
Maelstrom: Transparent Error Correction for Lambda Networks ∗

Mahesh Balakrishnan, Tudor Marian, Ken Birman, Hakim Weatherspoon, Einar Vollset
{mahesh, tudorm, ken, hweather, einar}@cs.cornell.edu

Cornell University, Ithaca, NY-14853

Abstract

The global network of datacenters is emerging as an im-
portant distributed systems paradigm — commodity clus-
ters running high-performance applications, connected by
high-speed ‘lambda’ networks across hundreds of mil-
liseconds of network latency. Packet loss on long-haul
networks can cripple application performance — a loss
rate of 0.1% is sufficient to reduce TCP/IP throughput by
an order of magnitude on a 1 Gbps link with 50ms latency.
Maelstrom is an edge appliance that masks packet loss
transparently and quickly from inter-cluster protocols, ag-
gregating traffic for high-speed encoding and using a new
Forward Error Correction scheme to handle bursty loss.

1 Introduction

The emergence of commodity clusters and datacenters
has enabled a new class of globally distributed high-
performance applications that coordinate over vast geo-
graphical distances. For example, a financial firm’s New
York City datacenter may receive real-time updates from a
stock exchange in Switzerland, conduct financial transac-
tions with banks in Asia, cache data in London for locality
and mirror it to Kansas for disaster-tolerance.

To interconnect these bandwidth-hungry datacenters
across the globe, organizations are increasingly deploy-
ing private ‘lambda’ networks [35, 39]. Raw bandwidth
is ubiquitous and cheaply available in the form of ex-
isting ‘dark fiber’; however, running and maintaining
high-quality loss-free networks over this fiber is diffi-
cult and expensive. Though high-capacity optical links
are almost never congested, they drop packets for nu-
merous reasons — dirty/degraded fiber [14], misconfig-
ured/malfunctioning hardware [20,21] and switching con-
tention [27], for example — and in different patterns,
ranging from singleton drops to extended bursts [16, 26].

Non-congestion loss has been observed on long-haul
networks as well-maintained as Abilene/Internet2 and Na-

∗This work was supported in part by grants from AFOSR, AFRL,
NSF and Intel Corporation.

N

S
EW

100 ms

RTT: 110 ms

210 ms

220 ms

110 ms

100 ms 200 ms

Figure 1: Example Lambda Network

tional LambdaRail [15, 16, 20, 21] — as has its crippling
effect on commodity protocols, motivating research into
loss-resistant data transfer protocols [13, 17, 25, 38, 43].
Conservative flow control mechanisms designed to deal
with the systematic congestion of the commodity Internet
react too sharply to ephemeral loss on over-provisioned
links — a single packet loss in ten thousand is enough
to reduce TCP/IP throughput to a third over a 50 ms gi-
gabit link, and one in a thousand drops it by an order of
magnitude. Real-time applications are impacted by the
reliance of reliability mechanisms on acknowledgments
and retransmissions, limiting the latency of packet recov-
ery to at least the Round Trip Time (RTT) of the link; if
delivery is sequenced, each lost packet acts as a virtual
‘road-block’ in the FIFO channel until it is recovered.

Deploying new loss-resistant protocols is not an alter-
native in corporate datacenters, where standardization is
the key to low and predictable maintenance costs; nei-
ther is eliminating loss events on a network that could
span thousands of miles. Accordingly, there is a need to

Link Loss:
FEC

Receiver Buffer
Overflow:
Local Recovery

Sending End-hosts
Send-side
Appliance

Receive-side
Appliance Receiving End-hosts

Locations of
Packet Loss

Appliances: dedicated machines, in-kernel code
 No dropped packets

Figure 2: Maelstrom Communication Path

mask loss on the link, rapidly and transparently. Rapidly,
because recovery delays for lost packets translate into
dramatic reductions in application-level throughput; and
transparently, because applications and OS networking
stacks in commodity datacenters cannot be rewritten from
scratch.

Forward Error Correction (FEC) is a promising solution
for reliability over long-haul links [36] — packet recovery
latency is independent of the RTT of the link. While FEC
codes have been used for decades within link-level hard-
ware solutions, faster commodity processors have enabled
packet-level FEC at end-hosts [18, 37]. End-to-end FEC
is very attractive for inter-datacenter communication: it’s
inexpensive, easy to deploy and customize, and does not
require specialized equipment in the network linking the
datacenters. However, end-host FEC has two major is-
sues — First, it’s not transparent, requiring modification
of the end-host application/OS. Second, it’s not necessar-
ily rapid; FEC works best over high, stable traffic rates
and performs poorly if the data rate in the channel is low
and sporadic [6], as in a single end-to-end channel.

In this paper, we present the Maelstrom Error Correc-
tion appliance — a rack of proxies residing between a
datacenter and its WAN link (see Figure 2). Maelstrom
encodes FEC packets over traffic flowing through it and
routes them to a corresponding appliance at the desti-
nation datacenter, which decodes them and recovers lost
data. Maelstrom is completely transparent — it does not
require modification of end-host software and is agnostic
to the network connecting the datacenter. Also, it elim-
inates the dependence of FEC recovery latency on the

data rate in any single node-to-node channel by encoding
over the aggregated traffic leaving the datacenter. Finally,
Maelstrom uses a new encoding scheme called layered in-
terleaving, designed especially for time-sensitive packet
recovery in the presence of bursty loss.

The contributions of this paper are as follows:

• We explore end-to-end FEC for long-distance com-
munication between datacenters, and argue that the
rate sensitivity of FEC codes and the opacity of their
implementations present major obstacles to their us-
age.

• We propose Maelstrom, a gateway appliance that
transparently aggregates traffic and encodes over the
resulting high-rate stream.

• We describe layered interleaving, a new FEC scheme
used by Maelstrom where for constant encoding
overhead the latency of packet recovery degrades
gracefully as losses get burstier.

• We discuss implementation considerations. We built
two versions of Maelstrom; one runs in user mode,
while the other runs within the Linux kernel.

• We evaluate Maelstrom on Emulab [45] and show
that it provides near lossless TCP/IP throughput and
latency over lossy links, and recovers packets with
latency independent of the RTT of the link and the
rate in any single channel.

2 Model

Our focus is on pairs of geographically distant datacenters
that coordinate with each other in real-time. This has long
been a critical distributed computing paradigm in appli-
cation domains such as finance and aerospace; however,
similar requirements are arising across the board as glob-
alized enterprises rely on networks for high-speed com-
munication and collaboration.
Traffic Model: The most general case of inter-cluster
communication is one where any node in one cluster can
communicate with any node in the other cluster. We make
no assumptions about the type of traffic flowing through
the link; mission-critical applications could send dynami-
cally generated real-time data such as stock quotes, finan-
cial transactions and battleground location updates, while
enterprise applications could send VoIP streams, ssh ses-
sions and synchronous file updates between offices.
Loss Model: Packet loss typically occurs at two points
in an end-to-end communication path between two data-
centers, as shown in Figure 2 — in the wide-area network
connecting them and at the receiving end-hosts. Loss in
the lambda link can occur for many reasons, as stated
previously: transient congestion, dirty or degraded fiber,
malfunctioning or misconfigured equipment, low receiver
power and burst switching contention are some reasons
[14, 20, 21, 23, 27]. Loss can also occur at receiving end-
hosts within the destination datacenter; these are usually
cheap commodity machines prone to temporary overloads
that cause packets to be dropped by the kernel in bursts [6]
— this loss mode occurs with UDP-based traffic but not
with TCP/IP, which advertises receiver windows to pre-
vent end-host buffer overflows.

What are typical loss rates on long-distance optical
networks? One source of information is TeraGrid [5],
an optical network interconnecting major supercomput-
ing sites in the US. TeraGrid has a monitoring framework
within which ten sites periodically send each other 1 Gbps
streams of UDP packets and measure the resulting loss
rate [3]. Each site measures the loss rate to every other
site once an hour, resulting in a total of 90 loss rate mea-
surements collected across the network every hour. Be-
tween Nov 1, 2007 and Jan 25, 2007, 24% of all such
measurements were over 0.01% and a surprising 14% of
them were over 0.1%. After eliminating a single site (In-
diana University) that dropped incoming packets steadily
at a rate of 0.44%, 14% of the remainder were over 0.01%
and 3% were over 0.1%.

These numbers reflect the loss rate experienced for
UDP traffic on an end-to-end path and may not gener-
alize to TCP packets. Also, we do not know if packets
were dropped within the optical network or at intermedi-
ate devices within either datacenter, though it’s unlikely
that they were dropped at the end-hosts; many of the mea-

surements lost just one or two packets whereas kernel/NIC
losses are known to be bursty [6]. Further, loss occurred
on paths where levels of optical link utilization (deter-
mined by 20-second moving averages) were consistently
lower than 20%, ruling out congestion as a possible cause,
a conclusion supported by dialogue with the network ad-
ministrators [44].

Other data-points are provided by the back-bone net-
works of Tier-1 ISPs. Global Crossing reports average
loss rates between 0.01% and 0.03% on four of its six
inter-regional long-haul links for the month of December
2007 [1]. Qwest reports loss rates of 0.01% and 0.02%
in either direction on its trans-pacific link for the same
month [2]. We expect privately managed lambdas to ex-
hibit higher loss rates due to the inherent trade-off be-
tween fiber/equipment quality and cost [10], as well as
the difficulty of performing routine maintenance on long-
distance links. Consequently, we model end-to-end paths
as dropping packets at rates of 0.01% to 1%, to capture a
wide range of deployed networks.

3 Existing Reliability Options

TCP/IP is the default reliable communication option for
contemporary networked applications, with deep, exclu-
sive embeddings in commodity operating systems and
networking APIs. Consequently, most applications re-
quiring reliable communication over any form of network
use TCP/IP.

3.1 The problem with commodity TCP/IP

ACK/Retransmit + Sequencing: Conventional TCP/IP
uses positive acknowledgments and retransmissions to en-
sure reliability — the sender buffers packets until their
receipt is acknowledged by the receiver, and resends if
an acknowledgment is not received within some time pe-
riod. Hence, a lost packet is received in the form of a re-
transmission that arrives no earlier than 1.5 RTTs after the
original send event. The sender has to buffer each packet
until it’s acknowledged, which takes 1 RTT in lossless op-
eration, and it has to perform additional work to retrans-
mit the packet if it does not receive the acknowledgment.
Also, any packets that arrive with higher sequence num-
bers than that of a lost packet must be queued while the
receiver waits for the lost packet to arrive.

Consider a high-throughput financial banking applica-
tion running in a datacenter in New York City, sending
updates to a sister site in Switzerland. The RTT value be-
tween these two centers is typically 100 milliseconds; i.e.,
in the case of a lost packet, all packets received within the
150 milliseconds between the original packet send and the

A B C D E F G HX X X X

A C E G X X
B D F H X X

A,B,C,D E,F,G,H

A,C,E,G

B,D,F,H

Figure 3: Interleaving with index 2: separate encoding for
odd and even packets

receipt of its retransmission have to be buffered at the re-
ceiver.

Notice that for this commonplace scenario, the loss of
a single packet stops all traffic in the channel to the ap-
plication for a seventh of a second; a sequence of such
blocks can have devastating effect on a high-throughput
system where every spare cycle counts. Further, in appli-
cations with many fine-grained components, a lost packet
can potentially trigger a butterfly effect of missed dead-
lines along a distributed workflow. During high-activity
periods — market crashes at stock exchanges, Christmas
sales at online stores, winter storms at air-traffic control
centers — overloaded networks and end-hosts can exhibit
continuous packet loss, with each lost packet driving the
system further and further out of sync with respect to its
real-world deadlines.
Sensitive Flow Control: TCP/IP is unable to distinguish
between ephemeral loss modes — due to transient con-
gestion, switching errors, or dirty fiber — and persistent
congestion. The loss of one packet out of ten thousand
is sufficient to reduce TCP/IP throughput to a third of its
lossless maximum; if one packet is lost out of a thousand,
throughput collapses to a thirtieth of the maximum.

3.2 The Case For (and Against) FEC

FEC encoders are typically parameterized with an (r, c)
tuple — for each outgoing sequence of r data packets, a
total of r + c data and error correction packets are sent
over the channel 1. Significantly, redundancy informa-
tion cannot be generated and sent until all r data pack-
ets are available for sending. Consequently, the latency
of packet recovery is determined by the rate at which the
sender transmits data. Generating error correction packets
from less than r data packets at the sender is not a viable
option — even though the data rate in this channel is low,
the receiver and/or network could be operating at near full
capacity with data from other senders.

FEC is also very susceptible to bursty losses [34]. In-
terleaving [32] is a standard encoding technique used
to combat bursty loss, where error correction pack-

ets are generated from alternate disjoint sub-streams of
data rather than from consecutive packets. For exam-
ple, with an interleave index of 3, the encoder would
create correction packets separately from three disjoint
sub-streams: the first containing data packets numbered
(0, 3, 6...(r − 1) ∗ 3), the second with data packets num-
bered (1, 4, 7...(r − 1) ∗ 3 + 1), and the third with data
packets numbered (2, 5, 8, ...(r− 1) ∗ 3+2). Interleaving
adds burst tolerance to FEC but exacerbates its sensitiv-
ity to sending rate — with an interleave index of i and an
encoding rate of (r, c), the sender would have to wait for
i ∗ (r − 1) + 1 packets before sending any redundancy
information.

These two obstacles to using FEC in time-sensitive set-
tings — rate sensitivity and burst susceptibility — are in-
terlinked through the tuning knobs: an interleave of i and
a rate of (r, c) provides tolerance to a burst of up to c ∗ i
consecutive packets. Consequently, the burst tolerance of
an FEC code can be changed by modulating either the c
or the i parameters. Increasing c enhances burst toler-
ance at the cost of network and encoding overhead, poten-
tially worsening the packet loss experienced and reducing
throughput. In contrast, increasing i trades off recovery
latency for better burst tolerance without adding overhead
— as mentioned, for higher values of i, the encoder has to
wait for more data packets to be transmitted before it can
send error correction packets.

Importantly, once the FEC encoding is parameterized
with a rate and an interleave to tolerate a certain burst
length B (for example, r = 5, c = 2 and i = 10 to
tolerate a burst of length 2∗10 = 20), all losses occurring
in bursts of size less than or equal to B are recovered with
the same latency — and this latency depends on the i pa-
rameter. Ideally, we’d like to parameterize the encoding
to tolerate a maximum burst length and then have recov-
ery latency depend on the actual burstiness of the loss.
At the same time, we would like the encoding to have a
constant rate for network provisioning and stability. Ac-
cordingly, an FEC scheme is required where latency of
recovery degrades gracefully as losses get burstier, even
as the encoding overhead stays constant.

4 Maelstrom Design and Implemen-
tation

We describe the Maelstrom appliance as a single machine
— later, we will show how more machines can be added to
the appliance to balance encoding load and scale to mul-
tiple gigabits per second of traffic.

29 28 27 26 25

25
26

27
28

29

X

LOSSXOR

‘Recipe List’:
25,26,27,28,29

25 26 28 29

Lam
bda Jum

bo M
TU

LAN M
TU

Appliance

Appliance

27

Recovered
Packet

Figure 4: Basic Maelstrom mechanism: repair packets are
injected into stream transparently

4.1 Basic Mechanism

The basic operation of Maelstrom is shown in Figure 4
— at the send-side datacenter, it intercepts outgoing data
packets and routes them to the destination datacenter, gen-
erating and injecting FEC repair packets into the stream
in their wake. A repair packet consists of a ‘recipe’ list
of data packet identifiers and FEC information generated
from these packets; in the example in Figure 4, this in-
formation is a simple XOR. The size of the XOR is equal
to the MTU of the datacenter network, and to avoid frag-
mentation of repair packets we require that the MTU of
the long-haul network be set to a slightly larger value.
This requirement is usually satisfied in practical deploy-
ments, since gigabit links very often use ‘Jumbo’ frames
of up to 9000 bytes [19] while LAN networks have stan-
dard MTUs of 1500 bytes.

At the receiving datacenter, the appliance examines in-
coming repair packets and uses them to recover missing
data packets. On recovery, the data packet is injected
transparently into the stream to the receiving end-host.
Recovered data packets will typically arrive out-of-order,
but this behavior is expected by communication stacks de-
signed for the commodity Internet.

4.2 Flow Control

While relaying TCP/IP data, Maelstrom has two flow
control modes: end-to-end and split. With end-to-end
flow control, the appliance routes packets through with-
out modification, allowing flow-control between the end-
hosts. In split mode, the appliance acts as a TCP/IP
endpoint, terminating connections and sending back
ACKs immediately before relaying data on appliance-to-
appliance flows; this is particularly useful for applications
with short-lived flows that need to ramp up throughput
quickly and avoid the slow-start effects of TCP/IP on a
long link. The performance advantages of splitting long-
distance connections into multiple hops are well known
[7] and orthogonal to this work; we are primarily inter-
ested in isolating the impact of rapid and transparent re-
covery of lost packets by Maelstrom on TCP/IP, rather
than the buffering and slow-start avoidance benefits of
generic performance-enhancing proxies. In the remain-
der of the paper, we describe Maelstrom with end-to-end
flow control.
Is Maelstrom TCP-Friendly? While Maelstrom respects
end-to-end flow control connections (or splits them and
implements its own proxy-to-proxy flow control as de-
scribed above), it is not designed for routinely congested
networks; the addition of FEC under TCP/IP flow control
allows it to steal bandwidth from other competing flows
running without FEC in the link, though maintaining fair-
ness versus similarly FEC-enhanced flows [30]. How-
ever, friendliness with conventional TCP/IP flows is not a
primary protocol design goal on over-provisioned multi-
gigabit links, which are often dedicated to specific high-
value applications. We see evidence for this assertion in
the routine use of parallel flows [38] and UDP ‘blast’ pro-
tocols [17, 43] both in commercial deployments and by
researchers seeking to transfer large amounts of data over
high-capacity academic networks.

4.3 Layered Interleaving

In layered interleaving, an FEC protocol with rate (r, c) is
produced by running c multiple instances of an (r, 1) FEC
protocol simultaneously with increasing interleave indices
I = (i0, i1, i2...ic−1). For example, if r = 8, c = 3 and
I = (i0 = 1, i1 = 10, i2 = 100), three instances of an
(8, 1) protocol are executed: the first instance with inter-
leave i0 = 1, the second with interleave i1 = 10 and
the third with interleave i2 = 100. An (r, 1) FEC en-
coding is simply an XOR of the r data packets — hence,
in layered interleaving each data packet is included in c
XORs, each of which is generated at different interleaves
from the original data stream. Choosing interleaves ap-
propriately (as we shall describe shortly) ensures that the
c XORs containing a data packet do not have any other

3 2 1

X1

1121

X2

101201

X3

Data Stream

XORs:

Figure 5: Layered Interleaving: (r = 3, c = 3), I = (1, 10, 100)

data packet in common. The resulting protocol effectively
has a rate of (r, c), with each XOR generated from r data
packets and each data packet included in c XORs. Fig-
ure 5 illustrates layered interleaving for a (r = 3, c = 3)
encoding with I = (1, 10, 100).

As mentioned previously, standard FEC schemes can
be made resistant to a certain loss burst length at the cost
of increased recovery latency for all lost packets, includ-
ing smaller bursts and singleton drops. In contrast, lay-
ered interleaving provides graceful degradation in the face
of bursty loss for constant encoding overhead — single-
ton random losses are recovered as quickly as possible,
by XORs generated with an interleave of 1, and each suc-
cessive layer of XORs generated at a higher interleave
catches larger bursts missed by the previous layer.

The implementation of this algorithm is simple and
shown in Figure 6 — at the send-side proxy, a set of re-
pair bins is maintained for each layer, with i bins for a
layer with interleave i. A repair bin consists of a par-
tially constructed repair packet: an XOR and the ‘recipe’
list of identifiers of data packets that compose the XOR.
Each intercepted data packet is added to each layer —
where adding to a layer simply means choosing a repair
bin from the layer’s set, incrementally updating the XOR
with the new data packet, and adding the data packet’s
header to the recipe list. A counter is incremented as each
data packet arrives at the appliance, and choosing the re-
pair bin from the layer’s set is done by taking the modulo
of the counter with the number of bins in each layer: for
a layer with interleave 10, the xth intercepted packet is
added to the (x mod 10)th bin. When a repair bin fills
up — its recipe list contains r data packets — it ‘fires’: a
repair packet is generated consisting of the XOR and the
recipe list and is scheduled for sending, while the repair
bin is re-initialized with an empty recipe list and blank
XOR.

At the receive-side proxy, incoming repair packets are
processed as follows: if all the data packets contained in
the repair’s recipe list have been received successfully,
the repair packet is discarded. If the repair’s recipe list
contains a single missing data packet, recovery can oc-
cur immediately by combining the XOR in the repair with

25 26 27 28 29

20 24 28

21 25 29

22 26

23 27

Layer 1: Interleave 1

Layer 2: Interleave 4

20 28

21 29

22

23

Layer 3: Interleave 8

X X

24

25

26

27

29
Layer with
interleave
of 4 has 4
repair bins

Incoming
Data
Packet

Figure 6: Layered Interleaving Implementation: (r =
5, c = 3), I = (1, 4, 8)

the other successfully received data packets. If the repair
contains multiple missing data packets, it cannot be used
immediately for recovery — it is instead stored in a table
that maps missing data packets to repair packets. When-
ever a data packet is subsequently received or recovered,
this table is checked to see if any XORs now have single-
ton losses due to the presence of the new packet and can
be used for recovering other missing packets.

Importantly, XORs received from different layers in-
teract to recover missing data packets, since an XOR re-
ceived at a higher interleave can recover a packet that
makes an earlier XOR at a lower interleave usable —
hence, though layered interleaving is equivalent to c dif-
ferent (r, 1) instances in terms of overhead and design, its
recovery power is much higher and comes close to stan-
dard (r, c) algorithms.

41 49 57

50 58

59

Layer Interleave 8

45 53 61

54 62

63

65

(1)

(2,10)

(3,11,19)

(4,12,20,28)

(5)

(6,14)

(7,15,23)

(8,16,24,32)

Repair Bins

Staggered Start
XORs

(9,17,25,33)

(18,26,34,42)

(27,35,43,51)

(36,44,52,60)

(13,21,29,37)

(22,30,38,46)

(31,39,47,55)

(40,48,56,64)

Second Set of r-
sized XORs

r = 4

Figure 7: Staggered Start

4.3.1 Optimizations

Staggered Start for Rate-Limiting In the naive imple-
mentation of the layered interleaving algorithm, repair
packets are transmitted as soon as repair bins fill and al-
low them to be constructed. Also, all the repair bins in
a layer fill in quick succession; in Figure 6, the arrival of
packets 36, 37, 38 and 39 will successively fill the four re-
pair bins in layer 2. This behavior leads to a large number
of repair packets being generated and sent within a short
period of time, which results in undesirable overhead and
traffic spikes; ideally, we would like to rate-limit trans-
missions of repair packets to one for every r data packets.

This problem is fixed by ‘staggering’ the starting sizes
of the bins, analogous to the starting positions of runners
in a sprint; the very first time bin number x in a layer of
interleave i fires, it does so at size x mod r. For example,
in Figure 6, the first repair bin in the second layer with
interleave 4 would fire at size 1, the second would fire at
size 2, and so on. Hence, for the first i data packets added
to a layer with interleave i, exactly i/r fire immediately
with just one packet in them; for the next i data packets
added, exactly i/r fire immediately with two data packets
in them, and so on until r∗ i data packets have been added
to the layer and all bins have fired exactly once. Subse-
quently, all bins fire at size r; however, now that they have
been staggered at the start, only i/r fire for any i data
packets. The outlined scheme works when i is greater
than or equal to r, as is usually the case. If i is smaller
than r, the bin with index x fires at ((x mod r) ∗ r/i) —
hence, for r = 4 and i = 2, the initial firing sizes would
be 2 for the first bin and 4 for the second bin. If r and i are
not integral multiples of each other, the rate-limiting still
works but is slightly less effective due to rounding errors.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Loss probability

R
e

c
o

v
e

ry
 p

ro
b

a
b

ili
ty

Reed!Solomon

Maelstrom

Figure 8: Comparison of Packet Recovery Probability:
r=7, c=2

Delaying XORs In the naive implementation, repair
packets are transmitted as soon as they are generated. This
results in the repair packet leaving immediately after the
last data packet that was added to it, which lowers burst
tolerance — if the repair packet was generated at inter-
leave i, the resulting protocol can tolerate a burst of i lost
data packets excluding the repair, but the burst could swal-
low both the repair and the last data packet in it as they are
not separated by the requisite interleave. The solution to
this is simple — delay sending the repair packet generated
by a repair bin until the next time a data packet is added to
the now empty bin, which happens i packets later and in-
troduces the required interleave between the repair packet
and the last data packet included in it.

Notice that although transmitting the XOR immediately
results in faster recovery, doing so also reduces the prob-
ability of a lost packet being recovered. This trade-off
results in a minor control knob permitting us to balance
speed against burst tolerance; our default configuration is
to transmit the XOR immediately.

4.4 Back-of-the-Envelope Analysis

To start with, we note that no two repair packets generated
at different interleaves i1 and i2 (such that i1 < i2) will
have more than one data packet in common as long as
the Least Common Multiple (LCM) of the interleaves is
greater than r ∗ i1; pairings of repair bins in two different
layers with interleaves i1 and i2 occur every LCM(i1, i2)
packets. Thus, a good rule of thumb is to select interleaves
that are relatively prime to maximize their LCM , and also
ensure that the larger interleave is greater than r.

Let us assume that packets are dropped with uniform,
independent probability p. Given a lost data packet, what
is the probability that we can recover it? We can recover a

data packet if at least one of the c XORs containing it is re-
ceived correctly and ‘usable’, i.e, all the other data packets
in it have also been received correctly, the probability of
which is simply (1− p)r−1. The probability of a received
XOR being unusable is the complement: (1−(1−p)r−1).

Consequently, the probability x of a sent XOR being
dropped or unusable is the sum of the probability that it
was dropped and the probability that it was received and
unusable: x = p+(1−p)(1−(1−p)r−1) = (1−(1−p)r).

Since it is easy to ensure that no two XORs share
more than one data packet, the usability probabilities of
different XORs are independent. The probability of all
the c XORs being dropped or unusable is xc; hence,
the probability of correctly receiving at least one usable
XOR is 1 − xc. Consequently, the probability of recov-
ering the lost data packet is 1 − xc, which expands to
1− (1− (1− p)r)c.

This closed-form formula only gives us a lower bound
on the recovery probability, since the XOR usability for-
mula does not factor in the probability of the other data
packets in the XOR being dropped and recovered.

Now, we extend the analysis to bursty losses. If the lost
data packet was part of a loss burst of size b, repair pack-
ets generated at interleaves less than b are dropped or use-
less with high probability, and we can discount them. The
probability of recovering the data packet is then 1 − xc′

,
where c′ is the number of XORs generated at interleaves
greater than b. The formulae derived for XOR usability
still hold, since packet losses with more than b intervening
packets between them have independent probability; there
is only correlation within the bursts, not between bursts.

How does this compare to traditional (r, c) codes such
as Reed-Solomon [46]? In Reed-Solomon, c repair pack-
ets are generated and sent for every r data packets, and
the correct delivery of any r of the r + c packets trans-
mitted is sufficient to reconstruct the original r data pack-
ets. Hence, given a lost data packet, we can recover it if
at least r packets are received correctly in the encoding
set of r + c data and repair packets that the lost packet
belongs to. Thus, the probability of recovering a lost
packet is equivalent to the probability of losing c − 1 or
less packets from the total r + c packets. Since the num-
ber of other lost packets in the XOR is a random vari-
able Y and has a binomial distribution with parameters
(r + c − 1) and p, the probability P (Y ≤ c − 1) is the
summation

∑
z≤c−1 P (Y = z). In Figure 8, we plot

the recovery probability curves for Layered Interleaving
and Reed-Solomon against uniformly random loss rate,
for (r = 7, c = 2) — note that the curves are very close
to each other, especially in the loss range of interest be-
tween 0% and 10%.

4.5 Local Recovery for Receiver Loss

In the absence of intelligent flow control mechanisms like
TCP/IP’s receiver-window advertisements, inexpensive
datacenter end-hosts can be easily overwhelmed and drop
packets during traffic spikes or CPU-intensive mainte-
nance tasks like garbage collection. Reliable application-
level protocols layered over UDP — for reliable multi-
cast [6] or high speed data transfer [17], for example —
would ordinarily go back to the sender to retrieve the lost
packet, even though it was dropped at the receiver after
covering the entire geographical distance.

The Maelstrom proxy acts as a local packet cache, stor-
ing incoming packets for a short period of time and pro-
viding hooks that allow protocols to first query the cache
to locate missing packets before sending retransmission
requests back to the sender. Future versions of Maelstrom
could potentially use knowledge of protocol internals to
transparently intervene; for example, by intercepting and
satisfying retransmission requests sent by the receiver in
a NAK-based protocol, or by resending packets when ac-
knowledgments are not observed within a certain time pe-
riod in an ACK-based protocol.

4.6 Implementation Details

We initially implemented and evaluated Maelstrom as a
user-space proxy. Performance turned out to be limited by
copying and context-switching overheads, and we subse-
quently reimplemented the system as a module that runs
within the Linux 2.6.20 kernel. At an encoding rate of
(8, 3), the experimental prototype of the kernel version
reaches output speeds close to 1 gigabit per second of
combined data and FEC traffic, limited only by the ca-
pacity of the outbound network card.

Of course, lambda networks are already reaching
speeds of 40 gigabits, and higher speeds are a certainty
down the road. To handle multi-gigabit loads, we envision
Maelstrom as a small rack-style cluster of blade-servers,
each acting as an individual proxy. Traffic would be dis-
tributed over such a rack by partitioning the address space
of the remote datacenter and routing different segments
of the space through distinct Maelstrom appliance pairs.
In future work, we plan to experiment with such con-
figurations, which would also permit us to explore fault-
tolerance issues (if a Maelstrom blade fails, for example),
and to support load-balancing schemes that might vary
the IP address space partitioning dynamically to spread
the encoding load over multiple machines. For this paper,
however, we present the implementation and performance
of a single-machine appliance.

The kernel implementation is a module for Linux
2.6.20 with hooks into the kernel packet filter [4]. Mael-
strom proxies work in pairs, one on each side of the long

haul link. Each proxy acts both as an ingress and egress
router at the same time since they handle duplex traffic in
the following manner:

• The egress router captures IP packets and creates re-
dundant FEC packets. The original IP packets are
routed through unaltered as they would have been
originally; the redundant packets are then forwarded
to the remote ingress router via a UDP channel.

• The ingress router captures and stores IP packets
coming from the direction of the egress router. Upon
receipt of a redundant packet, an IP packet is recov-
ered if there is an opportunity to do so. Redundant
packets that can be used at a later time are stored. If
the redundant packet is useless it is immediately dis-
carded. Upon recovery the IP packet is sent through
a raw socket to its intended destination.

Using FEC requires that each data packet have a unique
identifier that the receiver can use to keep track of re-
ceived data packets and to identify missing data packets
in a repair packet. If we had access to end-host stacks, we
could have added a header to each packet with a unique
sequence number [37]; however, we intercept traffic trans-
parently and need to route it without modification or addi-
tion, for performance reasons. Consequently, we identify
IP packets by a tuple consisting of the source and des-
tination IP address, IP identification field, size of the IP
header plus data, and a checksum over the IP data pay-
load. The checksum over the payload is necessary since
the IP identification field is only 16 bits long and a sin-
gle pair of end-hosts communicating at high speeds will
use the same identifier for different data packets within
a fairly short interval unless the checksum is added to
differentiate between them. Note that non-unique iden-
tifiers result in garbled recovery by Maelstrom, an event
which will be caught by higher level checksums designed
to deal with tranmission errors on commodity networks
and hence does not have significant consequences unless
it occurs frequently.

The kernel version of Maelstrom can generate up to a
Gigabit per second of data and FEC traffic, with the in-
put data rate depending on the encoding rate. In our ex-
periments, we were able to saturate the outgoing card at
rates as high as (8, 4), with CPU overload occurring at
(8, 5) where each incoming data packet had to be XORed
5 times.

4.7 Buffering Requirements
At the receive-side proxy, incoming data packets are
buffered so that they can be used in conjunction with
XORs to recover missing data packets. Also, any received
XOR that is missing more than one data packet is stored

temporarily, in case all but one of the missing packets are
received later or recovered through other XORs, allowing
the recovery of the remaining missing packet from this
XOR. In practice we stored data and XOR packets in dou-
ble buffered red black trees — for 1500 byte packets and
1024 entries this occupies around 3 MB of memory.

At the send-side, the repair bins in the layered inter-
leaving scheme store incrementally computed XORs and
lists of data packet headers, without the data packet pay-
loads, resulting in low storage overheads for each layer
that rise linearly with the value of the interleave. The
memory footprint for a long-running proxy was around
10 MB in our experiments.

4.8 Other Performance Enhancing Roles

Maelstrom appliances can optionally aggregate small sub-
kilobyte packets from different flows into larger ones for
better communication efficiency over the long-distance
link. Additionally, in split flow control mode they can
perform send-side buffering of in-flight data for multi-
gigabyte flows that exceed the sending end-host’s buffer-
ing capacity. Also, Maelstrom appliances can act as mul-
ticast forwarding nodes: appliances send multicast pack-
ets to each other across the long-distance link, and use
IP Multicast [11] to spread them within their datacenters.
Lastly, appliances can take on other existing roles in the
datacenter, acting as security and VPN gateways and as
conventional performance enhancing proxies (PEPs) [7].

5 Evaluation
We evaluated Maelstrom on the Emulab testbed at Utah
[45]. For all the experiments, we used a ‘dumbbell’ topol-
ogy of two clusters of nodes connected via routing nodes
with a high-latency link in between them, designed to em-
ulate the setup in Figure 2, and ran the proxy code on
the routers. Figure 10 shows the performance of the ker-
nel version at Gigabit speeds; the remainder of the graphs
show the performance of the user-space version at slower
speeds. To emulate the MTU difference between the long-
haul link and the datacenter network (see Section 4.1) we
set an MTU of 1200 bytes on the network connecting the
end-hosts to the proxy and an MTU of 1500 bytes on the
long-haul link between proxies; the only exception is Fig-
ure 10, where we maintained equal MTUs of 1500 bytes
on both links.

5.1 Throughput Metrics

Figures 9 and 10 show that commodity TCP/IP through-
put collapses in the presence of non-congestion loss, and
that Maelstrom successfully masks loss and prevents this

 0

 5

 10

 15

 20

 25

 0.1 1 10

Th
ro

ug
hp

ut
 (M

bp
s)

Loss Rate %

Maelstrom
TCP/IP

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250

Th
ro

ug
hp

ut
 (M

bp
s)

One-Way Link Latency (ms)

TCP/IP No Loss
Maelstrom No Loss

Maelstrom (0.1%)
Maelstrom (1.0%)

TCP/IP (0.1%)
TCP/IP (1.0%)

Figure 9: User-Space Throughput against (a) Loss Rate and (b) One-Way Latency

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0.1 1 10

Th
ro

ug
hp

ut
 (M

bp
s)

Packet Loss Rate %

Maelstrom
TCP

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 50 100 150 200 250

Th
ro

ug
hp

ut
 (M

bp
s)

One Way Link Latency (ms)

TCP No Loss
Maelstrom No Loss

Maelstrom (0.1%)
Maelstrom (1.0%)

TCP/IP (0.1%)
TCP (1% loss)

Figure 10: Kernel Throughput against (a) Loss Rate and (b) One-Way Latency

collapse from occurring. Figure 9 shows the performance
of the user-space version on a 100 Mbps link and Figure
10 shows the kernel version on a 1 Gbps link. The exper-
iment in each case involves running iperf [41] flows from
one node to another across the long-distance link with and
without intermediary Maelstrom proxies and measuring
obtained throughput while varying loss rate (left graph on
each figure) and one-way link latency (right graph). The
error bars on the graphs to the left are standard errors of
the throughput over ten runs; between each run, we flush
TCP/IP’s cache of tuning parameters to allow for repeat-
able results. The clients in the experiment are running
TCP/IP Reno on a Linux 2.6.20 that performs autotun-
ing. The Maelstrom parameters used are r = 8,c = 3,
I = (1, 20, 40).

The user-space version involved running a single 10
second iperf flow from one node to another with and
without Maelstrom running on the routers and measuring
throughput while varying the random loss rate on the link
and the one-way latency. To test the kernel version at gi-
gabit speeds, we ran eight parallel iperf flows from one

node to another for 120 seconds. The curves obtained
from the two versions are almost identical; we present
both to show that the kernel version successfully scales
up the performance of the user-space version to hundreds
of megabits of traffic per second.

In Figures 9 (Left) and 10 (Left), we show how TCP/IP
performance degrades on a 50ms link as the loss rate is in-
creased from 0.01% to 10%. Maelstrom masks loss up to
2% without significant throughput degradation, with the
kernel version achieving two orders of magnitude higher
throughput that conventional TCP/IP at 1% loss.

The graphs on the right side of Figures 9 and 10
show TCP/IP throughput declining on a link of increas-
ing length when subjected to uniform loss rates of 0.1%
and 1%. The top line in the graphs is the performance of
TCP/IP without loss and provides an upper bound for per-
formance on the link. In both user-space and kernel ver-
sions, Maelstrom masks packet loss and tracks the lossless
line closely, lagging only when the link latency is low and
TCP/IP’s throughput is very high.

To allow TCP/IP to attain very high speeds on the gi-

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100

 0.01 0.1 1 10

D
el

iv
er

y
La

te
nc

y
(m

s)

Loss Rate %

TCP/IP
Maelstrom

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 50 100 150 200 250

D
el

iv
er

y
La

te
nc

y
(m

s)

One-Way Link Latency (ms)

TCP/IP
Maelstrom

Figure 11: Per-Packet One-Way Delivery Latency against Loss Rate (Left) and Link Latency (Right)

 0

 100

 200

 300

 400

 500

 600

 0 1000 2000 3000 4000 5000 6000

D
el

iv
er

y
La

te
nc

y
(m

s)

Packet #

TCP/IP: 0.1% Loss

 0

 100

 200

 300

 400

 500

 600

 0 1000 2000 3000 4000 5000 6000

D
el

iv
er

y
La

te
nc

y
(m

s)

Packet #

Maelstrom: 0.1% Loss

Figure 12: Packet delivery latencies

gabit link, we had to set the MTU of the entire path to
be the maximum 1500 bytes, which meant that the long-
haul link had the same MTU as the inter-cluster link. This
resulted in the fragmentation of repair packets sent over
UDP on the long-haul link into two IP packet fragments.
Since the loss of a single fragment resulted in the loss of
the repair, we observed a higher loss rate for repairs than
for data packets. Consequently, we expect performance to
be better on a network where the MTU of the long-haul
link is truly larger than the MTU within each cluster.

5.2 Latency Metrics

To measure the latency effects of TCP/IP and Maelstrom,
we ran a 0.1 Mbps stream between two nodes over a 100
Mbps link with 50 ms one-way latency, and simultane-
ously ran a 10 Mbps flow alongside on the same link to
simulate a real-time stream combined with other inter-
cluster traffic. Figure 11 (Left) shows the average delivery
latency of 1KB application-level packets in the 0.1 Mbps
stream, as loss rates go up.

Figure 11 (Right) shows the same scenario with a con-
stant uniformly random loss rate of 0.1% and varying one-
way latency. Maelstrom’s delivery latency is almost ex-
actly equal to the one-way latency on the link, whereas
TCP/IP takes more than twice as long once one-way la-
tencies go past 100 ms. Figure 12 plots delivery latency
against message identifier; the spikes in latency are trig-
gered by losses that lead to packets piling up at the re-
ceiver.

A key point is that we are plotting the delivery latency
of all packets, not just lost ones. TCP/IP delays cor-
rectly received packets while waiting for missing pack-
ets sequenced earlier by the sender — the effect of this
is shown in Figure 12, where single packet losses cause
spikes in delivery latency that last for hundreds of packets.
The low data rate in the flow of roughly 10 1KB packets
per RTT makes TCP/IP flow control delays at the sender
unlikely, given that the congestion control algorithm is
Reno, which implements ‘fast recovery’ and halves the
congestion window on packet loss rather than resetting
it completely [22]. The Maelstrom configuration used is

 60
 65
 70
 75
 80
 85
 90
 95

 100

 0.1 1 10

Pe
rc

en
ta

ge
 o

f P
ac

ke
ts

Re
co

ve
re

d

Loss Rate %

(1,11,19) - Burst Size 1
(1,10,20) - Burst Size 1

(1,11,19) - Burst Size 10
(1,10,20) - Burst Size 10

Figure 13: Relatively prime interleaves offer better per-
formance

r = 7, c = 2, I = (1, 10).

5.3 Layered Interleaving and Bursty Loss
Thus far we have shown how Maelstrom effectively hides
loss from TCP/IP for packets dropped with uniform ran-
domness. Now, we examine the performance of the lay-
ered interleaving algorithm, showing how different pa-
rameterizations handle bursty loss patterns. We use a loss
model where packets are dropped in bursts of fixed length,
allowing us to study the impact of burst length on perfor-
mance. The link has a one-way latency of 50 ms and a
loss rate of 0.1% (except in Figure 13, where it is varied),
and a 10 Mbps flow of udp packets is sent over it.

In Figure 13 we show that our observation in Section
4.4 is correct for high loss rates — if the interleaves
are relatively prime, performance improves substantially
when loss rates are high and losses are bursty. The graph
plots the percentage of lost packets successfully recovered
on the y-axis against an x-axis of loss rates on a log scale.
The Maelstrom configuration used is r = 8, c = 3 with
interleaves of (1, 10, 20) and (1, 11, 19).

In Figure 14, we show the ability of layered interleav-
ing to provide gracefully degrading performance in the
face of bursty loss. On the top, we plot the percentage
of lost packets successfully recovered against the length
of loss bursts for two different sets of interleaves, and in
the bottom graph we plot the average latency at which
the packets were recovered. Recovery latency is defined
as the difference between the eventual delivery time of
the recovered packet and the one-way latency of the link
(we confirmed that the Emulab link had almost no jitter
on correctly delivered packets, making the one-way la-
tency an accurate estimate of expected lossless delivery
time). As expected, increasing the interleaves results in
much higher recovery percentages at large burst sizes, but

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

Pe
rc

en
ta

ge
 o

f P
ac

ke
ts

Re
co

ve
re

d

Burst Length

(1,19,41)
(1,11,19)

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 5 10 15 20 25 30 35 40

Re
co

ve
ry

 L
at

en
cy

 (M
ill

ise
co

nd
s)

Burst Length

(1,19,41)
(1,11,19)

Figure 14: Layered Interleaving Recovery Percentage and
Latency

comes at the cost of higher recovery latency. For example,
a (1, 19, 41) set of interleaves catches almost all packets
in an extended burst of 25 packets at an average latency of
around 45 milliseconds, while repairing all random sin-
gleton losses within 2-3 milliseconds. The graphs also
show recovery latency rising gracefully with the increase
in loss burst length: the longer the burst, the longer it takes
to recover the lost packets. The Maelstrom configuration
used is r = 8, c = 3 with interleaves of (1, 11, 19) and
(1, 19, 41).

In Figures 16 and 17 we show histograms of recovery
latencies for the two interleave configurations under dif-
ferent burst lengths. The histograms confirm the trends
described above: packet recoveries take longer from left
to right as we increase loss burst length, and from top to
bottom as we increase the interleave values.

Figure 15 illustrates the difference between a tradi-
tional FEC code and layered interleaving by plotting a
50-element moving average of recovery latencies for both
codes. The channel is configured to lose singleton packets
randomly at a loss rate of 0.1% and additionally lose long
bursts of 30 packets at occasional intervals. Both codes

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

Re
co

ve
ry

 L
at

en
cy

 (M
ill

ise
co

nd
s)

Recovered Packet #

Reed Solomon
Layered Interleaving

Figure 15: Reed-Solomon versus Layered Interleaving

are configured with r = 8, c = 2 and recover all lost
packets — Reed-Solomon uses an interleave of 20 and
layered interleaving uses interleaves of (1, 40) and con-
sequently both have a maximum tolerable burst length of
40 packets. We use a publicly available implementation
of a Reed-Solomon code based on Vandermonde matri-
ces, described in [36]; the code is plugged into Maelstrom
instead of layered interleaving, showing that we can use
new encodings within the same framework seamlessly.
The Reed-Solomon code recovers all lost packets with
roughly the same latency whereas layered interleaving re-
covers singleton losses almost immediately and exhibits
latency spikes whenever the longer loss burst occurs.

6 Related Work
A significant body of work on application and TCP/IP per-
formance over high-speed long-distance networks exists
in the context of high-performance computing, grids and
e-science. The use of parallel sockets for higher through-
put in the face of non-congestion loss was proposed in
PSockets [38]. A number of protocols have been sug-
gested as replacements for TCP/IP in such settings —
XCP [25], Tsunami [43], SABUL [13] and RBUDP [17]
are a few — but all require modifications to end-hosts
and/or the intervening network. Some approaches seek
to differentiate between congestion and non-congestion
losses [8].

Maelstrom is a transparent Performance Enhancing
Proxy, as defined in RFC 3135 [7]; numerous implemen-
tations of PEPs exist for improving TCP performance on
satellite [42] and wireless links [9], but we are not aware
of any PEPs that use FEC to mask errors on long-haul op-
tical links.

End-host software-based FEC for reliable communica-
tion was first explored by Rizzo [36, 37]. OverQOS [40]

suggested the use of FEC for TCP/IP retransmissions over
aggregated traffic within an overlay network in the com-
modity Internet. AFEC [34] uses FEC for real-time com-
munication, modulating the rate of encoding adaptively.
The use of end-host FEC under TCP/IP has been explored
in [30].

A multitude of different FEC encodings exist in liter-
ature; they can broadly be categorized into optimal era-
sure codes and near-optimal erasure codes. The most
well-known optimal code is Reed-Solomon, which we de-
scribed previously as generating c repair packets from r
source packets; any r of the resulting r + c packets can be
used to reconstruct the r source packets. Near-optimal
codes such as Tornado and LT [29] trade-off encoding
speed for large data sizes against a loss of optimality —
the receiver needs to receive slightly more than r source
or repair packets to regenerate the original r data pack-
ets. Near-optimal codes are extremely fast for encoding
over large sets of data but not of significant importance
for real-time settings, since optimal codes perform equally
well with small data sizes. Of particular relevance are
Growth Codes [24], which use multiple encoding rates for
different overhead levels; in contrast, layered interleaving
uses multiple interleaves for different burst resilience lev-
els without modulating the encoding rate.

The effect of random losses on TCP/IP has been stud-
ied in depth by Lakshman [28]. Padhye’s analytical model
[33] provides a means to gauge the impact of packet loss
on TCP/IP. While most published studies of packet loss
are based on the commodity Internet rather than high-
speed lambda links, Fraleigh et al. [12] study the Sprint
backbone and make two observations that could be ex-
plained by non-congestion loss: a) links are rarely loaded
at more than 50% of capacity and b) packet reordering
events occur for some flows, possibly indicating packet
loss followed by retransmissions.

7 Future Work
Scaling Maelstrom to multiple gigabits per second of traf-
fic will require small rack-style clusters of tens of ma-
chines to distribute encoding load over; we need to de-
sign intelligent load-balancing and fail-over mechanisms
for such a scheme. Additionally, we have described lay-
ered interleaving with fixed, pre-assigned parameters, and
the next step in extending this protocol is to make it adap-
tive, changing interleaves and rate as loss patterns in the
link change.

8 Conclusion
Modern distributed systems are compelled by real-world
imperatives to coordinate across datacenters separated by

 0
 20
 40
 60
 80

 100

 0 50 100 150 200

%
 R

ec
ov

er
ed

Recovery Latency (ms)

 0
 20
 40
 60
 80

 100

 0 50 100 150 200

%
 R

ec
ov

er
ed

Recovery Latency (ms)

 0
 20
 40
 60
 80

 100

 0 50 100 150 200

%
 R

ec
ov

er
ed

Recovery Latency (ms)

Figure 16: Latency Histograms for I=(1,11,19) — Burst Sizes 1 (Left), 20 (Middle) and 40 (Right)

 0
 20
 40
 60
 80

 100

 0 50 100 150 200

%
 R

ec
ov

er
ed

Recovery Latency (ms)

 0
 20
 40
 60
 80

 100

 0 50 100 150 200

%
 R

ec
ov

er
ed

Recovery Latency (ms)

 0
 20
 40
 60
 80

 100

 0 50 100 150 200

%
 R

ec
ov

er
ed

Recovery Latency (ms)

Figure 17: Latency Histograms for I=(1,19,41) — Burst Sizes 1 (Left), 20 (Middle) and 40 (Right)

thousands of miles. Packet loss cripples the performance
of such systems, and reliability and flow-control protocols
designed for LANs and/or the commodity Internet fail to
achieve optimal performance on the high-speed long-haul
‘lambda’ networks linking datacenters. Deploying new
protocols is not an option for commodity clusters where
standardization is critical for cost mitigation. Maelstrom
is an edge appliance that uses Forward Error Correction
to mask packet loss from end-to-end protocols, improv-
ing TCP/IP throughput and latency by orders of magni-
tude when loss occurs. Maelstrom is easy to install and
deploy, and is completely transparent to applications and
protocols — literally providing reliability in an inexpen-
sive box.

Acknowledgments

We would like to thank our shepherd Robert Morris and
the other reviewers for extensive comments that signifi-
cantly shaped the final version of the paper. Danny Dolev,
Lakshmi Ganesh, T. V. Lakshman, Robbert van Renesse,
Yee Jiun Song, Vidhyashankar Venkataraman and Vivek
Vishnumurthy provided useful comments. Tom Boures
provided valuable insight into the quality of existing fiber
links, Stanislav Shalunov provided information on loss
rates on Internet2, and Paul Wefel gave us access to Tera-
Grid loss measurements.

Notes
1Rateless codes (e.g, LT codes [29]) are increasingly popular and

used for applications such as efficiently distributing bulk data [31] —
however, it is not obvious that these have utility in real-time communi-
cation.

References
[1] Global crossing current network performance.

http://www.globalcrossing.com/network/
network_performance_current.aspx. Last
Accessed Feb, 2008.

[2] Qwest ip network statistics. http://stat.qwest.
net/statqwest/statistics_tp.jsp. Last Ac-
cessed Feb, 2008.

[3] Teragrid udp performance. network.teragrid.
org/tgperf/udp/. Last Accessed Feb, 2008.

[4] Netfilter: firewalling, nat and packet mangling for linux.
http://www.netfilter.org/, 1999.

[5] Teragrid. www.teragrid.org, 2008.
[6] M. Balakrishnan, K. Birman, A. Phanishayee, and

S. Pleisch. Ricochet: Lateral error correction for time-
critical multicast. In NSDI 2007: Fourth Usenix Sympo-
sium on Networked Systems Design and Implementation,
2007.

[7] J. Border, M. Kojo, J. Griner, G. Montenegro, and
Z. Shelby. Performance Enhancing Proxies Intended to
Mitigate Link-Related Degradations. Internet RFC3135,
June, 2001.

[8] S. Bregni, D. Caratti, and F. Martignon. Enhanced loss dif-
ferentiation algorithms for use in TCP sources over hetero-
geneous wireless networks. In GLOBECOM 2003: IEEE
Global Telecommunications Conference, 2003.

[9] R. Chakravorty, S. Katti, I. Pratt, and J. Crowcroft. Flow
aggregation for enhanced tcp over wide area wireless. In
INFOCOM, 2003.

[10] D. Comer, Vice President of Research and T. Boures, Se-
nior Engineer. Cisco systems, inc. Private Communica-
tion., October 2007.

[11] S. E. Deering and D. R. Cheriton. Multicast routing in
datagram internetworks and extended lans. ACM Trans.
Comput. Syst., 8(2):85–110, 1990.

[12] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan,
D. Moll, R. Rockell, T. Seely, and S. Diot. Packet-level
traffic measurements from the Sprint IP backbone. IEEE
Network, 17(6):6–16, 2003.

[13] Y. Gu and R. Grossman. SABUL: A Transport Protocol for
Grid Computing. Journal of Grid Computing, 1(4):377–
386, 2003.

[14] R. Habel, K. Roberts, A. Solheim, and J. Harley. Optical
domain performance monitoring. Optical Fiber Communi-
cation Conference, 2000.

[15] T. Hacker, B. Athey, and B. Noble. The end-to-end perfor-
mance effects of parallel TCP sockets on a lossy wide-area
network. In IPDPS, 2002.

[16] T. J. Hacker, B. D. Noble, and B. D. Athey. The effects
of systemic packet loss on aggregate tcp flows. In Super-
computing ’02: Proceedings of the 2002 ACM/IEEE con-
ference on Supercomputing, 2002.

[17] E. He, J. Leigh, O. Yu, and T. Defanti. Reliable Blast UDP:
predictable high performance bulk data transfer. IEEE In-
ternational Conference on Cluster Computing, 2002.

[18] C. Huitema. The case for packet level fec. In PfHSN
’96: Proceedings of the TC6 WG6.1/6.4 Fifth International
Workshop on Protocols for High-Speed Networks V, pages
109–120, London, UK, UK, 1997. Chapman & Hall, Ltd.

[19] J. Hurwitz and W. Feng. End-to-end performance of 10-
gigabit Ethernet on commodity systems. Micro, IEEE,
24(1):10–22, 2004.

[20] Internet2. End-to-end performance initiative: Hey!
where did my performance go? - rate limiting rears
its ugly head. http://e2epi.internet2.edu/
case-studies/UMich/index.html.

[21] Internet2. End-to-end performance initiative:
When 99% isn’t quite enough - educause bad con-
nection. http://e2epi.internet2.edu/
case-studies/EDUCAUSE/index.html.

[22] V. Jacobson. Modified TCP Congestion Avoidance Al-
gorithm. Message to end2end-interest mailing list, April,
1990.

[23] L. James, A. Moore, M. Glick, and J. Bulpin. Physical
Layer Impact upon Packet Errors. Passive and Active Mea-
surement Workshop (PAM 2006), 2006.

[24] A. Kamra, J. Feldman, V. Misra, and D. Rubenstein.
Growth codes: Maximizing sensor network data persis-
tence. In Proceedings of ACM Sigcomm, Pisa, Italy,
September 2006.

[25] D. Katabi, M. Handley, and C. Rohrs. Congestion control
for high bandwidth-delay product networks. Proceedings
of the 2002 conference on Applications, technologies, ar-
chitectures, and protocols for computer communications,
pages 89–102, 2002.

[26] D. Kilper, R. Bach, D. Blumenthal, D. Einstein, T. Lan-
dolsi, L. Ostar, M. Preiss, and A. Willner. Optical Per-
formance Monitoring. Journal of Lightwave Technology,
22(1):294–304, 2004.

[27] A. Kimsas, H. Øverby, S. Bjornstad, and V. L. Tuft. A
cross layer study of packet loss in all-optical networks. In
AICT/ICIW, page 65, 2006.

[28] T. Lakshman and U. Madhow. The performance of TCP/IP
for networks with high bandwidth-delay products and ran-
dom loss. IEEE/ACM Transactions on Networking (TON),
5(3):336–350, 1997.

[29] M. Luby. LT codes. The 43rd Annual IEEE Symposium on
Foundations of Computer Science, 2002.

[30] H. Lundqvist and G. Karlsson. TCP with End-to-End For-
ward Error Correction. International Zurich Seminar on
Communications (IZS 2004), 2004.

[31] P. Maymounkov and D. Mazieres. Rateless codes and big
downloads. IPTPS03, 2003.

[32] J. Nonnenmacher, E. Biersack, and D. Towsley. Parity-
based loss recovery for reliable multicast transmission. In
Proceedings of the ACM SIGCOMM ’97 conference, pages
289–300, New York, NY, USA, 1997. ACM Press.

[33] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling
tcp throughput: a simple model and its empirical valida-
tion. SIGCOMM Comput. Commun. Rev., 28(4):303–314,
1998.

[34] K. Park and W. Wang. AFEC: an adaptive forward er-
ror correction protocol for end-to-endtransport of real-time
traffic. Computer Communications and Networks, 1998.
Proceedings. 7th International Conference on, pages 196–
205, 1998.

[35] M. Reardon. Dark fiber: Businesses see
the light. http://www.news.com/
Dark-fiber-Businesses-see-the-light/
2100-1037_3-5557910.html?part=rss&tag=
5557910&subj=news.1037.5, 2005. Last Accessed
Feb, 2008.

[36] L. Rizzo. Effective erasure codes for reliable computer
communication protocols. SIGCOMM Comput. Commun.
Rev., 27(2):24–36, 1997.

[37] L. Rizzo. On the feasibility of software FEC. Univ. di Pisa,
Italy, January, 1997.

[38] H. Sivakumar, S. Bailey, and R. L. Grossman. Psock-
ets: the case for application-level network striping for
data intensive applications using high speed wide area net-
works. In Supercomputing ’00: Proceedings of the 2000
ACM/IEEE conference on Supercomputing (CDROM),
page 37, Washington, DC, USA, 2000. IEEE Computer
Society.

[39] Slashdot.com. Google’s secret plans for all that dark
fiber. http://slashdot.org/articles/05/11/
20/1514244.shtml, 2005.

[40] L. Subramanian, I. Stoica, H. Balakrishnan, and R. H.
Katz. Overqos: An overlay based architecture for enhanc-
ing internet qos. In NSDI 04: First Usenix Symposium on
Networked Systems Design and Implementation, 2004.

[41] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs.
Iperf-The TCP/UDP bandwidth measurement tool. http:
//dast.nlanr.net/Projects/Iperf, 2004.

[42] D. Velenis, D. Kalogeras, and B. Maglaris. SaTPEP: a TCP
Performance Enhancing Proxy for Satellite Links. Pro-
ceedings of the Second International IFIP-TC6 Network-
ing Conference on Networking Technologies, Services, and
Protocols; Performance of Computer and Communica-
tion Networks; and Mobile and Wireless Communications,
pages 1233–1238, 2002.

[43] S. Wallace et al. Tsunami File Transfer Protocol. In PFLD-
Net 2003: First Int. Workshop on Protocols for Fast Long-
Distance Networks, 2003.

[44] P. Wefel, Network Engineer. The University of Illi-
nois’ National Center for Supercomputing Applications
(NCSA). Private Communication., Feb 2008.

[45] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An in-
tegrated experimental environment for distributed systems
and networks. In Proc. of the Fifth Symposium on Oper-
ating Systems Design and Implementation, Boston, MA,
2002.

[46] S. Wicker and V. Bhargava. Reed-Solomon Codes and
Their Applications. John Wiley & Sons, Inc. New York,
NY, USA, 1999.

