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One Polynomial Approximation to Produce Correctly
Rounded Results of an Elementary Function for Multiple
Representations and Rounding Modes
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Mainstream math libraries for floating point (FP) do not produce correctly rounded results for all inputs. In

contrast, CR-LIBM and RLibm provide correctly rounded implementations for a specific FP representation

with one rounding mode. Using such libraries for a representation with a new rounding mode or with different

precision will result in wrong results due to double rounding. This paper proposes a novel method to generate

a single polynomial approximation that produces correctly rounded results for all inputs for multiple rounding

modes and multiple precision configurations. To generate a correctly rounded library for 𝑛-bits, our key idea

is to generate a polynomial approximation for a representation with 𝑛 + 2-bits using the round-to-odd mode.

We prove that the resulting polynomial approximation will produce correctly rounded results for all five

rounding modes in the standard and for multiple representations with 𝑘-bits such that |𝐸 | + 1 < 𝑘 ≤ 𝑛, where

|𝐸 | is the number of exponent bits in the representation. Similar to our prior work in the RLibm project, we

approximate the correctly rounded result when we generate the library with 𝑛 + 2-bits using the round-to-odd

mode. We also generate polynomial approximations by structuring it as a linear programming problem but

propose enhancements to polynomial generation to handle the round-to-odd mode. Our prototype is the first

32-bit float library that produces correctly rounded results with all rounding modes in the IEEE standard

for all inputs with a single polynomial approximation. It also produces correctly rounded results for any FP

configuration ranging from 10-bits to 32-bits while also being faster than mainstream libraries.
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1 INTRODUCTION

The floating point (FP) representation is widely used to approximate real numbers. The two main

attributes of the FP representation are its dynamic range (i.e., the range of values that can be

represented) and precision (i.e., the accuracy of each value represented). As some real numbers

cannot be accurately represented in the FP representation, they need to be rounded to the nearest

result according to the rounding mode. Further, FP performance is important in various domains

ranging from scientific computing to machine learning. Hence, modern accelerators, processors,
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and systems have explored new variants of the FP representation that vary the dynamic range and

the precision. Intel’s Bfloat16 [Kalamkar et al. 2019] and FlexPoint [Köster et al. 2017], Nvidia’s

TensorFloat32 [NVIDIA 2020], Microsoft’s MSFP [Rouhani et al. 2020], Facebook’s Log Number

System [Johnson 2018], and Posits [Gustafson and Yonemoto 2017] are examples of such recent FP

variants. All these representations need math libraries that provide approximations for various

elementary functions (e.g., 𝑙𝑛(𝑥), 𝑒𝑥 , . . . ) [Muller 2005].

An output of an elementary function is a correctly rounded result if it matches the result that

is computed with infinite precision and then rounded to the target FP representation. Correctly

rounded elementary functions improve the portability and reproducibility of applications. Un-

fortunately, mainstream FP libraries do not produce correct results for all inputs. Libraries like

CR-LIBM [Daramy et al. 2003; Daramy-Loirat et al. 2006] and RLibm [Lim et al. 2020, 2021; Lim and

Nagarakatte 2021a,b] provide correctly rounded implementations for some FP representations. CR-

LIBM provides correctly rounded elementary functions for the double type with a given rounding

mode. As part of our RLibm project, we have developed correctly rounded libraries for the float,

bfloat16, and posit types with the round-to-nearest-ties-to-even mode.

Beyond the round-to-nearest-ties-to-even mode, there are four other rounding modes in the

IEEE-754 standard. When existing correctly rounded libraries are used to generate results with

other rounding modes or with other precision configurations, they can produce wrong results due

to double rounding. For example, let us say we use a correctly rounded double precision library

such as CR-LIBM with the round-to-nearest-ties-to-even mode to produce results for a 32-bit float

type with the same rounding mode. Here, we round the result of CR-LIBM to a 32-bit float value

to produce the final result. If the real value of 𝑓 (𝑥) is extremely close to the rounding boundary

of two adjacent float values, then the error caused by rounding 𝑓 (𝑥) to double using the given

rounding mode can be significant enough to produce the wrong result for a 32-bit float.

With existing approaches such as RLibm and CR-LIBM, one will have to generate a new poly-

nomial approximation for each such rounding mode and each precision configuration. Although

feasible, developing efficient approximations require significant effort. Even after decades of effort,

there are no efficient and correctly rounded implementations for all rounding modes in the IEEE

standard even for the widely used 32-bit float type!

This paper. Rather than generating a correctly rounded elementary function for each individ-

ual representation and rounding mode, it would be ideal if we could generate one polynomial

approximation that produces correct results for multiple rounding modes and many precision

configurations. This paper proposes a novel approach to create such polynomial approximations!

Our key idea is to create polynomial approximations that approximate the correctly rounded result

of an elementary function 𝑓 (𝑥) with the round-to-odd rounding mode (i.e., the real value of 𝑓 (𝑥) is

rounded with the round-to-odd mode). The round-to-odd is a non-standard rounding mode that

can be described as follows. If the real value is exactly representable in the target representation,

it is unchanged. Otherwise, it is rounded to the nearest value in the target representation whose

bit-string when interpreted as an unsigned integer is an odd number.

The round-to-odd mode has been previously used to address double rounding issues in the

context of binary FP to decimal FP conversion [Goldberg 1991] and also while performing primitive

arithmetic operations with extended precision (e.g., Intel’s 80-bit floating point) and subsequently

rounding the result back to a lower precision (i.e., a float or a double type) [Boldo and Melquiond

2005, 2008].

This paper makes a case for using the round-to-odd mode to generate correctly rounded results

for elementary functions. To the best of our knowledge, no prior method for approximating

elementary functions has used the round-to-odd mode. Further, the usage of the round-to-odd

mode for approximating elementary functions is feasible because we approximate the correctly
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rounded result in the RLibm project. We discover that the round-to-odd mode has properties that

enable the generation of correctly rounded elementary functions for multiple rounding modes and

multiple precision configurations (Section 4.1).

If the goal is to produce correctly rounded elementary functions for multiple rounding modes

of a representation with 𝑛-bits (i.e., T𝑛), we propose to generate polynomial approximations that

produce the correctly rounded results of the representation with 𝑛 + 2-bits (T𝑛+2) using the round-

to-odd mode. We prove that this polynomial approximation for T𝑛+2 produces correctly rounded

results for all representations with 𝑘-bits (i.e., T𝑘 ), where 𝑘 is smaller than or equal to 𝑛 and for all

rounding modes in the IEEE standard. The only requirement in our proof is that the number of

exponent bits in both the representation used to create the approximation (i.e., T𝑛+2) and the target

representation (i.e., T𝑘 ) is identical. In summary, our approach that creates the math library with

the round-to-odd mode for a configuration with two additional bits produces correctly rounded

results for all target representations with any standard rounding mode.

The next task is to generate polynomial approximations using the round-to-odd mode for a

representation with 𝑛 + 2-bits (i.e., T𝑛+2). We extend our prior work in the RLibm project to generate

polynomial approximations with the round-to-odd mode. Specifically, we approximate the correctly

rounded result of an elementary function 𝑓 (𝑥) with the round-to-odd mode rather than the real

value of 𝑓 (𝑥). Subsequently, we identify an interval of real values around the correctly rounded

result with the round-to-odd mode such that any value in the interval rounds to the correctly

rounded result, which we call the odd interval. We show that any real value in the odd interval

that rounds to the round-to-odd result in T𝑛+2 will subsequently round to the correctly rounded

result for any representation T𝑘 .

One challenge in generating polynomial approximations using the odd intervals is the presence

of singleton values with the round-to-odd mode. When the real value is exactly representable in

T𝑛+2 and the bit-string of that value in T𝑛+2 is even when interpreted as an unsigned integer, the

odd interval for that value will be a singleton element. We use the mathematical properties of the

elementary function to identify such singletons. Concretely, we identify the inputs of an elementary

function that has rational outputs (because the round-to-odd result is exactly representable in

T𝑛+2). We subsequently develop efficient table-lookups to produce round-to-odd results for such

inputs (Section 4.3).

Once we identify the odd interval for every input and the singleton odd intervals among them,

we can subsequently use the RLibm approach to generate polynomial approximations. Each non-

singleton interval imposes a constraint on the output of the generated polynomial for a given input.

Similar to our prior work in the RLibm project [Lim 2021], we structure the problem of generating

a polynomial approximation that satisfies the odd interval for each input as a linear programming

problem. We use efficient range reduction and output compensation functions while accounting for

numerical errors with them. To account for numerical errors, we further constrain the odd intervals

given to the LP formulation. We also employ counterexample guided polynomial generation and

generate piecewise polynomials for efficiency.

Our prototype, RLibm-All, is open-source and publicly available [Lim and Nagarakatte 2021c]. It

contains the polynomial generator for ten elementary functions and includes efficient polynomial

approximations for them. The resulting polynomial generated by our prototype for the FP represen-

tation with 34-bits (i.e., T34) using the round-to-odd mode produces correctly rounded results for

all FP representations ranging from 10-bits (i.e., T10) to 32-bits (i.e., T32) and for all rounding modes.

It includes bfloat16 and tensorfloat32 representations. RLibm-All is the first math library that

produces correctly rounded results for 32-bit floats for all rounding modes with a single polynomial

approximation. Our implementations are faster than mainstream libraries for 32-bit floats while

producing correctly rounded results for all inputs and for all rounding modes.
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Fig. 1. (a) The bit-string of a 32-bit float. (b) The bit-string of a 5-bit FP representation with 2 exponent and 2

mantissa bits. (c) The bit-string of a 4-bit FP representation with 2 exponent and 1 mantissa bits.

2 BACKGROUND

We provide background on the FP representation, the process of rounding, and the various rounding

modes in the IEEE-754 standard. As we extend our RLibm approach, we also provide a brief

background on generating polynomial approximations with it.

2.1 The Floating Point Representation

The floating point representation, which is specified by the IEEE-754 standard, is parameterized by

the total number of bits 𝑛 and the number of bits for the exponent |𝐸 |, which we represent as F𝑛, |𝐸 | .

The total number of bits and the number of bits for the exponent determine the dynamic range

and precision of the representation. The FP bit-string consists of a sign bit, |𝐸 | bits to represent

the exponent, and 𝑛 − 1 − |𝐸 | bits to represent the mantissa (𝐹 ). Figure 1 shows the bit-string for

a standard 32-bit float and the custom 5-bit and 4-bit FP representations. If the sign bit is 0, then

the value is positive. Otherwise, it is negative. The value represented by the FP bit-string can be

classified into three classes: normal values, denormal values, and special values.

The value represented by the FP bit-string is a normal value if the bit-string 𝐸 is neither all

ones nor all zeros (i.e., 0 < 𝐸 < 2 |𝐸 | − 1). The normal value represented by this bit-string is

(1 + 𝐹
2|𝐹 |

) × 2𝐸−𝑏𝑖𝑎𝑠 , where bias is 2 |𝐸 |−1 − 1. If the exponent field 𝐸 is all zeros (i.e., 𝐸 = 0), then the

FP value is a denormal value. Denormal values are used to represent values close to zero. The real

number represented by this denormal value is ( 𝐹
2|𝐹 |

) × 21−𝑏𝑖𝑎𝑠 . When the exponent field is all ones

(i.e., 𝐸 = 2 |𝐸 | − 1), the FP bit-strings represent special values. If 𝐹 = 0, then the bit-string represents

±∞ depending on the sign and in all other cases, it represents not-a-number (NaN).

The default FP types are the 16-bit half type (F16,5), the 32-bit float type (F32,8), and the 64-bit

double type (F64,11). Beyond these types, recent extensions have increased the dynamic range and/or

precision especially in the context of machine learning. The new types include bfloat16 (F16,8) [Tagli-

avini et al. 2018] and tensorfloat32 (F19,8) [NVIDIA 2020].

2.2 Rounding a Real Number to the FP Representation

Any FP representation can represent a finite number of real values. Hence, many real values (𝑣R)

cannot be exactly represented. It is rounded to either the largest FP value smaller than 𝑣R (𝑣𝑠𝑚) or

the smallest FP value larger than 𝑣R (𝑣𝑙𝑔).

𝑣𝑠𝑚 =𝑚𝑎𝑥{𝑣 ∈ F𝑛, |𝐸 | | 𝑣 ≤ 𝑣R}

𝑣𝑙𝑔 =𝑚𝑖𝑛{𝑣 ∈ F𝑛, |𝐸 | | 𝑣 ≥ 𝑣R}

The rounding mode, which we represent by 𝑟𝑚, specifies whether 𝑣R rounds to 𝑣𝑠𝑚 or 𝑣𝑙𝑔. We

denote the operation of rounding 𝑣R using a rounding mode 𝑟𝑚 to a value in the representation

F𝑛, |𝐸 | with 𝑅𝑁F𝑛,|𝐸 |,𝑟𝑚 (𝑣R). The IEEE-754 standard specifies five different rounding modes: round-

to-nearest-ties-to-even (𝑟𝑛), round-to-nearest-ties-to-away (𝑟𝑎), round-towards-zero (𝑟𝑧), round-

towards-positive-infinity (𝑟𝑢), and round-towards-negative-infinity (𝑟𝑑). The standard mandates

correct rounding for primitives operations (i.e., +, −, ∗, /).
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Fig. 2. When a real value 𝑣R is not exactly representable in T, then 𝑣R is rounded to one of the two adjacent

values 𝑣𝑠𝑚, 𝑣𝑙𝑔 ∈ T depending on the rounding mode. We show the range of real values (𝑣R) that round to 𝑣𝑠𝑚
(blue box) and 𝑣𝑙𝑔 (green box). (a) The 𝑟𝑛 mode when 𝑣𝑠𝑚 is even. (b) The 𝑟𝑛 mode when 𝑣𝑙𝑔 is even. (c) The 𝑟𝑎

mode when 𝑣R < 0. (d) The 𝑟𝑎 mode when 𝑣R > 0. (e) The 𝑟𝑧 mode when 𝑣R < 0. (f) The 𝑟𝑧 mode when 𝑥 > 0.

(g) The 𝑟𝑢 mode. (h) The 𝑟𝑑 mode.

The round-to-nearest-ties-to-even (𝑟𝑛) mode. This rounding mode rounds 𝑣R to a FP value

that is closer to 𝑣R among 𝑣𝑠𝑚 and 𝑣𝑙𝑔. If |𝑣𝑠𝑚 −𝑣R | < |𝑣𝑙𝑔 −𝑣R |, then 𝑣R rounds to 𝑣𝑠𝑚 . If |𝑣𝑠𝑚 −𝑣R | >

|𝑣𝑙𝑔 − 𝑣R |, then 𝑣R rounds to 𝑣𝑙𝑔. If 𝑣R is exactly in the middle of 𝑣𝑠𝑚 and 𝑣𝑙𝑔 (i.e., 𝑣R =
𝑣𝑠𝑚+𝑣𝑙𝑔

2 ), 𝑣R
is rounded to a value whose bit-string is even when interpreted as an unsigned integer. The 𝑟𝑛

mode is the most commonly used rounding mode. Figure 2(a) and (b) illustrate rounding with the

𝑟𝑛 mode depending on whether 𝑣𝑠𝑚 is even or odd, respectively.

The round-to-nearest-ties-to-away (𝑟𝑎) mode. This rounding mode also rounds 𝑣R to a FP

value that is closer to 𝑣R among 𝑣𝑠𝑚 and 𝑣𝑙𝑔. If |𝑣𝑠𝑚 − 𝑣R | < |𝑣𝑙𝑔 − 𝑣R |, then 𝑣R rounds to 𝑣𝑠𝑚 . If

|𝑣𝑠𝑚 − 𝑣R | > |𝑣𝑙𝑔 − 𝑣R |, then 𝑣R rounds to 𝑣𝑙𝑔. When 𝑣R is exactly in the middle of 𝑣𝑠𝑚 and 𝑣𝑙𝑔, 𝑣R
is rounded to a value that is farther away from 0. Specifically, 𝑣R rounds to 𝑣𝑙𝑔 if 𝑣R > 0 because

0 ≤ 𝑣𝑠𝑚 < 𝑣R < 𝑣𝑙𝑔 ≤ ∞. Similarly, 𝑣R rounds to 𝑣𝑠𝑚 if 𝑣R < 0 because −∞ ≤ 𝑣𝑠𝑚 < 𝑣R < 𝑣𝑙𝑔 ≤ 0.

Figure 2(c) and (d) illustrate rounding with 𝑟𝑎 mode depending on whether 𝑣R < 0 or 𝑣R > 0,

respectively.

The round-towards-zero (𝑟𝑧) mode. In this mode, 𝑣R is rounded to a value that is closer to 0.

Here, 𝑣R is rounded to 𝑣𝑠𝑚 if 𝑣R > 0 and 𝑣R is rounded to 𝑣𝑙𝑔 if 𝑣R < 0. The 𝑟𝑧 mode is equivalent

to truncating the fraction bits of 𝑣R that cannot fit within the mantissa bits of the representation.

Figure 2(e) and (f) illustrate the 𝑟𝑧 mode depending on whether 𝑣R < 0 or 𝑣R > 0, respectively.

The round-towards-positive-infinity (𝑟𝑢) mode. This mode always rounds 𝑣R to the larger

value 𝑣𝑙𝑔, which is the value that is closer to +∞. This mode is also known as rounding up. Figure 2(g)

pictorially shows the 𝑟𝑢 mode.

The round-towards-negative-infinity (𝑟𝑑) mode. The round-towards-negative-infinity (𝑟𝑑)

mode always rounds 𝑣R to the smaller value 𝑣𝑠𝑚 (i.e., a value that is closer to −∞). This mode is

also known as rounding down. Figure 2(h) demonstrates the 𝑟𝑑 mode.

2.3 A Systematic Method for Rounding

We describe a systematic procedure for rounding a real number, which will be useful later for

understanding our proofs. As we described above, we need to identify the two values 𝑣𝑠𝑚 and 𝑣𝑙𝑔
in the F𝑛, |𝐸 | representation that are adjacent to 𝑣R and then decide between 𝑣𝑠𝑚 or 𝑣𝑙𝑔. We will

identify four pieces of information (𝑠 , 𝑣−, 𝑟𝑏, 𝑠𝑡𝑖𝑐𝑘𝑦) from the real value 𝑣R that will be sufficient to

correctly round according to the various rounding modes. We call them rounding components. The

first component, 𝑠 represents the sign (-1 or 1) and identifies whether 𝑣R is positive or negative.
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Fig. 3. The values of the rounding bit and the sticky bit for various real values between 𝑣− and 𝑣+. The gray

box indicates the range of real values where both 𝑟𝑏 and 𝑠𝑡𝑖𝑐𝑘𝑦 are 1. The purple box indicates the range of

real values where 𝑟𝑏 = 0 and 𝑠𝑡𝑖𝑐𝑘𝑦 = 1.

The smaller of 𝑣𝑠𝑚 or 𝑣𝑙𝑔 in magnitude is represented by 𝑣−. The components 𝑟𝑏 and 𝑠𝑡𝑖𝑐𝑘𝑦 encode

information about whether 𝑣R is in the middle, closer to 𝑣𝑠𝑚 , or closer to 𝑣𝑙𝑔.

To identify the rounding components, we represent 𝑣R in the FP representation with an infinite

number of mantissa bits while having the same number of exponents bits as F𝑛, |𝐸 | . We call this

representation extended infinite precision representation (i.e., F∞, |𝐸 |). Effectively, this extended

precision representation is similar to the F𝑛, |𝐸 | representation but has a large number of bits for

the mantissa. When 𝑣R is larger than the dynamic range of F𝑛, |𝐸 | , we represent it with the largest

representable value in F∞, |𝐸 | (i.e., the exponents bits correspond to the largest normal value in F𝑛, |𝐸 |
and all the mantissa bits are ones). We cannot use∞ to represent |𝑣R | because we need to make

a clear distinction between a real number and∞. The round-towards-zero mode never rounds a

real value to∞. Similarly, the round-towards-positive-infinity mode does not round negative real

values to −∞ and the round-towards-negative-infinity mode does not round positive real values to

∞.

𝐵𝑣R = 𝑏1𝑏2𝑏3 . . . 𝑏𝑛𝑏𝑛+1𝑏𝑛+2 . . . (1)

Here, 𝑏1 is the sign bit and bits 𝑏2 . . . 𝑏 |𝐸 |+1 represent the exponent bits. The rest of the bits

starting from 𝑏 |𝐸 |+2 . . . represent the mantissa.

Identify rounding components. To identify 𝑣𝑠𝑚 and 𝑣𝑙𝑔 that 𝑣R can round to, we identify two

positive values 𝑣− and 𝑣+ adjacent to |𝑣R | (i.e., the magnitude of 𝑣R) in F𝑛, |𝐸 | . Here, 𝑣
− represents

the largest value that is smaller than or equal to |𝑣R | and 𝑣
+ represents the smallest value larger

than |𝑣R |. To identify 𝑣−, we truncate 𝐵 |𝑣R | to 𝑛 bits,

𝐵𝑣− = 0𝑏2𝑏3𝑏4 . . . 𝑏𝑛−1𝑏𝑛

Note that the sign bit is 0 because we are just considering the magnitude for 𝑣−. We call 𝑣− the

truncated value, which is a rounding component. Then, the succeeding value of 𝑣− in F𝑛, |𝐸 | is 𝑣
+,

which is obtained by adding 1 to 𝑣−. We maintain the invariant: 𝑣− ≤ |𝑣R | < 𝑣+. In the context of

rounding 𝑣R to F𝑛, |𝐸 | , 𝑣
− and 𝑣+ satisfy the following property,

{
−𝑣+ < 𝑣R ≤ −𝑣− if 𝑣R < 0 (𝑠 = −1)

𝑣− ≤ 𝑣R < 𝑣+ if 𝑣R ≥ 0 (𝑠 = 1)

Once we identify 𝑠 , 𝑣−, and 𝑣+, we can compute 𝑣𝑠𝑚 and 𝑣𝑙𝑔 as follows. If 𝑣R is exactly representable

in F𝑛, |𝐸 | , then |𝑣R | = 𝑣−. Hence, 𝑣𝑠𝑚 = 𝑣𝑙𝑔 = 𝑠 × 𝑣−. If 𝑣R is not exactly representable in F𝑛, |𝐸 | , then

it is guaranteed that 𝑣− < |𝑣R | < 𝑣+. Thus, 𝑣𝑠𝑚 = 𝑣− and 𝑣𝑙𝑔 = 𝑣+ if 𝑠 = 1 (i.e., 𝑣R ≥ 0). Otherwise,

when 𝑣R is negative (i.e., 𝑠 = −1) then 𝑣𝑠𝑚 = −𝑣+ and 𝑣𝑙𝑔 = −𝑣−.

Rounding bit. To determine the rounding decision for the 𝑟𝑛 and 𝑟𝑎 mode, we must determine

whether 𝑣R is closer to 𝑠 × 𝑣−, closer to 𝑠 × 𝑣+, or exactly in the middle of the two values. We extract

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 3. Publication date: January 2022.



One Polynomial Approximation to Produce Correctly Rounded Results of an Elementary Function for Multiple . . . 3:7

-v
+

-v
-

rb = 0, sticky = 1rb = 1, sticky = 1

rb = 1, sticky = 0 rb = 0, sticky = 0

rb = 0, sticky = 1 rb = 1, sticky = 1

rb = 0, sticky = 0 rb = 1, sticky = 0

v
-

v
+

(a) rn rounding when s = -1 and bit-string of v
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+

(d) rn rounding when s = 1 and bit-string of v
-
 is odd

Fig. 4. The 𝑟𝑛 mode using the rounding components (𝑠 , 𝑣−, 𝑟𝑏, 𝑠𝑡𝑖𝑐𝑘𝑦). We illustrate rounding when 𝑣R is

positive or negative and when 𝑣− is even or odd. When a interval is colored green, all real values in the interval

round to the FP value colored green. Similarly, all real values in the interval colored blue will round to the FP

value colored blue.

the (𝑛 + 1)𝑡ℎ-bit from our extended precision representation of 𝐵 |𝑣R | , which we call as the rounding

bit (i.e., 𝑟𝑏). The rounding bit describes whether |𝑣R | is closer to 𝑣
− than 𝑣+. If the rounding bit is 0,

then |𝑣R | is closer to 𝑣
− (i.e., 𝑣− ≤ |𝑣R | <

𝑣−+𝑣+

2 ). If the rounding bit is 1, then |𝑣R | is at the middle or

close to 𝑣+. Figure 3 illustrates the range of real values where the rounding bit is 0 or 1.

Sticky bit.While the rounding bit tells us whether |𝑣R | is closer to 𝑣
−, it does not tell us whether

|𝑣R | is exactly equal to 𝑣− or is exactly in the middle of 𝑣− and 𝑣+ (i.e., |𝑣R | =
𝑣−+𝑣+

2 ). When we look

at the bit-string 𝐵 |𝑣R | , |𝑣R | is equal to 𝑣
− when the (𝑛 + 1)𝑡ℎ-bit (i.e., 𝑟𝑏) is 0 and the remaining bits

from the (𝑛 + 2)𝑡ℎ-bit are all zeros. If 𝑟𝑏 = 0 and any bit afterwards is 1, then |𝑣R | is not equal to 𝑣
−.

Similarly, |𝑣R | is exactly in the middle of 𝑣− and 𝑣+ when the (𝑛 + 1)𝑡ℎ-bit is 1 and the remaining

bits from the (𝑛 + 2)𝑡ℎ-bit are all 0’s in 𝐵 |𝑣R | . In both these cases, we need to determine if all the

bits starting from 𝑏𝑛+2 are zeros. We define the sticky bit as the bitwise OR of all bits starting from

the (𝑛 + 2)𝑡ℎ-bit in the extended precision representation.

𝑠𝑡𝑖𝑐𝑘𝑦 = 𝑏𝑛+2 | 𝑏𝑛+3 | 𝑏𝑛+3 | . . .

where | is the bit-wise OR operation.

Using the rounding components (𝑠, 𝑣−, 𝑟𝑏, 𝑠𝑡𝑖𝑐𝑘𝑦), we can identify the relationship between |𝑣R |

and the nearest FP values for any rounding mode in the standard.




|𝑣R | = 𝑣− if 𝑟𝑏 = 0 ∧ 𝑠𝑡𝑖𝑐𝑘𝑦 = 0

𝑣− < |𝑣R | <
𝑣−+𝑣+

2 if 𝑟𝑏 = 0 ∧ 𝑠𝑡𝑖𝑐𝑘𝑦 = 1

|𝑣R | =
𝑣−+𝑣+

2 if 𝑟𝑏 = 1 ∧ 𝑠𝑡𝑖𝑐𝑘𝑦 = 0
𝑣−+𝑣+

2 < |𝑣R | < 𝑣+ if 𝑟𝑏 = 1 ∧ 𝑠𝑡𝑖𝑐𝑘𝑦 = 1

We can compute 𝑣+ from the rounding components. Figure 3 pictorially shows the rounding bit

and sticky bit for various real values between 𝑣− and 𝑣+.

Rounding to various modes with the rounding components. Figure 4 shows rounding 𝑣R
using the rounding components for the 𝑟𝑛 mode. Similarly, Figure 5 illustrates rounding with the

rounding components for the other four rounding modes.
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Fig. 5. Rounding decisions for various rounding modes based on the rounding components: (𝑠 , 𝑣−, 𝑟𝑏, 𝑠𝑡𝑖𝑐𝑘𝑦).

The interval of real values colored with green and blue round to the FP value colored green and blue,

respectively.

2.4 The RLibm Approach

We provide a brief background on our RLibm project as we build on top of it in this paper. In the

RLibm project, we make a case for approximating the correctly rounded result rather than the real

value of an elementary function [Lim et al. 2020, 2021; Lim and Nagarakatte 2021a,b]. When we

approximate the correctly rounded result, there is an interval of real values around the correctly

rounded result for each input such that producing any value in the interval produces the correct

result. This interval is further constrained to account for numerical errors that can occur with

polynomial evaluation, range reduction, and output compensation. This interval can be used to

generate polynomial approximations. It represents the maximum amount of freedom available to

produce the correct result. Figure 6 illustrates our RLibm approach.

The RLibm approach consists of four steps. The first step is to use an oracle to compute the

correctly rounded result of an elementary function 𝑓 (𝑥) for each input 𝑥 ∈ T, where T is the target

representation. The second step is to identify an interval [𝑙, ℎ] around the correctly rounded result

such that any value in [𝑙, ℎ] rounds to the correctly rounded result in T, which is known as the

rounding interval. Since polynomial evaluation, range reduction, and output compensation happen

in representation with higher precision H, the rounding intervals are also in H. The third step is to

employ range reduction to transform input 𝑥 to 𝑥 ′. The generated polynomial will approximate the

result for 𝑥 ′. Subsequently, we use output compensation to produce the final correctly rounded

output for 𝑥 . Both range reduction and output compensation happen in H and can experience

numerical errors. These numerical errors should not affect the generation of correctly rounded

results. Hence, it is necessary to deduce intervals for the reduced domain so that the polynomial
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v1 v2 v3l h

f(x)

(a)

l ≤ c0 + c1x + c2x2 … ≤ h

(b)

rounds torounding interval of v2 

Fig. 6. Illustration of the RLibm approach. (a) The values 𝑣1, 𝑣2, and 𝑣3 are representable values in representa-

tion T. The real value of 𝑓 (𝑥) for a given input 𝑥 cannot be exactly represented in T and it is rounded to 𝑣2.

The RLibm approach identifies the rounding interval of 𝑣2 (shown in gray box). (b) Polynomial generation

using the rounding interval (i.e., [𝑙, ℎ]) for each input 𝑥 with an LP formulation.

evaluation over the reduced input produces the correct results for the original inputs. Given 𝑥

and its rounding interval [𝑙, ℎ], reduced input 𝑥 ′ is computed with range reduction. The next task

before polynomial generation is to identify the reduced rounding interval for 𝑃 (𝑥 ′) that when used

with output compensation produces the correctly rounded result. We use the inverse of the output

compensation function to identify the reduced interval [𝑙 ′, ℎ′].

The last step is to synthesize a polynomial of a degree 𝑑 using an arbitrary precision linear

programming (LP) solver that satisfies the constraints (i.e., 𝑙 ′ ≤ 𝑃 (𝑥 ′) ≤ ℎ′) when given a set of

inputs 𝑥 ′. Approximating the correctly rounded result with the RLibm approach provides more

freedom in generating polynomials. Hence, the resulting RLibm libraries are more efficient compared

to mainstream libraries.

3 AN ILLUSTRATIVE EXAMPLE OF OUR APPROACH

We describe our entire approach with an end-to-end example for creating a polynomial approxima-

tion for 𝑙𝑛(𝑥) that produces correctly rounded results for a 5-bit FP representation with 2 exponent

bits (FP5) and a 4-bit FP with 2 exponent bits (FP4) for all standard rounding modes (i.e., 𝑟𝑛, 𝑟𝑎, 𝑟𝑧,

𝑟𝑢, and 𝑟𝑑). Figure 1(b) and Figure 1(c) show the bit-string of FP5 and FP4, respectively. Although we

illustrate our approach with FP5 and FP4 for ease of exposition, it is beneficial in practice to create

table-lookups for FP5 and FP4 because there are only 32 and 16 distinct bit-patterns, respectively.

The 𝑙𝑛(𝑥) function is defined over the input domain (0,∞). The result of 𝑙𝑛(𝑥) is NaN when

𝑥 < 0 or when x is NaN. The result is∞ when the input is∞ and −∞ when the input is 0. There

are only 11 non-special case inputs, which range from 0.25 to 3.5 in FP5. Similarly, there are only 5

non-special case inputs in FP4. Now, our goal is to generate a single polynomial approximation

that produces correctly rounded results for both FP5 and FP4 with all five rounding modes.

To accomplish this goal, we will generate a polynomial approximation that produces correctly

rounded results for a 7-bit FP representation (FP7) with the round-to-odd mode. Here, FP7 has

exactly the same number of exponent bits as FP5 and FP4 (i.e., 2 exponent bits). Effectively, FP7

has 2 additional fraction bits when compared to FP5. Every value that is representable in FP5 and

FP4 is also representable in FP7. While rounding with the round-to-odd mode, if the polynomial

approximation produces a value that is exactly representable in FP7, then it is unchanged. Otherwise,

the result of the polynomial approximation (which is implemented in double precision) is rounded

to the nearest FP7 value whose bit-string is odd (i.e., the last bit is a 1). When this FP7 round-to-odd

result is rounded to a value in FP5 or FP4 according to any of the five standard rounding modes, it

produces the correct result for them.

Why does a correctly rounded result with the round-to-odd mode for FP7 work with

FP5/FP4? As the number of exponent bits is identical in FP7, FP5, and FP4, every value that is

representable in FP5 and FP4 is also representable in FP7. Let us consider an input 1.5. We want

to produce correctly rounded results of 𝑙𝑛(1.5) for all the rounding modes with FP5 and FP4. The
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Fig. 7. The correctly rounded result of 𝑙𝑛(1.5) for FP5 and FP4 with some subset of the rounding modes

and their rounding intervals (gray box). The gray star represents the real value of 𝑙𝑛(1.5). Values that are

representable in FP7, FP5, and FP4 are shown with rhombus, circle, and square, respectively. Solid shapes

represents the correctly rounded result for the chosen representation and rounding mode. The last row shows

the odd interval to produce the correctly rounded result of 𝑙𝑛(1.5) in FP7 with the round-to-odd mode. The

odd interval is a subset of the intersection of the rounding intervals of these configurations.

�rst row of Figure 7 shows the real result (i.e., a star) and the correctly rounded result of FP5 with

the 𝑟𝑛 mode. If we want to generate the correctly rounded result for 𝑙𝑛(1.5) in FP5 with the 𝑟𝑛

mode using polynomial approximations, there is an interval of real values around the correctly

rounded result such that producing any value in that interval produces the correct result (shaded

in gray). The subsequent rows show the correctly rounded result and the rounding intervals for

other rounding modes of FP5 and FP4 for the same input 1.5. When compared to FP5, the rounding

interval for FP4 will be larger because the distance between adjacent points is larger. Intuitively, a

single polynomial can produce the correctly rounded result of 𝑙𝑛(1.5) for both FP5 and FP4 with all

rounding modes if it produces a value that lies in the common interval among all these modes and

precision configurations (i.e., an intersection of the rounding intervals).

We show that computing the correctly rounded result of 𝑙𝑛(1.5) with FP7 using the round-to-odd

mode and identifying the interval around this result in FP7 is an effective way to compute the

common interval described above. The last row of Figure 7 shows the correctly rounded result

in FP7 with the round-to-odd mode and the interval to produce that value. The interval for the

round-to-odd result in FP7 is smaller than the common interval among FP5 and FP4 with all the

rounding modes because it works for many other representations beyond FP5 and FP4.

In FP7, there are three additional values between the two adjacent FP5 values. Hence, the round-

to-odd result with FP7 preserves enough information to produce the correctly rounded result with

FP5 and FP4 with any rounding mode. Our proofs in Section 5 show that this is a generic result for

any representation with 𝑛-bits.

Generating polynomial approximations. The first step is to identify rounding intervals for

producing the correctly rounded result of FP7 with the round-to-odd mode, which we call the odd

interval. In our approach, polynomial evaluation happens with double precision. Hence, we identify

an interval of values in double precision such that any value in that interval rounds to the correctly

rounded result in FP7 with the round-to-odd mode. When the correctly rounded result in FP7 with

the round-to-odd mode is even (i.e., the bit-string is even when interpreted as an unsigned integer),

the rounding interval is a singleton. For example, the odd interval for 𝑙𝑛(1.0) is a singleton because

the correctly rounded result is 0. If the correctly rounded result with the round-to-odd mode is not
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Fig. 8. (a) The set of constraints for the polynomial approximation to produce correctly rounded results

for each input with the round-to-odd mode in FP7. (b) The odd intervals for each input and the resulting

polynomial from our approach that produces a value in the odd interval for all inputs.

even, then we can identify the odd interval as follows. We identify the preceding value (l) and the

succeeding (h) value corresponding to the correctly rounded result in FP7. Then, the open interval

(𝑙, ℎ) is the odd interval. Figure 8(b) shows the odd interval for each input (shaded in blue). Next,

we need to create a polynomial approximation that produces a value in the odd interval for each

input.

Creating polynomial approximations with singleton odd intervals is challenging because there

is no freedom for the polynomial generator. For the 𝑙𝑛(𝑥) function with FP7, there is only one

input (i.e., 1.0) whose odd interval is a singleton. We treat it as a special case. In general, we use

mathematical properties of the elementary function for larger data types to effectively handle such

singleton odd intervals (Section 4.3). Figure 8(b) shows the remaining inputs and their non-singleton

odd intervals.

The next step is to generate a polynomial that produces a value in the odd interval for all inputs.

We show the constraints imposed by the odd interval on the output of the polynomial in Figure 8(a).

As there only 10 non-special case inputs, we encode them as a system of linear inequalities similar

to our prior work in the RLibm project and use an LP solver to solve for the coe�cients of a 4𝑡ℎ

degree polynomial 𝑃 (𝑥) (see Figure 8(a)). For larger representations, we employ sophisticated range

reduction, counterexample guided polynomial generation, and generate piecewise polynomials [Lim

and Nagarakatte 2021a]. Figure 8(b) pictorially shows the generated polynomial, which produces a

value in the odd interval for each input. This polynomial will produce the correctly rounded result

of 𝑙𝑛(𝑥) when the result is rounded to FP5 and FP4 with any of the �ve rounding modes in the

standard.

4 OUR APPROACH TO GENERATE A GENERIC POLYNOMIAL APPROXIMATION

Our goal is to generate a single polynomial approximation of an elementary function that produces

correctly rounded results for all inputs for multiple precision and rounding con�gurations. Let T𝑛
be a 𝑛-bit FP representation (i.e., F𝑛, |𝐸 |). Let T𝑘 be a representation where T𝑘 has no more precision

bits compared to T𝑛 with the same number of exponent bits. Speci�cally, T𝑘 = F𝑘, |𝐸 | where

|𝐸 | + 1 < 𝑘 ≤ 𝑛. Note that all values exactly representable in T𝑘 are also exactly representable in T𝑛
(i.e., T𝑘 ⊆ T𝑛). We de�ne 𝑟𝑚 to be a rounding mode in the standard (i.e., 𝑟𝑚 ∈ {𝑟𝑛, 𝑟𝑎, 𝑟𝑧, 𝑟𝑢, 𝑟𝑑}).

Our goal is to generate a polynomial approximation𝐴H (𝑥), which is implemented in representation

H, of an elementary function 𝑓 (𝑥) that produces correctly rounded results for all inputs for any

representation T𝑘 and any rounding mode 𝑟𝑚. Speci�cally, rounding the result of 𝐴H (𝑥) to any
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w0 w1 w2 w3 w4

All values in this region rounds to w1 All values in this region rounds to w3

(even) (even) (even)(odd)(odd)

Fig. 9. The round-to-odd (𝑟𝑜) rounding mode. We show the rounding of 𝑣R with the 𝑟𝑜 mode. Here,𝑤0,𝑤1,

𝑤2,𝑤3, and𝑤4 are values representable in representation T. If 𝑣R is exactly representable in T, then 𝑣R rounds

to that value. Otherwise, 𝑣R rounds to the nearest value in T that is odd.

representation T𝑘 with the 𝑟𝑚 rounding mode must result in the same value as computing 𝑓 (𝑥) in

real numbers and rounding the result to T𝑘 with the 𝑟𝑚 rounding mode, for all inputs in T𝑘 .

𝑅𝑁T𝑘 ,𝑟𝑚 (𝐴H (𝑥)) = 𝑅𝑁T𝑘 ,𝑟𝑚 (𝑓 (𝑥))

Main insight. To generate correct results for T𝑘 , our key insight is to create a polynomial approxi-

mation that produces the correctly rounded results for T𝑛+2 with the round-to-odd mode. We prove

that it produces the correctly rounded result for any representation T𝑘 with all standard rounding

modes when we round the round-to-odd result to the target representation (Section 5). Intuitively,

our approach works because the round-to-odd result with T𝑛+2 maintains su�cient information

about the real value of an elementary function 𝑓 (𝑥) that is required for correct rounding for all

representations T𝑘 with any standard rounding mode.

To generate a polynomial approximation for T𝑛+2 with the round-to-odd mode, we use our

RLibm approach. We approximate the correctly rounded result rather than the real value. We

extend the RLibm approach to handle the round-to-odd mode. Speci�cally, we need to generate

an interval of values around the correctly rounded round-to-odd result for each input, which

we call the odd interval. If the generated polynomial produces a value in the odd interval for a

particular input, then it produces the correct result for all representations T𝑘 and for all rounding

modes. One unique challenge that we address is the presence of singleton odd intervals, which

happens when the correctly rounded result in T𝑛+2 is even. To scale to 32-bit floats (i.e., T𝑛+2 = 34-bit

float), we employ range reduction, counterexample guided polynomial generation, and generate

piecewise polynomials. Finally, we use a linear programming solver to solve for the coe�cients of

a polynomial given a system of linear constraints generated from the odd intervals.

4.1 Generating the Correctly Rounded Result for T𝑛+2 with the Round-to-Odd Mode

As we make a case for creating polynomial approximations for T𝑛+2 with the round-to-odd mode,

we formally de�ne it and describe rounding with the round-to-odd mode using the rounding

components. We describe the properties of the correctly rounded result with the round-to-odd

mode and provide intuition on why rounding the round-to-odd result in T𝑛+2 to any representation

T𝑘 produces the correct result.

The round-to-odd (𝑟𝑜) is a non-standard rounding mode that has been previously used to avoid

double rounding issues while converting a binary FP number to a decimal FP number [Goldberg

1991] and while performing primitive operations [Boldo and Melquiond 2005, 2008]. Given a real

value 𝑣R, the round-to-odd mode rounds 𝑣R as follows. If 𝑣R is exactly representable as value 𝑣 in

the target representation, then 𝑣R rounds to 𝑣 . Otherwise, 𝑣R rounds to the nearest odd value in the

target representation. Figure 9 illustrates the round-to-odd rounding mode. Using the rounding

components (𝑠 , 𝑣−, 𝑟𝑏, 𝑠𝑡𝑖𝑐𝑘𝑦) from Section 2.2, the round-to-odd mode can be de�ned as follows:
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w0 w1 w2 w3 w4
Tn,

to Tn+2

v1 (odd)v0 (even)

w0 w1 w2 w3 w4
Tn,

to Tn+2

v1 (odd)v0 (even)

w0 w1 w2 w3 w4
Tn,

to Tn+2

v1 (odd)v0 (even)
(a) (b) (c)

Fig. 10. An example to show that the round-to-odd result in T𝑛+2 maintains sufficient information to produce

correctly rounded results for T𝑛 when the round-to-odd result is double rounded to T𝑛 with the 𝑟𝑛 mode.

Real value is represented with a red star. Here,𝑤0,𝑤1,𝑤2,𝑤3, and𝑤4 are representable values in T𝑛+2. Values

𝑣0 and 𝑣1 are adjacent values representable in T𝑛 . As all values in T𝑛 are representable in T𝑛+2, 𝑤0 = 𝑣0
and𝑤4 = 𝑣1. Solid arrow represents directly rounding the real value to T𝑛 . The dotted arrows represent the

process of double rounding from the real value to the round-to-odd result in T𝑛+2 and subsequently to T𝑛 .

(a) When the real value is in the interval between𝑤0 and𝑤2. (b) When the real value is exactly equal to𝑤2,

which is the midpoint of 𝑣0 and 𝑣1. (c) When the real value is between𝑤2 and𝑤4.

𝑣𝑟𝑜 = 𝑅𝑁T,𝑟𝑜 (𝑣R) =

{
𝑠 × 𝑣− if 𝐼𝑠𝑂𝑑𝑑 (𝑣−) ∨ (𝑟𝑏 = 0 ∧ 𝑠𝑡𝑖𝑐𝑘𝑦 = 0)

𝑠 × 𝑣+ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝑣+ is the adjacent value to 𝑣− in T.

Our contribution is to use the round-to-odd mode to generate correctly rounded elementary

functions for multiple representations and multiple types. Speci�cally, we prove the following

theorem in Section 5, which forms the foundation for our approach.

Theorem 1. Let 𝑣R = 𝑓 (𝑥) be the real valued result of an elementary function and 𝑣𝑟𝑜 =

𝑅𝑁T𝑛+2,𝑟𝑜 (𝑣R). Let 𝑣 be a value in the odd interval of 𝑣𝑟𝑜 . Consider a rounding mode 𝑟𝑚 ∈ {𝑟𝑛,

𝑟𝑎, 𝑟𝑧, 𝑟𝑢, 𝑟𝑑 }. Then,
𝑅𝑁T𝑘 ,𝑟𝑚 (𝑣) = 𝑅𝑁T𝑘 ,𝑟𝑚 (𝑣R)

We propose an e�cient procedure to create polynomial approximations 𝐴H (𝑥) of an elementary

function 𝑓 (𝑥) that produces values in the odd interval of the correctly rounded result in T𝑛+2. Using

Theorem 1, rounding any value 𝑣 in the odd interval (i.e., 𝐴H (𝑥)) to T𝑘 using a rounding mode 𝑟𝑚

produces the correctly rounded result of 𝑓 (𝑥) in T𝑘 using the same rounding mode 𝑟𝑚.

An example to show why the round-to-odd result avoids double rounding errors. We

provide intuition on how rounding with the round-to-odd mode avoids double rounding errors in

Figure 10. Any value that is representable in T𝑛 is also representable in T𝑛+2. Further, there are three

additional values (𝑤1,𝑤2,𝑤3) in T𝑛+2 between𝑤0 and𝑤4. Here,𝑤0 and𝑤4 are also representable in

T𝑛 . In the round-to-odd mode, any real value between𝑤0 and𝑤2 rounds to𝑤1. Similarly, any real

value between𝑤2 and𝑤4 rounds to𝑤3. If the real value is exactly equal to𝑤0, then the round-to-odd

mode with T𝑛+2 also rounds to𝑤0 (similarly𝑤2 and𝑤4 with T𝑛+2). Figure 10 illustrates the task of

rounding the real value directly to T𝑛 with the 𝑟𝑛 mode (solid arrow) and the result produced from

double rounding the 𝑟𝑜 result from T𝑛+2 to T𝑛 using the 𝑟𝑛 mode.

In the context of rounding a real value directly to T𝑛 with rounding components, the last bit

of the round-to-odd result in T𝑛+2 captures the sticky bit. Similarly, the penultimate bit of the

round-to-odd result in T𝑛+2 captures the rounding bit. In summary, the round-to-odd result in

T𝑛+2 maintains su�cient information about the real value so that when the round-to-odd result is

(double) rounded to T𝑘 with any rounding mode, it produces the correctly rounded result for T𝑘 .

4.2 Polynomials for Correctly Rounded Results with the Round-to-Odd Mode in T𝑛+2

Our strategy is to create a generic polynomial approximation that produces correctly rounded

results for T𝑛+2 using the round-to-odd mode. Next, we describe our approach to generate such
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1 Function GenerateGenericPolynomial(𝑓 , T𝑛+2, H, 𝑋 , 𝑑 , 𝑅𝑅H, 𝑂𝐶H):

2 𝑂 ← CalcResultsInRO(𝑓 , T𝑛+2, 𝑋)

3 (𝐿, 𝑆) ← CalcOddIntervals(O, T𝑛+2, H)

4 if 𝐿 = ∅ then return (false, ∅, DNE)

5 (𝑠𝑡𝑎𝑡𝑢𝑠, 𝑃) ← RLibmPolyGen(𝐿, H, 𝑑 , 𝑅𝑅H, 𝑂𝐶H)

6 return (𝑠𝑡𝑎𝑡𝑢𝑠, 𝑆, 𝑃)

Algorithm 1: A sketch of our approach to generate piecewise polynomials of degree 𝑑 for elementary

function 𝑓 (𝑥) in the representation T𝑛+2 using the round-to-odd mode. The resulting polynomial when

used with range reduction (𝑅𝑅H) and output compensation (𝑂𝐶H) produces correctly rounded results

for all inputs 𝑥 ∈ 𝑋 with all representations T𝑘 for all standard rounding modes. CalcResultsInRO

computes the round-to-odd result using an oracle (see Figure 11). CalcOddIntervals computes the set of

odd intervals (𝐿) and set (𝑆) of singleton odd intervals (see Figure 11). Once we have the odd intervals

and singletons, we use RLibm’s polynomial generation procedure (RLibmPolyGen) to obtain the generic

polynomial.

1 Function CalcResultsInRO(𝑓 , T𝑛+2, 𝑋):

2 𝑂 ← ∅

3 foreach 𝑥 ∈ 𝑋 do

4 𝑦 = 𝑓 (𝑥)

5 (𝑠, 𝑣−, 𝑟𝑏, 𝑠𝑡𝑖𝑐𝑘𝑦) ← RComp(𝑦, T𝑛+2)

6 if IsOdd(𝑣−)∨(𝑟𝑏 = 0 ∧ 𝑠𝑡𝑖𝑐𝑘𝑦 = 0)

then

7 𝑦𝑟𝑜 ← 𝑠 × 𝑣−

8 end

9 else

10 𝑣+ ← GetSuccVal(𝑣−, T𝑛+2)

11 𝑦𝑟𝑜 ← 𝑠 × 𝑣+

12 end

13 𝑂 ← 𝑂 ∪ (𝑥,𝑦𝑟𝑜 )

14 end

15 return 𝑂

1 Function CalcOddIntervals(𝑂 , T𝑛+2, H):

2 foreach (𝑥,𝑦𝑟𝑜 ) ∈ 𝑂 do

3 𝐿 ← ∅

4 𝑆 ← ∅

5 if IsEven(𝑦𝑟𝑜) then

6 𝑆 ← 𝑆 ∪ (𝑥,𝑦𝑟𝑜 )

7 end

8 else

9 𝑦− ← GetPrecVal(𝑦𝑟𝑜 , T𝑛+2)

10 𝑙 ← GetSuccVal(𝑦−, H)

11 𝑦+ ← GetSuccVal(𝑦𝑟𝑜 , T𝑛+2)

12 ℎ ← GetPrecVal(𝑦+, H)

13 𝐿 ← 𝐿 ∪ (𝑥, [𝑙, ℎ])

14 end

15 return (𝐿, 𝑆)

16 end

Fig. 11. CalcResultsInRO computes the correctly rounded result of 𝑓 (𝑥) in T𝑛+2 using the round-to-odd

rounding mode for each input 𝑥 ∈ 𝑋 . CalcOddIntervals computes the odd interval for each input 𝑥 based

on the correctly rounded result 𝑦𝑟𝑜 in T𝑛+2. The list 𝑆 is the set of inputs that have a singleton as the odd

interval. The list 𝐿 contains inputs and the corresponding odd intervals. GetPrecVal(𝑎, T) returns the value

preceding 𝑎 in the representation T. GetSuccVal(𝑎, T) returns the value succeeding 𝑎 in the representation T.

a polynomial approximation. Algorithm 1 provides a high-level sketch of this process. Given an

elementary function 𝑓 (𝑥) and a list of inputs 𝑋 in the T𝑛 representation (i.e., 𝑋 ⊆ T𝑛), the �rst step

is to compute the correctly rounded result in representation T𝑛+2 using the round-to-odd mode

(i.e., 𝑦𝑟𝑜 for each input 𝑥 ∈ 𝑋 ). Figure 11 shows our algorithm to compute the round-to-odd result

𝑦𝑟𝑜 for each input using the real value from the oracle.

Subsequently, we compute the odd interval of each result 𝑦𝑟𝑜 such that any real value in the

odd interval rounds to 𝑦𝑟𝑜 . Figure 11 also provides our algorithm to compute the odd interval. The

odd intervals of some inputs can be a singleton (i.e., only one value in the odd interval), which we

handle separately (Section 4.3). Once we have a set of non-singleton odd intervals for all inputs,
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we use our prior work in the RLibm project [Lim and Nagarakatte 2021a] to generate piecewise

polynomials.

At the end of this process, we will have two main components that together can produce correctly

rounded results for 𝑓 (𝑥). First, our approach produces a set 𝑆 that contains inputs whose odd

interval is a singleton. For the resulting math libraries to be efficient, we need a fast method to check

these inputs and compute results for them either using table lookups or using function-specific

mathematical properties (Section 4.3). Second, our approach produces piecewise polynomials that

when used with output compensation produces correct results for all inputs when rounded to any

T𝑘 with all standard rounding modes.

Computing the round-to-odd result from a real value. The first step in our approach is to

identify the correctly rounded result 𝑦𝑟𝑜 for input 𝑥 . Figure 11 provides the steps to compute the

round-to-odd result in T𝑛+2 given a real value of 𝑓 (𝑥). We compute the real value 𝑦 = 𝑓 (𝑥) for each

input 𝑥 using an oracle (e.g., MPFR library). Then, we obtain the rounding components (𝑠 , 𝑣−, 𝑟𝑏,

𝑠𝑡𝑖𝑐𝑘𝑦) as described in Section 2.2. When the real value is exactly representable (𝑟𝑏 =0 and 𝑠𝑡𝑖𝑐𝑘𝑦 =

0) or when 𝑣− is odd, then the round-to-odd result is 𝑣−. Otherwise, the round-to-odd result in T𝑛+2
is the value succeeding 𝑣− in T𝑛+2.

Deducing the odd interval of an input. Once we determine the correctly rounded result 𝑦𝑟𝑜
of 𝑓 (𝑥) in representation T𝑛+2 using the round-to-odd mode, the next step is compute the interval

of values in representation H, which is used for polynomial evaluation and range reduction, such

that producing any value in the interval rounds to 𝑦𝑟𝑜 , which we call as the odd interval. The

function CalcOddIntervals in Figure 11 describes the steps to compute the odd interval. If the

correct rounded result 𝑦𝑟𝑜 in T𝑛+2 is even, then the odd interval is a singleton. In such cases, the

only value that rounds to 𝑦𝑟𝑜 with the round-to-odd mode is 𝑦𝑟𝑜 itself.

Generating polynomial approximations with singletons is challenging because they limit the

amount of freedom available to the polynomial generator. Hence, we identify such inputs and

handle them separately. If 𝑦𝑟𝑜 is odd, then all values in H that are strictly greater than the preceding

value of 𝑦𝑟𝑜 in T𝑛+2 and strictly less than the succeeding value of 𝑦𝑟𝑜 in T𝑛+2 forms the odd interval.

Any value in this odd interval rounds to 𝑦𝑟𝑜 in T𝑛+2 with the round-to-odd mode. We deduce the

odd interval for each input. In Figure 11, 𝐿 represents the set of non-singleton odd intervals for all

inputs, which is given to the polynomial generator.

Piecewise polynomial generation using the odd intervals. The next step is to generate

piecewise polynomials that produce a value in the odd interval for all inputs. Each input and odd

interval pair (i.e., (𝑥, [𝑙, ℎ]) ∈ 𝐿 specifies the constraints on the polynomial approximation 𝐴H (𝑥)

for each input 𝑥 . Using the RLibm methodology, we create an LP problem with these constraints to

deduce the coefficients of a polynomial with degree 𝑑 . Similarly, we generate piecewise polynomials

and use counterexample guided polynomial generation to facilitate the entire process. We also

make sure that the generated polynomial produces a value in the odd interval after range reduction

and output compensation.

Implementation of the polynomial approximation forT𝑘 .At the end of polynomial genera-

tion, we will have a a set of inputs whose odd interval is a singleton and a polynomial approximation

of 𝑓 (𝑥) that produces the correct round-to-odd result in T𝑛+2 for all inputs. We implement the

polynomial approximation as follows. Given an input 𝑥 , we first check whether the input 𝑥 ’s odd

interval is a singleton. If so, we either use the precomputed round-to-odd result with table lookups

or efficiently compute the round-to-odd result using function-specific properties. Otherwise, we

use perform range reduction and use Horner’s method for polynomial evaluation to compute

the round-to-odd result in T𝑛+2 for the input. Finally, we round the round-to-odd result in T𝑛+2
to T𝑘 using the user specified rounding mode to return the final result. We guarantee that our
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implementation produces the correctly rounded result of 𝑓 (𝑥) for any representation T𝑘 with all

the standard rounding modes for all inputs 𝑥 .

4.3 Computing Round-to-Odd Results for Inputs with Singleton Odd Intervals

One of the challenging issues for polynomial generation with odd intervals is the presence of

singletons, which happens when the correctly rounded result with the round-to-odd mode is even

(i.e., the round-to-odd result in T𝑛+2 matches the real value). We want to identify such inputs

efficiently. As both T𝑛 and T𝑛+2 are finite precision representations, all values in T𝑛 and T𝑛+2 are

rational values. If the real value matches the round-to-odd result in T𝑛+2 exactly, then it is a rational

value. Hence, our task of identifying inputs with singleton odd intervals corresponds to the problem

of identifying rational inputs that produce rational outputs for various elementary functions, which

is well studied [Aigner and Ziegler 2009; Baker 1975; Cohn 1974; Niven 1956]. We first use the

mathematical properties of the elementary function 𝑓 (𝑥) to identify all rational inputs such that

𝑓 (𝑥) is a rational value. Then, we check if these inputs 𝑥1 and the corresponding result 𝑓 (𝑥1) are

exactly representable in T𝑛 and T𝑛+2, respectively. If so, such inputs are of interest. Then, we need

to develop a quick way to identify those inputs and compute the round-to-odd results for them

without using a multi-way branch.

We now describe the specific mathematical properties of elementary functions that we use to

identify inputs whose odd interval is a singleton and the mechanism that we use to efficiently

compute round-to-odd results for them.

Functions 𝑒𝑥 and 𝑙𝑛(𝑥). From the Lindemann-Weierstrass theorem [Baker 1975], if the input

𝑥 is a non-zero rational value, then 𝑒𝑥 cannot be a rational value. Hence, the only value that will

have a singleton odd interval with 𝑒𝑥 is 𝑥 = 0. Similarly, 𝑙𝑛(𝑥) will produce a rational output only

when 𝑥 = 1, which also follows from the Lindemann-Weierstrass theorem [Baker 1975]. We have a

single branch to check this input and return the pre-computed correctly rounded result.

Functions 2𝑥 and 10𝑥 . The function 2𝑥 can produce a rational result only when 𝑥 is an integer

and the value of 2𝑥 is less than the dynamic range of the T𝑛+2 representation. When T𝑛 is a 32-

bit float, T𝑛+2 can represent all values of 2𝑥 for 𝑥 between −151 ≤ 𝑥 ≤ 127. Thus, any integer

input between −151 and 127 (279 inputs in total) can produce a singleton odd interval. Hence, our

implementation checks whether 𝑥 is an integer within a certain bound (i.e., −151 ≤ 𝑥 ≤ 127) and

directly computes the result, 2𝑥 , using bit-wise operations.

Similar to 2𝑥 , 10𝑥 produces a rational value when 𝑥 is a positive integer. In contrast to 2𝑥 , 10𝑥

grows much faster and there are a few inputs for which 10𝑥 is exactly representable in T𝑛+2. For a

32-bit float (T𝑛), there are only 12 inputs ranging from 0 to 11 that are exactly representable in a

34-bit float (T𝑛+2). We use a precomputed table to store the correct results for these 12 inputs and

use a switch statement for it.

Functions 𝑙𝑜𝑔2 (𝑥) and 𝑙𝑜𝑔10 (𝑥). The 𝑙𝑜𝑔2 (𝑥) function produces a rational result when 𝑥 is a

power of 2 (i.e., 𝑥 = 2𝑘 and 𝑘 is an integer). We use bitwise operations to check if the input is a

power of two. In contrast to 𝑙𝑜𝑔2 (𝑥), 𝑙𝑜𝑔10 (𝑥) produces a rational result when 𝑥 is a positive power

of 10 (i.e., 𝑥 = 10𝑘 and 𝑘 is a positive integer). This difference between 𝑙𝑜𝑔2 (𝑥) and 𝑙𝑜𝑔10 (𝑥) is

due to the fact that T𝑛 cannot exactly represent negative powers of 10. When we are generating

a polynomial to approximate the round-to-odd result with a 34-bit float (i.e., T𝑛+2), there are 11

inputs that can produce singletons. We create table-lookups for them.

The hyperbolic functions, 𝑠𝑖𝑛ℎ(𝑥) and 𝑐𝑜𝑠ℎ(𝑥). If the input 𝑥 is a non-zero rational value,

then 𝑦 = 𝑠𝑖𝑛ℎ(𝑥) or 𝑦 = 𝑐𝑜𝑠ℎ(𝑥) cannot be a rational value using the Lindemann-Weierstrass

theorem [Niven 1956]. Hence, the only input whose odd interval is a singleton is 0, for which we

use a branch condition.
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The 𝑠𝑖𝑛𝑝𝑖 (𝑥) function. The function 𝑠𝑖𝑛𝑝𝑖 (𝑥) is equal to 𝑠𝑖𝑛(𝜋𝑥). By Niven’s theorem [Niven

1956], the only rational values of 𝑥 between 0 ≤ 𝑥 ≤ 1
2 where 𝑠𝑖𝑛𝑝𝑖 (𝑥) is also a rational value are

when 𝑥 = 0, 𝑥 =
1
6 , and 𝑥 =

1
2 . Among these three inputs, 1

6 is not exactly representable in T𝑛 .

Given that 𝑠𝑖𝑛𝑝𝑖 is a periodic function, there are only three cases of inputs in 𝑥 ∈ T𝑛 where the

result of 𝑠𝑖𝑛𝑝𝑖 (𝑥) is representable in T𝑛+2 when we extend the domain of x to the set of all inputs:

𝑠𝑖𝑛𝑝𝑖 (𝑥) =





0 if 𝑥 is an integer

1 if 𝑥 ≡ 1
2 mod 2.0

−1 if 𝑥 ≡ 3
2 mod 2.0

We need to implement the floating point modulo operation efficiently using integer operations.

Consider the case where T𝑛 is a 32-bit float. All inputs 𝑥 ∈ T𝑛 greater than or equal to 223 are

integers where 𝑠𝑖𝑛𝑝𝑖 (𝑥) is always 0. Next, if 𝑥 < 223, then we need to identify whether 𝑥 is either

an integer, a multiple of 0.5, or a multiple of 1.5. To determine this condition, we compute 2𝑥 with a

32-bit float and then cast the result (i.e., 2𝑥 ) to a 32-bit integer to obtain the value 𝑡 . This operation

of casting the value 2𝑥 to an integer truncates the value of 2𝑥 to the integral part of 2𝑥 . Now if we

cast 𝑡 back to a 32-bit float value and the resulting float value is exactly equal to 2𝑥 , then 𝑡 is an

integer, which implies that 𝑥 is either an integer, or a multiple of 0.5, or a multiple of 1.5. Finally,

we compute the result of 𝑠𝑖𝑛𝑝𝑖 (𝑥) based on 𝑡 as shown below:

𝑠𝑖𝑛𝑝𝑖 (𝑥) =





0 if 𝑡 ≡ 0 mod 2

1 if 𝑡 ≡ 1 mod 4

−1 if 𝑡 ≡ 3 mod 4

The 𝑐𝑜𝑠𝑝𝑖 (𝑥) function. Similarly, 𝑐𝑜𝑠𝑝𝑖 (𝑥) = 𝑐𝑜𝑠 (𝜋𝑥) produces a rational value representable

in T𝑛+2 in the following cases.

𝑐𝑜𝑠𝑝𝑖 (𝑥) =




1 if 𝑥 is an even integer

−1 if 𝑥 is an odd integer

0 if 𝑓 𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑥) ≡ 0.5

These checks can be performed efficiently using a similar strategy illustrated for the 𝑠𝑖𝑛𝑝𝑖 (𝑥)

function. In summary, handling singleton odd intervals efficiently is important for performance

when we generate polynomials for correctly rounded results in T𝑛+2 with the round-to-odd mode.

5 PROOF THAT THE ROUND-TO-ODD RESULT WITH T𝑛+2 PRODUCES CORRECT
RESULTS FOR T𝑘

We provide a proof of Theorem 1 in this section. We prove that the round-to-odd result in T𝑛+2
produced by our polynomial approximation when rounded to T𝑘 with any of the standard rounding

modes produces the correctly rounded result for T𝑘 .

5.1 Unique Properties of the Round-to-Odd Result

We prove the unique properties of the round-to-odd result, which we subsequently use to prove

Theorem 1. When we use 𝑣R to represent the real value, we refer to it in the extended infinite

precision representation.

Lemma 1. The round-to-odd result 𝑣𝑟𝑜 in T𝑛+2 preserves the sign of 𝑣R.

Proof. The value zero is representable in T𝑛+2. The only value that rounds to zero is zero itself.

Hence, all positive real values will round to a positive value in the round-to-odd mode. Similarly all

negative real values will round to a negative value in the round-to-odd mode. □.
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Lemma 2. Let 𝑣𝑟𝑜 = 𝑅𝑁T𝑛+2,𝑟𝑜 (𝑣R). The first (𝑛 + 1)-bits of 𝑣𝑟𝑜 and 𝑣R are identical.

Proof. The 𝑣𝑟𝑜 result is created using the rounding components (𝑠𝑣𝑟𝑜 , 𝑣
−
𝑣𝑟𝑜

, 𝑟𝑏𝑣𝑟𝑜 , 𝑠𝑡𝑖𝑐𝑘𝑦𝑣𝑟𝑜 ). The

round-to-odd mode preserves the sign of 𝑣R in 𝑣𝑟𝑜 . Without loss of generality, we assume 𝑣R is

positive for the rest of the proof. Further, 𝑣−𝑣𝑟𝑜 is the truncated value of 𝑣R (see Section 2.2). Hence,

all the (𝑛 + 2)-bits of 𝑣−𝑣𝑟𝑜 and 𝑣R are identical. After rounding with the round-to-odd mode, 𝑣𝑟𝑜 is

either equal to 𝑣−𝑣𝑟𝑜 or the succeeding value of 𝑣−𝑣𝑟𝑜 in T𝑛+2. We prove that the (𝑛 + 1)-bits of 𝑣𝑟𝑜 and

𝑣R are identical by looking at the possible values of 𝑣−𝑣𝑟𝑜 and its relation to 𝑣𝑟𝑜 .

First case, when 𝑣−𝑣𝑟𝑜 is odd. Then, 𝑣𝑟𝑜 = 𝑣−𝑣𝑟𝑜 . Hence, all the (𝑛 + 2)-bits of 𝑣𝑟𝑜 and 𝑣R are identical.

Second case, when 𝑣−𝑣𝑟𝑜 is even. Hence, the last bit of 𝑣−𝑣𝑟𝑜 is 0. Now, there are two sub-cases. (1) If

𝑟𝑏𝑣𝑟𝑜 = 0 and 𝑠𝑡𝑖𝑐𝑘𝑦𝑣𝑟𝑜 = 0, then 𝑣𝑟𝑜 = 𝑣−𝑣𝑟𝑜 . Hence, all the (𝑛 + 2)-bits of 𝑣𝑟𝑜 and 𝑣R are identical. (2)

If 𝑟𝑏𝑣𝑟𝑜 ≠ 0 or 𝑠𝑡𝑖𝑐𝑘𝑦𝑣𝑟𝑜 ≠ 0, then 𝑣𝑟𝑜 is equal the succeeding value of 𝑣
−
𝑣𝑟𝑜

. The only bit that changes

between 𝑣−𝑣𝑟𝑜 and its succeeding value is the (𝑛 + 2)𝑡ℎ-bit. Hence, the �rst (𝑛 + 1)-bits of 𝑣𝑟𝑜 and 𝑣R
are identical. □.

Lemma 3. The (𝑛 + 2)𝑡ℎ-bit of 𝑣𝑟𝑜 is equal to the bitwise OR of all the bits of 𝑣R starting from the

(𝑛 + 2)𝑡ℎ-bit.

Proof. We prove this lemma using a strategy similar to Lemma 2. Intuitively, this lemma states

that the last bit of 𝑣𝑟𝑜 is 0 if and only all bits starting from the (𝑛 + 2)𝑡ℎ-bit of 𝑣R is 0.

As the round-to-odd mode preserves sign, we assume 𝑣R is positive for the rest of the proof

without loss of generality. Let us say the rounding components for 𝑣𝑟𝑜 are (𝑠𝑣𝑟𝑜 , 𝑣
−
𝑣𝑟𝑜

, 𝑟𝑏𝑣𝑟𝑜 , 𝑠𝑡𝑖𝑐𝑘𝑦𝑣𝑟𝑜 ).

In the round-to-odd mode with T𝑛+2, 𝑣𝑟𝑜 will be equal to either 𝑣−𝑣𝑟𝑜 or a succeeding value of 𝑣−𝑣𝑟𝑜 in

T𝑛+2. Now, we look at the cases where 𝑣−𝑣𝑟𝑜 is odd and even to complete the proof.

In the �rst case, 𝑣−𝑣𝑟𝑜 is odd. Then, 𝑣𝑟𝑜 = 𝑣−𝑣𝑟𝑜 . The (𝑛 + 2)
𝑡ℎ-bit of 𝑣−𝑣𝑟𝑜 is 1. As 𝑣−𝑣𝑟𝑜 is a truncated

value of 𝑣R, the (𝑛 + 2)
𝑡ℎ-bit of 𝑣R is 1. Hence, the bitwise-OR of all bits of 𝑣R starting from the

(𝑛 + 2)𝑡ℎ-bit is 1, which is equal to the (𝑛 + 2)𝑡ℎ-bit of 𝑣𝑟𝑜 in T𝑛+2.

In the second case, 𝑣−𝑣𝑟𝑜 is even. There are two cases depending on the values of 𝑟𝑏𝑣𝑟𝑜 and 𝑠𝑡𝑖𝑐𝑘𝑦𝑣𝑟𝑜 .

In the �rst sub-case, 𝑟𝑏𝑣𝑟𝑜 = 0 and 𝑠𝑡𝑖𝑐𝑘𝑦𝑣𝑟𝑜 = 0, then 𝑣𝑟𝑜 = 𝑣−𝑣𝑟𝑜 . The (𝑛 + 2)
𝑡ℎ-bit of 𝑣−𝑣𝑟𝑜 is 0. So is

the (𝑛 + 2)𝑡ℎ-bit of 𝑣R. From the de�nition of rounding components for T𝑛+2, 𝑟𝑏𝑣𝑟𝑜 is the value of

the bit at position (𝑛 + 3) in 𝑣R and 𝑠𝑡𝑖𝑐𝑘𝑦𝑣𝑟𝑜 is the bitwise-OR of bits starting from (𝑛 + 4)𝑡ℎ-bit in

𝑣R. Hence, all the bits of 𝑣R starting from the (𝑛 + 2)𝑡ℎ-bit are 0, which matches the (𝑛 + 2)𝑡ℎ-bit of

𝑣𝑟𝑜 .

The next sub-case is when 𝑟𝑏𝑣𝑟𝑜 ≠ 0 or 𝑠𝑡𝑖𝑐𝑘𝑦𝑣𝑟𝑜 ≠ 0. In this case, 𝑣𝑟𝑜 is equal to the succeeding

value of 𝑣−𝑣𝑟𝑜 in T𝑛+2, which is odd. Hence, the (𝑛 + 2)𝑡ℎ-bit of 𝑣𝑟𝑜 is 1. Both 𝑠𝑡𝑖𝑐𝑘𝑦𝑣𝑟𝑜 and 𝑟𝑏𝑣𝑟𝑜 are

not zeros, one of the bits starting from (𝑛 + 2)𝑡ℎ-bit in 𝑣R is 1. Hence, the bitwise-OR of all bits

starting from the (𝑛 + 2)𝑡ℎ-bit is 1, which matches the (𝑛 + 2)𝑡ℎ-bit of 𝑣𝑟𝑜 . □.

Lemma 4. Let (𝑠1, 𝑣
−
1 , 𝑟𝑏1, 𝑠𝑡𝑖𝑐𝑘𝑦1) and (𝑠2, 𝑣

−
2 , 𝑟𝑏2, 𝑠𝑡𝑖𝑐𝑘𝑦2) be the rounding components for two

real values 𝑣1 and 𝑣2 in rounding them to a FP representation T𝑛 . If 𝑠1 = 𝑠2, 𝑣
−
1 = 𝑣−2 , 𝑟𝑏1 = 𝑟𝑏2, and

𝑠𝑡𝑖𝑐𝑘𝑦1 = 𝑠𝑡𝑖𝑐𝑘𝑦2, then 𝑅𝑁T,𝑟𝑚 (𝑣1) = 𝑅𝑁T,𝑟𝑚 (𝑣2) for any rounding mode 𝑟𝑚.

Proof. This lemma directly follows from the de�nition of rounding components in Section 2.2.

Intuitively, this lemma states that identifying the correctly rounded result of the real value in T𝑛
only depends on the rounding components and the rounding mode 𝑟𝑚. □.

5.2 Proof that Double Rounding the Round-to-Odd Result Produces Correct Results
for all T𝑘

We now sketch the proof of Theorem 1. We show that rounding a real value 𝑣R to the FP represen-

tation T𝑛+2 = F𝑛+2, |𝐸 | using the round-to-odd mode to produce 𝑣𝑟𝑜 and then subsequently rounding
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Fig. 12. Rounding components while rounding 𝑣R and 𝑣𝑟𝑜 to T𝑘 . We show the bit-string of 𝑣R in extended

infinite precision representation. Note 𝑣𝑟𝑜 is a value in T𝑛+2.

the result (𝑣𝑟𝑜 ) to T𝑘 using a rounding mode 𝑟𝑚 produces the same value as rounding 𝑣R directly to

T𝑘 using the same rounding mode 𝑟𝑚, as long as |𝐸 | + 1 < 𝑘 ≤ 𝑛. More formally, we prove that

𝑅𝑁T𝑘 ,𝑟𝑚 (𝑅𝑁T𝑛+2,𝑟𝑜 (𝑣R)) = 𝑅𝑁T𝑘 ,𝑟𝑚 (𝑣R)

Our high-level strategy is to show that the rounding components for 𝑣R to T𝑘 and rounding 𝑣𝑟𝑜
to T𝑘 are exactly the same. We prove Theorem 1 by proving the following theorem.

Theorem 2. Given a real number 𝑣R, representations T𝑘 and T𝑛+2 with same number of exponent

bits that satisfy the condition |𝐸 | + 1 < 𝑘 ≤ 𝑛, and a rounding mode 𝑟𝑚 ∈ {𝑟𝑛, 𝑟𝑎, 𝑟𝑧, 𝑟𝑢, 𝑟𝑑 }, then

𝑅𝑁T𝑘 ,𝑟𝑚 (𝑣R) = 𝑅𝑁T𝑘 ,𝑟𝑚 (𝑅𝑁T𝑛+2,𝑟𝑜 (𝑣R)).

Let us say 𝑣𝑟𝑜 = 𝑅𝑁T𝑛+2,𝑟𝑜 (𝑣R). Our goal is to prove 𝑅𝑁T𝑘 ,𝑟𝑚 (𝑣R) = 𝑅𝑁T𝑘 ,𝑟𝑚 (𝑣𝑟𝑜 ). Using Lemma 4,

if the rounding components for rounding 𝑣R to T𝑘 is the same as the rounding components for

rounding 𝑣𝑟𝑜 to T𝑘 , then we prove that 𝑅𝑁T𝑘 ,𝑟𝑚 (𝑣R) = 𝑅𝑁T𝑘 ,𝑟𝑚 (𝑣𝑟𝑜 ) for all rounding modes 𝑟𝑚.

Hence, our strategy is to show that the rounding components for rounding 𝑣R and 𝑣𝑟𝑜 to T𝑘 are

identical. As the the round-to-odd mode preserves the sign, we will consider 𝑣R to be positive in

the rest of the proof.

The representation of 𝑣R in extended in�nite precision representation (𝐵𝑣R ) is as follows:

𝐵𝑣R = 𝑏1𝑏2 . . . 𝑏𝑘−1𝑏𝑘𝑏𝑘+1𝑏𝑘+2 . . . 𝑏𝑛𝑏𝑛+1𝑏𝑛+2𝑏𝑛+3 . . .

Let us say (𝑠1, 𝑣
−
1 , 𝑟𝑏1, 𝑠𝑡𝑖𝑐𝑘𝑦1) are the rounding components for rounding 𝑣R to T𝑘 . Then, 𝑣

−
1 is

the truncated value in T𝑘 . While rounding to T𝑘 , the rounding bit, 𝑟𝑏1, is the (𝑘 + 1)
𝑡ℎ-bit of 𝑣R.

The sticky bit, 𝑠𝑡𝑖𝑐𝑘𝑦1 is the bitwise-OR of all bits starting from the (𝑘 + 2)𝑡ℎ-bit of 𝑣R.

𝐵𝑣−1
= 𝑏1𝑏2𝑏3 . . . 𝑏𝑘−1𝑏𝑘 , 𝑟𝑏1 = 𝑏𝑘+1, 𝑠𝑡𝑖𝑐𝑘𝑦1 = 𝑏𝑘+2 | 𝑏𝑘+3 | . . .

Figure 12 pictorially shows the rounding components 𝑣−1 , 𝑟𝑏1, and 𝑠𝑡𝑖𝑐𝑘𝑦1 while rounding 𝑣R to

T𝑘 .

Similarly, we next identify the rounding components (𝑠2, 𝑣
−
2 , 𝑟𝑏2, 𝑠𝑡𝑖𝑐𝑘𝑦2) for rounding 𝑣𝑟𝑜 to T𝑘 .

Note that 𝑣𝑟𝑜 is a result in T𝑛+2. From Lemma 2 and Lemma 3, the bit-string of 𝑣𝑟𝑜 is:

𝐵𝑣𝑟𝑜 = 𝑏1𝑏2𝑏3 . . . 𝑏𝑘−1𝑏𝑘 . . . 𝑏𝑛𝑏𝑛+1𝑡, 𝑡 = 𝑏𝑛+2 | 𝑏𝑛+3 | 𝑏𝑛+4 | . . .

Since 𝑘 ≤ 𝑛, there are at least one bit (i.e., 𝑏𝑛+1) between 𝑏𝑘 and 𝑡 , where 𝑡 is the (𝑛 + 2)𝑡ℎ-bit in

𝑣𝑟𝑜 . The rounding components when we round 𝑣𝑟𝑜 to T𝑘 are:

𝐵𝑣−2
= 𝑏1𝑏2𝑏3 . . . 𝑏𝑘−1𝑏𝑘 , 𝑟𝑏2 = 𝑏𝑘+1 𝑠𝑡𝑖𝑐𝑘𝑦2 = 𝑏𝑘+2 | 𝑏𝑘+3 | · · · | 𝑏𝑛+1 | 𝑡

Figure 12 shows these components while rounding 𝑣𝑟𝑜 to T𝑘 .

Now, we compare the rounding components when we directly round 𝑣R to T𝑘 with the rounding

components when we round 𝑣𝑟𝑜 to T𝑘 . The sign information (𝑠1 and 𝑠2) is identical because the

round-to-odd mode preserves the sign of 𝑣R. The truncated values, 𝑣−1 and 𝑣−2 , are equal because

their bit-strings are identical. The rounding bit, 𝑟𝑏1 and 𝑟𝑏2, is identical and is equal to 𝑏𝑘+1. Let us

look at the sticky bits, 𝑠𝑡𝑖𝑐𝑘𝑦1 and 𝑠𝑡𝑖𝑐𝑘𝑦2:
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𝑠𝑡𝑖𝑐𝑘𝑦2 = 𝑏𝑘+2 | 𝑏𝑘+3 | · · · | 𝑏𝑛+1 | 𝑡 = 𝑏𝑘+2 | 𝑏𝑘+3 | · · · | 𝑏𝑛+1 | 𝑏𝑛+2 | 𝑏𝑛+3 | 𝑏𝑛+4 | . . .

= 𝑠𝑡𝑖𝑐𝑘𝑦1

(2)

Hence, all the rounding components for rounding 𝑣R to T𝑘 directly and rounding 𝑣𝑟𝑜 to T𝑘 are

identical. Hence, 𝑅𝑁T𝑘 ,𝑟𝑚 (𝑣R) = 𝑅𝑁T𝑘 ,𝑟𝑚 (𝑣𝑟𝑜 ) from Lemma 4. □

Theorem 1 directly follows from Theorem 2. Theorem 2 states that 𝑣𝑟𝑜 , which is produced by

rounding a real value 𝑣R to T𝑛+2 using the round-to-odd mode, rounds to the same value as if 𝑣R is

directly rounded to T𝑘 using the same rounding mode 𝑟𝑚. If we substitute 𝑣R with the exact result

of the elementary function 𝑓 (𝑥) for a given input 𝑥 ∈ T𝑛 , then

𝑅𝑁T𝑘 ,𝑟𝑚 (𝑅𝑁T𝑛+2,𝑟𝑜 (𝑓 (𝑥))) = 𝑅𝑁T𝑘 ,𝑟𝑚 (𝑓 (𝑥))

Further, by de�nition, all values in the odd interval of 𝑣𝑟𝑜 in T𝑛+2 round to 𝑣𝑟𝑜 . Hence, any value

in the odd interval rounds to the correctly rounded result for representations T𝑘 using any rounding

mode 𝑟𝑚 ∈ {𝑟𝑛, 𝑟𝑎, 𝑟𝑧, 𝑟𝑢, 𝑟𝑑 }.

6 EXPERIMENTAL EVALUATION

We describe our prototype, experimental methodology, and the results of our experiments to check

the correctness and performance of the generated polynomial approximations.

Prototype. The prototype, RLibm-All, is open-source and publicly available [Lim and Na-

garakatte 2021c]. RLibm-All is a generator and a collection of correctly rounded implementations

of polynomial approximation for multiple representations and rounding modes. RLibm-All contains

ten functions that produce the correctly rounded result of 𝑓 (𝑥) for the 34-bit FP representation

(i.e., T𝑛+2) with 8 bits of exponent (FP34) with the round-to-odd mode. As FP34 is not supported in

hardware, RLibm-Allmaintains the FP34 result in double precision. RLibm-All’s functions produce

the correct result for all 𝑛-bit FP representations with 8-bits for the exponent with all the rounding

modes in the IEEE standard where 9 < 𝑛 ≤ 32. This includes 32-bit float, bfloat16, and tensorfloat32.

RLibm-All uses the MPFR library [Fousse et al. 2007] with up to 1000 precision bits to compute

the oracle value of 𝑓 (𝑥). RLibm-All uses SoPlex [Gleixner et al. 2012], an exact rational LP solver,

to generate the coe�cients of the polynomials with a time limit of �ve minutes. We limit the size

of the LP formulation to contain up to �fty thousand reduced input and interval constraints. We

use the range reduction and output compensation functions from the RLibm prototype. RLibm-All

performs range reduction, polynomial evaluation, and output compensation using the double

precision. The polynomial evaluation uses the Horner’s method [Borwein and Erdelyi 1995] for

e�ciency.

Experimental methodology and setup. We compare RLibm-All’s functions with Intel’s libm,

glibc’s libm, CR-LIBM [Daramy-Loirat et al. 2006], and RLibm-32. Among these, CR-LIBM provides

four implementations for each elementary function that produces the correctly rounded results

in double precision with the 𝑟𝑛, 𝑟𝑧, 𝑟𝑢, and 𝑟𝑑 mode, respectively. CR-LIBM does not provide

implementations for the 𝑟𝑎 mode. RLibm-32 provides correctly rounded functions for a 32-bit float

with the 𝑟𝑛 mode. To produce the result in a target representation T that is not natively supported

by these libraries, we �rst convert the input in T to the representation supported by the library, use

the elementary function, and round the result back to T. We perform our experiments on a 2.10GHz

Intel Xeon Gold 6230R machine with 192GB of RAM running Ubuntu 18.04. We disabled Intel turbo

boost and hyper-threading to minimize noise. All our libraries are compiled with O3 optimizations.

We use Intel’s libm from the oneAPI Toolkit and glibc’s libm from glibc-2.33. The test harness

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 3. Publication date: January 2022.



One Polynomial Approximation to Produce Correctly Rounded Results of an Elementary Function for Multiple . . . 3:21

Table 1. Details about the generated polynomials. For each function, we show the time taken to generate

the polynomial in minutes, the size of the piecewise polynomial, the maximum degree, the number of terms,

and whether the generated polynomial produces correct results in FP34 using the round-to-odd mode for all

inputs.

𝑓 (𝑥)

Gen.

Time

(Min.)

# of Poly-

nomials

Deg-

ree

# of

Terms

FP34

𝑟𝑜

ln(x) 325 210 3 3 ✓

log2 (x) 420 28 3 3 ✓

log10 (x) 546 28 3 3 ✓

ex 241
27

27
4

4

5

5
✓

2x 151
27

27
3

3

4

4
✓

𝑓 (𝑥)

Gen.

Time

(Min.)

# of Poly-

nomials

Deg-

ree

# of

Terms

FP34

𝑟𝑜

10x 402
28

28
3

3

4

4
✓

sinh(x) 143 26 5 3 ✓

cosh(x) 135 25 4 3 ✓

sinpi(x) 308 22 5 3 ✓

cospi(x) 316 22 4 3 ✓

for comparing glibc’s libm, CR-LIBM, and RLibm-32 is built using the gcc-10 compiler with -O3

-static -frounding-math -fsignaling-nans flags. Because Intel’s libm is only supported in

the Intel’s compiler, we built a test harness that compares Intel’s libm against RLibm-All using the

icc compiler with -O3 -static -no-ftz -fp-model strict flags to obtain as many accurate

results as possible. To compare performance, we measure the number of cycles taken to compute

the result for each input using rdtscp. We then measured the total time taken to compute the

elementary function as the sum of the time taken by all inputs.

6.1 Polynomial Generation with RLibm-All

Table 1 provides details on the properties of the polynomials generated by RLibm-All. Our attempt

was to generate piecewise polynomials with degree less than or equal to 8. We also restricted the

number of sub-domains for the piecewise polynomials to 215. The output compensation function

for 𝑠𝑖𝑛ℎ(𝑥), 𝑐𝑜𝑠ℎ(𝑥), 𝑠𝑖𝑛𝑝𝑖 (𝑥), and cospi(𝑥) uses two elementary functions and we generate two

piecewise polynomials for each function. The 𝑒𝑥 , 2𝑥 , and 10𝑥 functions have both negative and

positive reduced inputs. Hence, we create two piecewise polynomials: one for the negative reduced

inputs and the other for the positive reduced inputs. As RLibm-All generates piecewise polynomials

for FP34 with the round-to-odd mode, the number of sub-domains used in the resulting piecewise

polynomials are bigger than RLibm-32. However, the degrees of the polynomial for each sub-domain

was similar to RLibm-32. The amount of time taken to generate the piecewise polynomials ranged

from approximately 2 hours to 9 hours. About 79% of the total time on average is spent in computing

the oracle result using the MPFR library. In contrast, computing the intervals and generating the

polynomials using the LP solver takes 15% and 5% of the total time on average, respectively.

6.2 Does RLibm-All Produce Correct Results?

We experimentally show that RLibm-All produces correctly rounded results for all rounding modes

for multiple representations. We built a harness that checks if RLibm-All’s functions produce

correctly rounded results for all inputs with 161 different FP representations where the number

of exponent bits ranged from 2 to 8 and the number of mantissa bits ranged from 1 to 23 bits (i.e.,

23 ∗ 7 = 161) for all five rounding modes. RLibm-All produces the correct results for all these

representations with all standard rounding modes with all inputs. RLibm-All is the first efficient

library that provides correctly rounded results for all rounding modes for a 32-bit float.

Correct results with all rounding modes for a 32-bit float. Table 2 reports the results of

our experiments to check whether existing libraries produce correct results for a 32-bit float type.
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Table 2. Ability to generate correct results for a 32-bit float for all inputs with each of the five standard

rounding modes with RLibm-All, glibc’s double libm, Intel’s double libm, CR-LIBM, and RLibm-32. CR-LIBM

provides separate correctly rounded functions for each rounding mode except the 𝑟𝑎 mode, which we use to

check its correctness. ✓indicates that the library produces the correct result using a given rounding mode for

all inputs. Otherwise, we use ✗.

Using RLibm-All

𝑓 (𝑥) 𝑟𝑛 𝑟𝑑 𝑟𝑢 𝑟𝑧 𝑟𝑎

ln(x) ✓ ✓ ✓ ✓ ✓

log2 (x) ✓ ✓ ✓ ✓ ✓

log10 (x) ✓ ✓ ✓ ✓ ✓

ex ✓ ✓ ✓ ✓ ✓

2x ✓ ✓ ✓ ✓ ✓

10x ✓ ✓ ✓ ✓ ✓

sinh(x) ✓ ✓ ✓ ✓ ✓

cosh(x) ✓ ✓ ✓ ✓ ✓

sinpi(x) ✓ ✓ ✓ ✓ ✓

cospi(x) ✓ ✓ ✓ ✓ ✓

Using glibc double libm

𝑟𝑛 𝑟𝑑 𝑟𝑢 𝑟𝑧 𝑟𝑎

✗ ✗ ✗ ✗ ✗

✓ ✓ ✓ ✓ ✓

✗ ✗ ✗ ✗ ✗

✓ ✗ ✗ ✗ ✓

✗ ✗ ✗ ✗ ✗

✓ ✗ ✗ ✗ ✗

✗ ✗ ✗ ✗ ✗

✓ ✗ ✗ ✗ ✓

N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A

Using Intel double libm

𝑟𝑛 𝑟𝑑 𝑟𝑢 𝑟𝑧 𝑟𝑎

✗ ✗ ✗ ✗ ✗

✓ ✓ ✓ ✓ ✓

✗ ✗ ✗ ✗ ✗

✓ ✗ ✗ ✗ ✓

✗ ✗ ✗ ✗ ✗

✓ ✗ ✗ ✗ ✓

✗ ✗ ✗ ✗ ✗

✓ ✗ ✗ ✗ ✓

✓ ✓ ✓ ✓ ✗

✓ ✗ ✓ ✗ ✗

Using CRLIBM

𝑓 (𝑥) 𝑟𝑛 𝑟𝑑 𝑟𝑢 𝑟𝑧 𝑟𝑎

ln(x) ✗ ✓ ✓ ✓ N/A

log2 (x) ✓ ✓ ✓ ✓ N/A

log10 (x) ✗ ✓ ✓ ✓ N/A

ex ✓ ✓ ✓ ✓ N/A

2x N/A N/A N/A N/A N/A

10x N/A N/A N/A N/A N/A

sinh(x) ✗ ✓ ✓ ✓ N/A

cosh(x) ✓ ✓ ✓ ✓ N/A

sinpi(x) ✓ ✓ ✓ ✓ N/A

cospi(x) ✓ ✓ ✓ ✓ N/A

Using RLibm-32

𝑟𝑛 𝑟𝑑 𝑟𝑢 𝑟𝑧 𝑟𝑎

✓ ✗ ✗ ✗ ✓

✓ ✗ ✗ ✗ ✓

✓ ✗ ✗ ✗ ✓

✓ ✗ ✗ ✗ ✓

✓ ✗ ✗ ✗ ✗

✓ ✗ ✗ ✗ ✓

✓ ✗ ✗ ✗ ✓

✓ ✗ ✗ ✗ ✓

✓ ✗ ✗ ✗ ✓

✓ ✗ ✗ ✗ ✓

While RLibm-All produces the correct float results with all five rounding modes, mainstream

libraries (glibc and Intel’s libm) do not produce correctly rounded results for all rounding modes

for all inputs for many of the elementary functions. When CR-LIBM’s 𝑟𝑛 implementations, which

produces correctly rounded double results with the 𝑟𝑛 mode for all inputs, is used to produce the

𝑟𝑛 results for a 32-bit float, it does not produce correctly rounded results for all inputs with several

functions due to double rounding. CR-LIBM’s 𝑟𝑑 , 𝑟𝑢, and 𝑟𝑧 implementations produce correctly

rounded float results for the 𝑟𝑑 , 𝑟𝑢, and 𝑟𝑧 mode respectively. Double rounding with these three

rounding modes using CR-LIBM’s implementations do not generate wrong results.

RLibm-32 produces correctly rounded results for all inputs for the 𝑟𝑛 mode with a 32-bit float.

However, it does not produce correct results for other rounding modes. In contrast, RLibm-All’s

produces a single polynomial approximation for an elementary function that produces correct

results for all inputs and for all rounding modes.

Correct results with all rounding modes for tensorfloat32. Tensorfloat32 is a new 19-bit

representation with the same number of exponents bits as a 32-bit float. Tensorfloat32 has the same

number of exponent bits as RLibm-All’s FP34. Hence, RLibm-All produces correctly rounded results

for all inputs and for all rounding modes with tensorfloat32. Table 3 shows that glibc’s libm, Intel’s

libm, and RLibm32 do not produce correct results for all rounding modes for all ten elementary

functions. Although glibc’s and Intel’s libm are designed to produce double results, which has

significantly higher precision than tensorfloat32, the double rounding error still results in incorrect
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Table 3. Ability to generate correct results with tensorfloat32 for all inputs with various rounding modes.

✓indicates that the library produces the correct tensorfloat32 result using a given rounding mode for all

inputs. Otherwise, we use ✗.

Using RLibm-All

𝑓 (𝑥) 𝑟𝑛 𝑟𝑑 𝑟𝑢 𝑟𝑧 𝑟𝑎

ln(x) ✓ ✓ ✓ ✓ ✓

log2 (x) ✓ ✓ ✓ ✓ ✓

log10 (x) ✓ ✓ ✓ ✓ ✓

ex ✓ ✓ ✓ ✓ ✓

2x ✓ ✓ ✓ ✓ ✓

10x ✓ ✓ ✓ ✓ ✓

sinh(x) ✓ ✓ ✓ ✓ ✓

cosh(x) ✓ ✓ ✓ ✓ ✓

sinpi(x) ✓ ✓ ✓ ✓ ✓

cospi(x) ✓ ✓ ✓ ✓ ✓

Using glibc double libm

𝑟𝑛 𝑟𝑑 𝑟𝑢 𝑟𝑧 𝑟𝑎

✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

✓ ✗ ✗ ✗ ✓

✓ ✗ ✗ ✗ ✓

✓ ✗ ✗ ✗ ✓

✓ ✗ ✗ ✗ ✓

✓ ✗ ✗ ✗ ✓

N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A

Using Intel double libm

𝑟𝑛 𝑟𝑑 𝑟𝑢 𝑟𝑧 𝑟𝑎

✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

✓ ✗ ✗ ✗ ✓

✓ ✗ ✗ ✗ ✓

✓ ✗ ✗ ✗ ✓

✓ ✗ ✗ ✗ ✓

✓ ✗ ✗ ✗ ✓

✓ ✓ ✓ ✓ ✓

✓ ✗ ✓ ✗ ✓

Using CRLIBM

𝑓 (𝑥) 𝑟𝑛 𝑟𝑑 𝑟𝑢 𝑟𝑧 𝑟𝑎

ln(x) ✓ ✓ ✓ ✓ N/A

log2 (x) ✓ ✓ ✓ ✓ N/A

log10 (x) ✓ ✓ ✓ ✓ N/A

ex ✓ ✓ ✓ ✓ N/A

2x N/A N/A N/A N/A N/A

10x N/A N/A N/A N/A N/A

sinh(x) ✓ ✓ ✓ ✓ N/A

cosh(x) ✓ ✓ ✓ ✓ N/A

sinpi(x) ✓ ✓ ✓ ✓ N/A

cospi(x) ✓ ✓ ✓ ✓ N/A

Using RLibm-32

𝑟𝑛 𝑟𝑑 𝑟𝑢 𝑟𝑧 𝑟𝑎

✗ ✗ ✗ ✗ ✗

✓ ✓ ✓ ✓ ✓

✗ ✗ ✗ ✗ ✗

✗ ✗ ✗ ✗ ✗

✗ ✗ ✗ ✗ ✓

✓ ✗ ✗ ✗ ✗

✗ ✗ ✗ ✗ ✗

✗ ✗ ✗ ✗ ✗

✓ ✗ ✗ ✗ ✓

✓ ✗ ✗ ✗ ✓

tensorfloat32 results for 𝑟𝑑 , 𝑟𝑢, and 𝑟𝑧 rounding modes especially with extremal values. In contrast,

CR-LIBM’s implementation designed for each rounding mode 𝑟𝑚 produces correctly rounded

results for all inputs with the same rounding mode 𝑟𝑚. However, using CR-LIBM’s implementation

for a specific rounding mode to produce the results for another rounding mode results in wrong

results. RLibm-All is the first collection of elementary functions for tensorfloat32 that produces

correct results for all inputs and for all rounding modes with a single polynomial approximation.

6.3 Performance Evaluation of RLibm-All’s Functions

Figure 13 reports the speedup of RLibm-All’s functions over various mainstream libraries (glibc’s

libm and Intel’s libm) and correctly rounded libraries (CR-LIBM and RLibm-32). Figure 13(a) presents

the speedup of RLibm-All’s FP functions over glibc’s float functions (left bar in each cluster) and

double functions (right bar in each cluster). On average, RLibm-All’s FP functions are 1.05× and

1.1× faster than glibc’s float and double functions, respectively. Figure 13(b) presents the speedup of

RLibm-All’s FP functions over Intel’s float functions (left bar in each cluster) and double functions

(right bar in each cluster). On average, RLibm-All has 1.34× and 1.46× speedup over Intel’s float

and double functions, respectively. Figure 13(c) presents the speedup of RLibm-All’s FP functions

over CR-LIBM functions. On average, RLibm-All has 1.86× speedup over CR-LIBM functions. In

contrast to RLibm-All, glibc’s libm, Intel’s libm, and CR-LIBM do not produce correct results for

all inputs when used for a 32-bit float type.

Figure 13(d) presents the speedup of RLibm-All’s FP functions over RLibm-32’s functions in

producing 32-bit float values rounded with the 𝑟𝑛 rounding mode. On average, RLibm-All is almost
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(d) Speedup of RLibm-All over RLibm-32
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Fig. 13. (a) Speedup of RLibm-All’s functions compared to glibc’s float functions (left) and glibc’s double

functions (right) when producing 32-bit float results. (b) Speedup of RLibm-All’s functions compared to Intel’s

float functions (left) and Intel’s double functions (right) when producing 32-bit float results. (c) Speedup of

RLibm-All’s functions compared to CR-LIBM functions when producing 32-bit float results. (d) Speedup of

RLibm-All’s functions compared to RLibm-32 functions when producing 32-bit float results.

as fast as RLibm-32 (i.e., 2% slower than RLibm-32). RLibm-All creates polynomial approximations

for a 34-bit FP representation, which is the main reason for this small performance slowdown.

Notably, RLibm-All experiences roughly a 12% slowdown with 𝑠𝑖𝑛ℎ(𝑥) when compared to RLibm-

32. When an input 𝑥 is near 0, 𝑠𝑖𝑛ℎ(𝑥) exhibits a linear behavior and 𝑠𝑖𝑛ℎ(𝑥) ≈ 𝑥 produces correctly

rounded float values with the 𝑟𝑛 rounding mode. RLibm-32 uses this property by simply returning

𝑥 for inputs near 0. In contrast, RLibm-All performs significantly more computation to ensure

that it produces a value within the odd interval. Unlike RLibm-32 that produces correct results for

a single representation with the 𝑟𝑛 mode, RLibm-All produces correct results for all inputs for

multiple representations and all the standard rounding modes.

7 RELATED WORK

Seminal research over multiple decades has advanced the state-of-the-art for creating polynomial

approximations [Bui and Tahar 1999; Daramy et al. 2003; Fousse et al. 2007; Jeannerod et al. 2011;

Muller 2005; Remes 1934; Trefethen 2012; Ziv 1991]. Important advances in range reduction has

made such approximation feasible [Boldo et al. 2009; Cody and Waite 1980; Story and Ping Tak

Peter Tang 1999; Tang 1989, 1990; Tang 1991]. Simultaneously, there are verification efforts to

prove bounds for math libraries [Harrison 1997a,b, 2009; Lee et al. 2017; Sawada 2002] and repair

individual outputs of math libraries [Yi et al. 2019; Zou et al. 2019]. The comprehensive book on

elementary functions provides detailed information on prior work [Muller 2005].

We restrict our comparison to prior work that is closely related to our work. As a correctly

rounded elementary function is recommended by the IEEE standard and enables portability, a

number of correctly rounded math libraries have been developed [Daramy et al. 2003; Lim et al.

2020, 2021; Lim and Nagarakatte 2021a; Ziv 1991]. They are restricted to a specific representation

and a rounding mode.

CR-LIBM [Daramy et al. 2003; Lefèvre et al. 1998] is a correctly rounded collection of elementary

functions for double precision. It was developed using Sollya [Chevillard et al. 2010], which is a tool
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and a library for developing FP code. Sollya can generate polynomials of degree 𝑑 with coefficients

in a representation used for the implementation (H) that has the minimum infinity norm [Brisebarre

and Chevillard 2007]. Sollya uses a modified Remez algorithm to produce polynomials. It also com-

putes and proves the error bound on the polynomial evaluation using interval arithmetic [Chevillard

et al. 2011; Chevillard and Lauter 2007]. Metalibm [Brunie et al. 2015; Kupriianova and Lauter 2014]

is a customization infrastructure also built using Sollya. MetaLibm is able to automatically identify

range reduction and domain splitting techniques for some transcendental functions. It has been

used to trade-off correctness and performance while approximating elementary functions for float

and double precision types.

A modified Remez algorithm has also been used to generate polynomials that minimizes the

infinity norm compared to an ideal elementary function [Arzelier et al. 2019]. It can be useful for

generating correctly rounded results for a specific precision and a rounding mode when range

reduction is not necessary.

This paper builds on our prior work in the RLibm project [Lim 2021; Lim et al. 2020, 2021; Lim and

Nagarakatte 2021a,d] that creates polynomials using the correctly rounded value rather than the real

value of the elementary function. Like the RLibm project, we structure the problem of generating

polynomials as an LP problem. We also use RLibm’s range reduction strategies. The RLibm project

has generated correctly rounded libraries with the commonly used 𝑟𝑛 mode for multiple types:

bfloat16, posit16, 32-bit float, and posit32. However, it is necessary to create individual polynomial

approximation for each representation with each rounding mode with the RLibm project to avoid

double rounding errors. In contrast, this paper shows that by generating polynomial approximations

for T𝑛+2 with the round-to-odd mode, we can create a single polynomial approximation that works

for multiple representations T𝑘 with multiple rounding modes.

8 CONCLUSION

This paper proposes a novel method to generate a single polynomial approximation that produces

correctly rounded results for multiple representations and rounding modes. The key idea is to

create a polynomial approximation that produces the correctly rounded result for T𝑛+2 with the

round-to-odd mode when the goal is to generate correct results for T𝑘 , where 𝑘 ≤ 𝑛, with all

rounding modes. We address the issue of singletons while generating polynomials that approximate

the correctly rounded result with the round-to-odd mode. We provide the first correctly rounded

implementations of elementary functions for multiple representations. We believe that our results

make a strong case for mandating correctly rounded results at least with any representation that

has fewer than or equal to 32-bits.
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