
Harmonium: Elastic Cloud Storage via File Motifs

Helgi Sigurbjarnarson∗, Petur Orri Ragnarsson∗, Ymir Vigfusson∗, Mahesh Balakrishnan†
∗School of Computer Science & CRESS, Reykjavik University

†Microsoft Research

Abstract
Modern applications expand to fill the space available to
them, exploiting local storage to improve performance by
caching, prefetching and precomputing data. In virtual-
ized settings, this behavior compromises storage elastic-
ity owing to a rigid contract between the hypervisor and
the guest OS: once space is allocated to a virtual disk and
used by an application, it cannot be reclaimed by the hy-
pervisor. In this paper, we propose a new guest filesystem
called Harmonium that exploits the ephemeral or deriva-
tive nature of application data. Each file in Harmonium
optionally has a motif that describes how the file can be
reconstructed via computation, network accesses, or oper-
ations on other files. Harmonium expands files from their
motifs when space is available, and contracts them back to
their motifs when it is scarce. Given a target size, the sys-
tem selects files to expand or contract based on the load on
the CPU, network, and storage, as well as expected access
patterns. As a result, Harmonium enables elastic cloud
storage, allowing the hypervisor to dynamically balance
storage across multiple VMs.

1 Introduction
The promise of cloud computing lies in elasticity: the
property that applications can ramp up or dial down re-
source usage as required, eliminating the need to ac-
curately estimate service load and resource cost a pri-
ori. Elasticity can usually be achieved easily for CPU or
RAM, either by spinning up or down more virtual ma-
chines (i.e., horizontal scaling), or by adding cores or
RAM to individual virtual machines (i.e., vertical scal-
ing) [7]. However, storage elasticity is more challenging;
cloud providers cannot easily allocate extra capacity or
reclaim it from applications.

In this paper, we focus on storage elasticity in
infrastructure-as-a-service clouds, where the hypervisor
on a single physical machine partitions its resources
across many virtual machines. In such a setting, each vir-
tual machine is provided with a virtual disk of fixed ca-
pacity, which in turn resides as a variable-sized file in the
filesystem of the hypervisor. As the virtual machine stores

data in its virtual disk, its backing file expands. However,
the virtual disk cannot expand beyond its fixed capacity;
and once the virtual machine stores data in it, the phys-
ical machine cannot reclaim space from the virtual disk
without destroying the virtual machine. As a result, the
physical machine cannot respond elastically to changes in
the storage use patterns of its virtual machines.

A key reason for the inelasticity of storage is that exist-
ing storage systems treat durability as a sacred covenant:
all data is equally important, and no data must be lost.
The assumption is that applications will only store data on
a durable medium if they actually require durability, and
the task of the storage system is to preserve that durability
at all costs.

However, modern applications increasingly store data
on durable media for reasons other than durability. This
shift is primarily driven by hardware trends: larger disks
have pushed application designers to think of creative
ways to use excess storage capacity to improve perfor-
mance, while the emergence of flash has provided a
cheaper alternative to RAM. As a result, much of the data
stored by applications on secondary storage is volatile
data that does not fit in RAM; usually, it can be thrown
away on a reboot (e.g., swap files), reconstructed via com-
putation over other data (e.g., intermediate MapReduce or
Dryad files [3], image thumbnails, desktop search indices,
and inflated versions of compressed files), or fetched over
the network from other systems (e.g., browser and pack-
age management caches). In addition, durability may not
be critical for a file either because new applications (such
as big data analytics) can provide useful answers despite
missing data [1], or because the data may be duplicated
across multiple files [4]. On three typical developer ma-
chines (Table 1), we found 19-28% of the space occu-
pied by various caches (on one machine, only 41% of this
space was accessed in the past month), 5-23% by media
that also existed on remote servers, 0-2% by source files
with primary copies in online repositories, and 0-4% by
swap files. While this is preliminary data, we believe the
make-up to be fairly representative of modern filesystems.

As a result, virtualized systems exhibit an inefficient
dynamic: applications opportunistically use persistent
storage to store data that is ephemeral, whereas storage

1

Table 1: Breakdown of file types on three developer filesystems.

Space Usage
File Type System 1 System 2 System 3
ASCII 2% 21% 12%
Cache 28% 19% 25%
Document 2% 2% 7%
Media 23% 5% 10%
Source 1% 0% 2%
System 6% 18% 13%
Swap 3% 4% 0%
Other 28% 31% 25%
Free space 5% 1% 6%

systems struggle heroically to ensure that this data is not
lost. The situation is exacerbated by the address space
abstraction, which does not allow the host system to dif-
ferentiate between the maximum possible size of a virtual
disk and the physical storage capacity currently available
to it.

To eliminate this inefficiency, we present Harmonium,
a new guest filesystem for virtual machines that treats
durability as a spectrum rather than a binary property. In
Harmonium, each file is associated with an optional mo-
tif which tells the filesystem how the file can be recon-
structed. The motif for a file is an arbitrary piece of code:
for example, it might fetch data over the network from a
URL, or generate the file via computation over other files
(e.g., sort a file, merge multiple input files, or even expand
a compressed input file), or reconstitute the file from du-
plicate chunks in other files. A file can be expanded from
its motif or contracted back into its motif.

Figure 1 shows the Harmonium architecture. A typical
deployment consists of a single physical machine running
multiple VMs, each of which runs an independent Harmo-
nium filesystem. A single, administrator-controlled pro-
cess on the host machine acts as a coordinator and is re-
sponsible for assigning each Harmonium instance a spe-
cific target size. Given this target size and a set of file
motifs, Harmonium decides which files to expand or con-
tract based on access patterns as well as the load on the
CPU and network. For instance, if the system usually ex-
hibits high CPU load and low network utilization, Harmo-
nium will retain files with CPU-heavy motifs in expanded
form and contract files with network-heavy motifs. This
ensures that a subsequent access to a contracted file (and
the resulting expansion from the motif) is more likely to
utilize network bandwidth rather than CPU cycles.

Existing work on elastic cloud storage provide simi-
lar trade-offs between storage footprint and performance,
usually in a distributed setting. Systems such as Sierra [6],
Rabbit [2], and SpringFS [9] rely on techniques such as
variable replication factors and write offloading to scale

Hypervisor

Dom0

H
ar

m
o

n
iu

m

C
o

o
rd

in
at

o
r

P
ro

ce
ss

H
ar

m
o

n
iu

m

C
o

o
rd

in
at

o
r

P
ro

ce
ss

VM1

Virtual Disk

Large Address Space (250GB)

Harmonium Filesystem
Expanded Files Contracted Motifs

App1 App2

Total Size = 20GB

…

…

Set Target
Size = 20GB

Creates File with Motif

Figure 1: A Harmonium instance within each VM expands and
contracts motifs in response to a target allocation set by a coor-
dinator.

up the performance or scale down the power consumption
of distributed storage clusters. However, these systems
typically maintain 1 to N copies of each file, while Har-
monium chooses between storing 0 or 1 copy of each file.

In the remainder of this paper, we describe the motif
abstraction and our initial system prototype, and outline
the challenges in realizing a full-fledged implementation.

2 The Motif Abstraction
When an application creates a new Harmonium file, it op-
tionally provides a motif. The motif is an arbitrary code
fragment that provides an expand method to generate the
data in the file. Harmonium can then obtain the raw bytes
of the file by running the motif’s expand method. A motif
expansion can fetch data across the network, run compu-
tations, and operate over other files in the filesystem.

In our current prototype, Harmonium is implemented as
a FUSE filesystem [5] running in user-space, and motifs
are fragments of Python code. Figure 2 shows an example
motif that fetches data from a remote URL.
Motifs have a number of significant properties:

Motifs can be recursive. A motif’s expand method
can open other files and read from them. These other
files could themselves exist in contracted state as motifs.
In this case, Harmonium recursively expands the required
files from their motifs.

Motifs can support writeable files. A motif can op-
tionally contain a contract routine. For read-only files,
contraction requires no extra code; it merely involves
deleting the raw bytes of the file and retaining the mo-
tif code. However, in some cases, an expanded file can be
modified by the application, and these changes have to be

2

import os

class SCPMotif(object):
def expand(self, fname, meta=None):
p = fname.bypass()
os.popen(’scp \

fileserver1:storage%s "%s"’ % (p,p))

def contract(self, fname, meta=None):
p = fname.bypass()
os.popen(’ssh fileserver1\

"mkdir -p storage%s"’ %\
os.path.dirname(p))

if os.popen(’scp "%s"\
fileserver1:storage%s’ % (p,p)) == 0:

open(p, ’w’).close()

Figure 2: An example motif: expand fetches data from a remote
location, while contract writes it back to the remote location.

relayed upstream to the original source of the data. For ex-
ample, if a motif expansion involves fetching data over the
network, its contraction might involve writing that data
back to the remote location, effectively making the local
file a write-back cache.

The default motif is compression. For conventional
files that truly require durability and cannot be fetched
over the network or generated via computation over other
files, Harmonium uses a default compression motif. In
this case, the contract routine compresses data, and the
expand routine decompresses it. Compression can be
viewed as a special case of generating data via compu-
tation over other input files; in this case, the input file is
simply the compressed copy of the data.

Motifs can define circular dependencies. Compres-
sion adds an additional wrinkle to the system: it is waste-
ful to retain both the compressed and uncompressed ver-
sions of a file at the same time. To optimize for space,
Harmonium creates a circular dependency between the
two versions: the expand routine of the compressed ver-
sion decompresses it to create the raw file, while the
contract routine of the raw file compresses it to create
the compressed version. Circular dependencies can save
space for other types of motifs: for example, if data is
stored redundantly in multiple files depending on the in-
dex by which it is sorted, only one of these files needs to
exist in expanded form at any given point in time.

Files can have multiple motifs. In cases where a file
can be reconstructed via more than one method, the ap-
plication can associate multiple motifs with it. Harmo-
nium then picks the best motif to use for expanding the
file. Compression is an obvious alternative motif for any
file; if the network is heavily oversubscribed, it might be
faster to contract/expand the file via compression/decom-
pression than to access a remote network location.

3 Implementation Challenges

We have implemented the basic motif abstraction as a
FUSE filesystem, minus dependencies on other files. Go-
ing from our simple prototype to a realistic implementa-
tion requires tackling a number of challenges:

Interfaces: Harmonium requires some modification to
the interface between the hypervisor and the guest filesys-
tem. In one direction, each Harmonium instance needs a
way for the coordinator process on the host to signal to it
the amount of space it is required to use, independent of
the size of the virtual disk address space; this can be done
via some simple communication channel such as a socket.
In the reverse direction, it needs a way to efficiently tell
the hypervisor which addresses in the virtual disk address
space are no longer in use (i.e., a TRIM command). Such
interfaces are increasingly common on cloud platforms;
for instance, Windows Azure allows the guest OS to issue
TRIM commands to the underlying virtual disk when an
application explicitly deletes a file, allowing the hypervi-
sor to reclaim the storage allocated to that file [8].

Security: Since a motif is an arbitrary piece of code,
applications can cause the system to hang, crash, cor-
rupt data, and consume resources wastefully. Our current
FUSE implementation is particularly vulnerable, since the
motifs execute within the same process as the filesystem.
Executing the motif within the process that created the as-
sociated file is not an option, since files typically outlast
their creating processes. The coarse-grained isolation pro-
vided by virtualization is helpful but too heavy-handed.
Required is a lightweight sandboxing mechanism for exe-
cuting individual motifs that can guard against rogue mo-
tifs.

Access Latency Prediction: To decide which motifs
to expand or contract, Harmonium needs to predict the
future. In particular, it needs to know two pieces of infor-
mation for each file: when it will be accessed next, and
how long expansion will take at that point in time. For the
first question, Harmonium is no better or worse off than
any caching scheme in existence, and can use similar tech-
niques (such as LRU policies) for prediction. Answering
the second question accurately is harder, since it requires
Harmonium to predict the load on the system at the ex-
pected time of the access, as well as understand how that
impacts the execution time of the motif. In our current
implementation, we make the simplifying assumption that
the load profile of the system is relatively stationary over
time, and generate execution time estimates for the mo-
tifs by executing them proactively and taking black box
measurements. These measurements are plugged into an
optimization framework, which we describe next.

3

4 Expansion/Contraction Strategies
At the heart of Harmonium is an optimization question:
what files should be contracted (or expanded) when the
target size of the filesystem is reduced (or increased)? The
problem is somewhat analogous to the well-known cache
replacement challenge of evicting (i.e., contracting) files
that are least likely to be used in the near future. How-
ever, the issue is further complicated by the additional di-
mensions of latency and space utilization. When a con-
tracted file is expanded on-demand to accommodate an
access, the latency depends on the execution time of the
motif. Further, if no motif exists for a file, the default con-
traction mode of compression can result in different space
savings for different files, depending on the compressibil-
ity of each file’s contents. Our optimization framework
does not currently model motifs that depend on other con-
tracted files.

Before we discuss the heuristics used in the Harmo-
nium optimization algorithms, we begin by defining the
problem domain. Each Harmonium instance exposes an
administrative API that allows an administrator to set the
target size of the system: specifically, contract(S)
and expand(S) denote that S bytes of space must be
released or may now be consumed by the file system.

Let F denote the set of files existing in expanded form
in the Harmonium filesystem, and M denote the set of
files existing as contracted motifs. Each file i ∈ F can
be contracted from its expanded form and moved to M
for expected disk space savings of si bytes. Later, the
file can be re-expanded according to its motif in ei ex-
pected time, which factors in all sources of latency includ-
ing CPU time, anticipated network accesses and so forth.
The expansion latency variable should also explicitly fac-
tor in the time until the expansion is likely to take place,
providing some notion of discount for items that will not
be used for a long time. In addition, when a file has mul-
tiple motifs, ei is set to the minimum expected expansion
time across all the motifs.

Integer program. We formulate the Harmonium op-
timization problem of determining what files should be
contracted as the following integer program.

min

n∑
i=1

eixi (1)

s.t.
n∑

i=1

sixi ≥ S, (2)

xi ∈ {0, 1} , 1 ≤ i ≤ n (3)

Here, n = |F | is the number of files and S denotes the
amount of space that the filesystem needs to shed.

This problem is equivalent to the 0-1 KNAPSACK
problem in combinatorial optimization, which is NP -
complete. In 0-1 KNAPSACK we are given a collection

of items that each has an associated profit and weight,
and the goal is to find a subset of an item collection that
maximizes the total profit for chosen items in the subset
without the total weight exceeding the capacity W of the
knapsack. By maximizing the expansion latencies ei of
the files not chosen by our integer program subject to the
standard weight upper bound constraint, the equivalence
between our problem and 0-1 KNAPSACK is evident.

A similar integer program exists for the dual problem of
determining which motifs to expand when the filesystem’s
target size is increased, which we omit for brevity.

Harmonium incorporates the estimates for ei and si in
approximation algorithms for the underlying optimization
problem. We implemented several approaches and com-
pared against a baseline that contracts files in FIFO order
until enough space has been reclaimed.

APX-KNAPSACK. We adapted the standard pseudo-
polynomial time dynamic programming algorithm for 0-
1 KNAPSACK for our problem to improve on accuracy in
exchange for performance. However, the O(nW) running
time where W =

(∑
i∈F si

)
− S is the maximum space

for remaining files, is prohibitive on systems with a large
number of files n = |F |, even when we restrict the algo-
rithm to files that have not recently been used. Hence we
exclude this algorithm from our evaluation.

GREEDYSPACE. A natural approach to the optimiza-
tion problem is to disregard the expansion delay altogether
and greedily contract files that have not been recently used
until at least S bytes of space have been recovered. We
implemented GREEDYSPACE by repeatedly contracting
files from the LRU list of expanded files.

GREEDYRATIO. We modified the greedy approach to
incorporate the expansion latency. In the approach, we
consider a set A of the least recently used K items of the
LRU queue, doubling the value of K as required to obtain
until at least S bytes of space can be recovered. We sort A
by the ratio of si

ei
and greedily select high ratio files from

A until we reach or exceed the S threshold.

5 Evaluation

Our initial prototype of Harmonium is a user-space
filesystem written using FUSE [5]. In Figure 3, we show
the performance and space footprint of a Harmonium in-
stance as we elastically size it up and down. In this exper-
iment, all files are replicated on a remote storage server;
accordingly, all local files have a motif that expands the
file by fetching a copy from across the network. We use
the latency to access the first byte of a file as a perfor-
mance metric. Our workload consists of a set of 54,000
patch files applied in chronological order to the Linux ker-
nel source code.

In the graph, we start by allowing the filesystem to op-

4

Table 2: Comparison of optimization algorithms.

Expansion Running
Algorithm latency (s) time (s)
FIFO (Baseline) 866.8 0.8
GREEDYSPACE 807.6 2.2
GREEDYRATIO, K = 103 794.9 13.0
GREEDYRATIO, K = 104 657.6 59.9

erate without any size constraints (the segment marked
‘start’). We then constrain the filesystem to use less than
450 MB of space (‘contraction’). Once contraction fin-
ishes, the system enters a stable state (‘managed’) where
the space footprint is stationary and performance is rela-
tively poor. At some point we reset the target size to 650
MB, and the filesystem expands motifs (‘expansion’). Fi-
nally, we turn off the target size constraint (‘end’). When
the constraints are off, the filesystem increases in size over
time since the trace adds around 200 MB more data than
it removes over its lifetime.

Optimization. We also used the same workload of
patch file applications to test our different optimization
algorithms. As input to the optimization framework, we
use the access sequence of files, the estimated expansion
latency for each file should it be contracted, and the es-
timated space savings from the contraction of each file.
The estimates are generated by measuring an actual ex-
ecution of the motif. In the experiment, we execute this
trace while trying to keep the filesystem size under a 400
MB limit. Whenever the size exceeds the limit, we run the
optimization to find files to contract. To measure the effi-
cacy of the algorithm, we keep track of the total expansion
latency of contracted files; this is the quantity we need to
minimize. Table 2 shows this number for different algo-
rithms, as well as the total time spent executing each algo-
rithm. We found that GREEDYRATIO with K = 10, 000
reduces the expansion latency significantly, or by nearly
25% compared to the FIFO baseline, at the cost of longer
running time for the algorithm. This trade-off is desirable
since the expansion latency is on the critical path for user
applications whereas the optimization algorithm for con-
tracting space could be executed by a background process
as needed.

6 Conclusion
Applications have evolved to opportunistically use sec-
ondary storage for data that can be recomputed, re-
fetched, or abandoned. However, storage stacks are still
designed to provide durability at any cost and treat all files
as first-class citizens. In this paper, we proposed a new
filesystem called Harmonium where each file is option-
ally associated with a motif, a piece of code that allows the

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 20 40 60 80 100T
im

e
-t

o
-f

ir
s
t-

b
y
te

 l
a

te
n

c
y
 (

m
s
)

Trace time (%)

Start
Contraction

Managed
Expansion

End

 400

 450

 500

 550

 600

 650

 700

 0 20 40 60 80 100

F
ile

 s
y
s
te

m
 s

iz
e

 (
M

B
)

Trace time (%)

Start
Contraction

Managed
Expansion

End

Physical size

Figure 3: Performance and space footprint of a Harmonium
instance as it undergoes contraction and expansion.

filesystem to reconstruct the file via computation, network
I/O and accesses to other files. In a virtualized system
with multiple Harmonium instances running within VMs,
administrators can flexibly redistribute physical storage
between the instances, providing an elastic performance/-
capacity trade-off.

References
[1] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and

I. Stoica. BlinkDB: queries with bounded errors and bounded re-
sponse times on very large data. In EuroSys, pages 29–42, 2013.

[2] H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A. Kozuch, and
K. Schwan. Robust and flexible power-proportional storage. In
SoCC, pages 217–228, 2010.

[3] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and
L. Zhuang. Nectar: Automatic management of data and compu-
tation in datacenters. In OSDI, pages 75–88, 2010.

[4] D. T. Meyer and W. J. Bolosky. A study of practical deduplication.
ACM Transactions on Storage (TOS), 7(4):14, 2012.

[5] M. Szeredi. Filesystem in userspace. http://fuse.sf.net,
2003.

[6] E. Thereska, A. Donnelly, and D. Narayanan. Sierra: practical
power-proportionality for data center storage. In EuroSys, pages
169–182, 2011.

[7] L. M. Vaquero, L. Rodero-Merino, and R. Buyya. Dynamically
scaling applications in the cloud. ACM SIGCOMM Computer Com-
munication Review, 41(1):45–52, 2011.

[8] M. Wood. Trim Support comes to Windows Azure Virtual Ma-
chines. http://bit.ly/1kPXicF, 2013.

[9] L. Xu, J. Cipar, E. Krevat, A. Tumanov, N. Gupta, M. A. Kozuch,
and G. R. Ganger. Springfs: Bridging agility and performance in
elastic distributed storage. In FAST, pages 243–255, 2014.

5

