
High Performance Correctly Rounded Math Libraries
for 32-bit Floating Point Representations

Jay P. Lim
Department of Computer Science

Rutgers University

United States

jpl169@cs.rutgers.edu

Santosh Nagarakatte
Department of Computer Science

Rutgers University

United States

santosh.nagarakatte@cs.rutgers.edu

Abstract

This paper proposes a set of techniques to develop correctly

rounded math libraries for 32-bit float and posit types. It

enhances our RLibm approach that frames the problem of

generating correctly rounded libraries as a linear program-

ming problem in the context of 16-bit types to scale to 32-bit

types. Specifically, this paper proposes new algorithms to

(1) generate polynomials that produce correctly rounded

outputs for all inputs using counterexample guided polyno-

mial generation, (2) generate efficient piecewise polynomials

with bit-pattern based domain splitting, and (3) deduce the

amount of freedom available to produce correct results when

range reduction involves multiple elementary functions. The

resultant math library for the 32-bit float type is faster than

state-of-the-art math libraries while producing the correct

output for all inputs. We have also developed a set of cor-

rectly rounded elementary functions for 32-bit posits.

CCS Concepts: · Mathematics of computing → Math-

ematical software; Linear programming; · Theory of

computation→ Numeric approximation algorithms.

Keywords: elementary functions, correctly rounded math

libraries, floating point, posits, piecewise polynomials

ACM Reference Format:

Jay P. Lim and Santosh Nagarakatte. 2021. High Performance Cor-

rectly Rounded Math Libraries for 32-bit Floating Point Represen-

tations. In Proceedings of the 42nd ACM SIGPLAN International

Conference on Programming Language Design and Implementation

(PLDI ’21), June 20ś25, 2021, Virtual, Canada. ACM, New York, NY,

USA, 16 pages. https://doi.org/10.1145/3453483.3454049

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PLDI ’21, June 20ś25, 2021, Virtual, Canada

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8391-2/21/06. . . $15.00

https://doi.org/10.1145/3453483.3454049

1 Introduction

Math libraries provide implementations of elementary func-

tions (e.g. 𝑙𝑜𝑔(𝑥), 𝑒𝑥 , 𝑐𝑜𝑠 (𝑥)) [37]. They are crucial compo-

nents in various domains ranging from scientific computing

to machine learning. Designing math libraries is a challeng-

ing task because they are expected to provide correct results

for all inputs and also have high performance. These ele-

mentary functions are typically approximated with some

hardware supported representation for performance.

Given a representation Twith finite precision (e.g., float),

the correctly rounded result of an elementary function 𝑓 for

an input 𝑥 ∈ T is defined as the value of 𝑓 (𝑥) computed with

real numbers and then rounded to a value in the representa-

tion T. The IEEE-754 standard recommends the generation of

correctly rounded results for elementary functions. Seminal

prior work on generating approximations for elementary

functions has resulted in numerous implementations that

have reduced error significantly [5ś10, 15, 24, 25, 29, 49]. Fur-

ther, numerous correctly rounded libraries have also been

developed [13, 15]. Unfortunately, they are not widely used

due to performance considerations. Moreover, widely used

libraries do not produce correct results for all inputs.

Mini-max approaches.Most prior approaches identify

a polynomial that minimizes the maximum error among all

input points (i.e., a mini-max approach) compared to the

real value of the elementary function using the Weierstrass

approximation theorem and the Chebyshev alternation the-

orem [47]. The Weierstrass approximation theorem states

that if 𝑓 is a continuous real-valued function on [𝑎, 𝑏] and

𝜖 > 0, there exists a polynomial 𝑃 such that |𝑓 (𝑥)−𝑃 (𝑥) | < 𝜖

for all 𝑥 ∈ [𝑎, 𝑏]. The Chebyshev alternation theorem pro-

vides the condition for such a polynomial: a polynomial of

degree 𝑑 that minimizes the maximum error will have at

least 𝑑 + 2 points where it has the absolute maximum error

and the error alternates in sign. Remez algorithm [37, 39]

is a procedure to identify such mini-max polynomials. The

maximum approximation error has to be below the error

threshold required to produce correct results for all inputs.

As approximating a polynomial in a small domain [𝑎, 𝑏]

is much easier, the input domain of the function is reduced

using range reduction [12, 31, 45]. The approximated result

is adjusted to produce the result for the original input (i.e.,

output compensation). Both range reduction and polynomial

359

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3453483.3454049
https://doi.org/10.1145/3453483.3454049

PLDI ’21, June 20ś25, 2021, Virtual, Canada Jay P. Lim and Santosh Nagarakatte

evaluation in a representation with finite precision will have

some numerical errors. The combination of approximation

errors with the mini-max approach and numerical errors

with polynomial evaluation, range reduction, and output

compensation can result in wrong results.

RLibm. Our RLibm approach [31, 32] generates polynomi-

als that approximate the correctly rounded result rather than

the real value of the elementary function. The generation of

the polynomial considers errors in polynomial approxima-

tion and numerical errors in polynomial evaluation, range

reduction, and output compensation to produce the correctly

rounded output for all inputs. The task of generating the

polynomial is then structured as a linear programming (LP)

problem. The RLibm approach first computes the correctly

rounded result for each input in a target representation T us-

ing an oracle (e.g., the MPFR library [15]). Given the correctly

rounded result for an input, it finds an interval in double

precision such that every value in the interval rounds to

the correctly rounded result, which is called the rounding

interval. The rounding intervals are further constrained to

account for numerical errors during range reduction and

output compensation. Subsequently, it attempts to generate

a polynomial of degree 𝑑 using an LP solver, which when

evaluated with an input produces a result that lies within

the rounding interval. Using the RLibm approach, we have

been successful in generating correctly rounded libraries

with 16-bit types such as bfloat16 and posit16.

Challenges in scaling to 32-bits. To extend our RLibm

approach to 32-bit data types, we have to address the fol-

lowing challenges. First, modern LP solvers can handle a

few thousand constraints. A naive use of the RLibm ap-

proach with 32-bit types will generate more than a billion

constraints, which is beyond the capabilities of current LP

solvers. Second, it may not be feasible to generate a single

polynomial of a reasonable degree given the large number of

constraints. Third, LP solvers are sensitive to the condition

number of the system of constraints. LP solvers will not be

able to solve an ill-conditioned system of constraints. An

effective range reduction is a strategy to address it. Although

there are excellent books on range reduction [12], these tech-

niques need to be adapted to work with our RLibm approach.

Fourth, some range reduction strategies need multiple el-

ementary functions themselves (e.g., 𝑠𝑖𝑛𝑝𝑖 (𝑥)). Finally, we

need to ensure that output compensation does not experi-

ence pathological cancellation errors (e.g., 𝑐𝑜𝑠𝑝𝑖 (𝑥)).

This paper. Our goal is to generate efficient implementa-

tions of elementary functions that produce correctly rounded

results for all inputs with 32-bit types. This paper extends

our RLibm approach to scale to 32-bit FP types to address the

challenges described above. We propose (1) sampling of in-

puts with counterexample guided polynomial generation to

handle the large input space, (2) generation of piecewise poly-

nomials for efficiency, (3) deduction of rounding intervals

when a range reduction technique uses multiple elementary

functions, and (4) modified range reduction techniques for

some elementary functions to address cancellation errors

in output compensation. Figure 1 pictorially represents our

approach to scale to 32-bit data types.

Counterexample guided polynomial generation.We

sample inputs proportional to the number of representable

values in a given input domain [𝑎, 𝑏] with a 32-bit represen-

tation T. To generate polynomials that produce the correctly

rounded result for every input, it is not necessary to consider

every input and its rounding interval. We primarily need to

consider those rounding intervals that are highly constrained.

For each input in the sample, we generate the oracle result

using the MPFR library. We compute the rounding interval

in double precision (i.e., set of values in the double type that

round to the oracle result). We generate LP constraints to

create a polynomial of degree 𝑑 such that it evaluates to a

value in the rounding interval for each input in the sample.

If the initial sample generates a polynomial that produces

the correctly rounded output for all values in [𝑎, 𝑏], then the

process terminates. Otherwise, we add counterexamples to

the sample and repeat the process. The size of the sample

is bounded by the number of constraints that the LP solver

can process.

Piecewise polynomials. When either the number of in-

puts in the sample exceeds our LP constraint threshold or the

LP solver is not able to generate a polynomial, we split the

input domain [𝑎, 𝑏] to [𝑎, 𝑏 ′) and [𝑏 ′, 𝑏] to generate piece-

wise polynomials using the above process for each input

sub-domain. We choose the splitting point such that we can

identify the sub-domain quickly using a few bits of the input,

which results in efficient implementations. The ability to

generate piecewise polynomials ensures that our resultant

polynomials are of a lower degree and provide performance

improvements when compared to state-of-the-art libraries.

Range reduction with multiple functions. We pro-

pose new algorithms to deduce rounding intervals for a

class of range reduction techniques that involve multiple

elementary functions. Range reduction reduces the input

𝑥 to 𝑥 ′. The creation of the polynomial happens with the

reduced inputs. The output of the polynomial 𝑃 (𝑥 ′) should

be adjusted to compute the correctly rounded result for 𝑥 ,

which is called output compensation. We have to deduce

the rounding intervals for the reduced input 𝑥 ′ that con-

siders the numerical error in range reduction, polynomial

evaluation, and output compensation. We propose new tech-

niques to create reduced rounding intervals when range

reduction uses multiple elementary functions (e.g., 𝑠𝑖𝑛𝑝𝑖 (𝑥)

in Section 2). These techniques allow us to perform range

reduction on functions that otherwise cause condition num-

ber issues with the LP formulation (i.e., 𝑠𝑖𝑛ℎ(𝑥) or 𝑐𝑜𝑠ℎ(𝑥)).

Further, we develop modified range reduction techniques for

some elementary functions to avoid cancellation errors in

output compensation (e.g., 𝑐𝑜𝑠𝑝𝑖 (𝑥) in Section 5).

360

High Performance Correctly Rounded Math Libraries for 32-bit Floating Point Representations PLDI ’21, June 20ś25, 2021, Virtual, Canada

Inputs x and
the rounding

intervals
[l, h] in H, , T, H,

Sub-domain #1

Sub-domain #2

…

List of
all inputs

x in Tf , T,

Reduced
inputs R

and reduced
intervals [li’, hi’]

for fi(x)

Counterexample Guided Polynomial Generation

Sample
R

Generate
polynomial

Add incorrect
R to sample No Yes

Start Polynomial #1

Polynomial #2

…

Inputs x and
the correctly

rounded
result y = f(x)

in Tf , T,

Oracle Result

Is polynomial
correct?

Range Reduction
Domain Splitting for

Piecewise Polynomials

Figure 1. Steps in our approach to generate correctly rounded libraries for 32-bit types (T).

The Rlibm-32 prototype. We have developed library

generators and correctly rounded libraries for multiple 32-

bit data types: IEEE-754 float and posits. Our elementary

functions for floats are faster than existing libraries: Intel’s

libm, Glibc’s libm, CR-LIBM [13], and Metalibm [25]. Unlike

existing libraries, our functions produce correctly rounded

results for all inputs. We have developed the first correctly

rounded implementations of functions for 32-bit posits.

2 Overview of Our Approach with 𝑠𝑖𝑛𝑝𝑖 (𝑥)

We provide an overview of our approach for generating

piecewise polynomials for 𝑠𝑖𝑛𝑝𝑖 (𝑥) (i.e., 𝑠𝑖𝑛(𝜋𝑥)) with a 32-

bit float. The function 𝑠𝑖𝑛𝑝𝑖 (𝑥) is defined for 𝑥 ∈ (−∞,∞).

There are four billion inputs with a 32-bit float. There are

three kinds of special cases:

𝑠𝑖𝑛𝑝𝑖 (𝑥) =




𝜋𝑥 if |𝑥 | < 1.173 · · · × 10−7

0 if |𝑥 | >= 223

𝑁𝑎𝑁 if 𝑥 = 𝑁𝑎𝑁 or 𝑥 = ±∞

For the first class of special cases, we compute 𝜋𝑥 in double

and round the result to float, which produces the correctly

rounded result for those inputs.

2.1 Our Range Reduction for 𝑠𝑖𝑛𝑝𝑖 (𝑥)

After considering special cases, there are close to 800 million

float inputs that need to be approximated with polynomials.

Using RLibm’s approach directly with an LP solver will fail.

Next, we perform range reduction to reduce the domain for

polynomial approximation. The key idea is to use periodicity

and trigonometric identities of 𝑠𝑖𝑛𝑝𝑖 (𝑥). We transform input

𝑥 into 𝑥 = 2.0× 𝐼 + 𝐽 , where 𝐼 is an integer and 𝐽 ∈ [0, 2). As

a result of periodicity, 𝑠𝑖𝑛𝑝𝑖 (𝑥) = 𝑠𝑖𝑛𝑝𝑖 (𝐽). Next, we further

split 𝐽 into 𝐽 = 𝐾 + 𝐿 where 𝐾 ∈ {0, 1} is the integral part of

𝐽 and 𝐿 ∈ [0, 1) is the fractional part. Then, 𝑠𝑖𝑛𝑝𝑖 (𝐽) can be

computed as,

𝑠𝑖𝑛𝑝𝑖 (𝐽) = (−1)𝐾 × 𝑠𝑖𝑛𝑝𝑖 (𝐿)

Given that 𝑠𝑖𝑛𝑝𝑖 between [0.5, 1) is a mirror image of
values between [0, 0.5), we further reduce as follows:

𝐿′ =

{
𝐿 if 𝐿 ≤ 0.5

1.0 − 𝐿 if 𝐿 > 0.5

From Sterbenz lemma [42], the expression 1.0 − 𝐿 can be

computed exactly. Hence, 𝑠𝑖𝑛𝑝𝑖 (𝐿) = 𝑠𝑖𝑛𝑝𝑖 (𝐿′). Even after

reducing the input 𝑥 to 𝐿′ ∈ [0, 0.5], there are around 184

million inputs with a 32-bit float in this reduced domain.

To enable easier polynomial approximation, we further

reduce 𝐿′ to a value between [0, 1
512
]. We split 𝐿′ as 𝐿′ =

𝑁
512
+𝑅 where𝑁 is an integer in the set {0, 1, . . . , 255} and 𝑅 is

a fraction that lies in [0, 1
512
]. There are 110 million reduced

inputs in 𝑅 ignoring special cases. Now, 𝑠𝑖𝑛𝑝𝑖 (𝐿′) can be

computed using the trigonometric identity 𝑠𝑖𝑛𝑝𝑖 (𝑎 + 𝑏) =

𝑠𝑖𝑛𝑝𝑖 (𝑎)𝑐𝑜𝑠𝑝𝑖 (𝑏) + 𝑐𝑜𝑠𝑝𝑖 (𝑎)𝑠𝑖𝑛𝑝𝑖 (𝑏) as follows,

𝑠𝑖𝑛𝑝𝑖 (𝐿′) = 𝑠𝑖𝑛𝑝𝑖 (
𝑁

512
)𝑐𝑜𝑠𝑝𝑖 (𝑅) + 𝑐𝑜𝑠𝑝𝑖 (

𝑁

512
)𝑠𝑖𝑛𝑝𝑖 (𝑅)

We precompute the values for 𝑠𝑖𝑛𝑝𝑖 (𝑁
512
) and 𝑐𝑜𝑠𝑝𝑖 (𝑁

512
)

in lookup tables (i.e., 512 values in total). Finally, we approx-

imate 𝑠𝑖𝑛𝑝𝑖 (𝑅) and 𝑐𝑜𝑠𝑝𝑖 (𝑅) for the reduced input domain

𝑅 ∈ [0, 1
512
]. To approximate 𝑠𝑖𝑛𝑝𝑖 (𝑥) for the entire domain,

the range reduction requires us to approximate 𝑠𝑖𝑛𝑝𝑖 and 𝑐𝑜𝑠𝑝𝑖

over the reduced domain 𝑅. We can compute the result for

𝑠𝑖𝑛𝑝𝑖 (𝑥) as follows,

𝑠𝑖𝑛𝑝𝑖 (𝑥) = (−1)𝐾 × (𝑠𝑖𝑛𝑝𝑖 (
𝑁

512
)𝑐𝑜𝑠𝑝𝑖 (𝑅) + 𝑐𝑜𝑠𝑝𝑖 (

𝑁

512
)𝑠𝑖𝑛𝑝𝑖 (𝑅))

2.2 Generating Piecewise Polynomials for 𝑠𝑖𝑛𝑝𝑖 (𝑥)

To produce correctly rounded results for 𝑠𝑖𝑛𝑝𝑖 (𝑥), our ap-

proach involves the following steps. First, we identify the

correctly rounded result and the rounding interval for each

input in the entire domain. Second, we identify the reduced

rounding interval after range reduction. Third, we split the

reduced domain into sub-domains to generate piecewise

polynomials. Fourth, we perform counterexample guided

polynomial generation for each sub-domain. Finally, we val-

idate the generated piecewise polynomials for the entire

input domain.

Step 1: Identifying the correctly rounded result and

the rounding interval. For each input 𝑥 , we first iden-

tify the correctly rounded result of 𝑠𝑖𝑛𝑝𝑖 (𝑥) using an oracle.

Then, we identify an interval of values [𝑙, ℎ] in doublewhere

all values in the interval rounds to the correctly rounded

result. We call this interval the rounding interval. If our

361

PLDI ’21, June 20ś25, 2021, Virtual, Canada Jay P. Lim and Santosh Nagarakatte

6.1358904..E-3

6.1358909..E-3

x1

sinpi(x1)

6.7443918..E-2

6.7443925..E-2

x2

sinpi(x2)

(a) (b)

5.8516727..E-9

(c)

Rx1 Rx2

0 0 1 1 1 1 1 0 0 0 1 0 0 0 …

Common bits Sub-domain

 index

(d)

Reduced input (R) = 1.86264514923095703125e-09

= 0x3E20000000000000

5.85167230..E-9
5.85167235..E-9

5.8516717..E-9

337

338

339

[

5.85167231 · · · × 10
−9

2.26752299 · · · × 10
−8

]

≤

[

1.0 1.8626451 · · · × 10
−9

1.0 7.2177499 · · · × 10
−9

] [

c0
c1

]

≤

[

5.85167232 · · · × 10
−9

2.26752312 · · · × 10
−8

]

(e)

� = 3.14159265519844.. × R

(f)(e) (f)

Figure 2. (a) A 32-bit float input 𝑥1 = 1.95 · · · × 10−3 and its correctly rounded result of 𝑠𝑖𝑛𝑝𝑖 (𝑥1) (shown with a black circle). The rounding

interval in double is colored gray. (b) Input 𝑥2 = 2.14 · · · × 10−2, its correctly rounded result for 𝑠𝑖𝑛𝑝𝑖 (𝑥2), and the rounding interval. (c) The

reduced intervals for 𝑠𝑖𝑛𝑝𝑖 (𝑅) corresponding to 𝑥1 and 𝑥2 so that both 𝑥1 and 𝑥2 produce correctly rounded results, respectively. Both 𝑥1
and 𝑥2 map to the same reduced input 𝑅. The common interval for 𝑅 is highlighted with darker color. (d) To approximate 𝑠𝑖𝑛𝑝𝑖 (𝑅), we create

a piecewise polynomial with 32 sub-domains in total. We use the 5-bits in the double representation of 𝑅 to identify the sub-domain for the

piecewise polynomial. (e) Our LP formulation for generating a piecewise polynomial of degree 1 for the sub-domain with bit-pattern (10001)

with two reduced inputs in the sample. (f) The resulting coefficients returned by the LP solver.

polynomial approximation produces a value in the rounding

interval, the rounded result is the correct result. Consider

the inputs:

𝑥1 = 1.95312686264514923095703125 × 10−3

𝑥2 = 2.148437686264514923095703125 × 10−2

We show the correctly rounded result of 𝑠𝑖𝑛𝑝𝑖 (𝑥) for these

inputs with a black circle in Figure 2(a) and Figure 2(b),

respectively. It also shows the rounding interval in gray.

Step 2: Identifying the reduced interval for input R.

Range reduction transforms input 𝑥 into 𝑅. To produce the

result for 𝑠𝑖𝑛𝑝𝑖 (𝑥), we need to compute both 𝑠𝑖𝑛𝑝𝑖 (𝑅) and

𝑐𝑜𝑠𝑝𝑖 (𝑅) (i.e., multiple elementary functions). The result that

we produce for 𝑠𝑖𝑛𝑝𝑖 (𝑅) and 𝑐𝑜𝑠𝑝𝑖 (𝑅) should allow us to

produce the correct result for 𝑠𝑖𝑛𝑝𝑖 (𝑥) (i.e., produce a value

within the rounding interval [𝑙, ℎ] of input 𝑥).

To compute 𝑠𝑖𝑛𝑝𝑖 (𝑥), we will generate piecewise poly-

nomials for 𝑠𝑖𝑛𝑝𝑖 (𝑅) and 𝑐𝑜𝑠𝑝𝑖 (𝑅). Two inputs 𝑥1 and 𝑥2
(Figure 2(a) and 2(b)) map to the same reduced input after

range reduction,

𝑅 = 1.86264514923095703125 × 10−9

Now, we need to deduce an interval [𝑙𝑠 ′, ℎ𝑠 ′] for the out-

put of 𝑠𝑖𝑛𝑝𝑖 (𝑅) and an interval [𝑙𝑐 ′, ℎ𝑐 ′] for the output of

𝑐𝑜𝑠𝑝𝑖 (𝑅) such that the result of output compensation pro-

duces a value within the rounding interval for 𝑥 . We compute

the correctly rounded value (𝑣) of 𝑠𝑖𝑛𝑝𝑖 (𝑅) in double using

the oracle and set it as our initial guess for [𝑙𝑠 ′, ℎ𝑠 ′] (i.e., [𝑣, 𝑣]

a singleton). Similarly, we compute the interval [𝑙𝑐 ′, ℎ𝑐 ′] for

𝑐𝑜𝑠𝑝𝑖 (𝑅). Now, we need to check if these intervals are suffi-

cient to produce the correct output for the original input 𝑥 .

Section 3.2 provides our detailed algorithm. The key idea is

to simultaneously lower the lower bound for both 𝑠𝑖𝑛𝑝𝑖 (𝑅)

and 𝑐𝑜𝑠𝑝𝑖 (𝑅) and check if output compensation produces the

correct result for all inputs. Similarly, we deduce the upper

bound for both 𝑠𝑖𝑛𝑝𝑖 (𝑅) and 𝑐𝑜𝑠𝑝𝑖 (𝑅). The reduced interval

for 𝑠𝑖𝑛𝑝𝑖 (𝑅) from the perspective of 𝑥1 is [𝑙𝑠1
′, ℎ𝑠1′]. Simi-

larly, the reduced interval for 𝑠𝑖𝑛𝑝𝑖 (𝑅) from the perspective

of 𝑥2 is [𝑙𝑠2
′, ℎ𝑠2′]. These reduced intervals for 𝑠𝑖𝑛𝑝𝑖 (𝑅) cor-

responding to 𝑥1 and 𝑥2 are shown in Figure 2(c). They are

not identical because our approach considers the numerical

error in both range reduction and output compensation.

Step 3: Splitting the reduced domain into sub-domains.

Now that we have reduced intervals for all reduced inputs,

the next task is to generate polynomials for 𝑠𝑖𝑛𝑝𝑖 (𝑅) and

𝑐𝑜𝑠𝑝𝑖 (𝑅). We illustrate this process with 𝑠𝑖𝑛𝑝𝑖 (𝑅). It is simi-

lar for 𝑐𝑜𝑠𝑝𝑖 (𝑅). Even after range reduction, there are approx-

imately 110 million unique reduced inputs for 𝑅 ∈ [0, 1
512
].

Using our counterexample guided polynomial generation

strategy (Step 4), we attempt to generate a polynomial for

the entire reduced domain. If we cannot generate a poly-

nomial or the polynomial does not satisfy the performance

constraints, then we split the reduced input domain into

smaller sub-domains to generate piecewise polynomials. We

iteratively split the domain into smaller sub-domains un-

til we can produce a polynomial that produces the correct

results for all inputs and satisfies the performance criterion.

Let us say we want to generate 32 (i.e. 25) piecewise poly-

nomials for the domain [0, 1
512
]. We use the bit-pattern of

the reduced input 𝑅 in double to identify the sub-domain.

Although the domain of R is [0, 1
512
], the value of R in our

reduced inputs ranges between [2−32, 2−9] along with 𝑅 = 0.

There is a large gap of values between the reduced input 0

and 2−32. This is because we have already handled special

cases for the original input. Excluding the reduced input

𝑅 = 0, all other reduced inputs in the double representation

have the left-most six bits identical. Hence, we use 5-bits

362

High Performance Correctly Rounded Math Libraries for 32-bit Floating Point Representations PLDI ’21, June 20ś25, 2021, Virtual, Canada

after the six left-most bits to identify the sub-domain for the

piecewise polynomial. Figure 2(d) shows the reduced input

𝑅, its double bit-pattern, and the 5-bits used to identify the

sub-domain.

Step 4: Generating a polynomial for a sub-domain. The

final step is to produce a polynomial that approximates

𝑠𝑖𝑛𝑝𝑖 (𝑅) for a particular sub-domain. This polynomial must

produce a value within the reduced interval [𝑙𝑠 ′, ℎ𝑠 ′] for each

reduced input 𝑅 in the sub-domain. This requirement can be

encoded as a linear constraint for each reduced input,

𝑙𝑠 ′ ≤ 𝑃 (𝑅) ≤ ℎ𝑠 ′

where 𝑃 (𝑅) is a polynomial that approximates 𝑠𝑖𝑛𝑝𝑖 (𝑅).

We show the generation of the polynomial for sub-domain

with bit-pattern 10001. First, we sample a portion of the

reduced inputs (e.g., 2 in Figure 2(e)). Second, we encode

the two reduced inputs and reduced intervals as linear con-

straints to create a LP query (see Figure 2(e)). Third, we use a

LP solver to identify coefficients that satisfy the constraints.

The generated polynomial is shown in Figure 2(f). Fourth, we

check if the generated polynomial produces a value within

the reduced interval for all inputs in the sub-domain. In this

case, there are two reduced inputs where the generated poly-

nomial does not produce a value within the reduced interval.

Fifth, we add both counterexamples (i.e., reduced inputs) to

the sample. Next, we create a LP query using these four re-

duced inputs and intervals. Then, we check if the generated

polynomial satisfies all reduced inputs in the sub-domain

corresponding to bit-pattern 10001.

After generating polynomials for all 32 sub-domains, we

store the coefficients of the piecewise polynomial in a table,

which is indexed by the bit-pattern of the reduced input that

identifies the sub-domain. The approximation for the elemen-

tary function 𝑠𝑖𝑛𝑝𝑖 (𝑥) is now ready. To produce the result

for input 𝑥 , our library will perform range reduction on 𝑥 ,

identify the reduced input 𝑅, identify the sub-domain based

on the bit-pattern of 𝑅, evaluate the piecewise polynomial

using the coefficients from the table, perform output com-

pensation, and round the result to a 32-bit float to produce

the correctly rounded result.

3 Generating Piecewise Polynomials

Our goal is to generate polynomial approximations for ele-

mentary functions 𝑓 (𝑥) that produce the correctly rounded

result for all inputs 𝑥 in 32-bit target representations T. Simi-

lar to our prior work on RLibm [31, 32], we approximate the

correctly rounded result rather than the real value of 𝑓 (𝑥).

We extend it in three main directions. First, we develop coun-

terexample guided polynomial generation with sampling to

make this approach feasible with 32-bit types. Second, we

design techniques to generate piecewise polynomials, which

provide performance improvements. Third, we develop mod-

ified range reduction techniques for a class of elementary

functions and develop methods to deduce rounding intervals

when range reduction involves multiple functions.

Correctly rounded result. For a given input 𝑥 and ele-

mentary function 𝑓 , the output of our approximation is the

correctly rounded result if it is equal to the value of 𝑓 (𝑥)

computed with real numbers and then rounded to the target

representation. We use 𝑅𝑁T (𝑓 (𝑥)) to denote the rounding

function that rounds 𝑓 (𝑥) computed with real numbers to

target representation T. All internal computation such as

range reduction, polynomial evaluation, and output com-

pensation is performed in representation H where H has

higher precision than T. To attain good performance, H is a

representation that is supported in hardware (e.g., double).

Our approach. There are three main tasks in creating

polynomial approximations with our approach. First, we

need to create a range reduction function, which we denote

as 𝑅𝑅H (𝑥), that reduces input 𝑥 to a reduced input 𝑟 in a

smaller domain. Once we have the result of the elementary

function for the reduced input 𝑟 (let’s say𝑦 ′ = 𝑓 (𝑟)), we need

to develop an output compensation function, which we de-

note as𝑂𝐶H (𝑦
′, 𝑥), to produce the result of 𝑓 (𝑥) for input 𝑥 .

Second, we need to generate polynomial approximations for

each elementary function 𝑓𝑖 (𝑟) in the reduced domain (e.g.,

there were two elementary functions 𝑠𝑖𝑛𝑝𝑖 and 𝑐𝑜𝑠𝑝𝑖 after

range reduction in Section 2). We need to generate polyno-

mials Ψ𝑖 for each 𝑓𝑖 (𝑟) in the reduced domain when there are

millions of reduced inputs in each reduced input domain. We

have to ensure that the polynomials generated for each 𝑓𝑖 (𝑟)

in the reduced domain produce correctly rounded results for

all inputs after output compensation and polynomial eval-

uation is performed in H. Third, we may have to split the

reduced input domain to generate piecewise polynomials for

each 𝑓𝑖 (𝑟) to create efficient implementations.

High-level sketch. Algorithm 1 provides a high-level

sketch of our approach. Given an elementary function 𝑓 (𝑥)

and a list of inputs 𝑋 , we compute the correctly rounded re-

sult 𝑦 in our target representation T (line 4) and compute the

rounding interval of𝑦 inH (lines 14-17). If our approximation

of 𝑓 (𝑥) produces a value in the rounding interval, then the

result will round to 𝑦. Next, we compute the reduced input 𝑟

using range reduction. The range reduction may require us

to compute multiple elementary functions 𝑓𝑖 to produce the

result for 𝑥 . Hence, we identify the range of values that each

function 𝑓𝑖 should produce such that the result when used

with output compensation produces a value in the rounding

interval of 𝑦 (line 7). We call this range of values for the re-

duced input 𝑟 as the reduced interval (see Section 3.2). Finally,

we approximate each elementary function 𝑓𝑖 (𝑟) used in out-

put compensation with piecewise polynomials of degree 𝑑

(line 11) with counterexample guided polynomial generation

and by using an LP solver. A single polynomial for each 𝑓𝑖
may not be ideal for performance. To create efficient imple-

mentations, we iteratively split the domain of the reduced

input into multiple sub-domains (see Section 3.3). Even such

363

PLDI ’21, June 20ś25, 2021, Virtual, Canada Jay P. Lim and Santosh Nagarakatte

1 Function CorrectPolys(𝑓 , 𝑋 , 𝑅𝑅H, 𝑂𝐶H, 𝑑):

2 𝑌 ← ∅

3 foreach 𝑥 ∈ 𝑋 do

4 𝑦 ← 𝑅𝑁T (𝑓 (𝑥))

5 [𝑙, ℎ] ← RoundingInterval(𝑦, T, H)

6 𝑌 ← (𝑥, [𝑙, ℎ])

7 L ← ReducedIntervals(𝑌 , 𝑅𝑅H, 𝑂𝐶H)

8 𝑅𝑒𝑠𝑢𝑙𝑡 ← ∅

9 foreach (𝑓𝑖 ,L𝑖) ∈ L do

10 if L𝑖 ← ∅ then return ∅

11 Ψ𝑖 ← GenApproxFunc(L𝑖 , 𝑑)

12 𝑅𝑒𝑠𝑢𝑙𝑡 ← (𝑓𝑖 ,Ψ𝑖) ∪ 𝑅𝑒𝑠𝑢𝑙𝑡

13 return 𝑅𝑒𝑠𝑢𝑙𝑡

14 Function RoundingInterval(𝑦, T, H):

15 𝑙 ←𝑚𝑖𝑛{𝑣 ∈ H | 𝑣 ≤ 𝑦 and 𝑅𝑁T (𝑣) = 𝑦}

16 ℎ ←𝑚𝑎𝑥{𝑣 ∈ H | 𝑣 ≥ 𝑦 and 𝑅𝑁T (𝑣) = 𝑦}

17 return [𝑙, ℎ]

Algorithm 1: CorrectPolys computes piecewise polynomi-

als of degree 𝑑 for each elementary function 𝑓𝑖 used in output

compensation, 𝑂𝐶H, to generate a math library for elementary

function 𝑓 . It produces the correctly rounded result of 𝑓 (𝑥) for

each input 𝑥 ∈ 𝑋 . RoundingInterval computes the rounding

interval [𝑙, ℎ] ⊂ H of 𝑦 where all values in the interval rounds

to 𝑦 in T. ReducedIntervals is shown in Algorithm 2 while

GenApproxFunc is shown in Algorithm 3.

sub-domains for the reduced inputs can have millions of

reduced inputs. Hence, we create a sample of the reduced

inputs, generate constraints to ensure that the polynomial

of degree 𝑑 produces a value in the reduced interval for the

reduced inputs in the sample, and query the LP solver to

solve for the coefficients. When the LP solver returns the

coefficients, we check whether the generated polynomial

produces a value within the reduced interval for all inputs

in the sub-domain. We add any input that violates the con-

straints to the sample and repeat this process. We call this

process as counterexample guided polynomial generation.

At the end of this process, our approach produces piece-

wise polynomials for each 𝑓𝑖 (𝑟), where the results of 𝑓𝑖 (𝑟)

when used with output compensation produces the correctly

rounded result for all inputs when rounded to T.

3.1 Computing Rounding Intervals

Our approach approximates the correctly rounded result

rather than the real value. Hence, the first step is to iden-

tify the correctly rounded result using an oracle and then

identify all values in H that rounds to the correct result in T.

As H has higher precision than T, there is a range of values

in H that our approach can produce and still round to the

correctly rounded result in T. We call this range the round-

ing interval. Algorithm 1 illustrates our steps to compute

the rounding interval for each input 𝑥 ∈ 𝑋 (lines 14-17).

1 Function ReducedIntervals(𝑌 , 𝑅𝑅H, 𝑂𝐶H):

2 if 𝑂𝐶H is not a monotonic function then return ∅

3 𝐹 ← {list of functions used in 𝑂𝐶H}

4 foreach 𝑓𝑖 ∈ 𝐹 do L𝑖 ← ∅

5 foreach (𝑥, [𝑙, ℎ]) ∈ 𝑌 do

6 𝑟 ← 𝑅𝑅H (𝑥)

7 𝑉 ← {𝑅𝑁H (𝑓𝑖 (𝑟)) | 𝑓𝑖 ∈ 𝐹 }

8 if 𝑂𝐶H (𝑉 , 𝑥) ∉ [𝑙, ℎ] then return ∅

9 //Set initial reduced range for each 𝑓𝑖 (𝑟)

10 𝐼 ′ ← {[𝑣, 𝑣] | 𝑣 ∈ 𝑉 }

11 //Decrease the lower bounds 𝑙 ′𝑖 simulataneously

12 while true do

13 𝐴← {GetPrev(𝑙 ′𝑖 , H) | [𝑙
′
𝑖 , ℎ
′
𝑖] ∈ 𝐼

′}

14 if 𝑂𝐶H (𝐴, 𝑥) ∉ [𝑙, ℎ] then break

15 𝐼 ′ ← {[GetPrev(𝐼 ′𝑖 , H), ℎ
′
𝑖] | [𝑙

′
𝑖 , ℎ
′
𝑖] ∈ 𝐼

′}

16 //Increase the upper bounds ℎ′𝑖 simulataneously

17 while true do

18 𝐵 ← { GetNext(ℎ′𝑖 , H) | [𝑙
′
𝑖 , ℎ
′
𝑖] ∈ 𝐼

′}

19 if 𝑂𝐶H (𝐵, 𝑥) ∉ [𝑙, ℎ] then break

20 𝐼 ′ ← {[𝐼 ′𝑖 , GetNext(ℎ
′
𝑖 , H)] | [𝑙

′
𝑖 , ℎ
′
𝑖] ∈ 𝐼

′}

21 foreach [𝑙 ′𝑖 , ℎ
′
𝑖] ∈ 𝐼

′ do

22 L𝑖 ← L𝑖 ∪ (𝑟, [𝑙
′
𝑖 , ℎ
′
𝑖])

23 return {(𝑓𝑖 ,L𝑖) | 𝑓𝑖 ∈ 𝐹 }

Algorithm 2: ReducedIntervals computes the reduced in-

terval [𝑙 ′𝑖 , ℎ
′
𝑖] and the reduced input 𝑟 corresponding to in-

put 𝑥 for each function 𝑓𝑖 used with output compensation.

If our polynomial approximation for 𝑓𝑖 produces a value in

[𝑙 ′𝑖 , ℎ
′
𝑖], then we can generate the correctly rounded result for

𝑥 . ReducedIntervals returns a list with (𝑟, [𝑙 ′𝑖 , ℎ
′
𝑖]) for each

𝑓𝑖 . GetPrev(p, H) returns the preceding value of 𝑝 in H and

GetNext(p, H) returns the succeeding value of 𝑝 in H.

We compute the oracle correctly rounded result, 𝑦 = 𝑓 (𝑥),

using the MPFR math library with a large number of preci-

sion bits. To compute the rounding interval, we identify the

smallest value 𝑙 ∈ H that rounds to 𝑦 when rounded to T

and the largest value ℎ ∈ H that rounds to 𝑦 when rounded

to T. This search procedure can be efficiently implemented

either using a binary search or by leveraging the properties

of T and H. As long as our approach produces a value in

the rounding interval [𝑙, ℎ] for input 𝑥 , it will produce the

correctly rounded result.

3.2 Computing Reduced Rounding Intervals

Range reduction is crucial for any technique that generates

approximations for elementary functions. It is particularly

important with our approach for 32-bit types because the

condition number of the LP problem increases drastically

if the input domain has both extremely large and small val-

ues. Further, large inputs can cause overflows during the

evaluation of a polynomial with a large degree in H.

364

High Performance Correctly Rounded Math Libraries for 32-bit Floating Point Representations PLDI ’21, June 20ś25, 2021, Virtual, Canada

After computing rounding intervals from Algorithm 1, we

have a list of constraints (𝑥, [𝑙, ℎ]) that our approximation

for 𝑓 (𝑥) needs to satisfy for each input 𝑥 to produce the cor-

rectly rounded result. The range reduction and subsequent

output compensation can require us to approximate multiple

elementary functions 𝑓𝑖 . The next step is to identify reduced

inputs to 𝑓𝑖 and a range of values that 𝑓𝑖 should produce such

that the result of the output compensation produces a value

in [𝑙, ℎ] for each 𝑥 . The input to 𝑓𝑖 is the reduced input and

the range of values that 𝑓𝑖 should produce is the reduced

interval.

Algorithm 2 shows the steps in deducing the reduced

interval. For each constraint (𝑥, [𝑙, ℎ]), we can identify the

reduced input 𝑟 by performing range reduction on 𝑥 (line

6). However, computing the reduced interval is challenging.

We present an algorithm to deduce reduced intervals when

output compensation (𝑂𝐶H) is monotonic (either increasing

or decreasing), which is the case with all range reductions

that we explore in the paper.

To compute the reduced interval, we identify all functions

𝑓𝑖 used in 𝑂𝐶H (line 4). Then, we compute the correctly

rounded result 𝑣𝑖 for each 𝑓𝑖 (𝑟) in H using an oracle (line

7). If the result of output compensation using 𝑣𝑖 ’s does not

produce a value in the rounding interval for 𝑥 , then either

the range reduction technique should be redesigned or the

precision of H should be increased.

Now, we have a candidate value (i.e., 𝑣𝑖) for each 𝑓𝑖 (𝑟) to

produce the correctly rounded result of 𝑥 . We have to deduce

the maximum amount of freedom available for each 𝑓𝑖 (𝑟).

We initially set the reduced intervals [𝑙𝑖 , ℎ𝑖] for each 𝑓𝑖 to

be [𝑣𝑖 , 𝑣𝑖] (line 10). Next, we identify if we can decrease the

lower bound of the intervals of 𝑓𝑖 (𝑟). For a given reduced

input 𝑟 of input 𝑥 , we check if using the preceding values

of 𝑙𝑖 in H for all 𝑓𝑖 ’s with output compensation produces

a value in the rounding interval [𝑙, ℎ] of 𝑥 . If it does, then

we widen the reduced interval by replacing each 𝑙𝑖 with the

preceding value. We repeat the process until the result of

output compensation using the preceding values no longer

produces a value in [𝑙, ℎ] (lines 12-15). This procedure to

compute the lower bound can be efficiently implemented

by performing binary search between 𝑣𝑖 and the minimum

representable value.

Similarly, we identify if we can increase the upper bound

of the interval for each 𝑓𝑖 (𝑟). For each upper boundℎ𝑖 of 𝑓𝑖 (𝑟),

we identify the value that succeeds ℎ𝑖 and check whether the

result of output compensation using the succeeding value

produces a value in [𝑙, ℎ]. If it does, then we widen the re-

duced interval by replacing eachℎ𝑖 with the succeeding value.

We repeat the process until output compensation produces

a value outside the interval [𝑙, ℎ] of input 𝑥 (lines 17-20).

The upper bound of the reduced interval can be efficiently

computed by performing binary search between 𝑣𝑖 and the

maximum representable value. Finally, we store the reduced

constraints (𝑟, [𝑙 ′𝑖 , ℎ
′
𝑖]) for each function 𝑓𝑖 in a list L𝑖 .

1 Function GenApproxFunc(L, 𝑑):

2 L− ← {(𝑟, [𝑙 ′, ℎ′]) ∈ L | 𝑟 < 0}

3 L+ ← {(𝑟, [𝑙 ′, ℎ′]) ∈ L | 𝑟 ≥ 0}

4 Ψ
− ← GenApproxHelper(L−, 𝑑)

5 Ψ
+ ← GenApproxHelper(L+, 𝑑)

6 return {Ψ−,Ψ+}

7 Function GenApproxHelper(L, 𝑑):

8 𝑛 ← 0

9 while true do

10 Δ = SplitDomain(L, 𝑛)

11 (𝑠𝑡𝑎𝑡𝑢𝑠,Ψ) = GenPiecewise(Δ, 𝑑)

12 if 𝑠𝑡𝑎𝑡𝑢𝑠 = 𝑡𝑟𝑢𝑒 then return Ψ

13 𝑛 ← 𝑛 + 1

14 Function GenPiecewise(Δ, 𝑑):

15 Ψ← ∅

16 foreach Δ 𝑗 ∈ Δ do

17 (𝑠𝑡𝑎𝑡𝑢𝑠,Ψ𝑗) ← GenPolynomial(Δ 𝑗 , 𝑑)

18 if status = false then return (𝑓 𝑎𝑙𝑠𝑒, ∅)

19 Ψ← Ψ ∪ Ψ𝑗

20 return (true, Ψ)

Algorithm 3: GenApproxFunc generates piecewise polyno-

mials that produce a value in the reduced interval for all reduced

inputs in L. It initially attempts to produce a single polynomial

for the entire reduced input domain. If unsuccessful, then it

splits the domain into multiple sub-domains. SplitDomain (not

defined in this algorithm) splits the reduced input domain into

sub-domains based on the bit-pattern of the reduced inputs

in H. SplitDomain returns Δ, which includes a set of reduced

constraints for each sub-domain Δ 𝑗 . GenPiecewise generates

a polynomial for each sub-domain, which is shown in Algo-

rithm 4.

Each L𝑖 corresponding to 𝑓𝑖 contains reduced intervals

(𝑟, [𝑙 ′𝑖 , ℎ
′
𝑖]) for the reduced input 𝑟 to produce a correct re-

sult for input 𝑥 . As multiple inputs can map to the same

reduced input 𝑟 , there can be multiple reduced constraints

(𝑟, [𝑙1′𝑖 , ℎ1
′
𝑖]) and (𝑟, [𝑙2

′
𝑖 , ℎ2

′
𝑖]) for the same reduced input

𝑟 corresponding to original inputs 𝑥1 and 𝑥2. The reduced

intervals [𝑙1′𝑖 , ℎ1
′
𝑖] and [𝑙2

′
𝑖 , ℎ2

′
𝑖] are not exactly identical to

account for numerical errors in range reduction and output

compensation. Our polynomial approximation for 𝑓𝑖 must

satisfy the constraints (𝑟, [𝑙1′𝑖 , ℎ1
′
𝑖]) to produce the correctly

rounded result for 𝑥1 and (𝑟, [𝑙1′𝑖 , ℎ1
′
𝑖]) to produce the cor-

rectly rounded result for 𝑥2. Thus, we generate a single com-

bined interval by computing the common interval between

them. If there is no common interval between all reduced

intervals corresponding to the same reduced input, then it

implies that there is no polynomial approximation for 𝑓𝑖 that

produces the correctly rounded results for all inputs 𝑥 in the

original domain. The library designer will have to redesign

range reduction in such cases.

365

PLDI ’21, June 20ś25, 2021, Virtual, Canada Jay P. Lim and Santosh Nagarakatte

3.3 Efficient Piecewise Polynomials

After the above steps, we have a list of reduced constraints

(𝑟, [𝑙 ′𝑖 , ℎ
′
𝑖]) in L for each reduced input 𝑟 and for each func-

tion 𝑓𝑖 that we need to approximate. The next step in our

approach is to generate polynomials that approximate 𝑓𝑖
and satisfy the constraints in L𝑖 . Even after range reduction,

there can be hundreds of millions of reduced inputs. The

counterexample guided polynomial generation algorithm,

which we describe in Section 3.4, can likely generate a sin-

gle polynomial in many cases. However, it will also have

a large degree and may not be efficient. To generate high

performance math libraries, we propose the generation of

piecewise polynomials. Effectively splitting the domain into

smaller domains for the generation of piecewise polynomials

is essential to improve performance. Hence, we group the

reduced input into sub-domains based on the bit-patterns of

the reduced input in H.

Algorithm 3 describes our steps to generate piecewise

polynomials. Range reduction techniques for many elemen-

tary functions can create both positive and negative reduced

inputs (e.g., 𝑒𝑥 , 2𝑥 , 10𝑥). The bit-patterns for positive and

negative reduced inputs in H will not have common bits at

the beginning (e.g., the explicit sign bit distinguishes posi-

tive and negative values in double). Hence, we separate the

reduced inputs (and their intervals) into two groups: L− that

contains negative reduced inputs and L+ that contains non-

negative reduced inputs (lines 2-3). We create polynomial

approximations for each L− and L+ (lines 4-5). This step

also allows us to subsequently group the reduced input into

sub-domains in an efficient manner.

If L contains only negative or positive reduced inputs, we

try to generate a single polynomial of degree 𝑑 that satisfies

all reduced constraints in L (line 11 and 17) using our coun-

terexample guided polynomial generation (see Section 3.4).

If it cannot generate a polynomial of degree 𝑑 that satisfies

all constraints, then we split the reduced input domain in L

into multiple sub-domains (lines 9-13 in GenApproxHelper).

We iteratively split the domain of reduced inputs into 2𝑛 sub-

domains based on the bit-pattern of 𝑟 inH (i.e., SplitDomain

call in line 10). To split the reduced input domain, we first

identify the smallest reduced input 𝑅𝑚𝑖𝑛 and the largest re-

duced input 𝑅𝑚𝑎𝑥 . Then, we compute the number of consec-

utive bits that are identical in the bit-string representation of

𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 inH starting from the most significant bit. We

use the next 𝑛 bits to identify the sub-domain for the piece-

wise polynomial. Subsequently, we group the reduced inputs

and reduced intervals based on the bit-pattern of the reduced

input into sub-domains (Δ returned by SplitDomain). We

try to generate a polynomial of degree 𝑑 that satisfies all

reduced constraints in Δ 𝑗 for all Δ 𝑗 ’s belonging to 𝑓𝑖 (lines

16-19). Using bit-patterns of the reduced input in H allows

us to efficiently identify the sub-domain for the piecewise

polynomial with two bitwise operations (and and a shift).

1 Function GenPolynomial(Δ 𝑗 , 𝑑):

2 S ← Sample(Δ 𝑗)

3 while true do

4 Ψ𝑗 ← GetCoeffsUsingLP(S, 𝑑)

5 if Ψ𝑗 = ∅ then return (𝑓 𝑎𝑙𝑠𝑒, ∅)

6 (𝐷𝑜𝑛𝑒,S) ← Check(Ψ𝑗 , Δ 𝑗 , S)

7 if 𝐷𝑜𝑛𝑒 = 𝑡𝑟𝑢𝑒 then return (𝑡𝑟𝑢𝑒,Ψ𝑗)

8 if |S| > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then return (𝑓 𝑎𝑙𝑠𝑒, ∅)

9 Function Check(Ψ𝑗 , Δ 𝑗 , S):

10 𝐷𝑜𝑛𝑒 ← 𝑡𝑟𝑢𝑒

11 foreach (𝑟, [𝑙 ′, ℎ′]) ∈ Δ 𝑗 do

12 if not 𝑙 ′ ≤ Ψ𝑗 (𝑟) ≤ ℎ
′ then

13 S ← {(𝑟, [𝑙 ′, ℎ′])} ∪ S

14 𝐷𝑜𝑛𝑒 ← 𝑓 𝑎𝑙𝑠𝑒

15 return (𝐷𝑜𝑛𝑒,S)

Algorithm 4: GenPolynomial attempts to find a polynomial

of degree 𝑑 that satisfies the reduced input and interval con-

straints in Δ 𝑗 using our counterexample guided sampling ap-

proach. If it is infeasible to find a polynomial of degree 𝑑 or the

size of the sample exceeds a threshold, then it returns (false, ∅).

GetCoeffsUsingLP generates the coefficients of a polynomial

that satisfies all constraints in S using the LP solver. Check val-

idates that the polynomial generated using the sample satisfies

all reduced input and interval constraints. We add counterex-

amples (i.e., all inputs where the polynomial does not satisfy

the constraints) to the sample and repeat the process.

Once we generate a polynomial for each sub-domain of ev-

ery 𝑓𝑖 , the coefficients of the polynomial are stored in a table,

which is indexed using the bit-pattern of the reduced input

for each 𝑓𝑖 .

3.4 Counterexample Driven Polynomial Generation

Once we have the reduced input and the reduced intervals,

we structure the problem of generating polynomials as a

linear programming problem similar to our prior work on

RLibm [31, 32]. Even after range reduction and creation of

sub-domains for the generation of piecewise polynomials,

we need to generate a polynomial approximation when there

are several million reduced inputs and reduced intervals in

the context of 32-bit types. However, they are beyond the

capabilities of modern LP solvers, which can handle a few

thousand constraints. To address this issue, we propose coun-

terexample guided polynomial generation with sampling.

The key insight is that we do not need to add every reduced

input and interval as a constraint in the LP formulation as

long as we identify and add the highly constrained intervals.

Our counterexample guided polynomial generation strat-

egy takes as input the set of reduced constraints (𝑟, [𝑙 ′, ℎ′])

corresponding to reduced inputs that belong to a particular

sub-domain. The goal is to generate a polynomial of degree 𝑑

that produces a value in the reduced interval [𝑙 ′, ℎ′] for each

366

High Performance Correctly Rounded Math Libraries for 32-bit Floating Point Representations PLDI ’21, June 20ś25, 2021, Virtual, Canada

reduced input 𝑟 . Each reduced input 𝑟 and the corresponding

interval [𝑙 ′, ℎ′] specifies the following linear constraint for a

polynomial of degree 𝑑 that we want to generate:

𝑙 ′ ≤ 𝑐0 + 𝑐1𝑟 + 𝑐2𝑟
2 + · · · + 𝑐𝑑𝑟

𝑑 ≤ ℎ′

The task of the polynomial generator is to find coefficients

for the polynomial.

To scale to 32-bit types, we sample a small fraction of

the reduced input and intervals. Algorithm 4 reports our

counterexample guided polynomial generation process. It

takes two inputs: the degree of the polynomial and the set

of reduced inputs and intervals (i.e., Δ 𝑗) for generating a

polynomial approximation for an elementary function 𝑓𝑖 on

reduced inputs for sub-domain 𝑗 . We maintain the reduced

inputs and their intervals in increasing order. Then we uni-

formly sample the reduced inputs based on the distribution

of reduced inputs. If there are a large number of reduced

inputs in a particular region of the sub-domain, then our

method has more samples from that region. We also add

highly constrained reduced inputs and intervals (i.e., the cor-

rectly rounded result and the lower bound/upper bound is

less than 𝜖 , which is set by the math library designer) to the

sample.

Then we express all constraints in the sample (𝑟, [𝑙 ′, ℎ′])

using a single system of linear inequalities and solve for

the coefficients using an LP solver (line 4). If there are 𝑛

points in the sample, the system of linear inequalities is of

the following form:



𝑙 ′1
𝑙 ′2
...

𝑙 ′𝑛



≤



1 𝑟1 . . . 𝑟𝑑1
1 𝑟2 . . . 𝑟𝑑2
...

...
...

...

1 𝑟𝑛 . . . 𝑟𝑑𝑛





𝑐0
𝑐1
...

𝑐𝑑



≤



ℎ′1
ℎ′2
...

ℎ′𝑛



There are two issues with the polynomial generated using

the sampled reduced inputs that we need to address. First, as

the LP solver returns coefficients as real numbers, the coeffi-

cients are rounded to a value in H. As a result of rounding

error, the result of polynomial evaluation for a particular

reduced input in the sample may not lie within its rounding

interval. Second, the polynomial generated using the sample

may not satisfy the constraints for the entire set of reduced

inputs and their corresponding intervals.

We address the real coefficients issue with a search-and-

refine procedure similar to RLibm. When the LP solver re-

turns real coefficients andwe round it toH, we checkwhether

evaluating the polynomial satisfies constraints for every in-

put in the sample. If it does not, then we select the input

and reduce its rounding interval (either replace the lower

bound with its succeeding value or replace the upper bound

with the preceding value). Then we repeat the above process

until it generates a polynomial that either satisfies all con-

straints in the sample when evaluated in H or cannot find

a polynomial of degree 𝑑 . If we cannot find a polynomial

that satisfies all constraints in the sample, then we split the

entire reduced domain in L𝑖 into even smaller sub-domains

and repeat this process.

If we successfully generate a polynomial Ψ𝑗 that satisfies

all constraints in the sample, then we check whether this

polynomial satisfies all constraints in Δ 𝑗 (line 10-15). If Ψ𝑗
satisfies all constraints, then we return the polynomial (line

7). If there is any constraint not satisfied by Ψ𝑗 in the entire

set of reduced inputs, then we add that reduced input and

its interval to the sample (i.e., adding the counterexample in

lines 12-13). We repeat the process of generating the polyno-

mial with the new sample. If the number of constraints in the

sample exceeds a threshold at any point, then we determine

that we cannot generate a polynomial for the sub-domain

Δ 𝑗 . Our function to generate the coefficients for the polyno-

mial (i.e., GetCoeffsUsingLP) using an LP solver generates

a polynomial of a lower degree (than input degree 𝑑) if it is

possible to do so.

4 Experimental Evaluation

We provide details on our prototype, experimental method-

ology, and the results of our experiments to check the cor-

rectness and performance of the generated functions.

4.1 Experimental Setup and Methodology

Prototype. The RLibm-32 prototype generates correctly

rounded elementary functions for 32-bit floats and posit32,

which is a 32-bit posit type providing tapered precision (i.e.,

more precision than float for values near 1) [19]. It con-

tains ten correctly rounded elementary functions for 32-bit

floats and eight elementary functions for the posit32 type.

To generate correctly rounded elementary functions with

good performance, the user can provide custom range re-

duction functions and specify the degree or the structure of

the polynomial (i.e., odd or even). RLibm-32 uses the MPFR

library [15] with up to 400 precision bits to compute the

oracle for 𝑓 (𝑥) and rounds it to the target representation,

which is good enough to compute the oracle result for dou-

ble [28]. RLibm-32 uses SoPlex [17], an exact rational LP

solver, for generating coefficients for the polynomials with a

five minute time limit. We use a threshold of fifty thousand

reduced inputs and intervals in the sample for counterexam-

ple guided polynomial generation. RLibm-32’s math library

performs range reduction, polynomial evaluation, and output

compensation using double precision. Polynomial evaluation

uses the Horner’s method [3]. We designed novel extensions

to range reduction for many elementary functions, which

is inspired by table-based range reduction [13, 44ś46]. Our

extended technical report provides additional details about

range reduction for each elementary function [34]. RLibm-32

is open source and publicly available [33].

367

PLDI ’21, June 20ś25, 2021, Virtual, Canada Jay P. Lim and Santosh Nagarakatte

Table 1. Generation of correctly rounded results for 32-bit floats with RLibm-32, Intel’s libm (float and double), glibc’s libm (float and double),

CR-LIBM, and MetaLibm (float and double). ✓indicates that the library produces the correctly rounded result for all inputs. Otherwise, we

use ✗. For each ✗, we show the number of inputs with wrong results. N/A indicates that the implementation is not available.

float

functions

Using

RLibm-32

Using

glibc float

Using

glibc double

Using

Intel float

Using

Intel double

Using

CR-LIBM

Using

MetaLibm float

Using

MetaLibm double

ln(x) ✓ ✗(4.2E5) ✗(5) ✗(1060) ✗(5) ✗(5) N/A N/A

log2(x) ✓ ✗(3.1E5) ✓ ✗(276) ✓ ✓ N/A N/A

log10(x) ✓ ✗(3.0E7) ✗(1) ✗(1.5E5) ✗(1) ✗(1) N/A N/A

exp(x) ✓ ✗(1.7E5) ✓ ✗(2.5E5) ✓ ✓ ✗(5.1E8) ✗(5.1E8)

exp2(x) ✓ ✗(1.7E5) ✗(2) ✗(7.2E5) ✗(2) N/A ✗(6.5E7) ✗(1026)

exp10(x) ✓ ✗(1.7E5) ✓ ✗(3.9E5) ✓ N/A N/A N/A

sinh(x) ✓ ✗(7.1E7) ✗(2) ✗(2.5E5) ✗(2) ✗(2) N/A N/A

cosh(x) ✓ ✗(1.8E7) ✓ ✗(1.4E5) ✓ ✓ ✗(1.1E7) ✓

sinpi(x) ✓ N/A N/A ✗(3.4E5) ✓ ✓ N/A N/A

cospi(x) ✓ N/A N/A ✗(3.8E5) ✓ ✓ N/A N/A

Methodology.We test the elementary functions inRLibm-

32 on two dimensions: (1) ability to generate correct results

and (2) performance in comparison to state-of-the-art li-

braries. We compare RLibm-32’s functions with four libraries:

Intel’s libm, glibc’s libm, CR-LIBM [13], and Metalibm [25].

To use double precision libraries, we convert the float input

into double, use the double function, and round the result

back to float. Among these libraries, CR-LIBM has correctly

rounded functions for double precision. However, CR-LIBM

does not produce correctly rounded results for 32-bit floats

due to double rounding. There are no math libraries available

for posit32. All posit32 values can be exactly represented in

double. Hence, we compare our posit32 library with glibc

and Intel’s double libm and CR-LIBM.

Experimental setup.We performed all our experiments

on a 2.10GHz Intel Xeon Gold 6230R machine with 187GB of

RAM running Ubuntu 18.04. We disabled Intel turbo boost

and hyper-threading to minimize noise. We compiled RLibm-

32’s math library at the O3 optimization level. We used Intel’s

libm from the oneAPI Toolkit and glibc’s libm from glibc-

2.33. We generated Metalibm implementations with opti-

mizations for AVX2 extensions enabled. Our test harness that

compares glibc’s libm, CR-LIBM, and Metalibm with RLibm-

32 is built using the gcc-10 compiler with -O3 -static

-frounding-math -fsignaling-nans flags. To use Intel’s

libm, we have to use the Intel compiler. Hence, the test har-

ness that compares Intel libm with RLibm-32 is built using

the icc compiler with -O3 -no-ftz -fp-model strict

-static to obtain as many correct results as possible. Fur-

ther, the size of the executable generated by statically linking

RLibm-32 is 2% smaller on average when compared to the

executable generated with Intel’s double libm.

Measuring performance. To compare performance, we

measure the number of cycles taken to compute the result

for each input using hardware performance counters. The

total time taken is computed as the sum of the time taken

by all inputs (i.e., all 232 inputs for a 32-bit representation).

We ran the measurements for all inputs for each function six

times. Then, we compute the average time taken to compute

each elementary function. As Intel’s compiler performs vec-

torization by default at the O3 optimization level, our above

setup does not measure improvements due to vectorization.

Hence, we created another test harness that creates an array

of 1024 floats (i.e., 210 inputs), populates it with different

inputs, and measures the number of cycles taken to com-

pute the results of 210 inputs using hardware performance

counters. We repeat this experiment 222 times to compute

the result and measure the total time taken for all 232 inputs.

4.2 Generation of Correctly Rounded Results

Table 1 reports the results of our experiments to check the

correctness of various elementary functions in RLibm-32 and

other mainstream libraries. RLibm-32 produces the correctly

rounded results for all inputs for the ten elementary func-

tions for 32-bit floats. In contrast, elementary functions in

glibc, Intel, and MetaLibm’s float library do not produce the

correct result for all inputs. Multiple functions in glibc and

MetaLibm’s float library produce wrong results for several

million inputs. Intel’s libm also produces wrong results with

several thousand inputs with the float version. When we

use double precision version of functions from glibc, Intel’s

libm, and CR-LIBM, it does not produce the correct result

for 𝑙𝑛(𝑥), 𝑙𝑜𝑔10(𝑥), 𝑒𝑥𝑝2(𝑥), and 𝑠𝑖𝑛ℎ(𝑥). These cases occur

when the real value of 𝑓 (𝑥) is extremely close to the round-

ing boundary of a floating point value. Even with a smaller

mini-max approximation error in the double library com-

pared to their float versions, these libraries do not produce

the correctly rounded result for all inputs. CR-LIBM, which

is a correctly rounded double library, produces wrong re-

sults for float functions due to double rounding. We observed

that functions in MetaLibm do not produce correct results

even when it internally uses Sollya [9], which can be used

to generate correctly rounded implementations.

368

High Performance Correctly Rounded Math Libraries for 32-bit Floating Point Representations PLDI ’21, June 20ś25, 2021, Virtual, Canada

Table 2. Generation of correctly rounded results with posit32 func-
tions for all inputs by RLibm-32, Intel and glibc’s double libraries,

and CR-LIBM. ✓indicates that the library produces the correctly

rounded result for all inputs and otherwise, we use ✗.

posit32

functions

Using

RLibm-32

Using

glibc double

Using

Intel double

Using

CR-LIBM

ln(x) ✓ ✗(22) ✗(22) ✗(22)

log2(x) ✓ ✗(19) ✗(18) ✗(18)

log10(x) ✓ ✗(26) ✗(23) ✗(23)

Exp(x) ✓ ✗(4.4E8) ✗(4.4E8) ✗(4.4E8)

Exp2(x) ✓ ✗(4.0E8) ✗(4.0E8) N/A

Exp10(x) ✓ ✗(5.2E8) ✗(5.2E8) N/A

Sinh(x) ✓ ✗(4.4E8) ✗(4.4E8) ✗(4.4E8)

Cosh(x) ✓ ✗(4.4E8) ✗(4.4E8) ✗(4.4E8)

Table 2 reports that RLibm-32 produces correctly rounded

results with all inputs for the eight posit32 functions. All

posit32 values are representable in double precision but they

cannot be represented in 32-bit floats. Hence, we use CR-

LIBM, Intel and glibc’s double library to compare with RLibm-

32. These libraries for double precision do not produce cor-

rect results for all posit32 inputs. Unlike functions for 32-bit

floats, they produce wrong results for several million inputs

especially for exponential and hyperbolic functions. One of

the key reasons for wrong results is the absence of overflows

to∞ and underflows to 0 with the posit32 type. Instead, ex-

tremely large values are rounded to the largest representable

value. Similarly, extremely small values are rounded to the

smallest non-zero representable value in the posit32 type.

Piecewise polynomials generated by RLibm-32. Ta-

ble 3 provides details on the piecewise polynomials generated

by RLibm-32. Our goal is to get the best possible performance

within a given storage budget for piecewise polynomials (i.e.,

number of sub-domains when we split the range of reduced

inputs). Hence, we used the RLibm-32 to generate piece-

wise polynomials such that the degree of each polynomial

was less than or equal to 8 and the number of sub-domains

was less than or equal to 214. The output compensation for

𝑠𝑖𝑛ℎ(𝑥), 𝑐𝑜𝑠ℎ(𝑥), 𝑠𝑖𝑛𝑝𝑖 (𝑥), and 𝑐𝑜𝑠𝑝𝑖 (𝑥) involves two ele-

mentary functions. We generate two piecewise polynomials

for each of those elementary functions. There are both posi-

tive and negative reduced inputs for 𝑒𝑥𝑝 (𝑥), 𝑒𝑥𝑝2(𝑥), and

𝑒𝑥𝑝10(𝑥). Hence, we created two piecewise polynomials:

one for the negative reduced inputs and another for positive

reduced inputs. Notably, we were able to generate a single

polynomial of degree 5 and 4 that satisfies all reduced con-

straints for 𝑠𝑖𝑛𝑝𝑖 (𝑟) and 𝑐𝑜𝑠𝑝𝑖 (𝑟), respectively. Both 𝑠𝑖𝑛𝑝𝑖 (𝑟)

and 𝑐𝑜𝑠𝑝𝑖 (𝑟) have close to 120 million reduced inputs. Our

counterexample driven polynomial generation with sam-

pling was instrumental in creating this efficient polynomial.

Time taken to generate RLibm-32 functions. Table 3

also reports the time taken to generate the 32-bit float and

the posit32 functions in RLibm-32. It ranges from 19 minutes

Table 3.Details about the generated polynomials. For each elemen-

tary function, time taken to generate the polynomials in minutes,

the size of the piecewise polynomial for approximating 𝑓𝑖 (𝑟), the

maximum degree of the polynomial, and the number of terms in

the polynomial.

𝑓 (𝑥)
Gen. Time

(Minutes)

Reduced

Inputs

of Poly-

nomials

Deg-

ree

of

Terms

float functions

𝑙𝑛(𝑥) 218 7.2E6 210 3 3

𝑙𝑜𝑔2(𝑥) 251 7.2E6 28 3 3

𝑙𝑜𝑔10(𝑥) 429 7.2E6 28 3 3

𝑒𝑥𝑝 (𝑥) 117 5.2E8
27

27
4

4

5

5

𝑒𝑥𝑝2(𝑥) 86 3.0E8
24

23
4

4

5

5

𝑒𝑥𝑝10(𝑥) 169 5.2E8
26

27
4

3

5

4

𝑠𝑖𝑛ℎ(𝑥) 28 1.5E8 26 5 3

𝑐𝑜𝑠ℎ(𝑥) 24 1.5E8 26 4 3

𝑠𝑖𝑛𝑝𝑖 (𝑥) 30 1.2E8 1 5 3

𝑐𝑜𝑠𝑝𝑖 (𝑥) 19 1.2E8 1 4 3

posit32 functions

𝑙𝑛(𝑥) 264 1.1E8 211 4 4

𝑙𝑜𝑔2(𝑥) 288 1.1E8 28 4 4

𝑙𝑜𝑔10(𝑥) 685 1.1E8 212 3 3

𝑒𝑥𝑝 (𝑥) 1089 3.5E9
212

212
3

3

4

4

𝑒𝑥𝑝2(𝑥) 814 7.9E8
210

212
3

3

4

4

𝑒𝑥𝑝10(𝑥) 1528 3.4E9
213

213
3

3

4

4

𝑠𝑖𝑛ℎ(𝑥) 461 1.6E9
214

214
5

4

3

3

𝑐𝑜𝑠ℎ(𝑥) 528 1.7E9
214

212
3

6

2

4

for 𝑐𝑜𝑠𝑝𝑖 (𝑥) for the float type to approximately 25 hours for

𝑒𝑥𝑝10(𝑥) for the posit32 type. Majority of the total time total

time is spent in computing the oracle result and the round-

ing interval using the MPFR library (i.e., 86% of total time

for 32-bit floats and 55% of total time for the posit32 type).

In contrast, counterexample guided polynomial generation

takes 14% and 45% of the total time for 32-bit floats and the

posit32 type, respectively. We noticed that it takes signifi-

cantly longer to generate posit32 functions. There are fewer

special cases, which requires longer oracle computation. Fur-

ther, RLibm-32 generates larger piecewise polynomials for

posit32 functions to account for higher precision than a 32-

bit float and saturating behavior with extremal values.

4.3 Performance Evaluation of RLibm-32

Performance of float functions. Figure 3(a) presents the

speedup of RLibm-32’s float functions over glibc’s float func-

tions (left bar in each cluster) and double functions (right

369

PLDI ’21, June 20ś25, 2021, Virtual, Canada Jay P. Lim and Santosh Nagarakatte

(a) Speedup of RLibm-32’s float functions over glibc libm

ln log2 log10 exp exp2 exp10 sinh cosh
geomean

0x

1x

2x

Sp
ee

du
p

Speedup over float libm Speedup over double libm
(b) Speedup of RLibm-32’s float functions over Intel libm

ln log2 log10 exp exp2exp10 sinh cosh sinpi cospi
geomean

0x

1x

2x

Sp
ee

du
p

Speedup over float libm Speedup over double libm

(c) Speedup of RLibm-32’s float functions over CR-LIBM

ln log2 log10 exp10 sinh cosh sinpi cospi
geomean

0x

2x

Sp
ee

du
p

2.5x 2.5x 3.6x
Speedup over double libm

(d) Speedup of RLibm-32’s float functions over MetaLibm

exp exp2 cosh
geomean

0x

2x

4x

Sp
ee

du
p

Speedup over float libm Speedup over double libm

Figure 3. (a) Speedup of RLibm-32’s float functions compared to glibc’s float functions (left) and glibc’s double functions (right). (b) Speedup

of RLibm-32’s functions compared to Intel’s float functions (left) and Intel’s double functions (right). (c) Speedup of RLibm-32’s functions

compared to CR-LIBM functions. (d) Speedup of RLibm-32’s functions compared to MetaLibm’s float functions (left) and double functions

(right) built with AVX2 optimizations.

bar in each cluster). On average, RLibm-32’s float functions

have 1.1× speedup over glibc’s float libm and 1.2× speedup

over glibc’s double libm. Figure 3(b) reports the speedup of

RLibm-32’s float functions over Intel’s float libm and double

libm. RLibm-32’s float functions have an average of 1.5×

speedup over Intel’s float functions and 1.6× speedup over

Intel’s double functions. Figure 3(c) reports that RLibm-32’s

functions are on average 2× faster than CR-LIBM functions.

Figure 3(d) reports the speedup of RLibm-32’s functions over

MetaLibm’s float and double functions. RLibm-32’s functions

are on average 2.5× and 2.7× faster than MetaLibm’s float

and double functions, respectively. RLibm-32’s functions are

faster than all the corresponding functions in Intel libm, CR-

LIBM, and MetaLibm. RLibm-32’s functions are faster than

glibc’s functions except for 𝑙𝑛(𝑥), 𝑙𝑜𝑔2 (𝑥), and 𝑙𝑜𝑔10 (𝑥) for

float and 𝑙𝑛(𝑥) for double. However, glibc’s libm produces

a large number of wrong results for them. RLibm-32’s func-

tions are not only faster but also produce correctly rounded

results for all inputs.

Performance of posit32 functions. The graphs in Fig-

ure 4(a), Figure 4(b), and Figure 4(c) report the speedup

of RLibm-32’s posit32 functions when compared to math

libraries created by re-purposing glibc’s, Intel’s, and CR-

LIBM’s double functions, respectively. On average, RLibm-

32’s posit32 functions are 1.1×, 1.1×, and 1.4× faster than

glibc’s libm, Intel’s libm, and CR-LIBM, respectively. All

three re-purposed math libraries produce wrong results for

some inputs. RLibm-32 provides the first correctly rounded

functions for the posit32 type.

Vectorization. Intel compiler uses vector instructions to

improve performance by default. In our experiments with

vectorization using an array of 1024 inputs (see Section 4.1),

RLibm-32 is on average 10% and 5% slower than Intel’s float

libm and double libm, respectively. However, Intel’s compiler

produces wrong results for several million inputs (without

-no-ftz -fp-model strict flags). In contrast, RLibm-32’s

functions are almost as fast as vectorized code while produc-

ing correct results for all inputs.

Performance impact of piecewise polynomials. To

analyze the performance benefits due to piecewise poly-

nomials, we identified elementary functions for which we

could generate a single polynomial that produces correctly

rounded results for all inputs (𝑙𝑜𝑔2(𝑥), 𝑙𝑜𝑔10(𝑥), 𝑠𝑖𝑛𝑝𝑖 , and

𝑐𝑜𝑠𝑝𝑖) . We measured the change in performance with an

increase in the number of sub-domains ranging from 20 (i.e.,

a single polynomial) to 212. Figure 5 reports the performance

of 𝑙𝑜𝑔2(𝑥) and 𝑙𝑜𝑔10 (𝑥) with an increase in the number of

sub-domains when compared to the performance of a single

polynomial. We validated that all these polynomials produce

the correct result for all inputs. Figure 5 does not report

𝑠𝑖𝑛𝑝𝑖 and 𝑐𝑜𝑠𝑝𝑖 because the single polynomial has the best

performance. Initially, there is a small decrease in perfor-

mance by moving from a single polynomial to a piecewise

polynomial because the degree of the piecewise polynomial

does not decrease significantly to subsume the overhead of

table lookup. On increasing the number of sub-domains, we

observed almost 1.2× speedup with piecewise polynomials

having 28 sub-domains. It requires 6KB for storing coeffi-

cients of piecewise polynomials.

370

High Performance Correctly Rounded Math Libraries for 32-bit Floating Point Representations PLDI ’21, June 20ś25, 2021, Virtual, Canada

(a) Speedup of RLibm-32’s posit32 functions

over glibc libm

ln log2log1
0exp exp2exp1

0sinh cosh
geom

ean
0x

1x

2x

Sp
ee

du
p

(b) Speedup of RLibm-32’s posit32 functions

over Intel libm

ln log2log1
0exp exp2exp1

0sinh cosh
geom

ean
0x

1x

2x

Sp
ee

du
p

(c) Speedup of RLibm-32’s posit32

functions over CR-LIBM

ln log2log1
0exp sinh cosh

geom
ean

0x

1x

2x

Sp
ee

du
p

Figure 4. (a) Speedup of RLibm-32’s posit32 functions compared to glibc’s double functions. (b) Speedup of RLibm-32’s posit32 functions

compared to Intel’s double functions. (c) Speedup of RLibm-32’s posit32 functions compared to CR-LIBM functions.

20 22 24 26 28 210 212

Number of sub-domains for the piecewise polynomial

0.0x
0.2x
0.4x
0.6x
0.8x
1.0x
1.2x

Sp
ee

du
p

log2(x)
log10(x)

Figure 5. Performance speedup of 𝑙𝑜𝑔2(𝑥) and 𝑙𝑜𝑔10(𝑥) with an

increase in the number of sub-domains when compared to a single

polynomial generated by RLibm-32. All these polynomials produce

the correctly rounded result for all inputs. A circle represents a

decrease in the degree of the piecewise polynomial.

5 Case Study with 𝑐𝑜𝑠𝑝𝑖 (𝑥) for Float

We describe the case study with 𝑐𝑜𝑠𝑝𝑖 (𝑥) = 𝑐𝑜𝑠 (𝜋𝑥) to illus-

trate the importance of carefully designing range reduction

to avoid cancellation errors in output compensation. The

elementary function 𝑐𝑜𝑠𝑝𝑖 (𝑥) is defined for 𝑥 ∈ (−∞,∞).

Special cases. There are three kinds of special cases:

𝑐𝑜𝑠𝑝𝑖 (𝑥) =




1.0 if |𝑥 | < 7.771 × 10−5

(−1) (|𝑥 |𝑚𝑜𝑑 2) × 1.0 if |𝑥 | ≥ 223

𝑁𝑎𝑁 if 𝑥 = 𝑁𝑎𝑁 or 𝑥 = ±∞

All float values ≥ 223 are integers. Hence, 𝑐𝑜𝑠𝑝𝑖 (𝑥) = 1.0

for even integers and 𝑐𝑜𝑠𝑝𝑖 (𝑥) = −1.0 for odd integer inputs.

Range reduction of 𝑐𝑜𝑠𝑝𝑖 (𝑥). After excluding special

cases, there are more than 600 million float inputs that need

to be approximated. Similar to range reduction for 𝑠𝑖𝑛𝑝𝑖 (𝑥)

(Section 2.1), we use periodicity and trigonometric identities

of 𝑐𝑜𝑠𝑝𝑖 (𝑥) to reduce inputs to a smaller domain. We trans-

form input 𝑥 into 𝑥 = 2.0 × 𝐼 + 𝐽 where 𝐼 is an integer and

𝐽 ∈ [0, 2). Due to periodicity, 𝑐𝑜𝑠𝑝𝑖 (𝑥) = 𝑐𝑜𝑠𝑝𝑖 (𝐽). Next, we

decompose 𝐽 into 𝐽 = 𝐾 + 𝐿 where 𝐾 is the integral part

of 𝐽 (𝐾 ∈ {0, 1}) and 𝐿 ∈ [0, 1) is the fractional part. Then,

𝑐𝑜𝑠𝑝𝑖 (𝐽) can be computed with,

𝑐𝑜𝑠𝑝𝑖 (𝐽) = (−1)𝐾𝑐𝑜𝑠𝑝𝑖 (𝐿)

To further reduce the range of 𝐿, we use the fact that

𝑐𝑜𝑠𝑝𝑖 (𝑥) between [0.5, 1) is a mirror image of 𝑐𝑜𝑠𝑝𝑖 (𝑥) be-

tween [0, 0.5) with the opposite sign. We decompose 𝐿

into𝑀 and 𝐿′ where

𝑀 =

{
0 if ≤ 0.5

1 if 𝐿 > 0.5
𝐿′ =

{
𝐿 if 𝐿 ≤ 0.5

1.0 − 𝐿 if 𝐿 > 0.5

We have 𝑐𝑜𝑠𝑝𝑖 (𝐿) = (−1)𝑀𝑐𝑜𝑠𝑝𝑖 (𝐿′). After reducing the

input 𝑥 to 𝐿′ ∈ [0, 0.5], there are around 107 million inputs.

Thus, we further reduce 𝐿′ to a value in [0, 1
512
]. We split

𝐿′ = 𝑁
512
+𝑄 where 𝑁 is an integer in the set {0, 1, 2, . . . , 255}

and 𝑄 is a fractional value in [0, 1
512
]. One possible method

to compute 𝑐𝑜𝑠𝑝𝑖 (𝐿′) is to use the trigonometric identity

𝑐𝑜𝑠𝑝𝑖 (𝑎 + 𝑏) = 𝑐𝑜𝑠𝑝𝑖 (𝑎)𝑐𝑜𝑠𝑝𝑖 (𝑏) − 𝑠𝑖𝑛𝑝𝑖 (𝑎)𝑠𝑖𝑛𝑝𝑖 (𝑏),

𝑐𝑜𝑠𝑝𝑖

(
𝑁

512
+𝑄

)
= 𝑐𝑜𝑠𝑝𝑖

(
𝑁

512

)
𝑐𝑜𝑠𝑝𝑖 (𝑄) − 𝑠𝑖𝑛𝑝𝑖

(
𝑁

512

)
𝑠𝑖𝑛𝑝𝑖 (𝑄)

The above formula is not monotonic and can have cancel-

lation errors if 𝑁 ≠ 0 (if 𝑁 = 0, then 𝑐𝑜𝑠𝑝𝑖 (𝐿′) = 𝑐𝑜𝑠𝑝𝑖 (𝑄)).

Creating monotonic output compensation. If 𝑁 ≠ 0,

we transform 𝑁 and 𝑄 to 𝑁 ′ and 𝑅 such that 𝐿′ = 𝑁 ′

512
− 𝑅 to

create a monotonic output compensation function:

𝑁 ′ =

{
0 if 𝑁 = 0

𝑁 + 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑅 =

{
𝑄 if 𝑁 = 0
1
512 −𝑄 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Then, we can compute 𝑐𝑜𝑠𝑝𝑖 (𝐿′) = 𝑐𝑜𝑠𝑝𝑖 (𝑁
′

512
− 𝑅) using

the trigonometric identity 𝑐𝑜𝑠𝑝𝑖 (𝑎−𝑏) = 𝑐𝑜𝑠𝑝𝑖 (𝑎)𝑐𝑜𝑠𝑝𝑖 (𝑏) +

𝑠𝑖𝑛𝑝𝑖 (𝑎)𝑠𝑖𝑛𝑝𝑖 (𝑏) as follows,

𝑐𝑜𝑠𝑝𝑖 (𝐿′) =
{
𝑐𝑜𝑠𝑝𝑖 (𝑅) if 𝑁 = 0

𝑐𝑜𝑠𝑝𝑖
(
𝑁 ′

512

)
𝑐𝑜𝑠𝑝𝑖 (𝑅) + 𝑠𝑖𝑛𝑝𝑖

(
𝑁 ′

512

)
𝑠𝑖𝑛𝑝𝑖 (𝑅) if 𝑁 ≠ 0

This output compensation is monotonic and does not ex-

perience cancellation error. The values of 𝑁 ′ ranges from

0 to 256 and 𝑅 ∈ [0, 1
512
]. The computation 1

512
− 𝑄 can be

computed exactly with float or double type for all values of𝑄

371

PLDI ’21, June 20ś25, 2021, Virtual, Canada Jay P. Lim and Santosh Nagarakatte

that corresponds to 𝑁 ≠ 0. There are approximately 40 mil-

lion values of 𝑅. We precompute the values for 𝑐𝑜𝑠𝑝𝑖
(
𝑁 ′

512

)

and 𝑠𝑖𝑛𝑝𝑖
(
𝑁 ′

512

)
in lookup tables (i.e., 514 values in total). We

create polynomial approximations for 𝑠𝑖𝑛𝑝𝑖 (𝑅) and 𝑐𝑜𝑠𝑝𝑖 (𝑅)

for the reduced input domain 𝑅 ∈ [0, 1
512
]. Using RLibm-32,

we were able to generate a single 5𝑡ℎ degree odd polyno-

mial for 𝑠𝑖𝑛𝑝𝑖 (𝑅) and a single 4𝑡ℎ degree even polynomial

for 𝑐𝑜𝑠𝑝𝑖 (𝑅). Finally, we can compute the result for 𝑐𝑜𝑠𝑝𝑖 (𝑥)

with the output compensation function,

𝑐𝑜𝑠𝑝𝑖 (𝑥) =

{
𝑆 × 𝑐𝑜𝑠𝑝𝑖 (𝑅) if 𝑁 = 0

𝑆 × (𝑐𝑝𝑛 × 𝑐𝑜𝑠𝑝𝑖 (𝑅) + 𝑠𝑝𝑛 × 𝑠𝑖𝑛𝑝𝑖 (𝑅)) if 𝑁 ≠ 0

where 𝑆 = (−1)𝐾 × (−1)𝑀 , 𝑐𝑝𝑛 = 𝑐𝑜𝑠𝑝𝑖 (𝑁
′

512
), and 𝑠𝑝𝑛 =

𝑠𝑖𝑛𝑝𝑖 (𝑁
′

512
). These polynomials combined with the output

compensation functions produce correctly rounded results

for all inputs for 𝑠𝑖𝑛𝑝𝑖 (𝑥) and 𝑐𝑜𝑠𝑝𝑖 (𝑥).

6 Related Work

Multiple decades of seminal work has advanced the state-of-

the-art on creating approximations for FP representations [7,

14, 15, 24, 37, 39, 47, 49]. Further, seminal research on range

reduction has made such approximation feasible [2, 12, 43ś

46]. Simultaneously, there are verification efforts to prove

bounds for math libraries [21ś23, 27, 41], identify numerical

errors with expressions that can be used in the implementa-

tion of math libraries [1, 11, 16, 18, 40], and repair individual

outputs of math libraries [38, 48, 50].

Correctly rounded libraries. Numerous groups have

developed correctly rounded elementary functions [7, 24].

Some correctly rounded libraries for FP are IBMLibUltim [49],

Sun Microsystem’s LibMCR, CR-LIBM [13], MPFR math

library [15], and RLIBM [31, 32]. CR-LIBM is a correctly

rounded double library developed using Sollya [9], which

generates mini-max polynomials to approximate elemen-

tary functions [4, 5]. Sollya uses the modified Remez algo-

rithm [39] using lattice basis reduction and also computes the

error bound of the polynomial [8, 10, 36]. Metalibm [6, 25]

builds on Sollya and generates efficient mini-max polynomi-

als with user-defined error bounds. It also uses domain split-

ting and hardware specific optimizations [26]. Compared

to mini-max approaches, our work approximates the cor-

rectly rounded result of 𝑓 (𝑥) and generates polynomials

that already account for numerical error in range reduction

and output compensation. Hence, it generates efficient and

correctly rounded results for all inputs.

This paper extends our prior work on RLibm [31, 32] and

John Gustafson’s Minefield method [20], which advocate

approximating the correctly rounded value rather than real

value of an elementary function. Our prior work on RLibm

also frames the problem of generating polynomials as an LP

problem. We have used RLibm to create correctly rounded

functions for 16-bit types: bfloat16 and posit16. This paper

extends RLibm to handle 32-bit types with systematic coun-

terexample guided polynomial generation, generation of

piecewise polynomials to improve performance, and new

techniques to deduce rounding intervals when range reduc-

tion involves multiple elementary functions.

Posit libraries. SoftPosit-Math [30] and RLibm libraries

provide correctly rounded math functions for 16-bit posits.

In our prior work, we have produced approximations for a

set of trigonometric functions using the CORDIC method

for posit32 [35]. However, it does not produce correct results

for all inputs. In this paper, we develop the first set of ele-

mentary functions that produce correctly rounded results

for all inputs for 32-bit posits.

7 Conclusion and Future Directions

Mainstreammath libraries have been designed and improved

by numerous researchers spanning multiple decades. Yet,

they fail to generate correct results for all inputs. This pa-

per advocates approximating the correctly rounded value

instead of the real value similar to our prior work on RLibm.

It extends RLibm to scale to 32-bit representations: (a) coun-

terexample guided polynomial generation with an LP solver

to handle billions of inputs, (b) generation of constraints

to account for multiple elementary functions in range re-

duction, and (c) generation of piecewise polynomials. The

resulting functions produce correct results for all inputs and

are also faster than existing libraries for 32-bit floats and

posits.

Going forward, we plan to generate approximations for

all commonly used elementary functions with 32-bit types,

which we believe can be accomplished with our approach.

However, it may require us to develop novel extensions to

range reduction. Further, it may be necessary to perform

range reduction in higher precision for some trigonometric

functions such as sine and cosine that use 𝜋 . Beyond 32-

bit types, we also plan to extend this approach to double

precision. Our approach can generate a polynomial that pro-

duces the correctly rounded result for the sampled points

in the double type. Validating the correctness of the result

produced by a polynomial generated using our approach for

all inputs in the double type is an open research problem.

Our long-term goal is to enable the standards of existing and

new representations to mandate correctly rounded results.

Acknowledgments

We thank our shepherd Rahul Sharma and the PLDI review-

ers for their feedback. We thank John Gustafson for his in-

puts on the Minefield method and the posit representation.

This material is based upon work supported in part by the

National Science Foundation under Grant No. 1908798 and

Grant No. 1917897.

372

High Performance Correctly Rounded Math Libraries for 32-bit Floating Point Representations PLDI ’21, June 20ś25, 2021, Virtual, Canada

References
[1] Florian Benz, Andreas Hildebrandt, and Sebastian Hack. 2012. A

Dynamic Program Analysis to Find Floating-point Accuracy Problems.

In Proceedings of the 33rd ACM SIGPLAN Conference on Programming

Language Design and Implementation (Beijing, China) (PLDI ’12). ACM,

New York, NY, USA, 453ś462. https://doi.org/10.1145/2345156.2254118

[2] Sylvie Boldo, Marc Daumas, and Ren-Cang Li. 2009. Formally Verified

Argument Reduction with a Fused Multiply-Add. In IEEE Transactions

on Computers, Vol. 58. 1139ś1145. https://doi.org/10.1109/TC.2008.216

[3] Peter Borwein and Tamas Erdelyi. 1995. Polynomials and Polynomial

Inequalities. Springer New York. https://doi.org/10.1007/978-1-4612-

0793-1

[4] Nicolas Brisebarre and Sylvvain Chevillard. 2007. Efficient polynomial

L-approximations. In 18th IEEE Symposium on Computer Arithmetic

(ARITH ’07). https://doi.org/10.1109/ARITH.2007.17

[5] Nicolas Brisebarre, Jean-Michel Muller, and Arnaud Tisserand. 2006.

Computing Machine-Efficient Polynomial Approximations. In ACM

ACM Transactions on Mathematical Software, Vol. 32. Association for

Computing Machinery, New York, NY, USA, 236ś256. https://doi.org/

10.1145/1141885.1141890

[6] Nicolas Brunie, Florent de Dinechin, Olga Kupriianova, and Christoph

Lauter. 2015. Code Generators for Mathematical Functions. In 2015

IEEE 22nd Symposium on Computer Arithmetic. 66ś73. https://doi.org/

10.1109/ARITH.2015.22

[7] Hung Tien Bui and Sofiene Tahar. 1999. Design and synthesis of an

IEEE-754 exponential function. In Engineering Solutions for the Next

Millennium. 1999 IEEE Canadian Conference on Electrical and Computer

Engineering, Vol. 1. 450ś455 vol.1. https://doi.org/10.1109/CCECE.

1999.807240

[8] Sylvain Chevillard, John Harrison, Mioara Joldes, and Christoph

Lauter. 2011. Efficient and accurate computation of upper bounds

of approximation errors. In Theoretical Computer Science, Vol. 412.

https://doi.org/10.1016/j.tcs.2010.11.052

[9] Sylvain Chevillard, Mioara Joldes, and Christoph Lauter. 2010. Sollya:

An Environment for the Development of Numerical Codes. In Math-

ematical Software - ICMS 2010 (Lecture Notes in Computer Science,

Vol. 6327). Springer, Heidelberg, Germany, 28ś31. https://doi.org/10.

1007/978-3-642-15582-6_5

[10] Sylvain Chevillard and Christopher Lauter. 2007. A Certified Infinite

Norm for the Implementation of Elementary Functions. In Seventh

International Conference on Quality Software (QSIC 2007). 153ś160.

https://doi.org/10.1109/QSIC.2007.4385491

[11] Sangeeta Chowdhary, Jay P. Lim, and Santosh Nagarakatte. 2020.

Debugging and Detecting Numerical Errors in Computation with

Posits. In 41st ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI’20). https://doi.org/10.1145/3385412.

3386004

[12] William J Cody and William M Waite. 1980. Software manual for

the elementary functions. Prentice-Hall, Englewood Cliffs, NJ. https:

//doi.org/10.1137/1024023

[13] Catherine Daramy-Loirat, David Defour, Florent de Dinechin,

Matthieu Gallet, Nicolas Gast, Christoph Lauter, and Jean-Michel

Muller. 2006. CR-LIBM A library of correctly rounded elemen-

tary functions in double-precision. Research Report. Laboratoire

de l’Informatique du Parallélisme. https://hal-ens-lyon.archives-

ouvertes.fr/ensl-01529804

[14] Davide De Caro, Ettore Napoli, Darjn Esposito, Gerardo Castellano,

Nicola Petra, and Antonio G. M. Strollo. 2017. Minimizing Coefficients

Wordlength for Piecewise-Polynomial Hardware Function Evaluation

With Exact or Faithful Rounding. IEEE Transactions on Circuits and

Systems I: Regular Papers (2017). https://doi.org/10.1109/TCSI.2016.

2629850

[15] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier,

and Paul Zimmermann. 2007. MPFR: A Multiple-precision Binary

Floating-point Library with Correct Rounding. ACM Trans. Math.

Software 33, 2, Article 13 (June 2007). https://doi.org/10.1145/1236463.

1236468

[16] Zhoulai Fu and Zhendong Su. 2019. Effective Floating-point Analy-

sis via Weak-distance Minimization. In Proceedings of the 40th ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation (Phoenix, AZ, USA) (PLDI 2019). ACM, New York, NY, USA,

439ś452. https://doi.org/10.1145/3314221.3314632

[17] Ambros M. Gleixner, Daniel E. Steffy, and Kati Wolter. 2012. Improving

theAccuracy of Linear Programming Solverswith Iterative Refinement.

In Proceedings of the 37th International Symposium on Symbolic and

Algebraic Computation (Grenoble, France) (ISSAC ’12). Association for

Computing Machinery, New York, NY, USA, 187ś194. https://doi.org/

10.1145/2442829.2442858

[18] Eric Goubault. 2001. Static Analyses of the Precision of Floating-

Point Operations. In Proceedings of the 8th International Symposium

on Static Analysis (SAS). Springer, 234ś259. https://doi.org/10.1007/3-

540-47764-0_14

[19] John Gustafson. 2017. Posit Arithmetic. https://posithub.org/docs/

Posits4.pdf

[20] John Gustafson. 2020. The Minefield Method: A Uniformly Fast Solution

to the Table-Maker’s Dilemma. https://bit.ly/2ZP4kHj

[21] John Harrison. 1997. Floating point verification in HOL light: The ex-

ponential function. In Algebraic Methodology and Software Technology,

Michael Johnson (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,

246ś260. https://doi.org/10.1007/BFb0000475

[22] John Harrison. 1997. Verifying the Accuracy of Polynomial Approx-

imations in HOL. In International Conference on Theorem Proving in

Higher Order Logics. https://doi.org/10.1007/BFb0028391

[23] John Harrison. 2009. HOL Light: An Overview. In Proceedings of the

22nd International Conference on Theorem Proving in Higher Order

Logics, TPHOLs 2009 (Lecture Notes in Computer Science, Vol. 5674),

Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius

Wenzel (Eds.). Springer-Verlag, Munich, Germany, 60ś66. https:

//doi.org/10.1007/978-3-642-03359-9_4

[24] Claude-Pierre Jeannerod, Hervé Knochel, Christophe Monat, and

Guillaume Revy. 2011. Computing Floating-Point Square Roots via

Bivariate Polynomial Evaluation. IEEE Trans. Comput. 60. https:

//doi.org/10.1109/TC.2010.152

[25] Olga Kupriianova and Christoph Lauter. 2014. Metalibm: A Mathemat-

ical Functions Code Generator. In 4th International Congress on Mathe-

matical Software. https://doi.org/10.1007/978-3-662-44199-2_106

[26] Olga Kupriianova and Christoph Lauter. 2015. Replacing Branches by

Polynomials in Vectorizable Elementary Functions. In Scientific Com-

puting, Computer Arithmetic, and Validated Numerics, Marco Nehmeier,

Jürgen Wolff von Gudenberg, and Warwick Tucker (Eds.). Springer

International Publishing, Cham, 14ś22. https://doi.org/10.1007/978-3-

319-31769-4_2

[27] Wonyeol Lee, Rahul Sharma, and Alex Aiken. 2017. On Automatically

Proving the Correctness of Math.h Implementations. Proceedings of

the ACM on Programming Languages 2, POPL, Article 47 (Dec. 2017),

32 pages. https://doi.org/10.1145/3158135

[28] Vincent Lefèvre and Jean-Michel Muller. 2001. Worst Cases for Correct

Rounding of the Elementary Functions in Double Precision. In 15th

IEEE Symposium on Computer Arithmetic (Arith ’01). 111ś118. https:

//doi.org/10.1109/ARITH.2001.930110

[29] Vincent Lefèvre, Jean-Michel Muller, and Arnaud Tisserand. 1998.

Toward correctly rounded transcendentals. IEEE Trans. Comput. 47, 11

(1998), 1235ś1243. https://doi.org/10.1109/12.736435

[30] Cerlane Leong. 2019. SoftPosit-Math. https://gitlab.com/cerlane/

softposit-math

[31] Jay P. Lim, Mridul Aanjaneya, John Gustafson, and Santosh Na-

garakatte. 2020. A Novel Approach to Generate Correctly

Rounded Math Libraries for New Floating Point Representations.

arXiv:2007.05344 Rutgers Department of Computer Science Technical

373

https://doi.org/10.1145/2345156.2254118
https://doi.org/10.1109/TC.2008.216
https://doi.org/10.1007/978-1-4612-0793-1
https://doi.org/10.1007/978-1-4612-0793-1
https://doi.org/10.1109/ARITH.2007.17
https://doi.org/10.1145/1141885.1141890
https://doi.org/10.1145/1141885.1141890
https://doi.org/10.1109/ARITH.2015.22
https://doi.org/10.1109/ARITH.2015.22
https://doi.org/10.1109/CCECE.1999.807240
https://doi.org/10.1109/CCECE.1999.807240
https://doi.org/10.1016/j.tcs.2010.11.052
https://doi.org/10.1007/978-3-642-15582-6_5
https://doi.org/10.1007/978-3-642-15582-6_5
https://doi.org/10.1109/QSIC.2007.4385491
https://doi.org/10.1145/3385412.3386004
https://doi.org/10.1145/3385412.3386004
https://doi.org/10.1137/1024023
https://doi.org/10.1137/1024023
https://hal-ens-lyon.archives-ouvertes.fr/ensl-01529804
https://hal-ens-lyon.archives-ouvertes.fr/ensl-01529804
https://doi.org/10.1109/TCSI.2016.2629850
https://doi.org/10.1109/TCSI.2016.2629850
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/3314221.3314632
https://doi.org/10.1145/2442829.2442858
https://doi.org/10.1145/2442829.2442858
https://doi.org/10.1007/3-540-47764-0_14
https://doi.org/10.1007/3-540-47764-0_14
https://posithub.org/docs/Posits4.pdf
https://posithub.org/docs/Posits4.pdf
https://bit.ly/2ZP4kHj
https://doi.org/10.1007/BFb0000475
https://doi.org/10.1007/BFb0028391
https://doi.org/10.1007/978-3-642-03359-9_4
https://doi.org/10.1007/978-3-642-03359-9_4
https://doi.org/10.1109/TC.2010.152
https://doi.org/10.1109/TC.2010.152
https://doi.org/10.1007/978-3-662-44199-2_106
https://doi.org/10.1007/978-3-319-31769-4_2
https://doi.org/10.1007/978-3-319-31769-4_2
https://doi.org/10.1145/3158135
https://doi.org/10.1109/ARITH.2001.930110
https://doi.org/10.1109/ARITH.2001.930110
https://doi.org/10.1109/12.736435
https://gitlab.com/cerlane/softposit-math
https://gitlab.com/cerlane/softposit-math
https://arxiv.org/abs/2007.05344

PLDI ’21, June 20ś25, 2021, Virtual, Canada Jay P. Lim and Santosh Nagarakatte

Report DCS-TR-753.

[32] Jay P. Lim, Mridul Aanjaneya, John Gustafson, and Santosh Na-

garakatte. 2021. An Approach to Generate Correctly Rounded Math

Libraries for New Floating Point Variants. Proceedings of the ACM

on Programming Languages 6, POPL, Article 29 (Jan. 2021), 30 pages.

https://doi.org/10.1145/3434310

[33] Jay P. Lim and Santosh Nagarakatte. 2021. RLibm-32. https://github.

com/rutgers-apl/rlibm-32

[34] Jay P Lim and Rutgers University Santosh Nagarakatte. 2021. RLIBM-

32: High Performance Correctly Rounded Math Libraries for 32-bit

Floating Point Representations. Rutgers Department of Computer

Science Technical Report DCS-TR-754.

[35] Jay P. Lim, Matan Shachnai, and Santosh Nagarakatte. 2020. Approxi-

mating Trigonometric Functions for Posits Using the CORDIC Method.

In Proceedings of the 17th ACM International Conference on Computing

Frontiers (Catania, Sicily, Italy) (CF ’20). Association for Computing Ma-

chinery, New York, NY, USA, 19ś28. https://doi.org/10.1145/3387902.

3392632

[36] Guillaume Melquiond. 2019. Gappa. http://gappa.gforge.inria.fr

[37] Jean-Michel Muller. 2005. Elementary Functions: Algorithms and Im-

plementation. Birkhauser. https://doi.org/10.1007/978-1-4899-7983-4

[38] Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary

Tatlock. 2015. Automatically Improving Accuracy for Floating Point

Expressions. In Proceedings of the 36th ACM SIGPLAN Conference on

Programming Language Design and Implementation, Vol. 50. Associ-

ation for Computing Machinery, New York, NY, USA, 1ś11. https:

//doi.org/10.1145/2813885.2737959

[39] Eugene Remes. 1934. Sur un procédé convergent d’approximations

successives pour déterminer les polynômes d’approximation. Comptes

rendus de l’Académie des Sciences 198 (1934), 2063ś2065.

[40] Alex Sanchez-Stern, Pavel Panchekha, Sorin Lerner, and Zachary Tat-

lock. 2018. Finding Root Causes of Floating Point Error. In Proceedings

of the 39th ACM SIGPLAN Conference on Programming Language Design

and Implementation (Philadelphia, PA, USA) (PLDI 2018). ACM, New

York, NY, USA, 256ś269. https://doi.org/10.1145/3296979.3192411

[41] Jun Sawada. 2002. Formal verification of divide and square root algo-

rithms using series calculation. In 3rd International Workshop on the

ACL2 Theorem Prover and its Applications.

[42] Pat H Sterbenz. 1974. Floating-point computation. Prentice-Hall, En-

glewood Cliffs, NJ.

[43] Shane Story and Ping Tak Peter Tang. 1999. New algorithms for

improved transcendental functions on IA-64. In Proceedings 14th IEEE

Symposium on Computer Arithmetic. 4ś11. https://doi.org/10.1109/

ARITH.1999.762822

[44] Ping-Tak Peter Tang. 1989. Table-Driven Implementation of the Ex-

ponential Function in IEEE Floating-Point Arithmetic. ACM Trans.

Math. Software 15, 2 (June 1989), 144ś157. https://doi.org/10.1145/

63522.214389

[45] Ping-Tak Peter Tang. 1990. Table-Driven Implementation of the Loga-

rithm Function in IEEE Floating-Point Arithmetic. ACM Trans. Math.

Software 16, 4 (Dec. 1990), 378ś400. https://doi.org/10.1145/98267.

98294

[46] P. T. P. Tang. 1991. Table-lookup algorithms for elementary functions

and their error analysis. In [1991] Proceedings 10th IEEE Symposium on

Computer Arithmetic. 232ś236. https://doi.org/10.1109/ARITH.1991.

145565

[47] Lloyd N. Trefethen. 2012. Approximation Theory and Approximation

Practice (Other Titles in Applied Mathematics). Society for Industrial

and Applied Mathematics, USA.

[48] Xin Yi, Liqian Chen, Xiaoguang Mao, and Tao Ji. 2019. Efficient Au-

tomated Repair of High Floating-Point Errors in Numerical Libraries.

Proceedings of the ACM on Programming Languages 3, POPL, Article

56 (Jan. 2019), 29 pages. https://doi.org/10.1145/3290369
[49] Abraham Ziv. 1991. Fast Evaluation of Elementary Mathematical

Functions with Correctly Rounded Last Bit. ACM Trans. Math. Software

17, 3 (Sept. 1991), 410ś423. https://doi.org/10.1145/114697.116813

[50] Daming Zou, Muhan Zeng, Yingfei Xiong, Zhoulai Fu, Lu Zhang,

and Zhendong Su. 2019. Detecting Floating-Point Errors via Atomic

Conditions. Proceedings of the ACM on Programming Languages 4,

POPL, Article 60 (Dec. 2019), 27 pages. https://doi.org/10.1145/3371128

374

https://doi.org/10.1145/3434310
https://github.com/rutgers-apl/rlibm-32
https://github.com/rutgers-apl/rlibm-32
https://doi.org/10.1145/3387902.3392632
https://doi.org/10.1145/3387902.3392632
http://gappa.gforge.inria.fr
https://doi.org/10.1007/978-1-4899-7983-4
https://doi.org/10.1145/2813885.2737959
https://doi.org/10.1145/2813885.2737959
https://doi.org/10.1145/3296979.3192411
https://doi.org/10.1109/ARITH.1999.762822
https://doi.org/10.1109/ARITH.1999.762822
https://doi.org/10.1145/63522.214389
https://doi.org/10.1145/63522.214389
https://doi.org/10.1145/98267.98294
https://doi.org/10.1145/98267.98294
https://doi.org/10.1109/ARITH.1991.145565
https://doi.org/10.1109/ARITH.1991.145565
https://doi.org/10.1145/3290369
https://doi.org/10.1145/114697.116813
https://doi.org/10.1145/3371128

	Abstract
	1 Introduction
	2 Overview of Our Approach with sinpi(x)
	2.1 Our Range Reduction for sinpi(x)
	2.2 Generating Piecewise Polynomials for sinpi(x)

	3 Generating Piecewise Polynomials
	3.1 Computing Rounding Intervals
	3.2 Computing Reduced Rounding Intervals
	3.3 Efficient Piecewise Polynomials
	3.4 Counterexample Driven Polynomial Generation

	4 Experimental Evaluation
	4.1 Experimental Setup and Methodology
	4.2 Generation of Correctly Rounded Results
	4.3 Performance Evaluation of RLibm-32

	5 Case Study with cospi(x) for Float
	6 Related Work
	7 Conclusion and Future Directions
	Acknowledgments
	References

