representation

of the rounded value vrno, the next theorem reasons about the last ((n + 2)nd) bit in the

bit-string representation of vrno.

Theorem 6.3. Let vrno = RNT,rno(vR) and B|vrno| be the bit-string of |vrno| in the (n = 2)-

bit representation Tn+2. Let B|vR| be the bit-string representation of |vR| in T1. Then, the

last bit in B|vrno| = ReduxOr{ci | i � n+ 2} where ci is the ith bit in B|vR| where ReduxOr

is the reduction or operation.

Intuitively, Theorem 6.3 states that the last bit in B|vrno| = 0 if and only if all bits

starting from the (n+ 2)nd bit in B|vR| are zeros. Otherwise, B|vrno| = 1.

Proof. We split the proofs into two cases: (1) When vrno = vR in which case |v| = |vR|

because rno rounding preserves the sign and (2) when vrno 6= vR in which case |v| 6= |vR|.

First, we express the bit-string B|vrno| and B|vR| into,

B|vrno| = 0b2b3 . . . bnbn+1bn+2

B|vR| = 0c2c3 . . . cncn+1cn+2cn+3 . . .

148

Figure 6.12: Illustration of Theorem 2. (a) corresponds to the case (1) in Theorem 2,
(b) corresponds to the case (2.1) in Theorem 2, and (c) corresponds to the case (2.2) in
Theorem 2.

even. Depending on the value of rb and sticky, either |vrno| = v� or |vrno| = v+. If rb = 0

and sticky = 0, then |vrno| = v�. Hence, all n+ 2 bits oof |vrno| and |vR| are identical. If

either rb = 1 and sticky = 1, then |vrno| = v+. Because the last bit of v� is a 0, the only

bit that is different between v� and v+ is the last bit, where the last bit of v+ is a 1. Hence,

the first n+ 1 bits of |vrno| and |vR| are identical.

Proof. We split the proofs into two cases: (1) When vrno = vR in which case |vrno| =

|vR| because rno rounding preserves the sign and (2) when vrno 6= vR in which case |vrno| 6=

|vR|. First, we express the bit-string B|vrno| and B|vR| with,

B|vrno| = 0b2b3 . . . bnbn+1bn+2

B|vR| = 0c2c3 . . . cncn+1cn+2cn+3 . . .

187

Figure 6.8: Illustration of Lemma 2 and Lemma 3 for different cases of |vR| and |vrno|where |vrno|
is the rno result of |vR| in Tn+2. We show the bit-string of |vR| and |vrno| for three cases. (a) v− is
odd. (b) v− is even, rb = 0, and sticky = 0. (c) v− is even and either rb = 1 or sticky = 1.

n + 2 bits in v− and the first n + 2 bits in |vR| are identical. The value |vR| rounds to

either v− or the succeeding value v+ in Tn+2. We split our proof into two cases: When the

bit-string of v− is odd and when it is even. Figure 6.8 pictorially illustrates our proof.

If the bit-string of v− is odd, then |vrno| = v− by the definition of rno (Figure 6.8(a)).

Hence, all n + 2 bits of |vrno| and |vR| are identical. If the bit-string of v− is even, then

the last bit of v− is even. Depending on the value of rb and sticky, either |vrno| = v− or

|vrno| = v+. If rb = 0 and sticky = 0, then |vrno| = v− (Figure 6.8(b)). Hence, all n + 2

bits of |vrno| and |vR| are identical. If either rb = 1 and sticky = 1, then |vrno| = v+

(Figure 6.8(c)). Because the last bit of v− is a 0, the only bit that is different between v−

and v+ is the last bit, where the last bit of v+ is a 1. Hence, the first n+ 1 bits of |vrno| and

|vR| are identical.

Lemma 3. Let vrno = RNT,rno(vR). Then, the last bit in |vrno| is equal to the bitwise OR

of all the bits in |vR| starting from the (n+ 2)th bit.

Intuitively, Lemma 3 states that the last bit of |vrno| is zero if and only if all bits starting

from the (n + 2)nd bit in |vR| are zeros. We prove this lemma using a similar strategy as

Lemma 2. Let (s, v−, rb, and sticky) be the rounding components for rounding vR to Tn+2

using rno. The value |vR| rounds to either v− or the succeeding value v+ in Tn+2.

If the bit-string of v− is odd, then |vrno| = v−. The (n + 2)nd bit of v− and |vrno| in

160

Tn+2 is 1. Since v− is a truncated value of |vR|, the (n + 2)nd bit of |vR| is 1. Hence, the

bitwise OR of all bits of |Real| starting from the (n+ 2)nd bit is 1.

If the bit-string of v− is even, then our proof is subdivided into two additional cases

depending on the values of rb and sticky. If rb = 0 and sticky = 0, then |vrno| = v−. The

(n + 2)nd bit of |vrno| is 0. Similarly, the (n + 2)nd bit of |vR| is even. Additionally, from

the definition of rounding components, rb represents the the (n+3)rd bit in |vR| and sticky

represents the bitwise OR operation of all bits starting from (n+ 4)th bit in |vR|. Since both

rb and sticky are 0, all bits in |vR| starting from the (n+ 2)nd bit are 0.

If either rb = 1 or sticky = 1, then |vrno| is equal to v+, where the bit-string of v+ is

odd. Hence, the (n+ 2)nd bit of |vrno| is 1. Because either rb or sticky is not zero, at least

one bit starting from (n+ 2)nd bit in |vR| is 1. The bitwise OR operation of all bits starting

from (n+ 2)nd bit in |vR| is 1, which matches the (n+ 2)nd bit in |vrno|.

Lemma 4. Define a representation Tk, a rounding mode rm, and two real values v1 and

v2. Let (s1, v−1 , rb1, sticky1) be the round components for rounding v1 to Tk and (s2, v−2 ,

rb2, sticky2) be the rounding components for rounding v2 to Tk. If s1 = s2, v−1 = v−2 ,

rb1 = rb2, and sticky1 = sticky2, then RNTk,rm(v1) = RNTk,rm(v2).

Lemma 4 follows directly from the definition of rounding components we described

in Section 2.1.3. Identifying the correctly rounded result of the real value in Tk for any

rounding mode only depends on the rounding components. Chapter 2 describes our de-

terministic approach to round vR to FP and posit representation, respectively, using the

rounding components.

Proof Of Double Rounding With rno Producing Correctly Rounded Result We now

present the proof of Theorem 6.1, which we reiterate for clarity:

Theorem 6.1. Let f(x) be the real value of an elementary function given an input x and

vrno = RNTn+2,rno(f(x)). Let v be a value in the odd interval of vrno such that for all v,

161

b1 … bk-1 bn+2 …

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

…

… bn bn+1 bn+2

… bn bn+1 t

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

(a) Rounding to Tn

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

1:19be the case that the bits bi = ci for all bits bi and ci where 2  i  n+2 and all bits starting

from cn+3, cn+4, . . . are all zero’s,

B|vR| = 0b2b3 . . . bnbn+1bn+2000 . . .

In such a case, ReduxOr{ci | i � n+ 2} is equal to performing reduction or operation on

bn+2 with infinite number of zeros,

ReduxOr{ci | i � n+ 2} = bn+2 | 0 | 0 | 0 | · · · = bn+2

which is equal to bn+2, the last bit of B|vrno|.

If vrno 6= vR, which means |vrno| 6= |vR|, then it must be the case that the last bit B|v|

is a one because rno mode rounds all |vR| that cannot be exactly represented to an a value

where the bit-string is odd when interpreted as an unsigned integer,

B|vrno| = 0b2b3 . . . bnbn+11

Additionally, |vrno| 6= |vR| indicates that all bits after the (n + 2)nd bit in B|vR| are not all

zeros. Because if all bits after the (n + 2)nd bit in B|vR| are all zeros, then |vrno| and |vR|

would be equal to each other. Thus, ReduxOr{ci | i � n + 2} = 1, which is equal to

bn+2 = 1.

Combining both Theorem 6.2 and Theorem 6.3 describes the entire bit-string of |vrno|:

Corollary 6.4. Let vrno be the rounded result of vR in Tn+2 with the rno rounding mode

(vrno = RNTn+2,rno(vR)). Since rno rounding mode preserves the sign of vR, it should also

be the case that,

|vrno| = RNTn+2,rno(|vR|)

Let B|vR| be the bit-string representation of |vR| in T1 where

B|vR| = 0b1b2b3 . . . bnbn+1bn+2 . . .

Then, B|vrno|, the bit-string representation of |vrno| in Tn+2 is equal to

B|vrno| = 0b1b2b3 . . . bnbn11t

where t = ReduxOr{bi | i � n+ 2}.

131

0 b2 b3 b4 … … … bn bn+1 bn+2 bn+3 … …

0 b2 b3 b4 … … … bn bn+1 t

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

(Reduction or)

(a)

0 0 0

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

(Reduction or)

(b)

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

Figure 6.22(b) pictorially shows Bv�2
, rb2, and sticky2 extracted from Bv�2

. The value

represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding components

for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

The sign bits s1 and s2 are the same because rno rounding preserves the sign of the

original real value vR. The bit-string representations Bv�1
and Bv�2

are identical, thus the

truncated values v�1 = v�2 . The rounding bits rb1 and rb2 are both bn+1. Finally, the sticky

bits sticky1 and sticky2 are the same because,

sticky1 = ReduxOr{bi | i � n+ 2}

sticky2 = t = ReduxOr{bi | i � n+ 2}

Thus, s1 = s2, v�1 = v�2 , rb1 = rb2, and sticky1 = sticky2. From Theorem 6.10, it follows

that RNTn,rm(vR) = RNTn,rm(vrno).

Theorem 6.11 guarantees that performing double rounding by rounding a real value to

Tn+2 with rno mode and then subsequently rounding the result to Tn with any rounding

mode in {rne, rna, rnz, rnp, rnn} will produce a correctly rounded result as if we rounded

the real value directly to Tn. We now generalize Theorem 6.11 to all Tk as long as |E| <

k  n.

Theorem 6.12. Let vR be a real value. Define two FP representations Tk and Tn+2 as

163

Fig. 13. Let �rno be the rounded result of �R in Tn+2 using rno rounding mode. (a) shows the bit-string
representation of |�R | in the infinite extended precision representation. B��

1 , rb1, and stick�1 shows three
rounding components for rounding |�R | to Tn , the bit-string representation of the truncated value, the
rounding bit, and the sticky bit. (b) shows the bit-string representation of |�rno | in the infinite extended
precision representation. B��

2 , rb2, and stick�2 shows three rounding components for rounding |�rno | to Tn ,
the bit-string representation of the truncated value, the rounding bit, and the sticky bit. B�R B�rno

function to the FP representation Tn+2 = Fn+2, |E | using rno rounding mode to produce �rno and
then subsequently rounding the result (�rno) to Tk using a rounding mode rm produces the same
value as rounding �R directly to Tk using the same rounding mode rm, as long as |E | + 1 < k � n.
More formally, we prove that

RNTk ,rm(RNTn+2,rno(�R)) = RNTk ,rm(�R)
Our high-level strategy is show that the rounding components for �R to Tk and rounding �rno to

Tk are exactly the same. We prove Theorem 1 by �rst consider the case when k = n where Tk = Tn
and then generalizing it to the case where k < n.

T������ 2. Let �R be a real value. De�ne two FP representations Tn , Tn+2 as above. Choose a
rounding mode rm � {rne , rna, rnz, rnp, rnn }. Then, RNTn,rm(�R) = RNTn,rm(RNTn+2,rno(�R)).

Proof. Let us denote�rno = RNTn+2,rno(�R). Then our goal is to proveRNTn,rm(�R) = RNTn,rm(�rno).
Based on Theorem ??, if the rounding components for rounding �R to Tn is the same as the round-
ing components for rounding �rno to Tn , then we prove that RNTn,rm(�R) = RNTn,rm(�rno) for
all rounding modes rm. By extension, this proves Theorem 2. Thus, we show that the rounding
components for rounding �R and �rno to Tn are the same.
We �rst identify the rounding components for rounding �R to Tn . We decompose �R into

�R = s1�|�R |. The value s1 is a rounding component, sign bit. Next, we encode |�R | into the bit-string
representation in the in�nite extended precision representation of Tn , denoted as T� = F�, |E | :

B |�R | = 0b2b3 . . .bn�1bnbn+1bn+2bn+3 . . .

We then truncate B |�R | to n bits to get the bit-string representation of the truncated value ��
1 and

identify the rounding bit and the sticky bit:
B��

1
= 0b2b3 . . .bn�1bn , rb1 = bn+1, stick�1 = ReduxOr{bi | i � n + 2}

Figure 13(a) pictorially shows B��
1
, rb1, and stick�1 extracted from B |�R | . The value represented by

the bit-string B��
1
in Tn is the truncated value, ��

1 . Thus, the rounding components for rounding �R
to Tn are s1, ��

1 , rb1, and stick�1.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2022.

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

1:19be the case that the bits bi = ci for all bits bi and ci where 2  i  n+2 and all bits starting

from cn+3, cn+4, . . . are all zero’s,

B|vR| = 0b2b3 . . . bnbn+1bn+2000 . . .

In such a case, ReduxOr{ci | i � n+ 2} is equal to performing reduction or operation on

bn+2 with infinite number of zeros,

ReduxOr{ci | i � n+ 2} = bn+2 | 0 | 0 | 0 | · · · = bn+2

which is equal to bn+2, the last bit of B|vrno|.

If vrno 6= vR, which means |vrno| 6= |vR|, then it must be the case that the last bit B|v|

is a one because rno mode rounds all |vR| that cannot be exactly represented to an a value

where the bit-string is odd when interpreted as an unsigned integer,

B|vrno| = 0b2b3 . . . bnbn+11

Additionally, |vrno| 6= |vR| indicates that all bits after the (n + 2)nd bit in B|vR| are not all

zeros. Because if all bits after the (n + 2)nd bit in B|vR| are all zeros, then |vrno| and |vR|

would be equal to each other. Thus, ReduxOr{ci | i � n + 2} = 1, which is equal to

bn+2 = 1.

Combining both Theorem 6.2 and Theorem 6.3 describes the entire bit-string of |vrno|:

Corollary 6.4. Let vrno be the rounded result of vR in Tn+2 with the rno rounding mode

(vrno = RNTn+2,rno(vR)). Since rno rounding mode preserves the sign of vR, it should also

be the case that,

|vrno| = RNTn+2,rno(|vR|)

Let B|vR| be the bit-string representation of |vR| in T1 where

B|vR| = 0b1b2b3 . . . bnbn+1bn+2 . . .

Then, B|vrno|, the bit-string representation of |vrno| in Tn+2 is equal to

B|vrno| = 0b1b2b3 . . . bnbn11t

where t = ReduxOr{bi | i � n+ 2}.

131

0 b2 b3 b4 … … … bn bn+1 bn+2 bn+3 … …

0 b2 b3 b4 … … … bn bn+1 t

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

(Reduction or)

(a)

0 0 0

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

(Reduction or)

(b)

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

Figure 6.22(b) pictorially shows Bv�2
, rb2, and sticky2 extracted from Bv�2

. The value

represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding components

for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

The sign bits s1 and s2 are the same because rno rounding preserves the sign of the

original real value vR. The bit-string representations Bv�1
and Bv�2

are identical, thus the

truncated values v�1 = v�2 . The rounding bits rb1 and rb2 are both bn+1. Finally, the sticky

bits sticky1 and sticky2 are the same because,

sticky1 = ReduxOr{bi | i � n+ 2}

sticky2 = t = ReduxOr{bi | i � n+ 2}

Thus, s1 = s2, v�1 = v�2 , rb1 = rb2, and sticky1 = sticky2. From Theorem 6.10, it follows

that RNTn,rm(vR) = RNTn,rm(vrno).

Theorem 6.11 guarantees that performing double rounding by rounding a real value to

Tn+2 with rno mode and then subsequently rounding the result to Tn with any rounding

mode in {rne, rna, rnz, rnp, rnn} will produce a correctly rounded result as if we rounded

the real value directly to Tn. We now generalize Theorem 6.11 to all Tk as long as |E| <

k  n.

Theorem 6.12. Let vR be a real value. Define two FP representations Tk and Tn+2 as

163

Fig. 13. Let �rno be the rounded result of �R in Tn+2 using rno rounding mode. (a) shows the bit-string
representation of |�R | in the infinite extended precision representation. B��

1 , rb1, and stick�1 shows three
rounding components for rounding |�R | to Tn , the bit-string representation of the truncated value, the
rounding bit, and the sticky bit. (b) shows the bit-string representation of |�rno | in the infinite extended
precision representation. B��

2 , rb2, and stick�2 shows three rounding components for rounding |�rno | to Tn ,
the bit-string representation of the truncated value, the rounding bit, and the sticky bit. B�R B�rno

function to the FP representation Tn+2 = Fn+2, |E | using rno rounding mode to produce �rno and
then subsequently rounding the result (�rno) to Tk using a rounding mode rm produces the same
value as rounding �R directly to Tk using the same rounding mode rm, as long as |E | + 1 < k � n.
More formally, we prove that

RNTk ,rm(RNTn+2,rno(�R)) = RNTk ,rm(�R)
Our high-level strategy is show that the rounding components for �R to Tk and rounding �rno to

Tk are exactly the same. We prove Theorem 1 by �rst consider the case when k = n where Tk = Tn
and then generalizing it to the case where k < n.

T������ 2. Let �R be a real value. De�ne two FP representations Tn , Tn+2 as above. Choose a
rounding mode rm � {rne , rna, rnz, rnp, rnn }. Then, RNTn,rm(�R) = RNTn,rm(RNTn+2,rno(�R)).

Proof. Let us denote�rno = RNTn+2,rno(�R). Then our goal is to proveRNTn,rm(�R) = RNTn,rm(�rno).
Based on Theorem ??, if the rounding components for rounding �R to Tn is the same as the round-
ing components for rounding �rno to Tn , then we prove that RNTn,rm(�R) = RNTn,rm(�rno) for
all rounding modes rm. By extension, this proves Theorem 2. Thus, we show that the rounding
components for rounding �R and �rno to Tn are the same.
We �rst identify the rounding components for rounding �R to Tn . We decompose �R into

�R = s1�|�R |. The value s1 is a rounding component, sign bit. Next, we encode |�R | into the bit-string
representation in the in�nite extended precision representation of Tn , denoted as T� = F�, |E | :

B |�R | = 0b2b3 . . .bn�1bnbn+1bn+2bn+3 . . .

We then truncate B |�R | to n bits to get the bit-string representation of the truncated value ��
1 and

identify the rounding bit and the sticky bit:
B��

1
= 0b2b3 . . .bn�1bn , rb1 = bn+1, stick�1 = ReduxOr{bi | i � n + 2}

Figure 13(a) pictorially shows B��
1
, rb1, and stick�1 extracted from B |�R | . The value represented by

the bit-string B��
1
in Tn is the truncated value, ��

1 . Thus, the rounding components for rounding �R
to Tn are s1, ��

1 , rb1, and stick�1.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2022.

…b1

b1

b1 … bk bk+1 bn+2 …

b1 … t

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

…

bk bk+1 …

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

1:19be the case that the bits bi = ci for all bits bi and ci where 2  i  n+2 and all bits starting

from cn+3, cn+4, . . . are all zero’s,

B|vR| = 0b2b3 . . . bnbn+1bn+2000 . . .

In such a case, ReduxOr{ci | i � n+ 2} is equal to performing reduction or operation on

bn+2 with infinite number of zeros,

ReduxOr{ci | i � n+ 2} = bn+2 | 0 | 0 | 0 | · · · = bn+2

which is equal to bn+2, the last bit of B|vrno|.

If vrno 6= vR, which means |vrno| 6= |vR|, then it must be the case that the last bit B|v|

is a one because rno mode rounds all |vR| that cannot be exactly represented to an a value

where the bit-string is odd when interpreted as an unsigned integer,

B|vrno| = 0b2b3 . . . bnbn+11

Additionally, |vrno| 6= |vR| indicates that all bits after the (n + 2)nd bit in B|vR| are not all

zeros. Because if all bits after the (n + 2)nd bit in B|vR| are all zeros, then |vrno| and |vR|

would be equal to each other. Thus, ReduxOr{ci | i � n + 2} = 1, which is equal to

bn+2 = 1.

Combining both Theorem 6.2 and Theorem 6.3 describes the entire bit-string of |vrno|:

Corollary 6.4. Let vrno be the rounded result of vR in Tn+2 with the rno rounding mode

(vrno = RNTn+2,rno(vR)). Since rno rounding mode preserves the sign of vR, it should also

be the case that,

|vrno| = RNTn+2,rno(|vR|)

Let B|vR| be the bit-string representation of |vR| in T1 where

B|vR| = 0b1b2b3 . . . bnbn+1bn+2 . . .

Then, B|vrno|, the bit-string representation of |vrno| in Tn+2 is equal to

B|vrno| = 0b1b2b3 . . . bnbn11t

where t = ReduxOr{bi | i � n+ 2}.

131

0 b2 b3 b4 … … … bn bn+1 bn+2 bn+3 … …

0 b2 b3 b4 … … … bn bn+1 t

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

(Reduction or)

(a)

0 0 0

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

(Reduction or)

(b)

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

Figure 6.22(b) pictorially shows Bv�2
, rb2, and sticky2 extracted from Bv�2

. The value

represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding components

for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

The sign bits s1 and s2 are the same because rno rounding preserves the sign of the

original real value vR. The bit-string representations Bv�1
and Bv�2

are identical, thus the

truncated values v�1 = v�2 . The rounding bits rb1 and rb2 are both bn+1. Finally, the sticky

bits sticky1 and sticky2 are the same because,

sticky1 = ReduxOr{bi | i � n+ 2}

sticky2 = t = ReduxOr{bi | i � n+ 2}

Thus, s1 = s2, v�1 = v�2 , rb1 = rb2, and sticky1 = sticky2. From Theorem 6.10, it follows

that RNTn,rm(vR) = RNTn,rm(vrno).

Theorem 6.11 guarantees that performing double rounding by rounding a real value to

Tn+2 with rno mode and then subsequently rounding the result to Tn with any rounding

mode in {rne, rna, rnz, rnp, rnn} will produce a correctly rounded result as if we rounded

the real value directly to Tn. We now generalize Theorem 6.11 to all Tk as long as |E| <

k  n.

Theorem 6.12. Let vR be a real value. Define two FP representations Tk and Tn+2 as

163

Fig. 13. Let �rno be the rounded result of �R in Tn+2 using rno rounding mode. (a) shows the bit-string
representation of |�R | in the infinite extended precision representation. B��

1 , rb1, and stick�1 shows three
rounding components for rounding |�R | to Tn , the bit-string representation of the truncated value, the
rounding bit, and the sticky bit. (b) shows the bit-string representation of |�rno | in the infinite extended
precision representation. B��

2 , rb2, and stick�2 shows three rounding components for rounding |�rno | to Tn ,
the bit-string representation of the truncated value, the rounding bit, and the sticky bit. B�R B�rno

function to the FP representation Tn+2 = Fn+2, |E | using rno rounding mode to produce �rno and
then subsequently rounding the result (�rno) to Tk using a rounding mode rm produces the same
value as rounding �R directly to Tk using the same rounding mode rm, as long as |E | + 1 < k � n.
More formally, we prove that

RNTk ,rm(RNTn+2,rno(�R)) = RNTk ,rm(�R)
Our high-level strategy is show that the rounding components for �R to Tk and rounding �rno to

Tk are exactly the same. We prove Theorem 1 by �rst consider the case when k = n where Tk = Tn
and then generalizing it to the case where k < n.

T������ 2. Let �R be a real value. De�ne two FP representations Tn , Tn+2 as above. Choose a
rounding mode rm � {rne , rna, rnz, rnp, rnn }. Then, RNTn,rm(�R) = RNTn,rm(RNTn+2,rno(�R)).

Proof. Let us denote�rno = RNTn+2,rno(�R). Then our goal is to proveRNTn,rm(�R) = RNTn,rm(�rno).
Based on Theorem ??, if the rounding components for rounding �R to Tn is the same as the round-
ing components for rounding �rno to Tn , then we prove that RNTn,rm(�R) = RNTn,rm(�rno) for
all rounding modes rm. By extension, this proves Theorem 2. Thus, we show that the rounding
components for rounding �R and �rno to Tn are the same.
We �rst identify the rounding components for rounding �R to Tn . We decompose �R into

�R = s1�|�R |. The value s1 is a rounding component, sign bit. Next, we encode |�R | into the bit-string
representation in the in�nite extended precision representation of Tn , denoted as T� = F�, |E | :

B |�R | = 0b2b3 . . .bn�1bnbn+1bn+2bn+3 . . .

We then truncate B |�R | to n bits to get the bit-string representation of the truncated value ��
1 and

identify the rounding bit and the sticky bit:
B��

1
= 0b2b3 . . .bn�1bn , rb1 = bn+1, stick�1 = ReduxOr{bi | i � n + 2}

Figure 13(a) pictorially shows B��
1
, rb1, and stick�1 extracted from B |�R | . The value represented by

the bit-string B��
1
in Tn is the truncated value, ��

1 . Thus, the rounding components for rounding �R
to Tn are s1, ��

1 , rb1, and stick�1.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2022.

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

1:19be the case that the bits bi = ci for all bits bi and ci where 2  i  n+2 and all bits starting

from cn+3, cn+4, . . . are all zero’s,

B|vR| = 0b2b3 . . . bnbn+1bn+2000 . . .

In such a case, ReduxOr{ci | i � n+ 2} is equal to performing reduction or operation on

bn+2 with infinite number of zeros,

ReduxOr{ci | i � n+ 2} = bn+2 | 0 | 0 | 0 | · · · = bn+2

which is equal to bn+2, the last bit of B|vrno|.

If vrno 6= vR, which means |vrno| 6= |vR|, then it must be the case that the last bit B|v|

is a one because rno mode rounds all |vR| that cannot be exactly represented to an a value

where the bit-string is odd when interpreted as an unsigned integer,

B|vrno| = 0b2b3 . . . bnbn+11

Additionally, |vrno| 6= |vR| indicates that all bits after the (n + 2)nd bit in B|vR| are not all

zeros. Because if all bits after the (n + 2)nd bit in B|vR| are all zeros, then |vrno| and |vR|

would be equal to each other. Thus, ReduxOr{ci | i � n + 2} = 1, which is equal to

bn+2 = 1.

Combining both Theorem 6.2 and Theorem 6.3 describes the entire bit-string of |vrno|:

Corollary 6.4. Let vrno be the rounded result of vR in Tn+2 with the rno rounding mode

(vrno = RNTn+2,rno(vR)). Since rno rounding mode preserves the sign of vR, it should also

be the case that,

|vrno| = RNTn+2,rno(|vR|)

Let B|vR| be the bit-string representation of |vR| in T1 where

B|vR| = 0b1b2b3 . . . bnbn+1bn+2 . . .

Then, B|vrno|, the bit-string representation of |vrno| in Tn+2 is equal to

B|vrno| = 0b1b2b3 . . . bnbn11t

where t = ReduxOr{bi | i � n+ 2}.

131

0 b2 b3 b4 … … … bn bn+1 bn+2 bn+3 … …

0 b2 b3 b4 … … … bn bn+1 t

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

(Reduction or)

(a)

0 0 0

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

(Reduction or)

(b)

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

Figure 6.22(b) pictorially shows Bv�2
, rb2, and sticky2 extracted from Bv�2

. The value

represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding components

for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

The sign bits s1 and s2 are the same because rno rounding preserves the sign of the

original real value vR. The bit-string representations Bv�1
and Bv�2

are identical, thus the

truncated values v�1 = v�2 . The rounding bits rb1 and rb2 are both bn+1. Finally, the sticky

bits sticky1 and sticky2 are the same because,

sticky1 = ReduxOr{bi | i � n+ 2}

sticky2 = t = ReduxOr{bi | i � n+ 2}

Thus, s1 = s2, v�1 = v�2 , rb1 = rb2, and sticky1 = sticky2. From Theorem 6.10, it follows

that RNTn,rm(vR) = RNTn,rm(vrno).

Theorem 6.11 guarantees that performing double rounding by rounding a real value to

Tn+2 with rno mode and then subsequently rounding the result to Tn with any rounding

mode in {rne, rna, rnz, rnp, rnn} will produce a correctly rounded result as if we rounded

the real value directly to Tn. We now generalize Theorem 6.11 to all Tk as long as |E| <

k  n.

Theorem 6.12. Let vR be a real value. Define two FP representations Tk and Tn+2 as

163

Fig. 13. Let �rno be the rounded result of �R in Tn+2 using rno rounding mode. (a) shows the bit-string
representation of |�R | in the infinite extended precision representation. B��

1 , rb1, and stick�1 shows three
rounding components for rounding |�R | to Tn , the bit-string representation of the truncated value, the
rounding bit, and the sticky bit. (b) shows the bit-string representation of |�rno | in the infinite extended
precision representation. B��

2 , rb2, and stick�2 shows three rounding components for rounding |�rno | to Tn ,
the bit-string representation of the truncated value, the rounding bit, and the sticky bit. B�R B�rno

function to the FP representation Tn+2 = Fn+2, |E | using rno rounding mode to produce �rno and
then subsequently rounding the result (�rno) to Tk using a rounding mode rm produces the same
value as rounding �R directly to Tk using the same rounding mode rm, as long as |E | + 1 < k � n.
More formally, we prove that

RNTk ,rm(RNTn+2,rno(�R)) = RNTk ,rm(�R)
Our high-level strategy is show that the rounding components for �R to Tk and rounding �rno to

Tk are exactly the same. We prove Theorem 1 by �rst consider the case when k = n where Tk = Tn
and then generalizing it to the case where k < n.

T������ 2. Let �R be a real value. De�ne two FP representations Tn , Tn+2 as above. Choose a
rounding mode rm � {rne , rna, rnz, rnp, rnn }. Then, RNTn,rm(�R) = RNTn,rm(RNTn+2,rno(�R)).

Proof. Let us denote�rno = RNTn+2,rno(�R). Then our goal is to proveRNTn,rm(�R) = RNTn,rm(�rno).
Based on Theorem ??, if the rounding components for rounding �R to Tn is the same as the round-
ing components for rounding �rno to Tn , then we prove that RNTn,rm(�R) = RNTn,rm(�rno) for
all rounding modes rm. By extension, this proves Theorem 2. Thus, we show that the rounding
components for rounding �R and �rno to Tn are the same.
We �rst identify the rounding components for rounding �R to Tn . We decompose �R into

�R = s1�|�R |. The value s1 is a rounding component, sign bit. Next, we encode |�R | into the bit-string
representation in the in�nite extended precision representation of Tn , denoted as T� = F�, |E | :

B |�R | = 0b2b3 . . .bn�1bnbn+1bn+2bn+3 . . .

We then truncate B |�R | to n bits to get the bit-string representation of the truncated value ��
1 and

identify the rounding bit and the sticky bit:
B��

1
= 0b2b3 . . .bn�1bn , rb1 = bn+1, stick�1 = ReduxOr{bi | i � n + 2}

Figure 13(a) pictorially shows B��
1
, rb1, and stick�1 extracted from B |�R | . The value represented by

the bit-string B��
1
in Tn is the truncated value, ��

1 . Thus, the rounding components for rounding �R
to Tn are s1, ��

1 , rb1, and stick�1.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2022.

(b) Rounding to Tk

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

Figure 6.13: (a) Rounding components when rounding vR and vrno to Tn. (b) Rounding
components when rounding vR and vrno to Tk, where 1 + |E| < k < n. We show the
bit-string of vR in the infinite extended precision and the bit-string of vrno in Tn+2 repre-
sentation.

We first identify the rounding components (s1, v�1 , rb1, sticky1) for rounding vR to

Tk. We decompose vR into vR = s1 ⇥ |vR|. The value s1 is the first rounding compo-

nent representing the sign of vR. The bit-string of |vR| in the infinite extended precision

representation, B|vR|, is pictorially shown in Figure 6.13.

B|vR| = b1b2b3 . . . bk�1bk . . . bnbn+1bn+2bn+3 . . .

We identify the remaining three rounding components from B|vR|. The truncated value v�1

in Tk and its bit-string Bv�1
is identified by truncating the first k bits in B|vR|. The rounding

bit rb1 is the (k + 1)st bit in B|vR| and the sticky bit sticky1 is the bit-wise OR of all bits

starting from the (k + 2)nd bit in B|vR|:

Bv�1
= b1b2b3 . . . bk�1bk, rb1 = bk+1, sticky1 = bk+2 | bk+3 | . . .

Figure 6.13 pictorially shows Bv�1
, rb1, and sticky1.

Next, we identify the rounding components (s2, v�2 , rb2, sticky2) for rounding vrno to

Tk. The sign of vrno is the first component s2. The bit-string of |vrno| in Tn+2 is pictorially

shown in Figure 6.13 with B|vrno|.

Note that from Lemma [], the first n + 1 bits of |vrno| in Tn+2 representation and B|vR|

are identical. Additionally from Lemma [], the (n+ 2)nd bit (the last bit) of |vrno| is equal

to the bitwise OR operation of all bits in |vR| starting from the (n+ 2)nd bit. Hence,

B|vrno| = b1b2b3 . . . bk�1bk . . . bnbn+1t t = bn+2 | bn+3 | . . .

189

… bn bn+1 bn+2

… bn bn+1 t

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

(a) Rounding to Tn

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

1:19be the case that the bits bi = ci for all bits bi and ci where 2  i  n+2 and all bits starting

from cn+3, cn+4, . . . are all zero’s,

B|vR| = 0b2b3 . . . bnbn+1bn+2000 . . .

In such a case, ReduxOr{ci | i � n+ 2} is equal to performing reduction or operation on

bn+2 with infinite number of zeros,

ReduxOr{ci | i � n+ 2} = bn+2 | 0 | 0 | 0 | · · · = bn+2

which is equal to bn+2, the last bit of B|vrno|.

If vrno 6= vR, which means |vrno| 6= |vR|, then it must be the case that the last bit B|v|

is a one because rno mode rounds all |vR| that cannot be exactly represented to an a value

where the bit-string is odd when interpreted as an unsigned integer,

B|vrno| = 0b2b3 . . . bnbn+11

Additionally, |vrno| 6= |vR| indicates that all bits after the (n + 2)nd bit in B|vR| are not all

zeros. Because if all bits after the (n + 2)nd bit in B|vR| are all zeros, then |vrno| and |vR|

would be equal to each other. Thus, ReduxOr{ci | i � n + 2} = 1, which is equal to

bn+2 = 1.

Combining both Theorem 6.2 and Theorem 6.3 describes the entire bit-string of |vrno|:

Corollary 6.4. Let vrno be the rounded result of vR in Tn+2 with the rno rounding mode

(vrno = RNTn+2,rno(vR)). Since rno rounding mode preserves the sign of vR, it should also

be the case that,

|vrno| = RNTn+2,rno(|vR|)

Let B|vR| be the bit-string representation of |vR| in T1 where

B|vR| = 0b1b2b3 . . . bnbn+1bn+2 . . .

Then, B|vrno|, the bit-string representation of |vrno| in Tn+2 is equal to

B|vrno| = 0b1b2b3 . . . bnbn11t

where t = ReduxOr{bi | i � n+ 2}.

131

0 b2 b3 b4 … … … bn bn+1 bn+2 bn+3 … …

0 b2 b3 b4 … … … bn bn+1 t

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

(Reduction or)

(a)

0 0 0

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

(Reduction or)

(b)

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

Figure 6.22(b) pictorially shows Bv�2
, rb2, and sticky2 extracted from Bv�2

. The value

represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding components

for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

The sign bits s1 and s2 are the same because rno rounding preserves the sign of the

original real value vR. The bit-string representations Bv�1
and Bv�2

are identical, thus the

truncated values v�1 = v�2 . The rounding bits rb1 and rb2 are both bn+1. Finally, the sticky

bits sticky1 and sticky2 are the same because,

sticky1 = ReduxOr{bi | i � n+ 2}

sticky2 = t = ReduxOr{bi | i � n+ 2}

Thus, s1 = s2, v�1 = v�2 , rb1 = rb2, and sticky1 = sticky2. From Theorem 6.10, it follows

that RNTn,rm(vR) = RNTn,rm(vrno).

Theorem 6.11 guarantees that performing double rounding by rounding a real value to

Tn+2 with rno mode and then subsequently rounding the result to Tn with any rounding

mode in {rne, rna, rnz, rnp, rnn} will produce a correctly rounded result as if we rounded

the real value directly to Tn. We now generalize Theorem 6.11 to all Tk as long as |E| <

k  n.

Theorem 6.12. Let vR be a real value. Define two FP representations Tk and Tn+2 as

163

Fig. 13. Let �rno be the rounded result of �R in Tn+2 using rno rounding mode. (a) shows the bit-string
representation of |�R | in the infinite extended precision representation. B��

1 , rb1, and stick�1 shows three
rounding components for rounding |�R | to Tn , the bit-string representation of the truncated value, the
rounding bit, and the sticky bit. (b) shows the bit-string representation of |�rno | in the infinite extended
precision representation. B��

2 , rb2, and stick�2 shows three rounding components for rounding |�rno | to Tn ,
the bit-string representation of the truncated value, the rounding bit, and the sticky bit. B�R B�rno

function to the FP representation Tn+2 = Fn+2, |E | using rno rounding mode to produce �rno and
then subsequently rounding the result (�rno) to Tk using a rounding mode rm produces the same
value as rounding �R directly to Tk using the same rounding mode rm, as long as |E | + 1 < k � n.
More formally, we prove that

RNTk ,rm(RNTn+2,rno(�R)) = RNTk ,rm(�R)
Our high-level strategy is show that the rounding components for �R to Tk and rounding �rno to

Tk are exactly the same. We prove Theorem 1 by �rst consider the case when k = n where Tk = Tn
and then generalizing it to the case where k < n.

T������ 2. Let �R be a real value. De�ne two FP representations Tn , Tn+2 as above. Choose a
rounding mode rm � {rne , rna, rnz, rnp, rnn }. Then, RNTn,rm(�R) = RNTn,rm(RNTn+2,rno(�R)).

Proof. Let us denote�rno = RNTn+2,rno(�R). Then our goal is to proveRNTn,rm(�R) = RNTn,rm(�rno).
Based on Theorem ??, if the rounding components for rounding �R to Tn is the same as the round-
ing components for rounding �rno to Tn , then we prove that RNTn,rm(�R) = RNTn,rm(�rno) for
all rounding modes rm. By extension, this proves Theorem 2. Thus, we show that the rounding
components for rounding �R and �rno to Tn are the same.
We �rst identify the rounding components for rounding �R to Tn . We decompose �R into

�R = s1�|�R |. The value s1 is a rounding component, sign bit. Next, we encode |�R | into the bit-string
representation in the in�nite extended precision representation of Tn , denoted as T� = F�, |E | :

B |�R | = 0b2b3 . . .bn�1bnbn+1bn+2bn+3 . . .

We then truncate B |�R | to n bits to get the bit-string representation of the truncated value ��
1 and

identify the rounding bit and the sticky bit:
B��

1
= 0b2b3 . . .bn�1bn , rb1 = bn+1, stick�1 = ReduxOr{bi | i � n + 2}

Figure 13(a) pictorially shows B��
1
, rb1, and stick�1 extracted from B |�R | . The value represented by

the bit-string B��
1
in Tn is the truncated value, ��

1 . Thus, the rounding components for rounding �R
to Tn are s1, ��

1 , rb1, and stick�1.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2022.

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

1:19be the case that the bits bi = ci for all bits bi and ci where 2  i  n+2 and all bits starting

from cn+3, cn+4, . . . are all zero’s,

B|vR| = 0b2b3 . . . bnbn+1bn+2000 . . .

In such a case, ReduxOr{ci | i � n+ 2} is equal to performing reduction or operation on

bn+2 with infinite number of zeros,

ReduxOr{ci | i � n+ 2} = bn+2 | 0 | 0 | 0 | · · · = bn+2

which is equal to bn+2, the last bit of B|vrno|.

If vrno 6= vR, which means |vrno| 6= |vR|, then it must be the case that the last bit B|v|

is a one because rno mode rounds all |vR| that cannot be exactly represented to an a value

where the bit-string is odd when interpreted as an unsigned integer,

B|vrno| = 0b2b3 . . . bnbn+11

Additionally, |vrno| 6= |vR| indicates that all bits after the (n + 2)nd bit in B|vR| are not all

zeros. Because if all bits after the (n + 2)nd bit in B|vR| are all zeros, then |vrno| and |vR|

would be equal to each other. Thus, ReduxOr{ci | i � n + 2} = 1, which is equal to

bn+2 = 1.

Combining both Theorem 6.2 and Theorem 6.3 describes the entire bit-string of |vrno|:

Corollary 6.4. Let vrno be the rounded result of vR in Tn+2 with the rno rounding mode

(vrno = RNTn+2,rno(vR)). Since rno rounding mode preserves the sign of vR, it should also

be the case that,

|vrno| = RNTn+2,rno(|vR|)

Let B|vR| be the bit-string representation of |vR| in T1 where

B|vR| = 0b1b2b3 . . . bnbn+1bn+2 . . .

Then, B|vrno|, the bit-string representation of |vrno| in Tn+2 is equal to

B|vrno| = 0b1b2b3 . . . bnbn11t

where t = ReduxOr{bi | i � n+ 2}.

131

0 b2 b3 b4 … … … bn bn+1 bn+2 bn+3 … …

0 b2 b3 b4 … … … bn bn+1 t

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

(Reduction or)

(a)

0 0 0

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

(Reduction or)

(b)

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

Figure 6.22(b) pictorially shows Bv�2
, rb2, and sticky2 extracted from Bv�2

. The value

represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding components

for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

The sign bits s1 and s2 are the same because rno rounding preserves the sign of the

original real value vR. The bit-string representations Bv�1
and Bv�2

are identical, thus the

truncated values v�1 = v�2 . The rounding bits rb1 and rb2 are both bn+1. Finally, the sticky

bits sticky1 and sticky2 are the same because,

sticky1 = ReduxOr{bi | i � n+ 2}

sticky2 = t = ReduxOr{bi | i � n+ 2}

Thus, s1 = s2, v�1 = v�2 , rb1 = rb2, and sticky1 = sticky2. From Theorem 6.10, it follows

that RNTn,rm(vR) = RNTn,rm(vrno).

Theorem 6.11 guarantees that performing double rounding by rounding a real value to

Tn+2 with rno mode and then subsequently rounding the result to Tn with any rounding

mode in {rne, rna, rnz, rnp, rnn} will produce a correctly rounded result as if we rounded

the real value directly to Tn. We now generalize Theorem 6.11 to all Tk as long as |E| <

k  n.

Theorem 6.12. Let vR be a real value. Define two FP representations Tk and Tn+2 as

163

Fig. 13. Let �rno be the rounded result of �R in Tn+2 using rno rounding mode. (a) shows the bit-string
representation of |�R | in the infinite extended precision representation. B��

1 , rb1, and stick�1 shows three
rounding components for rounding |�R | to Tn , the bit-string representation of the truncated value, the
rounding bit, and the sticky bit. (b) shows the bit-string representation of |�rno | in the infinite extended
precision representation. B��

2 , rb2, and stick�2 shows three rounding components for rounding |�rno | to Tn ,
the bit-string representation of the truncated value, the rounding bit, and the sticky bit. B�R B�rno

function to the FP representation Tn+2 = Fn+2, |E | using rno rounding mode to produce �rno and
then subsequently rounding the result (�rno) to Tk using a rounding mode rm produces the same
value as rounding �R directly to Tk using the same rounding mode rm, as long as |E | + 1 < k � n.
More formally, we prove that

RNTk ,rm(RNTn+2,rno(�R)) = RNTk ,rm(�R)
Our high-level strategy is show that the rounding components for �R to Tk and rounding �rno to

Tk are exactly the same. We prove Theorem 1 by �rst consider the case when k = n where Tk = Tn
and then generalizing it to the case where k < n.

T������ 2. Let �R be a real value. De�ne two FP representations Tn , Tn+2 as above. Choose a
rounding mode rm � {rne , rna, rnz, rnp, rnn }. Then, RNTn,rm(�R) = RNTn,rm(RNTn+2,rno(�R)).

Proof. Let us denote�rno = RNTn+2,rno(�R). Then our goal is to proveRNTn,rm(�R) = RNTn,rm(�rno).
Based on Theorem ??, if the rounding components for rounding �R to Tn is the same as the round-
ing components for rounding �rno to Tn , then we prove that RNTn,rm(�R) = RNTn,rm(�rno) for
all rounding modes rm. By extension, this proves Theorem 2. Thus, we show that the rounding
components for rounding �R and �rno to Tn are the same.
We �rst identify the rounding components for rounding �R to Tn . We decompose �R into

�R = s1�|�R |. The value s1 is a rounding component, sign bit. Next, we encode |�R | into the bit-string
representation in the in�nite extended precision representation of Tn , denoted as T� = F�, |E | :

B |�R | = 0b2b3 . . .bn�1bnbn+1bn+2bn+3 . . .

We then truncate B |�R | to n bits to get the bit-string representation of the truncated value ��
1 and

identify the rounding bit and the sticky bit:
B��

1
= 0b2b3 . . .bn�1bn , rb1 = bn+1, stick�1 = ReduxOr{bi | i � n + 2}

Figure 13(a) pictorially shows B��
1
, rb1, and stick�1 extracted from B |�R | . The value represented by

the bit-string B��
1
in Tn is the truncated value, ��

1 . Thus, the rounding components for rounding �R
to Tn are s1, ��

1 , rb1, and stick�1.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2022.

…b1

b1

b1 … bk bk+1 bn+2 …

b1 … t

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

…

bk bk+1 …

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

1:19be the case that the bits bi = ci for all bits bi and ci where 2  i  n+2 and all bits starting

from cn+3, cn+4, . . . are all zero’s,

B|vR| = 0b2b3 . . . bnbn+1bn+2000 . . .

In such a case, ReduxOr{ci | i � n+ 2} is equal to performing reduction or operation on

bn+2 with infinite number of zeros,

ReduxOr{ci | i � n+ 2} = bn+2 | 0 | 0 | 0 | · · · = bn+2

which is equal to bn+2, the last bit of B|vrno|.

If vrno 6= vR, which means |vrno| 6= |vR|, then it must be the case that the last bit B|v|

is a one because rno mode rounds all |vR| that cannot be exactly represented to an a value

where the bit-string is odd when interpreted as an unsigned integer,

B|vrno| = 0b2b3 . . . bnbn+11

Additionally, |vrno| 6= |vR| indicates that all bits after the (n + 2)nd bit in B|vR| are not all

zeros. Because if all bits after the (n + 2)nd bit in B|vR| are all zeros, then |vrno| and |vR|

would be equal to each other. Thus, ReduxOr{ci | i � n + 2} = 1, which is equal to

bn+2 = 1.

Combining both Theorem 6.2 and Theorem 6.3 describes the entire bit-string of |vrno|:

Corollary 6.4. Let vrno be the rounded result of vR in Tn+2 with the rno rounding mode

(vrno = RNTn+2,rno(vR)). Since rno rounding mode preserves the sign of vR, it should also

be the case that,

|vrno| = RNTn+2,rno(|vR|)

Let B|vR| be the bit-string representation of |vR| in T1 where

B|vR| = 0b1b2b3 . . . bnbn+1bn+2 . . .

Then, B|vrno|, the bit-string representation of |vrno| in Tn+2 is equal to

B|vrno| = 0b1b2b3 . . . bnbn11t

where t = ReduxOr{bi | i � n+ 2}.

131

0 b2 b3 b4 … … … bn bn+1 bn+2 bn+3 … …

0 b2 b3 b4 … … … bn bn+1 t

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

(Reduction or)

(a)

0 0 0

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

(Reduction or)

(b)

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

Figure 6.22(b) pictorially shows Bv�2
, rb2, and sticky2 extracted from Bv�2

. The value

represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding components

for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

The sign bits s1 and s2 are the same because rno rounding preserves the sign of the

original real value vR. The bit-string representations Bv�1
and Bv�2

are identical, thus the

truncated values v�1 = v�2 . The rounding bits rb1 and rb2 are both bn+1. Finally, the sticky

bits sticky1 and sticky2 are the same because,

sticky1 = ReduxOr{bi | i � n+ 2}

sticky2 = t = ReduxOr{bi | i � n+ 2}

Thus, s1 = s2, v�1 = v�2 , rb1 = rb2, and sticky1 = sticky2. From Theorem 6.10, it follows

that RNTn,rm(vR) = RNTn,rm(vrno).

Theorem 6.11 guarantees that performing double rounding by rounding a real value to

Tn+2 with rno mode and then subsequently rounding the result to Tn with any rounding

mode in {rne, rna, rnz, rnp, rnn} will produce a correctly rounded result as if we rounded

the real value directly to Tn. We now generalize Theorem 6.11 to all Tk as long as |E| <

k  n.

Theorem 6.12. Let vR be a real value. Define two FP representations Tk and Tn+2 as

163

Fig. 13. Let �rno be the rounded result of �R in Tn+2 using rno rounding mode. (a) shows the bit-string
representation of |�R | in the infinite extended precision representation. B��

1 , rb1, and stick�1 shows three
rounding components for rounding |�R | to Tn , the bit-string representation of the truncated value, the
rounding bit, and the sticky bit. (b) shows the bit-string representation of |�rno | in the infinite extended
precision representation. B��

2 , rb2, and stick�2 shows three rounding components for rounding |�rno | to Tn ,
the bit-string representation of the truncated value, the rounding bit, and the sticky bit. B�R B�rno

function to the FP representation Tn+2 = Fn+2, |E | using rno rounding mode to produce �rno and
then subsequently rounding the result (�rno) to Tk using a rounding mode rm produces the same
value as rounding �R directly to Tk using the same rounding mode rm, as long as |E | + 1 < k � n.
More formally, we prove that

RNTk ,rm(RNTn+2,rno(�R)) = RNTk ,rm(�R)
Our high-level strategy is show that the rounding components for �R to Tk and rounding �rno to

Tk are exactly the same. We prove Theorem 1 by �rst consider the case when k = n where Tk = Tn
and then generalizing it to the case where k < n.

T������ 2. Let �R be a real value. De�ne two FP representations Tn , Tn+2 as above. Choose a
rounding mode rm � {rne , rna, rnz, rnp, rnn }. Then, RNTn,rm(�R) = RNTn,rm(RNTn+2,rno(�R)).

Proof. Let us denote�rno = RNTn+2,rno(�R). Then our goal is to proveRNTn,rm(�R) = RNTn,rm(�rno).
Based on Theorem ??, if the rounding components for rounding �R to Tn is the same as the round-
ing components for rounding �rno to Tn , then we prove that RNTn,rm(�R) = RNTn,rm(�rno) for
all rounding modes rm. By extension, this proves Theorem 2. Thus, we show that the rounding
components for rounding �R and �rno to Tn are the same.
We �rst identify the rounding components for rounding �R to Tn . We decompose �R into

�R = s1�|�R |. The value s1 is a rounding component, sign bit. Next, we encode |�R | into the bit-string
representation in the in�nite extended precision representation of Tn , denoted as T� = F�, |E | :

B |�R | = 0b2b3 . . .bn�1bnbn+1bn+2bn+3 . . .

We then truncate B |�R | to n bits to get the bit-string representation of the truncated value ��
1 and

identify the rounding bit and the sticky bit:
B��

1
= 0b2b3 . . .bn�1bn , rb1 = bn+1, stick�1 = ReduxOr{bi | i � n + 2}

Figure 13(a) pictorially shows B��
1
, rb1, and stick�1 extracted from B |�R | . The value represented by

the bit-string B��
1
in Tn is the truncated value, ��

1 . Thus, the rounding components for rounding �R
to Tn are s1, ��

1 , rb1, and stick�1.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2022.

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

1:19be the case that the bits bi = ci for all bits bi and ci where 2  i  n+2 and all bits starting

from cn+3, cn+4, . . . are all zero’s,

B|vR| = 0b2b3 . . . bnbn+1bn+2000 . . .

In such a case, ReduxOr{ci | i � n+ 2} is equal to performing reduction or operation on

bn+2 with infinite number of zeros,

ReduxOr{ci | i � n+ 2} = bn+2 | 0 | 0 | 0 | · · · = bn+2

which is equal to bn+2, the last bit of B|vrno|.

If vrno 6= vR, which means |vrno| 6= |vR|, then it must be the case that the last bit B|v|

is a one because rno mode rounds all |vR| that cannot be exactly represented to an a value

where the bit-string is odd when interpreted as an unsigned integer,

B|vrno| = 0b2b3 . . . bnbn+11

Additionally, |vrno| 6= |vR| indicates that all bits after the (n + 2)nd bit in B|vR| are not all

zeros. Because if all bits after the (n + 2)nd bit in B|vR| are all zeros, then |vrno| and |vR|

would be equal to each other. Thus, ReduxOr{ci | i � n + 2} = 1, which is equal to

bn+2 = 1.

Combining both Theorem 6.2 and Theorem 6.3 describes the entire bit-string of |vrno|:

Corollary 6.4. Let vrno be the rounded result of vR in Tn+2 with the rno rounding mode

(vrno = RNTn+2,rno(vR)). Since rno rounding mode preserves the sign of vR, it should also

be the case that,

|vrno| = RNTn+2,rno(|vR|)

Let B|vR| be the bit-string representation of |vR| in T1 where

B|vR| = 0b1b2b3 . . . bnbn+1bn+2 . . .

Then, B|vrno|, the bit-string representation of |vrno| in Tn+2 is equal to

B|vrno| = 0b1b2b3 . . . bnbn11t

where t = ReduxOr{bi | i � n+ 2}.

131

0 b2 b3 b4 … … … bn bn+1 bn+2 bn+3 … …

0 b2 b3 b4 … … … bn bn+1 t

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

(Reduction or)

(a)

0 0 0

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

(Reduction or)

(b)

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

Figure 6.22(b) pictorially shows Bv�2
, rb2, and sticky2 extracted from Bv�2

. The value

represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding components

for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

The sign bits s1 and s2 are the same because rno rounding preserves the sign of the

original real value vR. The bit-string representations Bv�1
and Bv�2

are identical, thus the

truncated values v�1 = v�2 . The rounding bits rb1 and rb2 are both bn+1. Finally, the sticky

bits sticky1 and sticky2 are the same because,

sticky1 = ReduxOr{bi | i � n+ 2}

sticky2 = t = ReduxOr{bi | i � n+ 2}

Thus, s1 = s2, v�1 = v�2 , rb1 = rb2, and sticky1 = sticky2. From Theorem 6.10, it follows

that RNTn,rm(vR) = RNTn,rm(vrno).

Theorem 6.11 guarantees that performing double rounding by rounding a real value to

Tn+2 with rno mode and then subsequently rounding the result to Tn with any rounding

mode in {rne, rna, rnz, rnp, rnn} will produce a correctly rounded result as if we rounded

the real value directly to Tn. We now generalize Theorem 6.11 to all Tk as long as |E| <

k  n.

Theorem 6.12. Let vR be a real value. Define two FP representations Tk and Tn+2 as

163

Fig. 13. Let �rno be the rounded result of �R in Tn+2 using rno rounding mode. (a) shows the bit-string
representation of |�R | in the infinite extended precision representation. B��

1 , rb1, and stick�1 shows three
rounding components for rounding |�R | to Tn , the bit-string representation of the truncated value, the
rounding bit, and the sticky bit. (b) shows the bit-string representation of |�rno | in the infinite extended
precision representation. B��

2 , rb2, and stick�2 shows three rounding components for rounding |�rno | to Tn ,
the bit-string representation of the truncated value, the rounding bit, and the sticky bit. B�R B�rno

function to the FP representation Tn+2 = Fn+2, |E | using rno rounding mode to produce �rno and
then subsequently rounding the result (�rno) to Tk using a rounding mode rm produces the same
value as rounding �R directly to Tk using the same rounding mode rm, as long as |E | + 1 < k � n.
More formally, we prove that

RNTk ,rm(RNTn+2,rno(�R)) = RNTk ,rm(�R)
Our high-level strategy is show that the rounding components for �R to Tk and rounding �rno to

Tk are exactly the same. We prove Theorem 1 by �rst consider the case when k = n where Tk = Tn
and then generalizing it to the case where k < n.

T������ 2. Let �R be a real value. De�ne two FP representations Tn , Tn+2 as above. Choose a
rounding mode rm � {rne , rna, rnz, rnp, rnn }. Then, RNTn,rm(�R) = RNTn,rm(RNTn+2,rno(�R)).

Proof. Let us denote�rno = RNTn+2,rno(�R). Then our goal is to proveRNTn,rm(�R) = RNTn,rm(�rno).
Based on Theorem ??, if the rounding components for rounding �R to Tn is the same as the round-
ing components for rounding �rno to Tn , then we prove that RNTn,rm(�R) = RNTn,rm(�rno) for
all rounding modes rm. By extension, this proves Theorem 2. Thus, we show that the rounding
components for rounding �R and �rno to Tn are the same.
We �rst identify the rounding components for rounding �R to Tn . We decompose �R into

�R = s1�|�R |. The value s1 is a rounding component, sign bit. Next, we encode |�R | into the bit-string
representation in the in�nite extended precision representation of Tn , denoted as T� = F�, |E | :

B |�R | = 0b2b3 . . .bn�1bnbn+1bn+2bn+3 . . .

We then truncate B |�R | to n bits to get the bit-string representation of the truncated value ��
1 and

identify the rounding bit and the sticky bit:
B��

1
= 0b2b3 . . .bn�1bn , rb1 = bn+1, stick�1 = ReduxOr{bi | i � n + 2}

Figure 13(a) pictorially shows B��
1
, rb1, and stick�1 extracted from B |�R | . The value represented by

the bit-string B��
1
in Tn is the truncated value, ��

1 . Thus, the rounding components for rounding �R
to Tn are s1, ��

1 , rb1, and stick�1.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2022.

(b) Rounding to Tk

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

We then truncate B|vR| to n bits to get the bit-string representation of the truncated value

v�1 and identify the rounding bit and the sticky bit:

Bv�1
= 0b2b3 . . . bn�1bn, rb1 = bn+1, sticky1 = ReduxOr{bi | i � n+ 2}

The value represented by the bit-string Bv�1
in Tn is the truncated value, v�1 . Thus, the

rounding components for rounding vR to Tn are s1, v�1 , rb1, and sticky1.

We now identify the rounding components for rounding vrno to Tn. We decompose vrno

into vrno = s2⇥|vrno|. The value s2 is the sign bit of vrno. Our next step is to encode |vrno|

into the bit-string representation in the infinite extended precision representation T1. To

do that, let us first look at the bit-string representation of |vrno| in Tn+2,

B|vrno| = 0b2b3 . . . bn�1bnbn+1t

Note that from Theorem 6.2, we know that the first n + 1 bits in B|vrno| and B|vR| are

identical. From Theorem 6.3, we know that the last bit, the (n+ 2)nd bit in B|vrno| is equal

to the result of performing reduction or operation on all bits in B|vR| starting from the

(n+ 2)nd bit,

t = ReduxOr{bi | i � n+ 2}

The bit-string representation of |vrno| in the infinite extended precision representation

T1 is identical to B|vrno| concatenated with infinite number of zero bits to the right:

B1
|vrno| = 0b2b3 . . . bn�1bnbn+1t00000 . . .

We then truncate B1
|vrno| to n bits to get the bit-string representation of the truncated value

v�2 and identify the rounding bit and the sticky bit:

Bv�2
= 0b2b3 . . . bn�1bn, rb2 = bn+1, sticky2 = ReduxOr{t, 0, 0, 0, . . . } = t

The value represented by the bit-string Bv�2
in Tn is the truncated value v�2 . The rounding

components for rounding vrno to Tn are s2, v�2 , rb2, and sticky2.

143

Figure 6.13: (a) Rounding components when rounding vR and vrno to Tn. (b) Rounding
components when rounding vR and vrno to Tk, where 1 + |E| < k < n. We show the
bit-string of vR in the infinite extended precision and the bit-string of vrno in Tn+2 repre-
sentation.

We first identify the rounding components (s1, v�1 , rb1, sticky1) for rounding vR to

Tk. We decompose vR into vR = s1 ⇥ |vR|. The value s1 is the first rounding compo-

nent representing the sign of vR. The bit-string of |vR| in the infinite extended precision

representation, B|vR|, is pictorially shown in Figure 6.13.

B|vR| = b1b2b3 . . . bk�1bk . . . bnbn+1bn+2bn+3 . . .

We identify the remaining three rounding components from B|vR|. The truncated value v�1

in Tk and its bit-string Bv�1
is identified by truncating the first k bits in B|vR|. The rounding

bit rb1 is the (k + 1)st bit in B|vR| and the sticky bit sticky1 is the bit-wise OR of all bits

starting from the (k + 2)nd bit in B|vR|:

Bv�1
= b1b2b3 . . . bk�1bk, rb1 = bk+1, sticky1 = bk+2 | bk+3 | . . .

Figure 6.13 pictorially shows Bv�1
, rb1, and sticky1.

Next, we identify the rounding components (s2, v�2 , rb2, sticky2) for rounding vrno to

Tk. The sign of vrno is the first component s2. The bit-string of |vrno| in Tn+2 is pictorially

shown in Figure 6.13 with B|vrno|.

Note that from Lemma [], the first n + 1 bits of |vrno| in Tn+2 representation and B|vR|

are identical. Additionally from Lemma [], the (n+ 2)nd bit (the last bit) of |vrno| is equal

to the bitwise OR operation of all bits in |vR| starting from the (n+ 2)nd bit. Hence,

B|vrno| = b1b2b3 . . . bk�1bk . . . bnbn+1t t = bn+2 | bn+3 | . . .

189

b2 bk bn+3bk+1 b1 … bk-1 t…b2 bk bk+1

Figure 6.9: Rounding components when rounding vR and vrno to Tk, where 1 + |E| < k < n.
We show the bit-string of vR in the infinite extended precision and the bit-string of vrno in Tn+2

representation.

RNTn+2,rno(v) = vrno. Choose a rounding mode rm ∈ {rne, rna, rnz, rnp, rnn}. Then,

RNTk,rm(v) = RNTk,rm(f(x)))

Note that both f(x) and v are real values that round to vrno when rounded to Tn+2

with the rno mode. Hence, we show that rounding any real value vR to Tn+2 using rno

to produce the value vrno and then subsequently rounding vrno to Tk using any standard

rounding mode rm produces the same value as directly rounding vR to Tk using the same

rounding mode. More formally, we prove that,

RNTk,rm(RNTn+2,rno(vR)) = RNTk,rm(vR)

Since both f(x) and v round to vrno when rounded to Tn+2 with the rno, we have the

relationship

RNTk,rm(RNTn+2,rno(v)) = RNTk,rm(vR) = RNTk,rm(RNTn+2,rno(f(x)))

thus proving Theorem 6.1. Our proof holds for FP representations when Tn+2 = Fn+2,|E|

and Tk = Fk,|E| as long as 1 + |E| < k ≤ n. For posit representations, our proof holds

when Tn+2 = Pn+2,es and Tk = Pk,es as long as 2 ≤ k ≤ n.

In high-level, our strategy is to prove that the rounding components for rounding vR to

Tk are the same as the rounding components for rounding vrno to Tk. By Lemma 4, the

equivalence of rounding components proves that RNTk,rm(vR) = RNTk,rm(vrno) for all

rounding modes rm. We now show the rounding components for rounding vR and vrno to

Tk.

We first identify the rounding components (s1, v−1 , rb1, sticky1) for rounding vR to

Tk. We decompose vR into vR = s1 × |vR|. The value s1 is the first rounding compo-

162

nent representing the sign of vR. The bit-string of |vR| in the infinite extended precision

representation, B|vR|, is pictorially shown in Figure 6.9.

B|vR| = b1b2 . . . bk−1bkbk+1 . . . bn+2bn+3 . . .

We identify the remaining three rounding components from B|vR|. The truncated value v−1

in Tk and its bit-string Bv−1
is identified by truncating the first k bits in B|vR|. The rounding

bit rb1 is the (k + 1)st bit in B|vR| and the sticky bit sticky1 is the bit-wise OR of all bits

starting from the (k + 2)nd bit in B|vR|:

Bv−1
= b1b2b3 . . . bk−1bk, rb1 = bk+1, sticky1 = bk+2 | bk+3 | . . .

Figure 6.9 pictorially shows the rounding components Bv−1
, rb1, and sticky1.

Next, we identify the rounding components (s2, v−2 , rb2, sticky2) for rounding vrno to

Tk. The sign of vrno is the first component s2. The bit-string of |vrno| in Tn+2 is pictorially

shown in Figure 6.9 with B|vrno|.

Note that from Lemma 2, the first n+1 bits of |vrno| and |vR| are identical. Additionally

from Lemma 3, the (n+ 2)nd bit (the last bit) of |vrno| is equal to the bitwise OR operation

of all bits in |vR| starting from the (n+ 2)nd bit. Hence,

B|vrno| = b1b2b3 . . . bk−1bk . . . bnbn+1t t = bn+2 | bn+3 | . . .

Because k ≤ n, there is at least 1 bit (i.e., bn+1) between bk and t, where t is the (n+ 2)nd

bit in |vrno|.

We identify the remaining three rounding components for vrno from B|vrno|. The bit-

string of v−2 , rb2, and sticky2 are as follows:

bv−2 = b1b2b3 . . . bk−1bk rb2 = bk+1 sticky2 = bk+2 | . . . | bn+1 | t

Figure 6.9 also pictorially shows Bv−2
, rb2, and sticky2.

Now, let us compare the rounding components for rounding vR and vrno to Tk. The

sign, s1 and s2, are identical because rno rounding mode preserves the sign of vR. The

163

truncated values, v−1 and v−2 , are equal to each other because the bit-strings are the same.

The rounding bits, rb1 and rb2, are both equal to bk+1, which is guaranteed to be a bit in the

first n+ 1 bits in both |vR| and |vrno| since k ≤ n. Finally, the sticky bit sticky2 is equal to,

sticky2 = bk+2 | . . . | bn+1 | t = bk+2 | . . . | bn+1 | bn+2 | bn+3 | · · · = sticky1

Hence, all rounding components for rounding vR and vrno to Tk are identical. From

Lemma 4, it follows that RNTk,rm(RNTn+2,rno(vR)) = RNTk,rm(vR).

6.5 Odd Intervals for Extremal Values in Posit Representations

As stated multiple times throughout the chapter, our approach and Theorem 6.1 applies

directly to posit representations and posit rounding mode. Polynomial approximations that

produce a value in the odd interval of the rno result in Tn+2 representation (i.e., (n+ 2)-bit

posit) will also produce the correctly rounded result for Tk (a k-bit posit) using the posit

rounding mode, as long as Tn+2 and Tk has the same number of es bits and 2 ≤ k ≤ n.

However, when the real value of f(x) for a given input x is outside the dynamic range of

the posit representation Tn, the corresponding odd interval may be unnecessarily restrictive

in the context of producing the correctly rounded result of f(x) in Tk. This is due to the

special behavior of posit rounding for extremal values. Without the loss of generality, let us

assume that a real value vR > 0. The posit rounding rule states that when vR is larger than

the largest representable posit value maxval in a posit representation, then vR rounds to

maxval. Similarly, when a value vR is smaller than the smallest representable posit value

minval, then vR rounds to minval. The odd intervals do not take these special rounding

rules into account. This results in odd intervals that are far smaller than necessary. As the

size of the odd interval defines the amount of freedom we have to generate polynomials

that produce the correctly rounded results, we need to generate the largest possible interval

that still produces correct results for Tk.

Figure 6.10 illustrates the difference between posit rounding and rno rounding for ex-

tremal values. Suppose that our goal is to generate an approximation function of a function

164

P32, 2
2120 ∞

P34, 2

2120 ∞
2122 2124 2128

(a)

(b)

Figure 6.10: (a) The posit rounding mode specifies that all real values vR larger than the largest
representable value (i.e., 2120 for P32,2) rounds to the largest representable value. (b) There are three
values representable in P34,2 larger than 2120. Separating odd intervals for each of these three values
are unnecessary for the posit rounding mode, since all values in the odd intervals of 2120, 2122, 2124,
and 2128 always rounds to 2120 when rounded to P32,2.

f(x) that produces the correctly rounded results for the posit representation Tn = P32,2 and

all smaller representations Tk = Pk,2 where 2 ≤ k ≤ 32. The largest positive value that

P32,2 can represent is maxvaln = 2120 (the circle in Figure 6.10(a)). Based on the posit

rounding rule, all values vR larger than 2120 rounds to 2120 when rounded to P32,2. Similarly,

any vR larger than 2120 rounds to the corresponding maximum positive representable value

(maxvalk) when rounded to any Pk,2. Hence, if the real value of f(x) given an x is larger

thanmaxvaln, it is sufficient for the polynomial approximation to produce any value larger

than maxvaln (i.e., [maxvaln,∞)) for the input x. All values in this interval will round to

maxvalk, the correctly rounded result in Tk.

In contrast, the odd interval corresponding to the rno result of f(x) is far smaller than

[maxvaln,∞) when the real value of f(x) ≥ maxvaln. The P34,2 representation can

represent three values larger than 2120: 2122, 2124, and 2128 (rhombuses in Figure 6.10(a).

The odd interval of 2120, 2122, 2124, and 2128 are shown with different colors. Depending on

the rno result of f(x), the odd interval can be as small as a singleton value (e.g., [2120, 2120]

if rno result is 2120)! Yet all values in all four odd intervals round to the same value when

rounded to any Tk representation using the posit rounding mode. There is no need to

reason about the odd intervals of 2120, 2122, 2124, and 2128 separately. In fact, it is better

to constrain the polynomial approximation to produce a value in [2120,∞) to provide the

165

maximum amount of freedom to generate the polynomial.

Hence, if the real value of f(x) is larger than maxposn for a given input x, we set

the odd interval of the input x to be [maxposn,∞). Similarly, if the real value of f(x) is

smaller than the minimum positive representable value in Tn (minposn) but larger than 0,

we set the odd interval to be (0,minposn]. The odd interval for the inputs, where the real

value of f(x) < 0 is outside of the dynamic range of Tn, is computed similarly.

6.6 Summary

This chapter presents a novel approach to generate polynomial approximations that pro-

duce correct results for multiple representations Tk and standard rounding modes where

the total number of bits is bounded by k ≤ n. Our key insight is to create polynomial

approximations that produce the correctly rounded result of Tn+2 using the rno mode. We

identify a range of values that round to the correctly rounded result of Tn+2 with the rno

mode, which we call the odd interval. We formally showed that polynomials that pro-

duce a value in the odd interval are guaranteed to produce correctly rounded results for all

representations Tk with standard rounding modes. Although our proof only shows for Tk

with the same number of exponent bits as Tn+2, we believe that our approach can produce

correctly rounded results for any Tk as long as all values in Tk are representable in Tn

representation. We empirically support our claim in Section 7.3. We handle singleton odd

intervals by mathematically reasoning when elementary functions f(x) will produce exact

rational values.

Using this approach, we generated RLIBM-ALL, a generic math library that produces

the correctly rounded results for multiple FP and posit representations with all standard

rounding modes. Our generic math library is the first math library that produces the cor-

rectly rounded results for bfloat16, TensorFloat32, and float at the same time. This allows

developers to design and use new configurations of FP or posit representations and still be

able to accurately approximate elementary functions with the new representations.

166

CHAPTER 7

EXPERIMENTAL EVALUATION

We present the RLIBM prototype, a correctly rounded elementary function generator. Us-

ing RLIBM, we created several correctly rounded elementary functions for various rep-

resentations and rounding modes. We evaluate our elementary functions on their ability

to produce correctly rounded results for all inputs in their target representations and the

performance. In this chapter, we provide details on the experimental methodology, the

experimental setup, and the result of our experimental evaluation.

7.1 Experimental Methodology And Setup

The RLIBM prototype is a correctly rounded elementary function generator. Currently,

RLIBM supports the FP and the posit representation. RLIBM uses the MPFR library with

up to 1000 precision bits to compute the oracle value of f(x) and round the result to the

target representation. Although the Table-maker’s dilemma states that it is not feasible

to mathematically determine the number of precision necessary to identify the correctly

rounded results, prior work has empirically shown that roughly 160 precision bits in the

worst case are sufficient to compute the correctly rounded result for the double representa-

tion [85]. RLIBM uses SoPlex [50], an exact rational LP solver, to generate the coefficients

of the polynomials with a time limit of five minutes. We limit the size of the LP formu-

lation to contain up to fifty thousand reduced input and interval constraints. If the number

of intervals in the sample pool exceeds fifty thousand, then we increase the number of sub-

domains. To generate elementary functions with good performance, the user can provide

custom range reduction functions, the degree, and the structure of the polynomial (i.e., odd

or even polynomial).

Using RLIBM, we generated several correctly rounded elementary functions for vari-

167

ous representations. For evaluation purposes, we classify these functions into three math

library prototypes, RLIBM-16 [91, 92], RLIBM-32 [94], and RLIBM-ALL, depending on

the bit-width of the target representation. RLIBM-16 contains ten elementary functions for

bfloat16 with the rne mode and ten functions for posit16. RLIBM-32 contains ten func-

tions for the 32-bit float type with the rne mode and ten functions for posit32. Finally,

RLIBM-ALL contains ten functions that produce the correctly rounded result of f(x) for

the 34-bit FP representation (i.e., Tn+2) with 8 bits of exponent (FP34) in the rno mode.

FP34 representation is not supported in hardware. Hence, RLIBM-ALL stores the FP34

result in the double type. RLIBM-ALL’s FP functions are designed to produce correct re-

sults for all k-bit FP representations with 8 bits of exponent using any IEEE-754 standard

rounding modes as long as 9 < k ≤ 32. This includes bfloat16, tensorfloat32, and the 32-

bit float. RLIBM-ALL also contains ten posit functions that produce the correctly rounded

result of f(x) for the 34-bit posit representation with es = 2 with the rno mode. These

functions produce correctly rounded results for all k-bit posit representations with es = 2

as long as 2 ≤ k ≤ 32.

All three prototypes perform range reduction, polynomial evaluation, and output com-

pensation using the double type. Polynomials are evaluated with Horner’s method [10] for

efficiency and accuracy of the results. The functions in RLIBM-16 use the simple range

reduction strategies. RLIBM-32 and RLIBM-ALL use the more sophisticated range reduc-

tions described in Chapter 4 to significantly reduce the input domain.

Experiment Methodology. We evaluate the functions in RLIBM-16, RLIBM-32, and

RLIBM-ALL on two criteria: (1) the correctness of the output and (2) the performance

compared to the state-of-the-art libraries. To measure the performance, we compare our FP

functions against glibc’s libm [51], Intel’s libm [67], CR-LIBM [30], and MetaLibm [80].

Intel’s and glibc’s libm have elementary functions for float and double types. They are the

most widely used math libraries. CR-LIBM has correctly rounded elementary functions for

168

the double type. CR-LIBM provides multiple implementations for each elementary func-

tion to support four IEE-754 standard rounding modes, rne, rnp, rnn, and rnz. MetaLibm

provides elementary functions for both the float and the double types which are optimized

with AVX2 vector instructions. To produce the results in a target representation T that is

not natively supported by these libraries, we first convert the input in T to the representa-

tion supported by the library, use the elementary function, and round the result back to T.

We compare our posit16 functions in RLIBM-16 against SoftPosit-Math [88], a correctly

rounded math library for posit16. There are no math libraries for other configurations of the

posit representation (e.g., 32-bit posit32). We compare our posit32 functions in RLIBM-32

and the posit functions in RLIBM-ALL against glibc’s and Intel’s double library as well as

CR-LIBM. The double type can exactly represent all posit32 values. We do not compare

against existing float libraries because float cannot exactly represent all posit32 values.

Experimental setup. We perform all of our experiments on a 2.10GHz Intel Xeon Gold

6230R machine with 192GB of RAM running Ubuntu 18.04. We disabled Intel turbo

boost and hyper-threading to minimize noise. All of our libraries are compiled at the O3

optimization level. We use Intel’s libm from the oneAPI Toolkit and glibc’s libm from

glibc-2.33. The MetaLibm functions are generated using the optimizations for AVX2

extensions enabled. The test harness for comparing glibc’s libm, CR-LIBM, and Met-

aLibm is built using the gcc-10 compiler with -O3 -static -frounding-math

-fsignaling-nans flags. Because Intel’s libm is only supported in Intel’s compiler,

we built the test harness that compares Intel’s libm against our libraries using the icc

compiler. We use the flags -O3 -static -no-ftz -fp-model strict to obtain

as many accurate results as possible. To measure performance, we measure the number

of cycles taken to compute the result for each input using hardware performance counter

rdtscp. We then measured the total time taken to compute the elementary function as the

sum of the time taken by all inputs (i.e., 232 inputs for a 32-bit representation).

169

7.2 Experimental Evaluation of RLIBM-16

Table 7.1 provides details on the list of elementary functions available in RLIBM-16 and

the size of the polynomials generated for each function. Because there are only 216 inputs

in 16-bit representations, we aimed to generate polynomial approximations that minimize

the memory usage of RLIBM-16 functions. Otherwise, it may be better to simply store the

correctly rounded results of f(x) for all 216 inputs in a table. We used range reductions that

use a minimal amount of look-up tables. We tried to create the smallest piecewise polyno-

mials instead of the domain-splitting technique described in Chapter 5. The polynomials

used RLIBM-16 functions are generated within a few minutes.

7.2.1 Correctness Evaluation of RLIBM-16

Table 7.2(a) reports the result of our experiment to check the correctness of bfloat16 func-

tions in RLIBM-16 and other math libraries. All bfloat16 functions in RLIBM-16 produce

correctly rounded bfloat16 results with rne for all inputs. In contrast, we discovered that

re-purposing glibc’s or Intel’s float library did not produce the correctly rounded result for

the input x = −0.0181884765625 in 10x function. This case is especially interesting be-

cause both glibc and Intel’s float library produce the correctly rounded result of 10x for the

float type. However, the float result rounded to bfloat16 is not the correctly rounded result

for bfloat16 due to the double rounding error. Thus, repurposing a correctly rounded func-

tion for a representation T′ does not necessarily produce the correctly rounded result for

another representation T, even if T′ has more precision compared to T. This observation

has been one of the motivations for us to create RLIBM-ALL, a math library that guarantees

to produce correctly rounded results for multiple precisions and rounding modes. Our ex-

periment showed that repurposing glibc’s and Intel’s double library produces the correctly

rounded results of all inputs for bfloat16. Table 7.2(b) reports that all posit16 functions in

RLIBM-16 produce correctly rounded results for all inputs. SoftPosit-Math functions also

170

Table 7.1: Details on generated polynomials for bfloat16 and posit16 functions. For each
elementary function, we report the total time taken to generate the polynomials, the to-
tal number of reduced intervals, the number of polynomials generated, the degree of the
generated polynomial, and the number of terms in the polynomial.

f(x)
Total Time
(Seconds)

Reduced
Inputs

of
Polynomials

Degree
of

Terms
bfloat16 functions

ln(x) 0.84 128 1 7 4
log2(x) 8.65 128 1 5 3
log10(x) 1.63 128 1 5 3
exp(x) 2.9 3820 1 4 5
exp2(x) 0.89 1937 1 4 5
exp10(x) 3 3840 1 4 5

sinh(x) 0.27 422 3
5
0
6

3
1
4

cosh(x) 0.27 471 2
5
6

3
4

sinpi(x) 32 16129 2
1
7

1
4

cospi(x) 32.2 16129 3
0
6
0

1
4
1

posit16 functions
ln(x) 3.32 4096 1 9 5

log2(x) 5.7 4096 1 9 5
log10(x) 6.5 4096 1 9 5
exp(x) 6.2 57371 1 6 7
exp2(x) 5.2 24201 1 6 7
exp10(x) 12 53106 1 6 7

sinh(x) 37.4 13044 2
7
6

4
4

cosh(x) 391.9 14400 4

1
7
6
6

1
4
4
4

sinpi(x) 38 12289 2
1
9

1
5

cospi(x) 85.7 12289 3
0
8
0

1
5
1

171

Table 7.2: (a) Generation of correctly rounded results for bfloat16 with RLIBM-16, glibc’s
float libm, and Intel’s float libm. Math libraries created by repurposing glibc’s double libm
and Intel’s double libm produce correct bfloat16 results for all inputs. (b) Generation of
correctly rounded results for posit16 with RLIBM-16 and SoftPosit-Math. 3indicates that
the library produces the correctly rounded result for all inputs. Otherwise, we use 7. N/A
indicates that the implementation is not available.

Bfloat16
Functions

Using
RLIBM-16

Using
glibc float

Using
Intel float

ln(x) 3 3 3

log2(x) 3 3 3

log10(x) 3 3 3

ex 3 3 3

2x 3 3 3

10x 3 7(1) 7(1)
sinh(x) 3 3 3

cosh(x) 3 3 3

sinpi(x) 3 N/A 3

cospi(x) 3 N/A 3

(a) Correctly rounded results with bfloat16

Posit16
Functions

Using
RLIBM-16

Using
SoftPosit-Math

ln(x) 3 3

log2(x) 3 3

log10(x) 3 N/A
ex 3 N/A
2x 3 3

10x 3 3

sinh(x) 3 N/A
cosh(x) 3 N/A
sinpi(x) 3 3

cospi(x) 3 3

(b) Correctly rounded results with posit16

produce correctly rounded results for the available functions. However, SoftPosit-Math

does not contain log10(x), 10x, sinh(x), and cosh(x).

7.2.2 Performance Evaluation of RLIBM-16

Performance of bfloat16 functions in RLIBM-16. Figure 7.1(a) reports the speedup of

bfloat16 functions in RLIBM-16 against glibc’s float library (left bar in each cluster) and

glibc’s double library (right bar in each cluster). On average, RLIBM-16 has 1.1× speedup

over glibc’s float functions and 1.2× speedup over glibc’s double functions. Figure 7.1(b)

reports the speedup of bfloat16 functions in RLIBM-16 against Intel’s float library (left bar

in each cluster) and Intel’s double library (right bar in each cluster). On average, RLIBM-

16 has 1.4× speedup over Intel’s float functions and 1.6× speedup over Intel’s double

functions. RLIBM-16’s bfloat16 functions are faster than all corresponding functions in

Intel’s double library. RLIBM-16 is faster than glibc’s float and double library as well as

Intel’s float functions except for ln(x), log2(x), and log10(x). RLIBM-16 aims to generate

efficient polynomials that produce correctly rounded results for all inputs while using a

172

(a) Speedup of RLIBM-16’s float functions over
glibc libm

ln(x)
log2(x)

log10(x) ex 2x 10x
sinh(x)

cosh
(x)
geomean

0x

1x

2x

Sp
ee

du
p

Speedup over float libm Speedup over double libm

(b) Speedup of RLIBM-16’s float functions over
Intel libm

ln(x)
log2(x)

log10(x) ex 2x 10x
sinh(x)

cosh
(x)
sinpi

(x)
cosp

i(x)
geomean

0x

1x

2x

Sp
ee

du
p

Speedup over float libm Speedup over double libm

Figure 7.1: (a) Speedup of RLIBM-16’s bfloat16 functions compared to glibc’s float functions
(left) and glibc’s double functions (right). (b) Speedup of RLIBM-16’s functions compared to Intel’s
float functions (left) and Intel’s double functions (right).

ln(x) log2(x
) ex 2x

sinpi
(x)

cosp
i(x)

geom
ean

0x

1x

2x

Sp
ee

du
p

Figure 7.2: Speedup of RLIBM-16’s posit16 functions compared to SoftPosit-Math library when
the input is available as a double. It avoids the software simulated cast from posit16 to double and
vice versa. SoftPosit-Math takes a posit16 input that is internally represented as an integer.

small amount of memory. The ln(x), log2(x), and log10(x) functions in RLIBM-16 use

range reductions that do not require look-up tables to minimize memory usage. These

range reductions have higher overhead compared to the range reductions used in glibc and

Intel’s functions. In all other cases, the lower degree polynomial that RLIBM generates

allows our bfloat16 functions to be faster than mainstream math libraries.

Performance of posit16 functions in RLIBM-16. We measure the speedup of RLIBM-

16’s posit16 functions compared to SoftPosit-Math functions when computing the posit16

result given a posit16 input. We found out that RLIBM-16 can have a significant slowdown

compared to SoftPosit-Math. The primary reason for this slowdown is because posit16

inputs are cast to double type before using RLIBM-16. The double result is then rounded

to posit16 value. Because common hardware architecture does not support posit represen-

tations, the cast operation is done using software simulation. We found out that posit16

functions in RLIBM-16 spend 75% of the time casting values between posit16 and double.

In comparison, SoftPosit-Math represents posit16 values internally as an integer and the el-

173

h’ = 1.01171…l’ = 1.003906…

g(x’) = 1.003907… PH(x’) = 1.003977…

amount of freedom in mini-max approach

amount of freedom in our approach [l’, h’]

Figure 7.3: An illustration showing that our approach provides more freedom in generating a
polynomial that produces correctly rounded results of 10x for all inputs. The reduced interval [l′, h′]
(shown in green box) corresponds to the reduced input x′ = 0.0056264 The real value of g(x′)
is shown with the black circle. The polynomial generated using our approach produces a value
(red diamond) within the rounding interval. If we approximated the real result g(x′) instead of the
correctly rounded result, the margin of error allowed is much smaller (box with black border).

ementary functions are super optimized with purely integer operations to eliminate the cost

of casting. We measured the performance of RLIBM-16 without the cost of this cast, which

we report in Figure 7.2. SoftPosit-Math does not have implementations for log10(x), 10x,

sinh(x), and cosh(x). Hence, we report the speedup for the functions available in both

SoftPosit-Math and RLIBM-16. On average, RLIBM-16 has 15% slowdown compared to

SoftPosit-Math. The ln(x), log2(x), sinpi(x), and cospi(x) functions in RLIBM-16 have

similar performance compared to SoftPosit-Math. However, the super-optimized imple-

mentations in SoftPosit-Math show higher performance for ex and 2x even though both

libraries use similar degree polynomials.

Performance impact of approximating the correctly rounded result. We provide a case

study to show that the RLIBM approach in approximating the correctly rounded result pro-

vides more freedom in generating efficient polynomial. Consider the elementary function

10x for bfloat16. The output compensation function we use for 10x requires us to approxi-

mate g(x′) = 2x
′ where the reduced inputs are in the domain x′ ∈ [0, 1). RLIBM generated

a 4th degree polynomial that approximates g(x′) which produces the correctly rounded re-

sult of 10x for the entire input domain of bfloat16 when used with output compensation

functions.

The RLIBM approach provides more freedom to produce low degree polynomials. We

illustrate this point with Figure 7.3, which shows the reduced interval [l′, h′] (green box)

174

for the reduced input x′ = 0.00562 The real value of g(x′) is highlighted with the

black circle. The real value of g(x′) is extremely close to l′ with only ε = |g(x′) − l′| ≈

1.31 × 10−6 amount of error. If we are to generate a polynomial that approximates the

real value of g(x′), then the polynomial must have an error less than ε, i.e. the polynomial

must produce a value within [g(x′) − ε, g(x′) + ε]. This tight restriction can force the

mini-max approach to generate a higher degree polynomial to produce correctly rounded

results. Instead, the polynomial generated with our approach produces a value shown with

the red diamond from Figure 7.3. This value has an error of approximately 7.05 × 10−5,

which is much larger than ε, but still within the reduced interval. This freedom allows our

approach to generate lower degree polynomial, yet produce the correctly rounded results

for all bfloat16 inputs when used with output compensation function.

7.3 Experimental Evaluation with RLIBM-32

Table 7.3 provides details on the list of elementary functions available in RLIBM-32 and

the size of the polynomials generated for each function. We aimed to generate polynomials

with the best performance given a storage budget. Hence, we generated piecewise polyno-

mials where the degree of the polynomial is less than or equal to 7 (at most 8 coefficients)

and the number of sub-domains was less than or equal to 214. Since each coefficient is

stored as a double value (8 bytes), the maximum size of the look-up table that stores the

coefficients of the polynomial will be 8bytes× 8× 214 = 1MB. The output compensation

function that we use for sinh(x), cosh(x), sinpi(x), and cospi(x) involve two elementary

functions (i.e., gi(x′)). We generated two piecewise polynomials for these functions. The

ex, 2x, and 10x function has both negative and positive reduced inputs. Hence, we created a

piecewise polynomial for negative reduced inputs and a piecewise polynomial for positive

reduced inputs.

Table 7.3 also reports the amount of time taken to generate float and posit32 functions.

The amount of time needed ranges from 19 minutes for cospi(x) for the float type to 25

175

Table 7.3: Details on the generated polynomials for float and posit32 in RLIBM-32. For each
elementary function, we report the time taken to generate the polynomials in minutes, the number
of reduced inputs, the size of the piecewise polynomial for approximating gi(x′), the maximum
degree of the polynomial, and the number of terms in the polynomial.

f(x)
Gen. Time
(Minutes)

Reduced
Inputs

of Poly-
nomials

Deg-
ree

of
Terms

float functions
ln(x) 218 7.2E6 210 3 3

log2(x) 251 7.2E6 28 3 3
log10(x) 429 7.2E6 28 3 3

ex 117 5.2E8
27

27
4
4

5
5

2x 86 3.0E8
24

23
4
4

5
5

10x 169 5.2E8
26

27
4
3

5
4

sinh(x) 28 1.5E8 26 5 3
cosh(x) 24 1.5E8 26 4 3
sinpi(x) 30 1.2E8 1 5 3
cospi(x) 19 1.2E8 1 4 3

posit32 functions
ln(x) 264 1.1E8 211 4 4

log2(x) 288 1.1E8 28 4 4
log10(x) 685 1.1E8 212 3 3

ex 1089 3.5E9
212

212
3
3

4
4

2x 814 7.9E8
210

212
3
3

4
4

10x 1528 3.4E9
213

213
3
3

4
4

sinh(x) 461 1.6E9
214

214
5
4

3
3

cosh(x) 528 1.7E9
214

212
3
6

2
4

sinpi(x) 716 1.1E8
212

213
3
2

2
2

cospi(x) 342 1.9E8
211

212
5
2

3
2

hours for 10x for the posit type. The majority of the total time is spent in computing the or-

acle results and the rounding intervals (i.e., 86% and 70% of total time for float and posit32,

respectively). It takes significantly longer to generate polynomials for posit32 as a whole.

There are fewer special cases in posit32 functions and requires more time to compute the or-

176

Table 7.4: Generation of correctly rounded results for 32-bit floats with RLIBM-32, Intel’s float
and double libm, glibc’s float and double libm, CR-LIBM, and MetaLibm’s float and double libm.
3indicates that the library produces the correctly rounded result for all inputs. Otherwise, we use
7. For each 7, we show the number of inputs with wrong results.

float
functions

Using
RLIBM-32

Using
glibc float

Using
glibc double

Using
Intel float

Using
Intel double

ln(x) 3 7(4.2E5) 7(5) 7(1060) 7(5)
log2(x) 3 7(3.1E5) 3 7(276) 3

log10(x) 3 7(3.0E7) 7(1) 7(1.5E5) 7(1)
ex 3 7(1.7E5) 3 7(2.5E5) 3

2x 3 7(1.7E5) 7(2) 7(7.2E5) 7(2)
10x 3 7(1.7E5) 3 7(3.9E5) 3

sinh(x) 3 7(7.1E7) 7(2) 7(2.5E5) 7(2)
cosh(x) 3 7(1.8E7) 3 7(1.4E5) 3

sinpi(x) 3 N/A N/A 7(3.4E5) 3

cospi(x) 3 N/A N/A 7(3.8E5) 3

float
functions

Using
CR-LIBM

Using
MetaLibm float

Using
MetaLibm double

ln(x) 7(5) N/A N/A
log2(x) 3 N/A N/A
log10(x) 7(1) N/A N/A

ex 3 7(5.1E8) 7(5.1E8)
2x N/A 7(6.5E7) 7(1026)
10x N/A N/A N/A

sinh(x) 7(2) N/A N/A
cosh(x) 3 7(1.1E7) 3

sinpi(x) 3 N/A N/A
cospi(x) 3 N/A N/A

acle results. Additionally, posit32 has higher precision compared to the 32-bit float and has

saturating behavior with extremal values. Hence, RLIBM-32 generates larger piecewise

polynomials. Nonetheless, our domain splitting and counterexample guided polynomial

generation techniques have been vital in generating low degree polynomials that produce

the correctly rounded results for all 232 inputs in 32-bit representations.

7.3.1 Correctness Evaluation of RLIBM-32

Correctness of float functions. Table 7.4 shows the result of our experiment to check the

correctness of float functions in RLIBM-32 and other math libraries. All ten elementary

177

Table 7.5: Generation of correctly rounded results with posit32 functions for all inputs by RLIBM-
32, Intel and glibc’s double libraries, and CR-LIBM. 3indicates that the library produces the cor-
rectly rounded result for all inputs and otherwise, we use 7.

posit32
functions

Using
RLIBM-32

Using
glibc double

Using
Intel double

Using
CR-LIBM

ln(x) 3 7(22) 7(22) 7(22)
log2(x) 3 7(19) 7(18) 7(18)
log10(x) 3 7(26) 7(23) 7(23)

ex 3 7(4.4E8) 7(4.4E8) 7(4.4E8)
2x 3 7(4.0E8) 7(4.0E8) N/A
10x 3 7(5.2E8) 7(5.2E8) N/A

Sinh(x) 3 7(4.4E8) 7(4.4E8) 7(4.4E8)
Cosh(x) 3 7(4.4E8) 7(4.4E8) 7(4.4E8)
Sinpi(x) 3 N/A 7(70) 7(70)
Cospi(x) 3 N/A 7(90) 7(90)

functions in RLIBM-32 produce the correctly rounded result in the 32-bit float with rne

for all inputs. In contrast, the elementary functions in glibc, Intel, and MetaLibm’s float

libraries do not produce correct results for all inputs. Several functions in glibc and Met-

aLibm’s float library produce wrong results for millions of inputs while Intel’s float library

produces wrong results for thousands of inputs. When repurposed for the 32-bit float, the

double functions from glibc, Intel, and CR-LIBM do not produce correct float results for

ln(x), log10(x), 2x, and sinh(x) due to double rounding error (i.e., rounding the real value

of f(x) to double and subsequently rounding the result to float). Even when f(x) is approx-

imated accurately enough to produce the correctly rounded double value (i.e., CR-LIBM

functions), rounding the double result to float may not produce the correctly rounded float

result. Finally, the functions in MetaLibm do not produce correct float results even when

MetaLibm uses Sollya [21], the same tool used by CR-LIBM to generate polynomials that

produce correctly rounded double results.

Correctness of posit32 functions. Table 7.5 shows that all ten posit functions in RLIBM-

32 produce correctly rounded results in posit32 for all inputs. All posit32 values cannot

be exactly represented in float representation but they can be represented in the double

178

representation. Hence, we created posit32 math libraries by repurposing glibc and intel’s

double math library as well as CR-LIBM. We tested the ability of the repurposed libraries

to produce correct posit32 results for the ten posit functions available in RLIBM-32. These

libraries do not produce correct results for posit32 functions. Contrary to float results, they

produce wrong results for millions of inputs, especially for exponential and hyperbolic

functions. The primary reason for such a high number of wrong results is the different

rounding behaviors between the FP representation with rne and the posit representations.

Posit representations do not underflow to 0 or overflow to ∞. Instead, extremely large

values are rounded to the largest representable posit value. Similarly, values extremely

close, but not equal, to 0 are rounded to the smallest non-zero representable posit value.

Hence, all repurposed libraries produce wrong results when the real value of f(x) is either

extremely large or close to zero.

7.3.2 Performance Evaluation of RLIBM-32

Performance of float functions. Figure 7.4(a) reports the speedup of RLIBM-32’s float

functions compared to glibc’s float library (left bar in each cluster) and glibc’s double

library (right bar in each cluster). On average, RLIBM-32 has 1.1× speedup over glibc’s

float library and 1.1× speedup over glibc’s double library. Figure 7.4(b) reports the speedup

of RLIBM-32 compared to Intel’s float library (left bar in each cluster) and Intel’s double

library (right bar in each cluster). On average, RLIBM-32 has 1.4× and 1.6× speedup over

Intel’s float and double library, respectively. Intel’s libraries produce correctly rounded

float results for more inputs compared to glibc’s libraries. Hence, RLIBM-32 has more

speedup compared to Intel’s libraries. Figure 7.4(c) reports the speedup of RLIBM-32

compared to CR-LIBM. RLIBM-32 has 1.9× speedup over CR-LIBM on average. CR-

LIBM produces correctly rounded double results for all double inputs. Thus, RLIBM-

32 has a higher speedup over CR-LIBM compared to glibc or Intel’s libraries. Finally,

Figure 7.4(d) reports the speedup of RLIBM-32 compared to MetaLibm’s float library (left

179

(a) Speedup of RLIBM-32’s float functions over
glibc libm

ln(x)
log2(x)

log10(x) ex 2x 10x
sinh(x)

cosh
(x)
geomean

0x

1x

2x

Sp
ee

du
p

Speedup over float libm Speedup over double libm

(b) Speedup of RLIBM-32’s float functions over
Intel libm

ln(x)
log2(x)

log10(x) ex 2x 10x
sinh(x)

cosh
(x)
sinpi

(x)
cosp

i(x)
geomean

0x

1x

2x

Sp
ee

du
p

Speedup over float libm Speedup over double libm

(c) Speedup of RLIBM-32’s float functions over
CR-LIBM

ln(x)
log2(x)

log10(x) ex
sinh(x)

cosh
(x)
sinpi

(x)
cosp

i(x)
geomean

0x

2x

Sp
ee

du
p

2.5x 3.4x
Speedup over double libm

(d) Speedup of RLIBM-32’s float functions over
MetaLibm

exp exp2 cosh
geomean

0x

2x

4x

Sp
ee

du
p

Speedup over float libm Speedup over double libm

Figure 7.4: (a) Speedup of RLIBM-32’s float functions compared to glibc’s float functions (left)
and glibc’s double functions (right). (b) Speedup of RLIBM-32’s functions compared to Intel’s
float functions (left) and Intel’s double functions (right). (c) Speedup of RLIBM-32’s functions
compared to CR-LIBM functions. (d) Speedup of RLIBM-32’s functions compared to MetaLibm’s
float functions (left) and double functions (right) built with AVX2 optimizations.

bar in each cluster) and double library (right bar in each cluster). On average, RLIBM-32

has 2.5× and 2.7× speedup compared to MetaLibm. RLIBM-32’s float functions are faster

than all corresponding functions in Intel’s library, CR-LIBM, and MetaLibm. RLIBM-32

is faster than glibc’s library except for ln(x), log2(x) and log10(x) functions. However,

glibc’s functions do not produce correctly rounded results for all inputs. In all other cases,

RLIBM-32 produces correctly rounded float results in rne rounding mode and is more

efficient. RLIBM’s approach in generating piecewise polynomials for RLIBM-32 with low

degree polynomials has been instrumental in creating efficient elementary functions.

Performance of posit functions. The graphs in Figure 7.5 reports the speedup of RLIBM-

32’s posit functions compared to the posit32 math libraries created by repurposing glibc’s

double library, Intel’s double library, and CR-LIBM. On average, RLIBM-32 has 1.1×, 1×,

and 1.5× speedup over glibc’s library, Intel’s library, and CR-LIBM. All three repurposed

math libraries do not produce correctly rounded posit32 results for all inputs. RLIBM-32

180

(a) Speedup of RLIBM-32’s posit32 functions
over glibc libm

ln(x) log2(
x)
log10

(x) ex 2x 10
x

sinh
(x)
cos

h(x)
geom

ean
0x

1x

2x
Sp

ee
du

p

(b) Speedup of RLIBM-32’s posit32 functions
over Intel libm

ln(x)log2(
x)
log10

(x) ex 2x 10
x

sinh
(x)
cos

h(x)
sinp

i(x)
cos

pi(x)
geom

ean
0x

1x

2x

Sp
ee

du
p

(c) Speedup of RLIBM-32’s posit32 functions
over CR-LIBM

ln(x) log2(x
)
log10

(x) ex
sinh(x

)
cosh

(x)
sinpi

(x)
cosp

i(x)
geom

ean
0x

1x

2x

Sp
ee

du
p

2.4x

Figure 7.5: (a) Speedup of RLIBM-32’s posit32 functions compared to glibc’s double functions.
(b) Speedup of RLIBM-32’s posit32 functions compared to Intel’s double functions. (c) Speedup
of RLIBM-32’s posit32 functions compared to CR-LIBM functions.

is the first correctly rounded math library for posit32 types and performs similar to or faster

than the repurposed libraries.

Performance impact of piecewise polynomials. We present a case study to show the per-

formance benefits of using piecewise polynomials. There are four 32-bit float functions

log2(x), log10(x), sinpi(x), and cospi(x) where RLIBM could generate a single polyno-

mial and produce correctly rounded results for all inputs. We created piecewise polyno-

mials for these functions with an increasing number of sub-domains. We validated each

piecewise polynomials to ensure that they produce correctly rounded results for all inputs.

We measured the change in performance as the number of sub-domains in the piecewise

polynomial increases from a single polynomial (i.e., 20) to 212. Figure 7.6 reports the per-

formance of log2(x) and log10(x) with increasing number of sub-domains compared to

the performance of a single polynomial. Figure 7.6 does not show sinpi(x) and cospi(x)

because we found that using a single polynomial has the best performance.

Initially, there is a small decrease in the performance (14% overhead) from a single

polynomial to a piecewise polynomial because the degree of the polynomial does not de-

181

20 22 24 26 28 210 212

Number of sub-domains for the piecewise polynomial

0.0x
0.2x
0.4x
0.6x
0.8x
1.0x
1.2x

Sp
ee

du
p

log2(x)
log10(x)

Figure 7.6: Speedup of log2(x) and log10(x) function for the 32-bit float with increasing size
of piecewise polynomial approximations compared to a single polynomial generated using our ap-
proach. All polynomials produce the correctly rounded result for all inputs when used with the same
output compensation function. A circle represents a decrease in the degree of the polynomial.

crease and the implementations experience overhead when using look-up tables. However,

when we keep increasing the number of sub-domains, the degree of the polynomials starts

to decrease, and the performance increases. When the number of sub-domains increases

from 24 to 25, the degree of the polynomials decreases from 5 to 4 and we only see approx-

imately 5% overhead compared to a single polynomial. At 28 sub-domains, the degree of

the polynomials decrease to 3 and we achieve 1.15× speedup compared to a single poly-

nomial. A piecewise polynomial containing 28 polynomials with degree 3 requires 6KB to

store all coefficients.

7.4 Experimental Evaluation With RLIBM-ALL

Table 7.6 provide details on the list of elementary functions available in RLIBM-ALL, the

total time taken to generate the polynomial approximations, and the size of the piecewise

polynomials generated for each function. For these generic functions in RLIBM-ALL, we

restricted the degree of the piecewise polynomials to 8 degrees at most. We also aimed for

smaller than or equal to 217 sub-domains. We increased the storage budget for RLIBM-ALL

compared to RLIBM-32 to account for the additional precision that RLIBM-ALL requires.

As RLIBM-ALL produces piecewise polynomials for 34-bit representations, the number

of sub-domains used in the resulting piecewise polynomials are bigger than RLIBM-32.

However, the degree of the polynomial in each sub-domain is similar to RLIBM-32.

182

Table 7.6: Details about the generated polynomials. For each elementary function, we show the
time taken to generate the polynomials in minutes, the size of the piecewise polynomial for approx-
imating gi(r), the maximum degree of the polynomial, and the number of terms in the polynomial.

floating point functions

f(x)
Gen.
Time

(Min.)

of Poly-
nomials

Deg-
ree

of
Terms

ln(x) 325 210 3 3
log2(x) 420 28 3 3
log10(x) 546 28 3 3

ex 241
27

27
4
4

5
5

2x 151
27

27
3
3

4
4

10x 402
28

28
3
3

4
4

sinh(x) 143 26 5 3
cosh(x) 135 25 4 3
sinpi(x) 308 22 5 3
cospi(x) 316 22 4 3

posit functions

f(x)
Gen.
Time

(Min.)

of Poly-
nomials

Deg-
ree

of
Terms

ln(x) 262
213

212
3
3

3
3

log2(x) 296
211

211
3
3

3
3

log10(x) 419
214

214
3
3

3
3

ex 1048
214

214
2
3

3
4

2x 1179
214

215
2
2

3
3

10x 1825
217

215
2
2

3
3

sinh(x) 652
215

215
3
2

2
2

cosh(x) 603
215

215
3
2

2
2

sinpi(x) 410
214

213
3
4

2
3

cospi(x) 745
215

215
3
2

2
2

Table 7.6 also reports the amount of time taken to generate RLIBM-ALL functions in

the second column. The amount of time needed ranges from roughly 2 hours to generate

cosh(x) function for the FP representation to 30 hours to generate 10x function for the

posit representation. For FP functions, roughly 79% of the total time is spent in computing

the oracle results using the MPFR library. In comparison, computing the intervals and

generating the polynomials takes 15% and 5% of the total time on average, respectively.

Because the posit functions have fewer special cases and require more precision, RLIBM

spends more time computing the intervals (23% of the total time) and generating larger

piecewise polynomials (39% of the total time). The remaining 38% of the total time is

spent in computing the oracle result using MPFR and correctly rounding the result to 34-

bit posit value with rno mode.

183

Table 7.7: (a) RLIBM-ALL’s FP functions produce correctly rounded results in the 34-bit floating
point representation (i.e., F34,8) using the rno rounding mode for all inputs. (b) Similarly, RLIBM-
ALL’s posit functions produce correctly rounded results in the 34-bit posit representation (i.e., P34,2)
using the rno rounding mode for all inputs. 3indicates that the library produces the correctly
rounded 34-bit result using rno for all inputs. Otherwise, we use 7.

f(x)
RLIBM-ALL produces correct

34-bit FP results with rno?
ln(x) 3

log2(x) 3

log10(x) 3

ex 3

2x 3

10x 3

sinh(x) 3

cosh(x) 3

sinpi(x) 3

cospi(x) 3

(a)

f(x)
RLIBM-ALL produces correct
34-bit posit results with rno?

ln(x) 3

log2(x) 3

log10(x) 3

ex 3

2x 3

10x 3

sinh(x) 3

cosh(x) 3

sinpi(x) 3

cospi(x) 3

(b)

7.4.1 Correctness Evaluation of RLIBM-ALL

Table 7.7(a) reports that the FP functions in RLIBM-ALL produces the correctly rounded

results in FP34 with the rno mode for all inputs. By Theorem 6.1 in Chapter 6, our ex-

periment indicates that the FP functions in RLIBM-ALL produce the correct results for all

k-bit FP representations with 8 bits of exponent using any IEEE-754 rounding modes as

long as 9 < k ≤ 32. These representations include bfloat16, tensorfloat32, and float repre-

sentations. Similarly, Table 7.7(b) reports that all posit functions in RLIBM-ALL produces

the correctly rounded results in the 34-bit posit representation with es = 2 using the rno

mode. Hence, the posit functions are guaranteed to produce the correct results for all k-bit

posit representation as long as 2 ≤ k ≤ 34 and es = 2, including the standard posit32

representation.

In addition, we wanted to check if RLIBM-ALL’s functions can produce correctly

rounded results for other representations. Hence, we built a test harness to check if the

FP functions in RLIBM-ALL produce correctly rounded results for all inputs with differ-

ent FP representations where the number of exponent bits ranges from 2 to 8 bits and the

184

number of mantissa bits ranges from 1 to 23 bits (i.e., 23× 7 = 161). These configurations

include the standard 16-bit half type. Our experiment shows that RLIBM-ALL produces the

correct results for all 161 representations with all standard rounding modes. RLIBM-ALL

is the first library that provides the correctly rounded results for all inputs in hundreds of

FP representations with any standard rounding modes. Similarly, we built a test harness to

check and verify that RLIBM-ALL’s posit functions produce correctly rounded results for

all inputs in the standard 16-bit posit representation (i.e., posit16).

Next, we evaluate the ability of various state-of-the-art math libraries to produce cor-

rectly rounded results in float, tensorfloat32, and bfloat16 using the five IEEE-754 standard

rounding modes. The glibc’s and Intel’s float and double libraries only have one imple-

mentation per elementary function. Hence, we use the same function for all five round-

ing modes. In contrast, CR-LIBM has four implementations for each elementary function

that produces correctly rounded double results with rne, rnz, rnp, and rnn, respectively.

Hence, when computing the correctly rounded result for a given rounding mode rm using

CR-LIBM, we use the implementation that corresponds to rm.

Correctly rounded results with all rounding modes for float. Table 7.8 reports the result

of our experiment to check whether the existing libraries produce correctly rounded float

results. While RLIBM-ALL produces the correct float results will all five rounding modes

for all inputs, many elementary functions in glibc and Intel’s libm do not produce correctly

rounded results for all inputs with all rounding modes. In particular, even glibc and Intel’s

double functions do not produce correct float results of ex, 10x, sinh(x), and cosh(x) for

all inputs with rnn, rnp, and rnz modes. These results are especially interesting because

the error occurs due to the different behaviors of rnn, rnp, and rnz mode compared to

rne. For example, ex approaches infinity for large positive inputs. Both glibc and Intel’s

double libraries produce∞ for these inputs, which is the correct float result of ex in the rne

mode. However, this result is incorrect for rnn or rnz mode because the result of ex should

185

Table 7.8: Generation of correctly rounded results for 32-bit float using the five standard IEEE-754
rounding modes rne, rnn, rnp, rnz, and rna. We use the elementary functions from RLIBM-ALL,
glibc’s libm (float and double), Intel’s libm (float and double), RLibm32, and CR-LIBM. If the math
library produces a double value, we round the output to a float value. 3indicates that the library
produces the correctly rounded float result using a given rounding mode for all inputs. Otherwise,
we use 7.

Using RLIBM-ALL

f(x) rne rnn rnp rnz rna
ln(x) 3 3 3 3 3

log2(x) 3 3 3 3 3

log10(x) 3 3 3 3 3

ex 3 3 3 3 3

2x 3 3 3 3 3

10x 3 3 3 3 3

sinh(x) 3 3 3 3 3

cosh(x) 3 3 3 3 3

sinpi(x) 3 3 3 3 3

cospi(x) 3 3 3 3 3

Using glibc float libm
rne rnn rnp rnz rna
7 7 7 7 7

7 7 7 7 7

7 7 7 7 7

7 7 7 7 7

7 7 7 7 7

7 7 7 7 7

7 7 7 7 7

7 7 7 7 7

N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

Using glibc double libm
rne rnn rnp rnz rna
7 7 7 7 7

3 3 3 3 3

7 7 7 7 7

3 7 7 7 3

7 7 7 7 7

3 7 7 7 7

7 7 7 7 7

3 7 7 7 3

N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

Using Intel float libm
f(x) rne rnn rnp rnz rna
ln(x) 7 7 7 7 7

log2(x) 7 7 7 7 7

log10(x) 7 7 7 7 7

ex 7 7 7 7 7

2x 7 7 7 7 7

10x 7 7 7 7 7

sinh(x) 7 7 7 7 7

cosh(x) 7 7 7 7 7

sinpi(x) 7 7 7 7 7

cospi(x) 7 7 7 7 7

Using Intel double libm
rne rnn rnp rnz rna
7 7 7 7 7

3 3 3 3 3

7 7 7 7 7

3 7 7 7 3

7 7 7 7 7

3 7 7 7 3

7 7 7 7 7

3 7 7 7 3

3 3 3 3 7

3 7 3 7 7

Using CRLIBM
rne rnn rnp rnz rna
7 3 3 3 N/A
3 3 3 3 N/A
7 3 3 3 N/A
3 3 3 3 N/A

N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A
7 3 3 3 N/A
3 3 3 3 N/A
3 3 3 3 N/A
3 3 3 3 N/A

Using RLibm32
f(x) rne rnn rnp rnz rna
ln(x) 3 7 7 7 3

log2(x) 3 7 7 7 3

log10(x) 3 7 7 7 3

ex 3 7 7 7 3

2x 3 7 7 7 7

10x 3 7 7 7 3

sinh(x) 3 7 7 7 3

cosh(x) 3 7 7 7 3

sinpi(x) 3 7 7 7 3

cospi(x) 3 7 7 7 3

round down and produce the largest representable positive value in float instead. Similarly,

ex approaches zero for small negative numbers. Both glibc and Intel’s double libraries

produce 0 for these inputs which is the correct float result of ex in the rne mode. However,

186

this result is incorrect for rnp because the result of ex should round up and produce the

smallest representable positive value in float.

In contrast, CR-LIBM’s functions for rnn, rnp, and rnz mode produce the correctly

rounded float results with rnn, rnp, and rnz, respectively. Double rounding with these

rounding modes always produces correctly rounded results. For example, rounding a real

value vR to double with rnn and then subsequently rounding the result to float with rnn

produces the same result as if rounding vR directly to float with rnn mode. This is not true

for rne mode. CR-Libm’s functions for rne do not produce the correctly rounded float

results with rne mode for all inputs due to double rounding error. Additionally, CR-LIBM

does not provide implementations for the rna mode. RLIBM-ALL’s elementary function

guarantees to provide correctly rounded results for all five rounding modes.

RLIBM-32, which produces correctly rounded float results in the rne rounding mode

also produces correctly rounded results in the rna rounding mode for all functions except

2x. The rna rounding mode behaves similar to rna except when the value is equal to the

midpoint between two adjacent float values. In comparison, RLIBM-32 does not produce

correct results for all inputs with rnn, rnp, or rnz modes.

Correctly rounded results with all rounding modes for tensorfloat32 and bfloat16. Ta-

ble 7.9 reports the result of our experiment to check whether existing libraries produce

correctly rounded tensorfloat32 results. As tensorfloat32 has the same number of expo-

nent bits as FP34, RLIBM-ALL produces the correctly rounded results for all inputs and

all rounding modes. In contrast, glibc and Intel’s library, as well as RLIBM-32 does not

produce correctly round results in tensorfloat32 for all inputs and all rounding modes. Even

when glibc and Intel’s double libraries are designed to produce double results which have

significantly higher precision than tensorfloat32, they produce wrong results with extremal

values for rnn, rnp, and rnz mode, due to double rounding error. CR-LIBM’s functions

for each rounding mode produce correctly rounded tensorfloat32 results for all available

187

Table 7.9: Generation of correctly rounded results for TensorFloat32 using the five standard IEEE-
754 rounding modes rne, rnn, rnp, rnz, and rna. We use the elementary functions from RLIBM-
ALL, glibc’s libm (float and double), Intel’s libm (float and double), RLibm32, and CR-LIBM.
Then, we convert the output to TensorFloat32 values. 3indicates that the library produces the
correctly rounded TensorFloat32 result using a given rounding mode for all inputs. Otherwise, we
use 7.

Using RLIBM-ALL

f(x) rne rnn rnp rnz rna
ln(x) 3 3 3 3 3

log2(x) 3 3 3 3 3

log10(x) 3 3 3 3 3

ex 3 3 3 3 3

2x 3 3 3 3 3

10x 3 3 3 3 3

sinh(x) 3 3 3 3 3

cosh(x) 3 3 3 3 3

sinpi(x) 3 3 3 3 3

cospi(x) 3 3 3 3 3

Using glibc float libm
rne rnn rnp rnz rna
7 7 7 7 7

3 3 3 3 3

7 7 7 7 7

7 7 7 7 7

7 7 7 7 3

3 7 7 7 7

7 7 7 7 7

7 7 7 7 7

N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

Using glibc double libm
rne rnn rnp rnz rna
3 3 3 3 3

3 3 3 3 3

3 3 3 3 3

3 7 7 7 3

3 7 7 7 3

3 7 7 7 3

3 7 7 7 3

3 7 7 7 3

N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

Using Intel float libm
f(x) rne rnn rnp rnz rna
ln(x) 7 7 7 7 7

log2(x) 3 3 3 3 3

log10(x) 7 7 7 7 7

ex 7 7 7 7 7

2x 7 7 7 7 3

10x 3 7 7 7 7

sinh(x) 7 7 7 7 7

cosh(x) 7 7 7 7 7

sinpi(x) 3 7 7 7 3

cospi(x) 3 7 7 7 3

Using Intel double libm
rne rnn rnp rnz rna
3 3 3 3 3

3 3 3 3 3

3 3 3 3 3

3 7 7 7 3

3 7 7 7 3

3 7 7 7 3

3 7 7 7 3

3 7 7 7 3

3 3 3 3 3

3 7 3 7 3

Using CRLIBM
rne rnn rnp rnz rna
3 3 3 3 N/A
3 3 3 3 N/A
3 3 3 3 N/A
3 3 3 3 N/A

N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A
3 3 3 3 N/A
3 3 3 3 N/A
3 3 3 3 N/A
3 3 3 3 N/A

Using RLibm32
f(x) rne rnn rnp rnz rna
ln(x) 7 7 7 7 7

log2(x) 3 3 3 3 3

log10(x) 7 7 7 7 7

ex 7 7 7 7 7

2x 7 7 7 7 3

10x 3 7 7 7 7

sinh(x) 7 7 7 7 7

cosh(x) 7 7 7 7 7

sinpi(x) 3 7 7 7 3

cospi(x) 3 7 7 7 3

elementary functions and rounding modes.

Table 7.10 presents the result of our experiment to check the ability of existing libraries

to produce correctly rounded bfloat16 results. Similar to tensorfloat32, RLIBM-ALL pro-

188

Table 7.10: Generation of correctly rounded results for bfloat16 using the five standard IEEE-
754 rounding modes rne, rnn, rnp, rnz, and rna. We show the results with the elementary
functions from RLIBM-ALL, glibc’s libm (float and double), Intel’s libm (float and double), RLibm,
RLibm32, and CR-LIBM. 3indicates that the library produces the correctly rounded bfloat16 result
using a given rounding mode for all inputs. Otherwise, we use 7.

Using RLIBM-ALL

f(x) rne rnn rnp rnz rna
ln(x) 3 3 3 3 3

log2(x) 3 3 3 3 3

log10(x) 3 3 3 3 3

ex 3 3 3 3 3

2x 3 3 3 3 3

10x 3 3 3 3 3

sinh(x) 3 3 3 3 3

cosh(x) 3 3 3 3 3

sinpi(x) 3 3 3 3 3

cospi(x) 3 3 3 3 3

Using glibc float libm
rne rnn rnp rnz rna
3 7 7 3 7

3 3 3 3 3

3 3 3 3 3

3 7 7 7 3

3 7 7 7 3

7 7 7 7 7

3 7 7 7 3

3 7 7 7 3

N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

Using glibc double libm
rne rnn rnp rnz rna
3 3 3 3 3

3 3 3 3 3

3 3 3 3 3

3 7 7 7 3

3 7 7 7 3

3 7 7 7 3

3 7 7 7 3

3 7 7 7 3

N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A

Using Intel float libm
f(x) rne rnn rnp rnz rna
ln(x) 3 7 7 3 7

log2(x) 3 3 3 3 3

log10(x) 3 3 3 3 3

ex 3 7 7 7 3

2x 3 7 7 7 3

10x 7 7 7 7 7

sinh(x) 3 7 7 7 3

cosh(x) 3 7 7 7 3

sinpi(x) 3 3 3 3 3

cospi(x) 3 7 3 7 3

Using Intel double libm
rne rnn rnp rnz rna
3 3 3 3 3

3 3 3 3 3

3 3 3 3 3

3 7 7 7 3

3 7 7 7 3

3 7 7 7 3

3 7 7 7 3

3 7 7 7 3

3 3 3 3 3

3 7 3 7 3

Using CRLIBM
rne rnn rnp rnz rna
3 3 3 3 N/A
3 3 3 3 N/A
3 3 3 3 N/A
3 3 3 3 N/A

N/A N/A N/A N/A N/A
N/A N/A N/A N/A N/A
3 3 3 3 N/A
3 3 3 3 N/A
3 3 3 3 N/A
3 3 3 3 N/A

Using RLibm32
f(x) rne rnn rnp rnz rna
ln(x) 3 7 7 3 7

log2(x) 3 3 3 3 3

log10(x) 3 3 3 3 3

2x 3 7 7 7 3

2x 3 7 7 7 3

10x 7 7 7 7 7

sinh(x) 3 7 7 7 3

cosh(x) 3 7 7 7 3

sinpi(x) 3 3 3 3 3

cospi(x) 3 7 3 7 3

Using RLibm
rne rnn rnp rnz rna
3 7 7 7 3

3 7 7 7 3

3 7 7 7 3

3 7 7 7 3

3 7 7 7 7

3 7 7 7 3

3 7 7 7 3

3 7 7 7 3

3 7 7 7 3

3 7 7 7 3

duces the correctly rounded bfloat16 results for all rounding modes. Many elementary

functions in Glibc’s library, Intel’s library, RLIBM-32, and RLIBM-16 do not produce

correctly rounded bfloat16 results especially with rnn, rnp, and rnz mode. CR-LIBM’s

functions, on the other hand, produces correctly rounded results for all inputs in bfloat16

189

(a) Speedup of RLIBM-ALL over RLibm32

ln(x)
log2(x)

log10(x) ex 2x 10x
sinh(x)

cosh
(x)
sinpi

(x)
cosp

i(x)
geomean.

0x

1x

2x
Sp

ee
du

p
Speedup over RLibm32

(b) Speedup of RLIBM-ALL over glibc libm

ln(x)
log2(x)

log10(x) ex 2x 10x
sinh(x)

cosh
(x)
geomean.

0x

1x

2x

Sp
ee

du
p

Speedup over float libm Speedup over double libm

(c) Speedup of RLIBM-ALL over Intel libm

ln(x)
log2(x)

log10(x) ex 2x 10x
sinh(x)

cosh
(x)
sinpi

(x)
cosp

i(x)
geomean.

0x

1x

2x

Sp
ee

du
p

Speedup over float libm Speedup over double libm

(d) Speedup of RLIBM-ALL over CR-LIBM

ln(x)
log2(x)

log10(x) ex
sinh(x)

cosh
(x)
sinpi

(x)
cosp

i(x)
geomean.

0x

2x

Sp
ee

du
p

2.5x 3.4x
Speedup over double libm

Figure 7.7: (a) Speedup of RLIBM-ALL functions compared to RLibm32 functions when pro-
ducing 32-bit float results. (b) Speedup of RLIBM-ALL functions compared to Intel’s float func-
tions (left) and Intel’s double functions (right) when producing 32-bit float results. (c) Speedup
of RLIBM-ALL functions compared to CR-LIBM functions when producing 32-bit float results.
(d) Speedup of RLIBM-ALL functions compared to glibc’s float functions (left) and glibc’s double
functions (right) when producing 32-bit float results.

with the four available rounding modes.

7.4.2 Performance Evaluation

Performance evaluation of RLIBM-ALL when producing float results. Figure 7.7 presents

the speedup of RLIBM-ALL’s FP functions compared to several math libraries when pro-

ducing float results with rne mode. Figure 7.7(a) reports the speedup of RLIBM-ALL’s FP

functions over RLIBM-32’s functions. RLIBM-ALL is as fast as RLIBM-32 (2% slower

than RLIBM-32) while being able to produce correctly rounded results for multiple rep-

resentations with all standard rounding modes. RLIBM-ALL’s sinh(x) function is 12%

slower than to RLIBM-32. When input x is near 0, sinh(x) exhibits a linear behavior and

sinh(x) ≈ x produces correctly rounded float values with rne rounding mode. RLIBM-32

uses this property by simply returning x for inputs near 0. In comparison, RLIBM-ALL

spends significantly more computation to ensure that it produces correctly rounded results

for all rounding modes

190

Figure 7.7(b) presents the speedup of RLIBM-ALL’s FP functions over glibc’s float

functions (left bar in each cluster) and double functions (right bar in each cluster). RLIBM-

ALL has 1.1× and 1.1× speedup over glibc’s float and double functions, respectively. Fig-

ure 7.7(c) presents the speedup of RLIBM-ALL’s FP functions over Intel’s float functions

(left bar in each cluster) and double functions (right bar in each cluster). RLIBM-ALL has

1.3× and 1.5× speedup over Intel’s float and double functions, respectively. Figure 7.7(d)

presents the speedup of RLIBM-ALL’s FP functions over CR-LIBM functions. RLIBM-

ALL has 1.9× speedup over CR-LIBM functions. RLIBM-ALL is comparable or faster

than the existing libraries while producing correct float results with all rounding modes. In

comparison, glibc’s libm, Intel’s libm, and CR-LIBM do not produce correct results for all

inputs when they are used to produce float values.

Performance evaluation of RLIBM-ALL when producing bfloat16 values. Figure 7.7

reports the speedup of RLIBM-ALL’s FP functions compared to several math libraries when

producing bfloat16 results with rne mode. Figure 7.8(a) presents the speedup of RLIBM-

ALL’s FP functions over RLIBM-32. On average, RLIBM-ALL’s FP functions are 8%

slower than RLIBM-32 when producing bfloat16. While RLIBM-32 produces float values

which can be efficiently rounded to bfloat16 using bit-wise operations, RLIBM-ALL pro-

duces double values. Because there is no hardware support for correctly rounding a double

value to bfloat16, RLIBM-ALL simulates this rounding with software simulation. Hence,

there is an additional 6% slowdown when RLIBM-ALL produces bfloat16 results compared

to RLIBM-32.

Figure 7.8(b) reports the speedup of RLIBM-ALL’s FP functions over glibc’s float

functions (left bar in each cluster) and glibc’s double functions (right bar in each clus-

ter). RLIBM-ALL has 1× and 1.1× speedup over glibc’s float and double library, respec-

tively. Figure 7.8(c) reports the speedup of RLIBM-ALL’s FP functions over Intel’s float

functions (left bar in each cluster) and Intel’s double functions (right bar in each cluster).

191

(a) Speedup of RLIBM-ALL over RLibm32

ln(x)
log2(x)

log10(x) ex 2x 10x
sinh(x)

cosh
(x)
sinpi

(x)
cosp

i(x)
geomean.

0x

1x

2x
Sp

ee
du

p
Speedup over RLibm32

(b) Speedup of RLIBM-ALL over glibc libm

ln(x)
log2(x)

log10(x) ex 2x 10x
sinh(x)

cosh
(x)
geomean.

0x

1x

2x

Sp
ee

du
p

Speedup over float libm Speedup over double libm

(c) Speedup of RLIBM-ALL over Intel libm

ln(x)
log2(x)

log10(x) ex 2x 10x
sinh(x)

cosh
(x)
sinpi

(x)
cosp

i(x)
geomean.

0x

1x

2x

Sp
ee

du
p

Speedup over float libm Speedup over double libm

(d) Speedup of RLIBM-ALL over CR-LIBM

ln(x)
log2(x)

log10(x) ex
sinh(x)

cosh
(x)
sinpi

(x)
cosp

i(x)
geomean.

0x

2x

Sp
ee

du
p

Speedup over double libm

(e) Speedup of RLIBM-ALL over RLibm

ln(x)
log2(x)

log10(x) ex 2x 10x
sinh(x)

cosh
(x)
sinpi

(x)
cosp

i(x)
geomean.

0x

1x

2x

Sp
ee

du
p

Speedup over RLibm

Figure 7.8: (a) Speedup of RLIBM-ALL functions compared to RLibm32 functions when pro-
ducing bfloat16 results. (b) Speedup of RLIBM-ALL functions compared to Intel’s float functions
(left) and Intel’s double functions (right) when producing bfloat16 results. (c) Speedup of RLIBM-
ALL functions compared to CR-LIBM functions when producing bfloat16 results. (d) Speedup
of RLIBM-ALL functions compared to glibc’s float functions (left) and glibc’s double functions
(right) when producing bfloat16 results. (e) Speedup of RLIBM-ALL functions compared to RLibm
functions when producing bfloat16 results.

RLIBM-ALL has 1.2× and 1.4× speedup over Intel’s float and double library, respectively.

Figure 7.8(d) reports the speedup of RLIBM-ALL’s FP functions over CR-LIBM. RLIBM-

ALL has 1.62× speedup over CR-LIBM. CR-LIBM performs better in producing bfloat16

results compared to its performance in producing float results. We conjecture that this is

because CR-LIBM has a two-phase approach in approximating elementary functions. For

inputs where the correctly rounded result of f(x) is easy to approximate, CR-LIBM pro-

duces the results efficiently. For inputs where the exact value of f(x) in reals is close to the

rounding boundary of two double values, CR-LIBM uses more accurate but slower approx-

imation methods. CR-LIBM likely computes the correctly rounded result of f(x) efficient

192

(a) Speedup of RLIBM-ALL over RLibm32

ln(x)
log2(x)

log10(x) ex 2x 10x
sinh(x)

cosh
(x)
sinpi

(x)
cosp

i(x)
geomean.

0x

1x

2x
Sp

ee
du

p
Speedup over RLibm32

(b) Speedup of RLIBM-ALL over glibc libm

ln(x)
log2(x)

log10(x) ex 2x 10x
sinh(x)

cosh
(x)
geomean.

0x

1x

2x

Sp
ee

du
p

Speedup over double libm

(c) Speedup of RLIBM-ALL over Intel libm

ln(x)
log2(x)

log10(x) ex 2x 10x
sinh(x)

cosh
(x)
sinpi

(x)
cosp

i(x)
geomean.

0x

1x

2x

Sp
ee

du
p

Speedup over double libm

(d) Speedup of RLIBM-ALL over CR-LIBM

ln(x)
log2(x)

log10(x) ex
sinh(x)

cosh
(x)
sinpi

(x)
cosp

i(x)
geomean.

0x

2x

Sp
ee

du
p

2.4x
Speedup over double libm

Figure 7.9: (a) Speedup of RLIBM-ALL functions compared to RLibm32 functions when produc-
ing posit32 results. (b) Speedup of RLIBM-ALL functions compared to Intel’s double functions
(right) when producing posit32 results. (c) Speedup of RLIBM-ALL functions compared to CR-
LIBM functions when producing posit32 results. (d) Speedup of RLIBM-ALL functions compared
to glibc’s double functions (right) when producing posit32 results.

with bfloat16 inputs compared to float inputs.

Figure 7.8(e) reports the speedup of RLIBM-ALL’s FP functions over RLIBM-16. On

average, RLIBM-ALL’s FP functions have 9% overhead over RLIBM-16. Since RLIBM-

16 is developed and optimized specifically for bfloat16, the majority of RLIBM-16’s func-

tions have speedup over RLIBM-ALL except for ln(x), log2(x), log10(x), and cospi(x).

RLIBM-ALL uses a more efficient range reduction strategy compared to RLIBM-16 and

results in better performance for these functions.

Performance evaluation of RLIBM-ALL when producing posit32 values. Figure 7.9

presents the speedup of RLIBM-ALL’s posit functions over various libraries when produc-

ing posit32 values. Figure 7.9(a) presents the speedup of RLIBM-ALL’s posit functions

over RLIBM-32’s posit functions. On average, RLIBM-ALL is 3% slower compared to

RLIBM-32. This additional overhead is caused by RLIBM-ALL’s posit functions produc-

ing correctly rounded results for 34-bit posit representation. Figure 7.9(b), (c), and (d) re-

ports the speedup of RLIBM-ALL’s posit functions over the repurposed math library using

193

glibc’s double library, Intel’s double library, and CR-LIBM. RLIBM-ALL has 1.0×, 1.0×,

and 1.4× speedup over these libraries, respectively. The performance of RLIBM-ALL’s

posit functions is comparable or faster than the state-of-the-art libraries while guaranteeing

to produce correct results for multiple posit configurations. In comparison, Glibc’s dou-

ble library, Intel’s double library, and CR-LIBM do not produce correctly rounded posit32

results for all inputs.

194

CHAPTER 8

RELATED WORK

For small bit-length datatypes (e.g., 8 bits), it is more beneficial to mathematically compute

the results of f(x) for each input (i.e., a total of 256 values) and store the results in a table.

However, as the size of data types increases (i.e., 32-bits or 64-bits), storing the results of

f(x) for each input required exponentially larger storage space. For instance, storing the

results of f(x) for the 32-bit float type requires 232 × 4B = 16GB of storage. Hence,

multiple decades of research in approximation and range reduction techniques have been

developed to accurately approximating elementary functions possible. Further, there are

numerous efforts in verifying the error bound of various implementations of elementary

functions and repairing math libraries to improve them. We present several seminal work

that has influenced and inspired the RLIBM approach.

8.1 Approximation Methods

Polynomial approximation. Polynomials are efficient to evaluate especially when using

Horner’s method [10] which requires at most n+ 1 additions and n multiplications to eval-

uate a polynomial of degree n. Further, based on the Weierstrass approximation theorem,

any smooth function f(x) can be approximated as closely as needed using a polynomial ap-

proximation [144]. Hence, it is one of the most popular approximation techniques. Taylor

series [2], also known as the Taylor polynomial expansion, is an infinite degree polynomial

used to approximate any smooth function f(x) for inputs near a single pivot point a:

P (x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + . . .

Truncating it up to a desirable degree n creates a finite-degree (i.e., nth degree) polynomial

approximation. There are two distinct advantages of using the Taylor series when approxi-

195

mating elementary functions. First, generating the polynomial (especially the coefficients)

is straightforward as long as the derivatives can be computed. Second, the error of the

Taylor polynomial approximation is bounded by the maximum value of the (n+ 1)st term

among all inputs in the input domain. Hence, Taylor polynomial can be used to produce an

approximation of f(x) with arbitrary precision. However, the main drawback of the Taylor

polynomial is that the error of the polynomial increases substantially as the input x deviates

away from the pivot point a. Comparatively, the Remez algorithm (explained in more detail

in Chapter 2) generates polynomials that produce more accurate results for a wider domain

of inputs, if the desired error bound is known when generating the polynomial.

Newton’s method for square root function. Unlike elementary functions, the
√
x func-

tion is most commonly approximated with the Newton’s method or its variants. Abstractly,

the square root function y =
√
x for a given input x (i.e., x is a constant) is converted to

y2 − x = 0. Then, the root of this quadratic formula (with the independent variable y) is

solved using the iterative Newton’s method

y0 = initial guess of
√
x

yn+1 = yn −
f(yn)

f ′(yn)
=
yn
2

+
x

2yn

where f(yn) = y2−x. The result yn is an approximation of
√
x after n iteration. The New-

ton’s method converges quadratically on average. It is common to store a rough estimate

of
√
x in a small lookup-table and use this value as the y0 to expedite the algorithm [3]. An

advantage of the Newton’s ralgorithm is that the numerical error occurring in each iteration

does not affect the numerical error of the final result. Rather, the numerical error of an

iteration will only slightly affect the convergence rate of the next iteration. With enough

iterations, the Newton’s method will produce an accurate result.

The hardware implementation of floating point division operation is slower than other

primitive operations. A technique to avoid the division operation in the Newton’s method

196

is to approximate the reciprocal square root (i.e., 1√
x
) using the Newton’s method (i.e.,

f(y) = y2 − 1√
x
). Once the reciprocal of the square root (i.e., y = 1√

x
) is approximated,

√
x can be found by computing

√
x = x × y. This strategy completely eliminates the

division operations and still converges quadratically. A similar technique known as Halley’s

method [110] provides a technique to iteratively approximates 1√
x

with a cubic convergence

rate and the Goldschmidt’s algorithm [53] approximates both
√
x and 1√

x
simultaneously.

CORDIC. The shift-and-add algorithms are iterative processes that can approximate vari-

ous functions using only addition and binary shift operations (i.e., multiplication by powers

of 2’s). The very first concept of shift-and-add algorithm was used to compute the loga-

rithm of various values [115]. Since then, it has been adopted by the CORDIC method [139],

an algorithm for approximating trigonometric functions.

In essence, the CORDIC method computes trigonometric functions through a series of

2-dimensional vector rotations. The angle θ is decomposed into a series of small decreasing

angles θ = θ0 ± θ1 ± θ2 ± An initial vector [x0, y0]T = [1, 0]T is rotated using these

angles (i.e., θi) iteratively. By choosing a particular sequence of angles ±θi such that

tan(θi) = 2−i, the vector rotation by the angle θi in each iteration can be computed with,

xi+1

yi+1


 = K


 1 −2−i

2−i 1




xi
yi




where K is a predetermined constant. After a sequence of rotations by the angle θi, the

resulting vector [xi, yi]
T is an approximation of [cos(θ), sin(θ)]T . This vector rotation only

requires additions and shift operations after some optimization steps.

Mathematically, each iteration of the CORDIC method provides one digit of accuracy

in approximating cos(θ) and sin(θ). It is well received in the hardware community for its

straightforward implementations and ability to produce results efficiently when only a few

digits of accuracy is required. A generalized CORDIC algorithm was developed to approx-

imate hyperbolic functions [140] or perform multi-dimensional CORDIC algorithm [122].

Several work have been proposed to improve the performance by parallelizing [49, 138],

197

pipelining [43], and modularizing [143] the CORDIC method. The angle recoding [19, 64],

fast-forwarding [97], and the redundant algorithm [132] reduces the number of iterations

to both increase the performance and the accuracy. A detailed overview of prior research

on CORDIC is available in the survey [98].

Bipartite table method. Instead of storing the result of f(x) in a lookup table for ev-

ery input, the bipartite method uses two smaller lookup tables to approximate f(x). First

proposed to approximate trigonometric functions [129] and reciprocals (i.e., 1
x
) [31], it has

been generalized for all elementary functions using polynomial approximations [120, 127].

Abstractly, the bipartite method divides the input domain into k larger subdomains and then

further split each subdomain into another k smaller subdomains (a total of k2 subdomains).

The function f(x) in each smaller subdomain is approximated using a 1st degree polyno-

mial, P (x) = ci,j + cix, where ci is unique for each larger subdomain (i.e., a total of k

values) and ci,j is specific to each smaller subdomain (i.e., a total of k2 values). Using

this technique, approximating f(x) only requires two lookup tables with k and k2 entries,

respectively.

The coefficients ci, j and cj can be identified using Taylor’s expansion. The input x

is decomposed into three k-bit smaller numbers, x = x0 + x1 + x2. Then, the Taylor’s

expansion of f(x) with the pivot point x0 +x1 is used to create a monomial approximation,

P (x) = f(x0 + x1) + (x− x0 − x1)× f ′(x0 + x1) = f(x0 + x1) + x2 × f ′(x0 + x1)

By approximating the term f ′(x0 + x1) with f ′(x0), we get the approximation function,

P (x) = ci,j + cix2, ci,j = f(x0 + x1), ci = f ′(x0)

The bipartite method can be implemented efficiently using two small lookup tables and a

few primitive operations. Hence, it is a popular technique along with the CORDIC method

to create custom hardware implementation. An extension, known as the multipartite table

method [41, 121] uses several smaller lookup tables created with higher degree Taylor

expansion to increase the accuracy.

198

8.2 Correctly Rounded Approximation

Naively using the approximation algorithms discussed in Section 8.1 with finite precision

representations does not guarantee to produce the correctly rounded result of f(x). As

the table maker’s dilemma [75] states, it may require an arbitrary amount of precision to

compute the correctly rounded results for an arbitrary input x and elementary function f(x).

Hence, several techniques were developed to avoid the table maker’s dilemma, produce the

correctly rounded results of f(x) efficiently, and create correctly rounded math libraries.

Math libraries using the onion peeling strategy. The first successful attempts in creating

correctly rounded math libraries for the float and double types (i.e., LibUltim [65, 146] and

LibMCR [101]) use the onion peeling approach (also know as Ziv’s strategy). It avoids

the table maker’s dilemma by iteratively approximating f(x) with progressively higher

precision until it can determine the correctly rounded result of f(x). Initially, the onion

peeling strategy chooses a target precision p1. Then, it approximates f(x) with p1 bits of

precision to produce a result result y1 and its corresponding error bound ε1. The onion

peeling strategy typically uses approximation methods that can potentially compute f(x)

to arbitrary precision and produce the error bound at the same time (e.g., Taylor series

or the CORDIC method). Based on the result y1 and ε1, the real value of f(x) is within

[y1 − ε1, y1 + ε1]. If both y1 − ε1 and y1 + ε1 rounds to the same value in the target

representation, then the rounded result of y1 is the correctly rounded result. Otherwise,

the current approximation cannot conclude what the correct result is. The onion peeling

strategy chooses a higher precision p2 and repeats the process.

MPFR [46], an arbitrary precision math library, implements elementary functions using

the same strategy. In the MPFR math library, the user can define the precision of the

target FP representation. Hence, the amount of precision required to compute the correctly

rounded result of f(x) for the target representation is truly unbounded, which makes the

onion peeling strategy especially suitable for MPFR.

199

The introduction of the onion peeling strategy changed the perception of math library

developers by showing that avoiding the table maker’s dilemma and generating a correctly

rounded math library is possible. However, the main drawback is its performance. Itera-

tively approximating f(x) with higher precision is expensive. Theoretically, the onion peel-

ing strategy may never terminate and keep increasing the working precision (i.e., pi). Re-

gardless, we emphasize the impact of the onion peeling strategy, especially on our RLIBM

approach. Although the elementary functions that we create do not use the onion peeling

strategy directly, the RLIBM approach computes the correctly rounded results of f(x) us-

ing the MPFR library. This allows us to avoid the Table-maker’s dilemma and generate

efficient and correct polynomial approximations.

Resolving table maker’s dilemma for specific representations. In 2001, the table maker’s

dilemma for the double precision was resolved by identifying the highest amount of preci-

sion required to approximate f(x) and produce the correctly rounded results for all inputs

in the double precision [85]. This worst-case precision requirement was computed using a

filter-and-check strategy. The filtering step initially splits the input domain into extremely

small sub-domains where f(x) can be accurately approximated even with a 1st degree

polynomial approximation. Then, it approximates f(x) for all inputs in the subdomain

and checks whether the result is within a certain threshold of the rounding boundary. Any

subdomain where no f(x) is close to the rounding boundary is filtered. Next, the checking

step computed f(x) for all inputs in the remaining subdomains and identified the neces-

sary amount of precision to compute the correctly rounded result of f(x) in double. It was

found that roughly 160 precision bits were required, in the worst case, to produce correctly

rounded results for the double type. There is active research in identifying the precision

required to produce correctly rounded results for other representations [14, 125].

Math libraries using the Remez algorithm. Using the worst case precision requirement,

CR-LIBM [29, 86] implements several elementary functions for the double type with min-

200

imax polynomial approximations. The polynomials are generated using Sollya [21], which

provides a modified Remez algorithm. The original Remez algorithm produces minimax

polynomials P (x) with real number coefficients ci and guarantees error bound εwhen eval-

uated in real number. However, rounding these coefficients and evaluating the polynomial

in a finite precision representation may produce an error significantly larger than ε. Hence,

Sollya generates minimax polynomials with coefficients in a finite precision representation

H [15]. Abstractly, Sollya searches through all polynomials P̂ (x) with rational coefficients

ĉi around ci. All possible ranges of ĉi for 0 ≤ i ≤ n where n is the degree of P̂ (x)

form a rational polytope in Zn+1. Then it uses a rational value search algorithm within

the polytype to identify candidate polynomials and calculates the infinity norm of the error

of the polynomial until it finds a P̂ (x) with a sufficiently small maximum error. Sollya

also computes the maximum numerical error of polynomial evaluation using interval arith-

metic [20, 22] and produces Gappa [99] proofs to ensure that the polynomial produces the

correctly rounded results. The polynomial searching algorithm has later been optimized

using the lattice basis reduction technique [11].

MetaLibm [16, 80] is an elementary function generator built using Sollya. The main

goal of MetaLibm is to generate efficient minimax polynomials with user-defined error

bounds. It automatically creates range reduction strategies, performs hardware specific op-

timizations, and generates piecewise polynomials to approximate f(x) [79]. MetaLibm

uses another polynomial approximation to select the appropriate polynomial in the piece-

wise polynomials for a given input [81]. This allows the elementary functions to be paral-

lelized with vector instructions. Other than Sollya, another modified Remez algorithm has

been proposed to generate a minimax polynomial that also accounts for numerical errors

when evaluated in a finite precision representation [4]. It has been shown to produce cor-

rectly rounded results for small input domains where the range reduction is not necessary.

201

SoftPosit-Math using minefield method. While identifying the worst case precision re-

quirement resolves the table maker’s dilemma, approximating the real value of f(x) does

not provide the maximum amount of freedom to generate efficient and correctly rounded

polynomial approximation. Instead, the Minefield method [57] identifies the largest interval

of values that polynomial approximations should produce to compute the correctly rounded

results. It declares all other regions as minefields. Then, it generates a polynomial that

avoids all mines. SoftPosit-Math [88] uses the Minefield method to create several correctly

rounded posit16 elementary functions. Our RLIBM approach is inspired by the Minefield

method. The rounding intervals in the RLIBM approach can be considered as the safe paths

in the Minefield method. The RLIBM approach generalizes the Minefield method for nu-

merous representations while considering range reduction and output compensation. We

also formalize an automatic process to encode the safe paths as linear constraints and use

an LP solver to generate the polynomial. More importantly, all prior approaches including

the minefield method generate elementary functions that target a particular representation

and rounding mode. The RLIBM approach can generate a single polynomial approximation

that handles multiple representations and rounding modes at the same time.

Custom hardware function evaluation. One of the most important aspects of custom

hardware design for approximating elementary functions is the hardware cost to imple-

ment the function. One way to reduce the hardware cost is to use fixed point represen-

tations rather than floating point representations. Fixed point representations directly en-

code binary fraction values in an n-bit representation. Essentially, it is equivalent to an

integer type with an implicit radix point. Hence, all fixed point arithmetic can be per-

formed using integer arithmetic. Another strategy to reduce the hardware cost, especially

when using piecewise polynomial approximations, is to reduce the bit-length of the coef-

ficients. Smaller bit-length coefficients will require smaller lookup tables and arithmetic

units. Hence, a technique [36] was proposed to generate piecewise polynomials with the

202

smallest bit-length fixed point coefficients that still produce the correctly rounded results

for all inputs. This technique generates an integer linear programming (ILP) formulation

that specifies constraints on the outputs of the polynomial they wish to generate, simi-

lar to the RLIBM approach. Additionally, they encode the objective function in the ILP

formulation to minimize the bit-length of the coefficients and use ILP solver to generate

the polynomial. This technique is effective in generating efficient piecewise polynomial

for fixed point representations where the dynamic range is limited. In comparison, float-

ing point representations have significantly larger dynamic range and the RLIBM approach

presents a technique to produce correctly rounded results when evaluated with range re-

duction strategy. We hope to combine it with the RLIBM approach to incorporate range

reduction techniques and our odd interval techniques to optimize our elementary functions.

8.3 Range Reduction Strategies

To generate efficient implementations of elementary functions, math library designers use

polynomial approximations and range reduction strategies together. The simplest form of

range reduction strategies directly use mathematical identities of elementary functions. For

example, the natural log function ln(x) has the mathematical identify ln(a× bc) = ln(a)+

cln(b). If the original input x is decomposed to x = x′ × 2m where x′ ∈ [1, 2) and m ∈ Z

is the exponent of x, then ln(x) can be computed using ln(x′) + mln(2). This strategy

allows us to only approximate ln(x′) for a small input domain [1, 2). There are also range

reduction strategies designed for individual elementary functions [25] that transforms the

function we must approximate (i.e., ln(x)) into a different function. In particular for ln(x),

the reduced input x′ can be transformed into a different value t = x′−1
x′+1

such that ln(x′)

can be approximated with ln(1+t
1−t). This transformed function can be approximated with an

odd polynomial, effectively reducing the cost of evaluating the polynomial to half. More

detail on this specific range reduction strategy is provided in Chapter 4. Unfortunately,

these strategies must be developed separately for each elementary function and does not

203

guarantee that a similar approach can be found for other elementary functions.

Tabled-Based Range Reduction Strategy. Instead, all mainstream math libraries and the

RLIBM approach adopt a more general strategy known as the table-based range reduction

(also known as the Tang’s method) [133, 134, 135]. This strategy significantly reduces

the input domain which results in a low degree polynomial and uses a look-up tables to

accurately and efficiently evaluate the output compensation function. The insight is to

decompose the original input x into two components: a continuous variable and a discrete

variable. For instance, consider the function ln(x) for the input space x ∈ [1, 2). The input

x can be decomposed into x = u+ v where u ∈ {64
64
, 65

64
, . . . , 127

64
} is a discrete variable and

v is a continuous variable in [0, 1
64

). This decomposition effectively splits the original input

domain [1, 2) into 64 equal sub-divisions (i.e. [1, 65
64

), [65
64
, 66

64
), . . .) where u represents the

index of each sub-division. Then, ln(x) can be computed with,

ln(x) = ln(u+ v) = ln(u(1 + v)) = ln(u) + ln(1 +
v

u
)

Because u is a discrete variable (i.e. exactly 64 possible values), we can pre-compute

ln(u) with high precision and store the results into a look-up table. If we denote v
u

as

x′, approximating ln(x) only requires a polynomial approximation of ln(1 + x′) for the

reduced input domain x′ ∈ [0, 1
64

). The output compensation function requires a single

table lookup and an addition of the value ln(u).

There are three distinct advantages of the table-based range reduction that make it at-

tractive. First, the significant reduction in the input domain allows us to generate a lower

degree polynomial, beneficial for performance. The output compensation function can also

be evaluated efficiently using the lookup table. Second, the table-based range reduction is

flexible. It is straightforward to configure the amount of domain reduction by adjusting the

input decomposition. The original range reduction for ln(x) [134] recommended to split

the original input domain into 64 sub-divisions (i.e., reduced domain of [0, 1
64

)). Our proto-

types split the domain into 128 sub-divisions to reduce the input domain into [0, 1
128

). Using

204

table-based method, the size of the reduced input domain (i.e., [0, 1
2i

]) can be configured

by the number of the sub-domains (i.e., 2i sub-domains). The table-based method can also

be nested multiple times to further reduce the input domain [29, 73]. Finally, table-based

range reduction can be applied to various elementary functions. The only requirement to

apply this strategy is for the elementary function to have an identify f(a ◦ b) = f(a) � f(b)

where ◦ and � are primitive operations (i.e., ln(a × b) = ln(a) + ln(b)). There are range

reduction strategies for logarithm functions [134], exponential functions [133], trigonomet-

ric functions [135], and hyperbolic functions [29]. All elementary functions in RLIBM-32

and RLIBM-ALL use table-based range reduction for efficient implementations (additional

details can be found in Chapter 4).

Accurate Additive Range Reduction Strategies. Additive range reductions can experi-

ence significant amount of cancellation error when evaluated in a finite precision represen-

tation H. As described in Chapter 2, additive range reduction reduces an input x into the

reduced input x′ ∈ (−C,C) by computing x′ = x − kC for a constant value C and an

integer k (i.e., x′ ≡ x mod C). When the magnitude of x is similar to C (i.e., k is a small

value), x − kC does not experience significant error. However, when x is considerably

larger than C and the value of x and kC are similar, then x − kC can experience catas-

trophic cancellation. Trigonometric functions use additive range reductions (i.e., C = π
2
)

to exploit trigonometric identities (i.e., sin(a + 2π) = sin(a)) and experience such errors

when the input x is large. Hence, the very early implementations of trigonometric functions

only supported small inputs (i.e., x ∈ [−π
2
, π

2
]) delegating the job of range reduction to the

user [6]. Some implementations use their own definition of π [105], usually a value ob-

tained by rounding the real value of π to a finite-representation, or use an arbitrary precision

representation to perform range reduction for trigonometric functions [109].

Cody and Waite reduction method [24, 25] provides a strategy to accurately perform

additive range reduction for relatively small inputs (i.e., x < 100). It stores the value of

205

C with two values C1 and C2 in H. These values are chosen in a particular way such that

C1 is close to C and the sum of C1 and C2 approximates C (i.e., C ≈ C1 + C2). Then the

range reduction is evaluated with x′ = (x − kC1) − kC2. If the value of kC1 is exactly

representable in H, then z = x− kC1 can be exactly computed by Sterbenz Lemma [126]

and z − kC2 will not experience significant amount of numerical error.

The Payne and Hanek reduction [113] is an effective strategy for extremely large inputs

(i.e., x > 264). The insight is that when the value of an input x is close to kC, the additive

range reduction (i.e., x − kC) will cancel the first p significant bits of x and kC (which

is the cause of cancellation error). If it is possible to identify the number of bits that will

be canceled (i.e., p), then the subtraction can be optimized by not considering the first p

bits of both x and kC. This also means the first p bits of kC do not have to be computed.

The Payne and Hanek reduction provides a systematic algorithm to approximate p and per-

form x− kC accurately. Due to the overhead of identifying p, Payne and Hanek reduction

method is mostly used for large inputs where it is common to experience catastrophic can-

cellation unless the additive range reduction is performed with an extremely high precision

representation.

For medium sized inputs (i.e., 23 < x < 264), the modular range reduction [13, 33, 87]

can accurately compute additive range reduction. This strategy uses mathematical identities

of the modulus operation,

(x+ y)mod C = ((x mod C) + (y mod C)) mod C

The modular range reduction breaks down an input with n-bits of precision x = m × 2k,

where m is the significand and k is the exponent of x, into x =
∑n−1

i=0 xi2
k−i. Here,

xi ∈ {0, 1} is the ith most significant precision bit in m. Abstractly, xi2k−i is the value

represented by the xi bit. Next, it computes the value,

r =
n−1∑

i=0

xi (2k−1 mod C)

By the properties of modulus operation, r mod C is equivalent to x mod C. Since r

206

is a sum of at most n values smaller than C, it is guaranteed that r < nC where r is a

value much smaller than the original input x. Then, the value r is reduced to x′ = r − kC

(where 0 ≤ k < n is an integer) to produce the reduced input x′ ∈ (−C,C). All possible

values of xi2k−i mod C and kC are stored in a lookup table. Because the magnitude of x

as well as the possible values of k are limited (i.e., x < 264 and k < n), the size of the

lookup table is small. For example, computing xmod π
2

(i.e., C = π
2
) for an input between

x ∈ [0, 264] would require roughly 64 values for xi2k−i mod C and 53 possible values for

kC. The modular range reduction has been optimized where x is decomposed into groups

of bits (rather than individual bits) to reduce the number of accumulation operations [13].

The on-the-fly range reduction strategy [87] integrates the x′ = r − kC computation into

the accumulation of each term (xi2
k−1 mod C) to efficiently compute the final result. The

trigonometric functions in CR-LIBM use all three additive range reduction strategies to

produce correctly rounded double results.

8.4 Verification of Math Libraries

As performance and correctness are both important with math libraries, there is extensive

research to formally bound the error of elementary functions. HOL Light [63] is a theo-

rem prover primarily used for verifying FP operations. It formalizes the semantics of FP

arithmetic [62] and proves the bound of the error of several implementations of elemen-

tary functions [59, 60]. It has also been used to verify the correctness of the floating point

arithmetic operations in Intel Itanium chipset [61]. Similarly, CoQ proof assistant has been

used to prove the correctness of implementations of Cody and Waite’s reduction method

with fused-multiply-add operations [8]. These verification approaches require a

significant amount of manual work. Hence, researchers have developed an automatic veri-

fication technique and verified that many elementary functions in Intel’s math.h have at

most 1 ulp error [82, 84].

Sollya verifies that the elementary functions that it generates produce correctly rounded

207

results with the help of Gappa [35, 38, 39]. Sollya translates the implementations of the

elementary functions to Gappa lemmas. Then, Gappa uses integer arithmetic to bound the

error of each operation with some hints from the math library developers. Finally, Sollya

ensures that the final result of the elementary function will round to the correctly rounded

result based on the error bound. It has been used to verify the elementary functions in

CR-LIBM.

Instead of using formal proofs, RLIBM validates that the generated polynomial pro-

duces the correctly rounded results by evaluating the polynomial for each input. This

manual process is possible because our target representations (i.e., 32-bit float) have a rea-

sonable number of inputs (i.e., 232 inputs). To extend RLIBM for the double type where

iterating through all inputs is infeasible, we will likely have to rely on prior verification

efforts to formally prove the correctness of the generated polynomials.

8.5 Math Library Repair Tools

An alternative for creating correctly rounded elementary functions is to repair existing math

libraries that do not produce correctly rounded results. If the numerical error in evaluating

the implementation is the cause of an incorrect result, we can use tools that detect numerical

errors to diagnose the root cause of the error [7, 23, 47, 54, 118, 145, 147]. Subsequently,

we can rewrite parts of the implementation that causes these errors using rewriting tools

such as Herbie [111] or Salsa [28]. If the cause of the incorrect result stems from the

approximation error, then we can use a math library repair tool [145]. This tool identifies

small domains of inputs that result in high error by performing binary searches in the entire

input domain. Then, it uses piecewise polynomials containing linear or quadratic equations

to repair the elementary function for these domains.

Unfortunately, these tools are primarily designed to reduce errors rather than com-

pletely removing them. Hence, math libraries repaired with these tools are not likely to

produce correctly rounded results for all inputs. Additionally, the repaired code may intro-

208

duce overhead, negatively impacting the performance. Hence, it is ideal to use tools like

RLIBM or Sollya and create correctly rounded elementary functions.

209

CHAPTER 9

CONCLUSION AND FUTURE DIRECTIONS

This dissertation presents the RLIBM approach for generating polynomial approximations

that produce correctly rounded results of elementary functions f(x) for all inputs. The

RLIBM approach makes a case for approximating the correctly rounded result of f(x)

rather than the real value of f(x) itself. We first summarize the contributions in this disser-

tation and then present directions for future work.

9.1 Dissertation Summary

As elementary functions are essential components in scientific applications, there have

been seminal research over decades to approximate elementary functions accurately and

efficiently. However, efficiently computing the correctly rounded results of elementary

functions remains a challenging problem. In this dissertation, we propose the RLIBM ap-

proach to generate polynomial approximations that produce correctly rounded results for all

inputs. While prior approaches try to approximate the real value of the elementary function,

RLIBM advocates for approximating the correctly rounded result. The RLIBM approach

identifies the maximum amount of freedom available to generate the correctly rounded re-

sults and uses this freedom to generate efficient polynomial approximations using linear

programming.

To generate polynomial approximations that produce the correctly rounded results for

32-bit representations, RLIBM uses the counterexample guided polynomial generation tech-

nique inspired by program synthesis. This technique samples a small fraction of inputs to

generate a polynomial that produces the correctly rounded results for all 32-bit inputs. Ad-

ditionally, RLIBM generates piecewise polynomials with low degrees by dividing the input

domain into sub-domains using the bit-pattern of the inputs. These two techniques allow

210

RLIBM to generate efficient implementations of elementary functions.

Finally, RLIBM presents a novel approach to generate a single polynomial approxima-

tion that produces the correctly rounded results for multiple representations and rounding

modes. When the goal is to generate correctly rounded results for Tk representations where

k ≤ n, the RLIBM approach generates a polynomial approximation that produces the cor-

rectly rounded result for Tn+2 with the rno mode. RLIBM addresses the issue of inputs

with singleton intervals using mathematical identities of elementary functions to efficiently

identify these inputs and compute the exact result of f(x). Based on our formal proofs, the

resulting polynomial is guaranteed to produce correctly rounded results for all inputs in all

Tk representations with any standard rounding modes.

The resulting elementary functions generated with the RLIBM approach not only pro-

duce correctly rounded results for various representations and rounding modes, but are

faster than mainstream math libraries. The target representations of our elementary func-

tions include, but are not limited to, bfloat16, tensrofloat32, float, posit16, and posit32.

In particular, our RLIBM-ALL prototype provides the first implementations of elementary

functions that produce the correctly rounded results for hundreds of representations with

all standard rounding modes. We hope that this dissertation motivates existing and new

representations to mandate correctly rounded elementary functions.

9.2 Future Directions

The RLIBM approach is our initial effort in creating the correctly rounded math libraries.

There are multiple directions to improve it. We present three potential venues that can be

explored.

Generating correctly rounded approximations for all elementary functions. The IEEE-

754 standard defines 36 commonly used elementary functions and recommends math li-

braries to provide correctly rounded implementations for them. Currently, our prototypes

211

provide implementations for ten of these functions. We intend to generate correctly rounded

approximations for all 36 elementary functions. We believe the RLIBM approach can gen-

erate polynomial approximations for univariate elementary functions (e.g., sin(x)). How-

ever, it may require us to develop novel range reductions to create efficient implemen-

tations. For example, it may be necessary to revisit range reductions for trigonometric

functions such as sin(x) and cos(x) to ensure that we compute the reduced inputs accu-

rately. While performing range reduction in higher precision will accomplish this task, the

performance of high precision arithmetic operations are not ideal.

Some elementary functions recommended by the IEEE-754 are multivariate functions

(i.e., xy and atan(y
x
)). The RLIBM approach does not handle automatically generating

polynomial approximations for these functions. As there are multiple inputs in these el-

ementary functions, the polynomial approximation must be a multivariate polynomial as

well. The challenge in using the RLIBM to generate multivariate polynomials is in framing

the input-output constraints as linear constraints.

Generating correctly rounded polynomial approximations for 64-bit representations. An-

other possible avenue to improve the RLIBM approach is in its support for generating cor-

rectly rounded polynomial approximations for the double type. The double type is the

standard 64-bit FP representation. It has more than twice the precision of the 32-bit float

type (i.e., 53 bits for double compared to 24 bits for float). Many scientific applications re-

quiring high precision perform internal computations with double. Hence, an efficient and

correctly rounded math library for double is essential. The RLIBM approach can generate

polynomials that produce the correctly rounded results for a small sample of inputs in dou-

ble. However, the challenge lies in verifying that this polynomial produces the correctly

rounded results for all inputs in double. Iterating through all 264 inputs each time we gener-

ate a polynomial to verify its correctness is not feasible. We will most likely have to extend

the RLIBM approach with formal verification techniques to check for the correctness of the

212

polynomial approximation.

Performance optimizations with integer arithmetics. Both the performance and the cor-

rectness of math libraries are important. Hence, we plan to focus on improving the perfor-

mance of our elementary functions while making sure that they produce correctly rounded

results. One possible approach to optimize our implementations is to use integer opera-

tions rather than floating point operations. All of our elementary functions perform inter-

nal computations with double. While common architectures provide hardware support for

arithmetic operations with double, it is still slower than integer operations. Hence, imple-

menting elementary functions with integer operations instead of floating point operations

will increase the performance. The challenge in creating elementary functions with integer

operations is to ensure that the resulting values are correctly rounded results. We plan to

extend the RLIBM approach to generate polynomials with integer coefficients that produce

correctly rounded results for all inputs when evaluated with integers. Another direction that

we will explore is to develop new range reduction techniques that do not require floating

point operations.

213

BIBLIOGRAPHY

[1] Martin Aigner and Gnter M. Ziegler. 2009. Proofs from THE BOOK (4th ed.).
Springer Publishing Company, Incorporated.

[2] Tom M Apostol. 1974. Mathematical analysis; 2nd ed. Addison-Wesley, Reading,
MA.

[3] Inc. Apple Computer. 2002. sqrt.c. https://opensource.apple.com/source/Libm/
Libm-47.1/ppc.subproj/sqrt.c.auto.html

[4] Denis Arzelier, Florent Bréhard, and Mioara Joldes. 2019. Exchange Algorithm
for Evaluation and Approximation Error-Optimized Polynomials. In 2019 IEEE
26th Symposium on Computer Arithmetic (ARITH). 30–37. https://doi.org/10.1109/
ARITH.2019.00014

[5] Alan Baker. 1975. Transcendental Number Theory. Cambridge University Press.

[6] Nelson H. F. Beebe. 2017. The Mathematical-Function Computation Handbook:
Programming Using the MathCW Portable Software Library (1st ed.). Springer
Publishing Company, Incorporated.

[7] Florian Benz, Andreas Hildebrandt, and Sebastian Hack. 2012. A Dynamic Pro-
gram Analysis to Find Floating-point Accuracy Problems. In Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (Beijing, China) (PLDI ’12). ACM, New York, NY, USA, 453–462.
https://doi.org/10.1145/2345156.2254118

[8] Sylvie Boldo, Marc Daumas, and Ren-Cang Li. 2009. Formally Verified Argument
Reduction with a Fused Multiply-Add. In IEEE Transactions on Computers, Vol. 58.
1139–1145. https://doi.org/10.1109/TC.2008.216

[9] Sylvie Boldo and Guillaume Melquiond. 2005. When double rounding is odd. In
17th IMACS World Congress. Paris, France, 11.

[10] Peter Borwein and Tamas Erdelyi. 1995. Polynomials and Polynomial Inequalities.
Springer New York. https://doi.org/10.1007/978-1-4612-0793-1

[11] Nicolas Brisebarre and Sylvvain Chevillard. 2007. Efficient polynomial L-
approximations. In 18th IEEE Symposium on Computer Arithmetic (ARITH ’07).
https://doi.org/10.1109/ARITH.2007.17

[12] N. Brisebarre, D. Defour, P. Kornerup, J.-M. Muller, and N. Revol. 2005. A new
range-reduction algorithm. IEEE Trans. Comput. 54, 3 (2005), 331–339. https:
//doi.org/10.1109/TC.2005.36

https://opensource.apple.com/source/Libm/Libm-47.1/ppc.subproj/sqrt.c.auto.html
https://opensource.apple.com/source/Libm/Libm-47.1/ppc.subproj/sqrt.c.auto.html
https://doi.org/10.1109/ARITH.2019.00014
https://doi.org/10.1109/ARITH.2019.00014
https://doi.org/10.1145/2345156.2254118
https://doi.org/10.1109/TC.2008.216
https://doi.org/10.1007/978-1-4612-0793-1
https://doi.org/10.1109/ARITH.2007.17
https://doi.org/10.1109/TC.2005.36
https://doi.org/10.1109/TC.2005.36

214

[13] Nicolas Brisebarre, David Defour, Peter Kornerup, Jean-Michel Muller, and
Nathalie Revol. 2005. A new range-reduction algorithm. IEEE Trans. Comput.
54, 3 (2005), 331–339. https://doi.org/10.1109/TC.2005.36

[14] Nicolas Brisebarre and Guillaume Hanrot. 2021. Integer points close to a transcen-
dental curve and correctly-rounded evaluation of a function. (May 2021). https:
//hal.archives-ouvertes.fr/hal-03240179 working paper or preprint.

[15] Nicolas Brisebarre, Jean-Michel Muller, and Arnaud Tisserand. 2006. Comput-
ing Machine-Efficient Polynomial Approximations. In ACM ACM Transactions on
Mathematical Software, Vol. 32. Association for Computing Machinery, New York,
NY, USA, 236–256. https://doi.org/10.1145/1141885.1141890

[16] Nicolas Brunie, Florent de Dinechin, Olga Kupriianova, and Christoph Lauter. 2015.
Code Generators for Mathematical Functions. In 2015 IEEE 22nd Symposium on
Computer Arithmetic. 66–73. https://doi.org/10.1109/ARITH.2015.22

[17] Hung Tien Bui and Sofiene Tahar. 1999. Design and synthesis of an IEEE-754
exponential function. In Engineering Solutions for the Next Millennium. 1999 IEEE
Canadian Conference on Electrical and Computer Engineering, Vol. 1. 450–455
vol.1. https://doi.org/10.1109/CCECE.1999.807240

[18] Zachariah Carmichael, Hamed F. Langroudi, Char Khazanov, Jeffrey Lillie, John L.
Gustafson, and Dhireesha Kudithipudi. 2019. Deep Positron: A Deep Neural Net-
work Using the Posit Number System. In 2019 Design, Automation Test in Europe
Conference Exhibition (DATE). 1421–1426.

[19] Cheng-Shing Wu, An-Yeu Wu, and Chih-Hsiu Lin. 2003. A high-performance/low-
latency vector rotational CORDIC architecture based on extended elementary angle
set and trellis-based searching schemes. IEEE Transactions on Circuits and Systems
II: Analog and Digital Signal Processing (2003).

[20] Sylvain Chevillard, John Harrison, Mioara Joldes, and Christoph Lauter. 2011. Ef-
ficient and accurate computation of upper bounds of approximation errors. In Theo-
retical Computer Science, Vol. 412.

[21] Sylvain Chevillard, Mioara Joldes, and Christoph Lauter. 2010. Sollya: An En-
vironment for the Development of Numerical Codes. In Mathematical Software -
ICMS 2010 (Lecture Notes in Computer Science, Vol. 6327). Springer, Heidelberg,
Germany, 28–31. https://doi.org/10.1007/978-3-642-15582-6 5

[22] Sylvain Chevillard and Christopher Lauter. 2007. A Certified Infinite Norm for
the Implementation of Elementary Functions. In Seventh International Conference
on Quality Software (QSIC 2007). 153–160. https://doi.org/10.1109/QSIC.2007.
4385491

[23] Sangeeta Chowdhary, Jay P. Lim, and Santosh Nagarakatte. 2020. Debugging and
Detecting Numerical Errors in Computation with Posits. In 41st ACM SIGPLAN

https://doi.org/10.1109/TC.2005.36
https://hal.archives-ouvertes.fr/hal-03240179
https://hal.archives-ouvertes.fr/hal-03240179
https://doi.org/10.1145/1141885.1141890
https://doi.org/10.1109/ARITH.2015.22
https://doi.org/10.1109/CCECE.1999.807240
https://doi.org/10.1007/978-3-642-15582-6_5
https://doi.org/10.1109/QSIC.2007.4385491
https://doi.org/10.1109/QSIC.2007.4385491

215

Conference on Programming Language Design and Implementation (PLDI’20).
https://doi.org/10.1145/3385412.3386004

[24] William J Cody. 1982. Implementation and testing of function software. In Prob-
lems and Methodologies in Mathematical Software Production, Paul C. Messina and
Almerico Murli (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 24–47.

[25] William J. Cody and William M. Waite. 1980. Software manual for the elementary
functions. Prentice-Hall, Englewood Cliffs, NJ.

[26] P. M. (Paul Moritz) Cohn. 1974. Algebra [by] P. M. Cohn. Wiley, London.

[27] Mike Cowlishaw. 2008. IEEE Standard for Floating-Point Arithmetic. IEEE 754-
2008. IEEE Computer Society. 1–70 pages. https://doi.org/10.1109/IEEESTD.
2008.4610935

[28] Nasrine Damouche and Matthieu Martel. 2018. Salsa: An Automatic Tool to Im-
prove the Numerical Accuracy of Programs. In Automated Formal Methods (Kalpa
Publications in Computing, Vol. 5), Natarajan Shankar and Bruno Dutertre (Eds.).
63–76. https://doi.org/10.29007/j2fd

[29] Catherine Daramy, David Defour, Florent Dinechin, and Jean-Michel Muller. 2003.
CR-LIBM: A correctly rounded elementary function library. In Proceedings of SPIE
Vol. 5205: Advanced Signal Processing Algorithms, Architectures, and Implementa-
tions XIII, Vol. 5205. https://doi.org/10.1117/12.505591

[30] Catherine Daramy-Loirat, David Defour, Florent de Dinechin, Matthieu Gallet,
Nicolas Gast, Christoph Lauter, and Jean-Michel Muller. 2006. CR-LIBM A library
of correctly rounded elementary functions in double-precision. Research Report.
LIP,. https://hal-ens-lyon.archives-ouvertes.fr/ensl-01529804

[31] Debjit Das Sarma and David W. Matula. 1995. Faithful bipartite ROM reciprocal
tables. In Proceedings of the 12th Symposium on Computer Arithmetic. 17–28. https:
//doi.org/10.1109/ARITH.1995.465381

[32] Marc Daumas, Christophe Mazenc, Xavier Merrheim, and Jean michel Muller. 1995.
Modular range reduction: A new algorithm for fast and accurate computation of the
elementary functions. Journal of Universal Computer Science (1995), 175.

[33] Marc Daumas, Christophe Mazenc, Xavier Merrheim, and Jean-Michel Muller.
1995. Modular Range Reduction: a New Algorithm for Fast and Accurate Com-
putation of the Elementary Functions. (1995), 162–175. https://doi.org/10.1007/
978-3-642-80350-5 15

[34] Marc Daumas and Guillaume Melquiond. 2010. Certification of Bounds on Expres-
sions Involving Rounded Operators. ACM Transactions on Mathematical Softwware
37, 1, Article 2 (Jan. 2010), 20 pages. https://doi.org/10.1145/1644001.1644003

https://doi.org/10.1145/3385412.3386004
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.29007/j2fd
https://doi.org/10.1117/12.505591
https://hal-ens-lyon.archives-ouvertes.fr/ensl-01529804
https://doi.org/10.1109/ARITH.1995.465381
https://doi.org/10.1109/ARITH.1995.465381
https://doi.org/10.1007/978-3-642-80350-5_15
https://doi.org/10.1007/978-3-642-80350-5_15
https://doi.org/10.1145/1644001.1644003

216

[35] Marc Daumas, Guillaume Melquiond, and Cesar Munoz. 2005. Guaranteed
proofs using interval arithmetic. In 17th IEEE Symposium on Computer Arithmetic
(ARITH’05). 188–195. https://doi.org/10.1109/ARITH.2005.25

[36] Davide De Caro, Ettore Napoli, Darjn Esposito, Gerardo Castellano, Nicola Pe-
tra, and Antonio G. M. Strollo. 2017. Minimizing Coefficients Wordlength for
Piecewise-Polynomial Hardware Function Evaluation With Exact or Faithful Round-
ing. IEEE Transactions on Circuits and Systems I: Regular Papers (2017). https:
//doi.org/10.1109/TCSI.2016.2629850

[37] Florent de Dinechin, Luc Forget, Jean-Michel Muller, and Yohann Uguen. 2019.
Posits: the good, the bad and the ugly. In CoNGA’19 - Conference for Next Genera-
tion Arithmetic. ACM Press, Singapore, Singapore, 1–10.

[38] Florent de Dinechin, Christopher Lauter, and Guillaume Melquiond. 2011. Certify-
ing the Floating-Point Implementation of an Elementary Function Using Gappa. In
IEEE Transactions on Computers, Vol. 60. 242–253. https://doi.org/10.1109/TC.
2010.128

[39] Florent de Dinechin, Christoph Quirin Lauter, and Guillaume Melquiond. 2006.
Assisted Verification of Elementary Functions Using Gappa. In Proceedings of
the 2006 ACM Symposium on Applied Computing (Dijon, France) (SAC ’06). As-
sociation for Computing Machinery, New York, NY, USA, 1318–1322. https:
//doi.org/10.1145/1141277.1141584

[40] Florent de Dinechin and Arnaud Tisserand. 2005. Multipartite table methods. IEEE
Trans. Comput. 54, 3 (2005), 319–330. https://doi.org/10.1109/TC.2005.54

[41] Florent de Dinechin and Arnaud Tisserand. 2005. Multipartite table methods. IEEE
Trans. Comput. 54, 3 (2005), 319–330. https://doi.org/10.1109/TC.2005.54

[42] Hugues de Lassus Saint-Geniès, David Defour, and Guillaume Revy. 2015. Range
reduction based on Pythagorean triples for trigonometric function evaluation. In
2015 IEEE 26th International Conference on Application-specific Systems, Architec-
tures and Processors (ASAP). 74–81. https://doi.org/10.1109/ASAP.2015.7245712

[43] Ed Deprettere, Patrick Dewilde, and R. Udo. 1984. Pipelined cordic architectures
for fast VLSI filtering and array processing. In ICASSP ’84. IEEE International
Conference on Acoustics, Speech, and Signal Processing.

[44] Albert D. Edgar and Samuel C. Lee. 1977. The Focus Number System. IEEE Trans.
Comput. C-26, 11 (1977), 1167–1170. https://doi.org/10.1109/TC.1977.1674770

[45] Seyed H. Fatemi Langroudi, Tej Pandit, and Dhireesha Kudithipudi. 2018. Deep
Learning Inference on Embedded Devices: Fixed-Point vs Posit. In 2018 1st Work-
shop on Energy Efficient Machine Learning and Cognitive Computing for Embedded
Applications (EMC2). 19–23.

https://doi.org/10.1109/ARITH.2005.25
https://doi.org/10.1109/TCSI.2016.2629850
https://doi.org/10.1109/TCSI.2016.2629850
https://doi.org/10.1109/TC.2010.128
https://doi.org/10.1109/TC.2010.128
https://doi.org/10.1145/1141277.1141584
https://doi.org/10.1145/1141277.1141584
https://doi.org/10.1109/TC.2005.54
https://doi.org/10.1109/TC.2005.54
https://doi.org/10.1109/ASAP.2015.7245712
https://doi.org/10.1109/TC.1977.1674770

217

[46] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul
Zimmermann. 2007. MPFR: A Multiple-precision Binary Floating-point Library
with Correct Rounding. ACM Trans. Math. Software 33, 2, Article 13 (June 2007).
https://doi.org/10.1145/1236463.1236468

[47] Zhoulai Fu and Zhendong Su. 2019. Effective Floating-point Analysis via Weak-
distance Minimization. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Phoenix, AZ, USA) (PLDI
2019). ACM, New York, NY, USA, 439–452. https://doi.org/10.1145/3314221.
3314632

[48] Shmuel Gal. 1986. Computing elementary functions: A new approach for achiev-
ing high accuracy and good performance. In Accurate Scientific Computations,
Willard L. Miranker and Richard A. Toupin (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 1–16.

[49] Bimal Gisuthan and Thambipillai Srikanthan. 2002. Pipelining flat CORDIC based
trigonometric function generators. Microelectronics Journal (2002).

[50] Ambros M. Gleixner, Daniel E. Steffy, and Kati Wolter. 2012. Improving the Ac-
curacy of Linear Programming Solvers with Iterative Refinement. In Proceedings of
the 37th International Symposium on Symbolic and Algebraic Computation (Greno-
ble, France) (ISSAC ’12). Association for Computing Machinery, New York, NY,
USA, 187–194. https://doi.org/10.1145/2442829.2442858

[51] GNU. 2019. The GNU C Library (glibc). https://www.gnu.org/software/libc/

[52] David Goldberg. 1991. What Every Computer Scientist Should Know About
Floating-point Arithmetic. In ACM Computing Surveys, Vol. 23. ACM, New York,
NY, USA, 5–48.

[53] Robert Goldschmidt. 2005. Applications of division by convergence. (08 2005).

[54] Eric Goubault. 2001. Static Analyses of the Precision of Floating-Point Opera-
tions. In Proceedings of the 8th International Symposium on Static Analysis (SAS).
Springer, 234–259. https://doi.org/10.1007/3-540-47764-0 14

[55] John Gustafson. 2017. Posit Arithmetic. https://posithub.org/docs/Posits4.pdf

[56] John Gustafson. 2020. The Minefield Method: A Uniformly Fast Solution to the
Table-Maker’s Dilemma. https://bit.ly/2ZP4kHj

[57] John Gustafson. 2020. The Minefield Method: A Uniformly Fast Solution to the
Table-Maker’s Dilemma. https://bit.ly/2ZP4kHj

[58] John Gustafson and Isaac Yonemoto. 2017. Beating Floating Point at Its Own Game:
Posit Arithmetic. Supercomputing Frontiers and Innovations: an International Jour-
nal 4, 2 (June 2017), 71–86.

https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/3314221.3314632
https://doi.org/10.1145/3314221.3314632
https://doi.org/10.1145/2442829.2442858
https://www.gnu.org/software/libc/
https://doi.org/10.1007/3-540-47764-0_14
https://posithub.org/docs/Posits4.pdf
https://bit.ly/2ZP4kHj
https://bit.ly/2ZP4kHj

218

[59] John Harrison. 1997. Floating point verification in HOL light: The exponential func-
tion. In Algebraic Methodology and Software Technology, Michael Johnson (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 246–260. https://doi.org/10.1007/
BFb0000475

[60] John Harrison. 1997. Verifying the Accuracy of Polynomial Approximations in
HOL. In International Conference on Theorem Proving in Higher Order Logics.
https://doi.org/10.1007/BFb0028391

[61] John Harrison. 2006. Floating-Point Verification using Theorem Proving. , 211–
242 pages.

[62] John Harrison. 2009. HOL Light: An Overview. In Proceedings of the 22nd Inter-
national Conference on Theorem Proving in Higher Order Logics, TPHOLs 2009
(Lecture Notes in Computer Science, Vol. 5674), Stefan Berghofer, Tobias Nipkow,
Christian Urban, and Makarius Wenzel (Eds.). Springer-Verlag, Munich, Germany,
60–66. https://doi.org/10.1007/978-3-642-03359-9 4

[63] John Harrison. 2017. The HOL Light theorem prover. https://www.cl.cam.ac.uk/
∼jrh13/hol-light/

[64] Yu Hen Hu and Homer H. M. Chern. 1996. A Novel Implementation of CORDIC
Algorithm Using Backward Angle Recoding (BAR). IEEE Trans. Comput. (1996).

[65] IBM. 2008. Accurate Portable MathLib. http://oss.software.ibm.com/mathlib/

[66] Intel. 2020. Code Sample: Intel R© Deep Learning Boost New Deep Learning In-
struction bfloat16 - Intrinsic Functions. https://software.intel.com/content/www/
us/en/develop/articles/intel-deep-learning-boost-new-instruction-bfloat16.html

[67] Intel. 2020. Overview: Intel R© Math Library. https://software.intel.com/content/
www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/
top/optimization-and-programming-guide/intel-math-library/
overview-intel-math-library.html

[68] ECMA International. 2020. ECMA-262, 11th edition, June 2020 ECMAScript 2020
Language Specification. https://262.ecma-international.org/11.0/

[69] Manish Kumar Jaiswal. 2017. Universal number Posit HDL Arithmetic Architecture
generator. https://github.com/manish-kj/Posit-HDL-Arithmetic

[70] Manish Kumar Jaiswal and Hayden K.-H So. 2018. Universal number posit arith-
metic generator on FPGA. In 2018 Design, Automation Test in Europe Conference
Exhibition (DATE). 1159–1162.

[71] Claude-Pierre Jeannerod, Hervé Knochel, Christophe Monat, and Guillaume Revy.
2011. Computing Floating-Point Square Roots via Bivariate Polynomial Evaluation.
IEEE Trans. Comput. 60. https://doi.org/10.1109/TC.2010.152

https://doi.org/10.1007/BFb0000475
https://doi.org/10.1007/BFb0000475
https://doi.org/10.1007/BFb0028391
https://doi.org/10.1007/978-3-642-03359-9_4
https://www.cl.cam.ac.uk/~jrh13/hol-light/
https://www.cl.cam.ac.uk/~jrh13/hol-light/
http://oss.software.ibm.com/mathlib/
https://software.intel.com/content/www/us/en/develop/articles/intel-deep-learning-boost-new-instruction-bfloat16.html
https://software.intel.com/content/www/us/en/develop/articles/intel-deep-learning-boost-new-instruction-bfloat16.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/intel-math-library/overview-intel-math-library.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/intel-math-library/overview-intel-math-library.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/intel-math-library/overview-intel-math-library.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/optimization-and-programming-guide/intel-math-library/overview-intel-math-library.html
https://262.ecma-international.org/11.0/
https://github.com/manish-kj/Posit-HDL-Arithmetic
https://doi.org/10.1109/TC.2010.152

219

[72] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-
guided component-based program synthesis. In 2010 ACM/IEEE 32nd International
Conference on Software Engineering, Vol. 1. 215–224. https://doi.org/10.1145/
1806799.1806833

[73] Fredrik Johansson. 2014. Efficient implementation of elementary functions in the
medium-precision range. CoRR abs/1410.7176 (2014). arXiv:1410.7176 http://
arxiv.org/abs/1410.7176

[74] Jeff Johnson. 2018. Rethinking floating point for deep learning. http://export.arxiv.
org/abs/1811.01721

[75] William Kahan. 2004. A Logarithm Too Clever by Half. https://people.eecs.
berkeley.edu/∼wkahan/LOG10HAF.TXT

[76] Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar Das, Ku-
nal Banerjee, Sasikanth Avancha, Dharma Teja Vooturi, Nataraj Jammalamadaka,
Jianyu Huang, Hector Yuen, Jiyan Yang, Jongsoo Park, Alexander Heinecke,
Evangelos Georganas, Sudarshan Srinivasan, Abhisek Kundu, Misha Smelyanskiy,
Bharat Kaul, and Pradeep Dubey. 2019. A Study of BFLOAT16 for Deep Learning
Training. arXiv:1905.12322 [cs.LG]

[77] Milan Klöwer, Peter D. Düben, and Tim N. Palmer. 2019. Posits As an Alternative to
Floats for Weather and Climate Models. In Proceedings of the Conference for Next
Generation Arithmetic 2019 (Singapore, Singapore) (CoNGA’19). ACM, New York,
NY, USA, Article 2, 8 pages.

[78] Urs Köster, Tristan J. Webb, Xin Wang, Marcel Nassar, Arjun K. Bansal, William H.
Constable, Oğuz H. Elibol, Scott Gray, Stewart Hall, Luke Hornof, Amir Khosrow-
shahi, Carey Kloss, Ruby J. Pai, and Naveen Rao. 2017. Flexpoint: An Adaptive Nu-
merical Format for Efficient Training of Deep Neural Networks. In Proceedings of
the 31st International Conference on Neural Information Processing Systems (Long
Beach, California, USA) (NIPS’17). 1740–1750.

[79] Olga Kupriianova and Christoph Lauter. 2014. A domain splitting algorithm for the
mathematical functions code generator. In 2014 48th Asilomar Conference on Sig-
nals, Systems and Computers. 1271–1275. https://doi.org/10.1109/ACSSC.2014.
7094664

[80] Olga Kupriianova and Christoph Lauter. 2014. Metalibm: A Mathematical Func-
tions Code Generator. In 4th International Congress on Mathematical Software.
https://doi.org/10.1007/978-3-662-44199-2 106

[81] Olga Kupriianova and Christoph Lauter. 2015. Replacing Branches by Polyno-
mials in Vectorizable Elementary Functions. In Scientific Computing, Computer
Arithmetic, and Validated Numerics, Marco Nehmeier, Jürgen Wolff von Guden-
berg, and Warwick Tucker (Eds.). Springer International Publishing, Cham, 14–22.
https://doi.org/10.1007/978-3-319-31769-4 2

https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/1806799.1806833
http://arxiv.org/abs/1410.7176
http://arxiv.org/abs/1410.7176
http://export.arxiv.org/abs/1811.01721
http://export.arxiv.org/abs/1811.01721
https://people.eecs.berkeley.edu/~wkahan/LOG10HAF.TXT
https://people.eecs.berkeley.edu/~wkahan/LOG10HAF.TXT
https://doi.org/10.1109/ACSSC.2014.7094664
https://doi.org/10.1109/ACSSC.2014.7094664
https://doi.org/10.1007/978-3-662-44199-2_106
https://doi.org/10.1007/978-3-319-31769-4_2

220

[82] Wonyeol Lee, Rahul Sharma, and Alex Aiken. 2016. Verifying Bit-Manipulations
of Floating-Point. In Proceedings of the 37th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (Santa Barbara, CA, USA) (PLDI
’16). Association for Computing Machinery, New York, NY, USA, 70–84. https:
//doi.org/10.1145/2908080.2908107

[83] Wonyeol Lee, Rahul Sharma, and Alex Aiken. 2017. On Automatically Proving
the Correctness of Math.h Implementations. Proceedings of the ACM Programming
Langguages 2, POPL, Article 47 (Dec. 2017), 32 pages. https://doi.org/10.1145/
3158135

[84] Wonyeol Lee, Rahul Sharma, and Alex Aiken. 2017. On Automatically Proving the
Correctness of Math.h Implementations. Proceedings of the ACM on Programming
Languages 2, POPL, Article 47 (Dec. 2017), 32 pages. https://doi.org/10.1145/
3158135

[85] Vincent Lefèvre and Jean-Michel Muller. 2001. Worst Cases for Correct Round-
ing of the Elementary Functions in Double Precision. In 15th IEEE Symposium on
Computer Arithmetic (Arith ’01). 111–118. https://doi.org/10.1109/ARITH.2001.
930110

[86] Vincent Lefèvre, Jean-Michel Muller, and Arnaud Tisserand. 1998. Toward cor-
rectly rounded transcendentals. IEEE Trans. Comput. 47, 11 (1998), 1235–1243.
https://doi.org/10.1109/12.736435

[87] Vincent Lefèvre and Jean-Michel Muller. 2003. On-the-Fly Range Reduction. Jour-
nal of VLSI Signal Processing 33 (01 2003), 31–35. https://doi.org/10.1023/A:
1021137717282

[88] Cerlane Leong. 2019. SoftPosit-Math. https://gitlab.com/cerlane/softposit-math

[89] Jay P. Lim, Mridul Aanjaneya, John Gustafson, and Santosh Nagarakatte. 2020. A
Novel Approach to Generate Correctly Rounded Math Libraries for New Floating
Point Representations. arXiv:2007.05344 [cs.MS]

[90] Jay P. Lim, Mridul Aanjaneya, John Gustafson, and Santosh Nagarakatte. 2021. An
Approach to Generate Correctly Rounded Math Libraries for New Floating Point
Variants. Proc. ACM Program. Lang. 5, POPL, Article 29 (Jan. 2021), 30 pages.
https://doi.org/10.1145/3434310

[91] Jay P. Lim and Santosh Nagarakatte. 2020. RLibm. https://github.com/rutgers-apl/
rlibm

[92] Jay P. Lim and Santosh Nagarakatte. 2020. RLibm-generator. https://github.com/
rutgers-apl/rlibm-generator

[93] Jay P. Lim and Santosh Nagarakatte. 2021. High Performance Correctly Rounded
Math Libraries for 32-Bit Floating Point Representations. In Proceedings of the 42nd

https://doi.org/10.1145/2908080.2908107
https://doi.org/10.1145/2908080.2908107
https://doi.org/10.1145/3158135
https://doi.org/10.1145/3158135
https://doi.org/10.1145/3158135
https://doi.org/10.1145/3158135
https://doi.org/10.1109/ARITH.2001.930110
https://doi.org/10.1109/ARITH.2001.930110
https://doi.org/10.1109/12.736435
https://doi.org/10.1023/A:1021137717282
https://doi.org/10.1023/A:1021137717282
https://gitlab.com/cerlane/softposit-math
https://doi.org/10.1145/3434310
https://github.com/rutgers-apl/rlibm
https://github.com/rutgers-apl/rlibm
https://github.com/rutgers-apl/rlibm-generator
https://github.com/rutgers-apl/rlibm-generator

221

ACM SIGPLAN International Conference on Programming Language Design and
Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machin-
ery, New York, NY, USA, 359–374. https://doi.org/10.1145/3453483.3454049

[94] Jay P. Lim and Santosh Nagarakatte. 2021. RLibm-32. https://github.com/
rutgers-apl/rlibm-32

[95] Jay P. Lim and Santosh Nagarakatte. 2021. RLIBM-ALL: A Novel Polynomial
Approximation Method to Produce Correctly Rounded Results for Multiple Repre-
sentations and Rounding Modes. arXiv:2108.06756 [abs] Rutgers Department of
Computer Science Technical Report DCS-TR-757.

[96] Jay P Lim and Rutgers University Santosh Nagarakatte. 2021. RLIBM-32: High
Performance Correctly Rounded Math Libraries for 32-bit Floating Point Represen-
tations. Rutgers Department of Computer Science Technical Report DCS-TR-754.

[97] Jay P. Lim, Matan Shachnai, and Santosh Nagarakatte. 2020. Approximating
Trigonometric Functions for Posits Using the CORDIC Method. In Proceedings of
the 17th ACM International Conference on Computing Frontiers (Catania, Sicily,
Italy) (CF ’20). Association for Computing Machinery, New York, NY, USA, 19–28.
https://doi.org/10.1145/3387902.3392632

[98] Pramod K. Meher, Javier Valls, Tso-Bing Juang, K. Sridharan, and Koushik Ma-
haratna. 2009. 50 Years of CORDIC: Algorithms, Architectures, and Applications.
IEEE Transactions on Circuits and Systems I: Regular Papers (2009).

[99] Guillaume Melquiond. 2019. Gappa. http://gappa.gforge.inria.fr

[100] Microsoft. 2019. (Cloud) Acceleration at Microsoft. https://old.hotchips.org/hc31/
HC31 T2 Microsoft CarrieChiouChung.pdf

[101] Sun Microsystems. 2008. LIBMCR 3 ”16 February 2008” ”libmcr-0.9”. http:
//www.math.utah.edu/cgi-bin/man2html.cgi?/usr/local/man/man3/libmcr.3

[102] Raúl Murillo Montero, Alberto A. Del Barrio, and Guillermo Botella. 2019.
Template-Based Posit Multiplication for Training and Inferring in Neural Networks.
arXiv:1907.04091 [cs.CV]

[103] Jean-Michel Muller. 2005. Elementary Functions: Algorithms and Implementation.
Birkhauser. https://doi.org/10.1007/978-1-4899-7983-4

[104] Jean-Michel Muller, Nicolas Brunie, Florent de Dinechin, Claude-Pierre Jeannerod,
Mioara Joldes, Vincent Lefvre, Guillaume Melquiond, Nathalie Revol, and Serge
Torres. 2018. Handbook of Floating-Point Arithmetic (2nd ed.). Birkhäuser Basel.

[105] Kwok C. Ng. 1992. Argument reduction for huge arguments: Good to the last
bit (can be obtained by sending an e-mail to the author: kwok.ng@eng.sun.com.
Technical Report. SunPro.

https://doi.org/10.1145/3453483.3454049
https://github.com/rutgers-apl/rlibm-32
https://github.com/rutgers-apl/rlibm-32
https://doi.org/10.1145/3387902.3392632
http://gappa.gforge.inria.fr
https://old.hotchips.org/hc31/HC31_T2_Microsoft_CarrieChiouChung.pdf
https://old.hotchips.org/hc31/HC31_T2_Microsoft_CarrieChiouChung.pdf
http://www.math.utah.edu/cgi-bin/man2html.cgi?/usr/local/man/man3/libmcr.3
http://www.math.utah.edu/cgi-bin/man2html.cgi?/usr/local/man/man3/libmcr.3
https://doi.org/10.1007/978-1-4899-7983-4

222

[106] Ivan Niven. 1956. Irrational Numbers. Mathematical Association of America.

[107] NVIDIA. 2020. NVIDIA AMPERE ARCHITECTURE. https://www.nvidia.com/
en-us/data-center/nvidia-ampere-gpu-architecture/

[108] NVIDIA. 2020. TensorFloat-32 in the A100 GPU Accelerates AI Training, HPC up
to 20x. https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/

[109] Oracle. 2015. Oracle R© Solaris Studio 12.4: Numerical Computation Guide. https:
//docs.oracle.com/cd/E37069 01/html/E39019/z4000ac119729.html

[110] James M. Ortega and Werner C. Rheinboldt. 2000. Iterative Solution of Nonlinear
Equations in Several Variables. Society for Industrial and Applied Mathematics.
https://doi.org/10.1137/1.9780898719468

[111] Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary Tatlock. 2015.
Automatically Improving Accuracy for Floating Point Expressions. In Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, Vol. 50. Association for Computing Machinery, New York, NY, USA,
1–11. https://doi.org/10.1145/2813885.2737959

[112] Behrooz Parhami. 2020. Computing with logarithmic number system arithmetic:
Implementation methods and performance benefits. Computers & Electrical Engi-
neering 87 (2020), 106800.

[113] Mary H. Payne and Robert N. Hanek. 1983. Radian Reduction for Trigonometric
Functions. ACM SIGNUM Newslett. 18, 1 (Jan. 1983), 19–24. https://doi.org/10.
1145/1057600.1057602

[114] Eugene Remes. 1934. Sur un procédé convergent d’approximations successives pour
déterminer les polynômes d’approximation. Comptes rendus de l’Académie des Sci-
ences 198 (1934), 2063–2065.

[115] Denis Roegel. 2010. A reconstruction of the tables of Briggs’ ¡i¿Arithmetica loga-
rithmica¡/i¿ (1624). Research Report. https://hal.inria.fr/inria-00543939

[116] Bita Rouhani, Daniel Lo, Ritchie Zhao, Ming Liu, Jeremy Fowers, Kalin Ovtcharov,
Anna Vinogradsky, Sarah Massengill, Lita Yang, Ray Bittner, Alessandro Forin,
Haishan Zhu, Taesik Na, Prerak Patel, Shuai Che, Lok Chand Koppaka, Xia Song,
Subhojit Som, Kaustav Das, Saurabh Tiwary, Steve Reinhardt, Sitaram Lanka, Eric
Chung, and Doug Burger. 2020. Pushing the Limits of Narrow Precision Inferencing
at Cloud Scale with Microsoft Floating Point. In The Thirty-fourth Annual Confer-
ence on Neural Information Processing Systems. ACM.

[117] Hughes Saint-Genies, David Defour, and Guillaume Revy. 2017. Exact Lookup
Tables for the Evaluation of Trigonometric and Hyperbolic Functions. IEEE Trans.
Comput. 66, 12 (dec 2017), 2058–2071. https://doi.org/10.1109/TC.2017.2703870

https://www.nvidia.com/en-us/data-center/nvidia-ampere-gpu-architecture/
https://www.nvidia.com/en-us/data-center/nvidia-ampere-gpu-architecture/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://docs.oracle.com/cd/E37069_01/html/E39019/z4000ac119729.html
https://docs.oracle.com/cd/E37069_01/html/E39019/z4000ac119729.html
https://doi.org/10.1137/1.9780898719468
https://doi.org/10.1145/2813885.2737959
https://doi.org/10.1145/1057600.1057602
https://doi.org/10.1145/1057600.1057602
https://hal.inria.fr/inria-00543939
https://doi.org/10.1109/TC.2017.2703870

223

[118] Alex Sanchez-Stern, Pavel Panchekha, Sorin Lerner, and Zachary Tatlock. 2018.
Finding Root Causes of Floating Point Error. In Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implementation
(Philadelphia, PA, USA) (PLDI 2018). ACM, New York, NY, USA, 256–269.
https://doi.org/10.1145/3296979.3192411

[119] Jun Sawada. 2002. Formal verification of divide and square root algorithms using
series calculation. In 3rd International Workshop on the ACL2 Theorem Prover and
its Applications.

[120] Michael J. Schulte and James E. Stine. 1997. Symmetric bipartite tables for accu-
rate function approximation. In Proceedings 13th IEEE Sympsoium on Computer
Arithmetic. 175–183. https://doi.org/10.1109/ARITH.1997.614893

[121] Michael J. Schulte and James E. Stine. 1999. Approximating elementary functions
with symmetric bipartite tables. IEEE Trans. Comput. 48, 8 (1999), 842–847. https:
//doi.org/10.1109/12.795125

[122] Shen-Fu Hsiao and Jean-Marc Delosme. 1995. Householder CORDIC algorithms.
IEEE Trans. Comput. (1995).

[123] Armando Solar-Lezama, Rodric Rabbah, Rastislav Bodı́k, and Kemal Ebcioğlu.
2005. Programming by Sketching for Bit-Streaming Programs. In Proceedings of
the 2005 ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI ’05). New York, NY, USA, 281–294. https://doi.org/10.1145/
1065010.1065045

[124] Michael Spivak. 1971. Calculus On Manifolds: A Modern Approach To Classical
Theorems Of Advanced Calculus. Avalon Publishing.

[125] Damien Stehle, Vincent Lefevre, and Paul Zimmermann. 2005. Searching worst
cases of a one-variable function using lattice reduction. IEEE Trans. Comput. 54, 3
(2005), 340–346. https://doi.org/10.1109/TC.2005.55

[126] Pat H Sterbenz. 1974. Floating-point computation. Prentice-Hall, Englewood Cliffs,
NJ.

[127] James E. Stine and Michael J. Schulte. 1999. The Symmetric Table Addition Method
for Accurate Function Approximation. In The Journal of VLSI Signal Processing-
Systems for Signal, Image, and Video Technology. https://doi.org/10.1023/A:
1008004523235

[128] Shane Story and Ping Tak Peter Tang. 1999. New algorithms for improved tran-
scendental functions on IA-64. In Proceedings 14th IEEE Symposium on Computer
Arithmetic. 4–11. https://doi.org/10.1109/ARITH.1999.762822

[129] David A. Sunderland, Roger A. Strauch, Steven S. Wharfield, Henry T. Peterson,
and Christopher R. Cole. 1984. CMOS/SOS frequency synthesizer LSI circuit for

https://doi.org/10.1145/3296979.3192411
https://doi.org/10.1109/ARITH.1997.614893
https://doi.org/10.1109/12.795125
https://doi.org/10.1109/12.795125
https://doi.org/10.1145/1065010.1065045
https://doi.org/10.1145/1065010.1065045
https://doi.org/10.1109/TC.2005.55
https://doi.org/10.1023/A:1008004523235
https://doi.org/10.1023/A:1008004523235
https://doi.org/10.1109/ARITH.1999.762822

224

spread spectrum communications. IEEE Journal of Solid-State Circuits 19, 4 (1984),
497–506. https://doi.org/10.1109/JSSC.1984.1052173

[130] Earl E. Swartzlander and Aristides G. Alexopoulos. 1975. The Sign/Logarithm
Number System. IEEE Trans. Comput. C-24, 12 (1975), 1238–1242. https:
//doi.org/10.1109/T-C.1975.224172

[131] Giuseppe Tagliavini, Stefan Mach, Davide Rossi, Andrea Marongiu, and Luca
Benin. 2018. A transprecision floating-point platform for ultra-low power com-
puting. In 2018 Design, Automation Test in Europe Conference Exhibition (DATE).
1051–1056. https://doi.org/10.23919/DATE.2018.8342167

[132] Naofumi Takagi, Tohru Asada, and Shuzo Yajima. 1991. Redundant CORDIC meth-
ods with a constant scale factor for sine and cosine computation. IEEE Trans. Com-
put. (1991).

[133] Ping-Tak Peter Tang. 1989. Table-Driven Implementation of the Exponential Func-
tion in IEEE Floating-Point Arithmetic. ACM Trans. Math. Software 15, 2 (June
1989), 144–157. https://doi.org/10.1145/63522.214389

[134] Ping-Tak Peter Tang. 1990. Table-Driven Implementation of the Logarithm Function
in IEEE Floating-Point Arithmetic. ACM Trans. Math. Software 16, 4 (Dec. 1990),
378–400. https://doi.org/10.1145/98267.98294

[135] P. T. P. Tang. 1991. Table-lookup algorithms for elementary functions and their error
analysis. In [1991] Proceedings 10th IEEE Symposium on Computer Arithmetic.
232–236. https://doi.org/10.1109/ARITH.1991.145565

[136] Sugandha Tiwari, Neel Gala, Chester Rebeiro, and V. Kamakoti. 2019. PERI: A
Posit Enabled RISC-V Core. arXiv:1908.01466 [cs.AR]

[137] Lloyd N. Trefethen. 2012. Approximation Theory and Approximation Practice
(Other Titles in Applied Mathematics). Society for Industrial and Applied Math-
ematics, USA.

[138] Tso-Bing Juang, Shen-Fu Hsiao, and Ming-Yu Tsai. 2004. Para-CORDIC: parallel
CORDIC rotation algorithm. IEEE Transactions on Circuits and Systems I: Regular
Papers (2004).

[139] Jack Volder. 1959. The CORDIC Computing Technique. In Papers Presented at
the the March 3-5, 1959, Western Joint Computer Conference (IRE-AIEE-ACM ’59
(Western)).

[140] John S. Walther. 1971. A Unified Algorithm for Elementary Functions. In Pro-
ceedings of the May 18-20, 1971, Spring Joint Computer Conference (AFIPS ’71
(Spring)).

https://doi.org/10.1109/JSSC.1984.1052173
https://doi.org/10.1109/T-C.1975.224172
https://doi.org/10.1109/T-C.1975.224172
https://doi.org/10.23919/DATE.2018.8342167
https://doi.org/10.1145/63522.214389
https://doi.org/10.1145/98267.98294
https://doi.org/10.1109/ARITH.1991.145565

225

[141] Dong Wang, Jean-Michel Muller, Nicolas Brisebarre, and Miloš D. Ercegovac. 2014.
(M, p, k)-Friendly Points: A Table-Based Method to Evaluate Trigonometric Func-
tion. IEEE Transactions on Circuits and Systems II: Express Briefs 61, 9 (2014),
711–715. https://doi.org/10.1109/TCSII.2014.2331094

[142] Shibo Wang and Pankaj Kanwar. 2019. BFloat16: The secret to high performance
on Cloud TPUs. https://cloud.google.com/blog/products/ai-machine-learning/
bfloat16-the-secret-to-high-performance-on-cloud-tpus

[143] Shaoyun Wang, Vincenzo Piuri, and Earl E. Wartzlander. 1997. Hybrid CORDIC
algorithms. IEEE Trans. Comput. (1997).

[144] Karl Weierstrass. 1885. Über die analytische Darstellbarkeit sogenannter
willkürlicher Functionen reeller Argumente. In Sitzungsberichte der Königlich
Preussischen Akademie der Wissenschaften zu Berlin.

[145] Xin Yi, Liqian Chen, Xiaoguang Mao, and Tao Ji. 2019. Efficient Automated Repair
of High Floating-Point Errors in Numerical Libraries. Proceedings of the ACM on
Programming Languages 3, POPL, Article 56 (Jan. 2019), 29 pages. https://doi.
org/10.1145/3290369

[146] Abraham Ziv. 1991. Fast Evaluation of Elementary Mathematical Functions with
Correctly Rounded Last Bit. ACM Trans. Math. Software 17, 3 (Sept. 1991),
410–423. https://doi.org/10.1145/114697.116813

[147] Daming Zou, Muhan Zeng, Yingfei Xiong, Zhoulai Fu, Lu Zhang, and Zhendong
Su. 2019. Detecting Floating-Point Errors via Atomic Conditions. Proceedings of
the ACM on Programming Languages 4, POPL, Article 60 (Dec. 2019), 27 pages.
https://doi.org/10.1145/3371128

https://doi.org/10.1109/TCSII.2014.2331094
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://doi.org/10.1145/3290369
https://doi.org/10.1145/3290369
https://doi.org/10.1145/114697.116813
https://doi.org/10.1145/3371128

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	1 | Introduction
	Dissertation Statement
	Contributions of the Dissertation
	Contributions to This Dissertation
	Organization of This Dissertation

	2 | Background
	The Floating Point Representation
	The Posit Representation
	Numerical Errors in Finite Precision Representation
	Prior Work on Approximating Elementary Functions
	Challenges in Generating Correctly Rounded Functions by Approximating f(x)

	3 | The RLibm Approach For Correctly Rounded Polynomial Approximations
	Approximating The Correctly Rounded Result
	Illustration Of Our Approach
	The RLibm Approach To Generate Correctly Rounded Polynomial Approximation
	Summary

	4 | The RLibm Approach With Range Reduction
	Generating Polynomial Approximations With Range Reduction
	Illustration
	Range Reduction Strategies for Various Elementary Functions
	Our Approach For Generating Polynomials With Range Reduction
	The RLibm Approach For Multivariate Output Compensation Functions
	Summary

	5 | The RLibm Approach for 32-Bit Representations
	Scaling Our Approach to 32-Bit Representations
	Illustration
	Our Approach to Generate Piecewise Polynomials
	Summary

	6 | A Single Polynomial that Produces Correct Results For Multiple Representations and Rounding Modes
	Case For Generic Math Libraries
	Illustration
	The RLibm Approach to Generate Generic Polynomials
	Proof of Tn+2 Result with rno Producing Correctly Rounded Result for Tk
	Odd Intervals for Extremal Values in Posit Representations
	Summary

	7 | Experimental Evaluation
	Experimental Methodology And Setup
	Experimental Evaluation of RLibm-16
	Experimental Evaluation with RLibm-32
	Experimental Evaluation With RLibm-All

	8 | Related Work
	Approximation Methods
	Correctly Rounded Approximation
	Range Reduction Strategies
	Verification of Math Libraries
	Math Library Repair Tools

	9 | Conclusion and Future Directions
	Dissertation Summary
	Future Directions

