
MISTRAL: Efficient Flooding in Mobile Ad-hoc Networks∗

Stefan Pleisch

Swiss Federal Institute of Technology (EPFL)
CH-1015 Lausanne, Switzerland

stefan.pleisch@epfl.ch

Mahesh Balakrishnan, Ken Birman,
Robbert van Renesse

Department of Computer Science
Cornell University, Ithaca, NY 14853, USA

{mahesh|ken|rvr}@cs.cornell.edu

ABSTRACT
Flooding is an important communication primitive in mobile
ad-hoc networks and also serves as a building block for more
complex protocols such as routing protocols. In this paper,
we propose a novel approach to flooding, which relies on
proactive compensation packets periodically broadcast by
every node. The compensation packets are constructed from
dropped data packets, based on techniques borrowed from
forward error correction. Since our approach does not rely
on proactive neighbor discovery and network overlays it is
resilient to mobility.

We evaluate the implementation of Mistral through sim-
ulation and compare its performance and overhead to purely
probabilistic flooding. Our results show that Mistral achieves
a significantly higher node coverage with comparable over-
head.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication;
C.4 [Performance of Systems]: Reliability, availability,
and serviceability;
C.4 [Performance of Systems]: Fault tolerance

General Terms
Algorithms, reliability

Keywords
Mobile ad hoc networks, MANET, flooding, forward error
correction, compensation

1. INTRODUCTION
∗Our effort is supported by the Swiss National Science Foun-
dation (SNF), NSF Trust STC, the NSP NetNOSS program,
and the DARPA ACERT program.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiHoc’06, May 22–25, 2006, Florence, Italy.
Copyright 2006 ACM 1-59593-368-9/06/0005 ...$5.00.

Mobile ad hoc networks (MANETs) have received much
attention in recent years. A MANET is a multi-hop wireless
network without fixed infrastructure, in which nodes can be
mobile. MANETs are increasingly important because wire-
less communication is rapidly becoming ubiquitous. Poten-
tial applications range from military and disaster response
applications to more traditional urban problems such as
finding desired products or services in a city. The devices
themselves are diverse, including PDAs, cell phones, sen-
sors, laptops, etc. Many new protocols have been proposed
to solve the technical problems confronted in MANETs and
to offer platform support for applications that collect and
exploit the data available in such settings.

Because of the lack of a fixed communication infrastruc-
ture, flooding in MANETs [11] is an important commu-
nication primitive and also serves as a building block for
more complex protocols such as AODV [22] or ODMRP
[17]. Flooding is the mechanism by which a node, receiv-
ing flooded message m for the first time, rebroadcasts m
once. We distinguish between flooding and broadcast, which
is a transmission that is received by all nodes within trans-
mission range of the broadcasting node. Flooding usually
covers all the nodes in a network, but can also be limitted
to a set of nodes that is defined by a geographical area (also
called geocast flooding [15]) or by the time-to-live (TTL) pa-
rameter of m. Thus, a node receiving the flooded message
only rebroadcasts it if it is within the specified area or if the
message’s TTL is greater than 0.

Unfortunately, flooding has been shown to be suscepti-
ble to contention even in reasonably dense networks [19].
Indeed, flooding leads to a large amount of redundant mes-
sages that consume scarce resources such as bandwidth and
power and cause contention, collisions and thus additional
packet loss. Every node receives the message from every
neighbor within transmission range, except when messages
are lost due to contention and collisions. This problem is
known as the broadcast storm problem [19]. Because flood-
ing is important in MANET applications, there is a clear
need for storm-resistant flooding protocols that operate effi-
ciently. However, reducing the number of redundant broad-
casts leads to a lower degree of reliability. Hence, the chal-
lenge we face is to strike a balance between message overhead
(i.e., the level of redundancy) and reliability.

To reduce the number of redundant messages, two ba-
sic classes of mechanisms have been proposed: (1) impos-
ing a (partial) routing overlay structure; and (2) selectively
dropping messages. Approaches in (1) build and maintain
a (partial) routing overlay structure in the ad hoc network,

1

which is used to efficiently broadcast the flooded message.
For instance, only nodes that are part of a multicast tree
rebroadcast the message [21]. Other approaches in this cat-
egory are [4, 9, 18]. With mobile nodes the underlying rout-
ing structure needs to be frequently changed, incurring high
maintenance costs and generally reduced reliability during
the restructuring. In contrast, approaches in (2) do not rely
on an explicit underlying routing structure. Instead, each
node uses local information to make an independent deci-
sion whether to rebroadcast or to drop the flooded message.
The simplest approach in this class is purely probabilistic
flooding [19], in which messages are rebroadcast with a cer-
tain fixed probability. While probabilistic flooding reduces
the number of broadcasts, when applied naively it simply
recreates our earlier problem: poorly connected nodes (those
with few neighbors) may fail to receive a flooded message.
This consideration has motivated a number of more complex
approaches, such as the algorithms given in [29, 25].

In our paper, we focus on class (2) but propose a new
mechanism to reduce the number of missed flooded mes-
sages. We start with purely probabilistic flooding [19] but
compensate for dropped data packets by periodically broad-
casting compensation packets. Every compensation packet
encodes a set of packets that have been dropped (i.e., that
are not rebroadcast) by the sender. A node’s neighbors,
upon receipt of such a packet, can recover missing packets if
it already has received and buffered a sufficient percentage
of the packets that were used in constructing the compen-
sation packet.

Even when a node has lost too many packets to recon-
struct missing data, the compensation packets provide in-
formation that can be used to identify the loss. We include
a secondary recovery mechanism that kicks in when a node
discovers an unrecoverable loss, and part of our task in the
evaluation presented here is to quantify the tradeoff between
the additional message overhead versus increased reliability.

We have implemented Mistral and simulate its perfor-
mance on JiST/SWANS, a simulation package that lets the
developer run code in an emulated environment. Our re-
sults show that compensation packets significantly increase
coverage when compared to probabilistic flooding with com-
parable overhead.

The remainder of the paper is structured as follows: Sec-
tion 2 overviews the problem of flooding and places our work
in the context of earlier work. In Section 3 we introduce the
Mistral algorithm. Section 4 provides a simple analysis of
Mistral. In Section 5, we present the simluation results and
measure Mistral’s performance. We conclude the paper with
Section 6.

2. FLOODING IN MANETS
In any flooding mechanism, one must balance reliability

against message overhead. On the one hand, increasing re-
liability generally involves sending a greater number of re-
dundant messages and thus incurs a higher message over-
head. In this worst case, the system risks provoking broad-
cast storms. Yet redundant messages are needed to reach all
nodes and to recover from packet loss, hence reducing the
overhead will generally decrease reliability.

The broadcast storm problem is so common in flooding
algorithms that it has engendered a whole area of research.
Storm-sensitive flooding approaches can be broadly clas-
sified into two classes: local-knowledge-based and overlay-

based. Local-knowledge-based approaches decide on whether
to rebroadcast or drop a flooded message solely on the ba-
sis of local information. Most commonly, they use infor-
mation from received broadcasts to adaptively determine
the forwarding policy. Such algorithms are a natural fit for
MANETs, as they do not need to maintain any kind of com-
plex node-to-node state that might need to be adapted in
the event of mobility or other topology changes. In contrast,
overlay-based approaches structure the node field according
to some (local) topology, and then use topological informa-
tion to efficiently implement flooding and reliability. The
problem here is that if nodes have low quality connections
to neighbors and/or are in motion, the overlay structure
must be adapted. As a consequence, a high rate of manage-
ment messages may be required, and if a flooded message
is propagated while the overlay is out of date, that message
may experience a high loss rate. In the worst case, the sys-
tem might end up in a state of churn, constantly adapting
the overlay but never managing to achieve the high quality
of flooding that the overlay is intended to support.

We now briefly overview existing work and assign it to
the corresponding class. For reasons of brevity, our review
is deliberately partial; we focus on results that inspired our
work here, or that have been widely cited in the literature.
For a more comprehensive overview that includes a compar-
ison of some of the major flooding approaches the reader is
referred to [27].

2.1 Overlay-Based Approaches
As just indicated, we use the term overlay very broadly.

For us, an overlay-based approaches is an algorithm that
superimposes a routing structure onto the ad hoc network
in support of flooding and rebroadcast. Depending on the
position of a node in this overlay, it decides to either rebroad-
cast a flooded packet, or to only process and then drop it.
While overlays provide a convenient mechanism to reduce
the message overhead of flooding and to increase reliability,
they suffer from the need to reconfigure the overlay when
connectivity changes or if the nodes are mobile. Restruc-
turing adds overhead but also increases the likelihood that
messages will be lost, and thus may decrease coverage of the
flooding protocol.

Ni et al. [19] propose to structure the nodes into clus-
ters. Their solution rebroadcasts a packet in a manner that
depends on the node’s position in the cluster: only cluster
head and gateway nodes rebroadcast.

In [9], the goal is to provide low-latency flooding. This
is in part achieved by minimizing the collisions and inter-
ference. Gandi et al. show that an optimal solution to
this problem is NP complete, instead, they propose an ap-
proximation algorithm. They construct a multicast tree and
compute a rebroadcasting schedule such that the expected
rate of collisions will be low.

Other approaches are based on the approximation of (min-
imal) connected dominating sets (MCDS), e.g., [6] [4]. Infor-
mally, a dominating set (DS) contains a subset of all nodes
such that every node not in the DS is adjacent to one in
the DS. Thus, a DS creates a virtual backbone that can be
used to efficiently flood messages. It has been shown that
the creation of an MCDS is NP-complete. Thus, most ap-
proaches attempt to find a sufficiently good approximation
to a MCDS.

A number of approaches rely on two-hop neighbor infor-

2

mation to select nodes that rebroadcast the message. These
approaches require that hello messages containing neighbor
information are exchanged between the nodes.

For instance, in the Double-Covered Broadcast (DCB)
[18], node n collects information about the two-hop neighbor
set. Among its one-hop neighbors it then picks nodes that
rebroadcast the message (called forward node) such that (1)
the rebroadcast by the forward node covers the two-hop
neighbors, and (2) the one-hop neighbors that are no for-
ward nodes are within range of at least two rebroadcasts by
forward nodes. The reception of the message by the for-
ward node is implicitly acknowledged when n overhears the
rebroadcast.

The scalable broadcast algorithm (SBA) [21] also uses
two-hop neighbor knowledge, but employs a different ap-
proach to select the forward nodes.

With node mobility, the two-hop neighbor sets need to be
updated frequently. Otherwise, the neighbor sets become
outdated and reliability drops (as observed in [18]).

2.2 Local-Knowledge-Based Approaches
Local-knowledge-based approaches generally decide on a

per-node basis whether to rebroadcast a particular flooded
message. In the simplest case, each node flips a coin and
rebroadcasts messages with a certain probability p [19]. We
call this approach purely probabilistic flooding (PPF).

There are a number of variants on this basic idea. For
example, one set of algorithms base the rebroadcast deci-
sion either on the number of already overheard rebroadcasts,
or on the distance or location of the overheard rebroad-
cast’s sender [19]. The idea underlying these schemes is that
the additional coverage gained by rebroadcasting decreases
with the number of overheard rebroadcasts and decreasing
distance to neighboring rebroadcasting nodes. However, it
takes time to collect these statistics, delaying the rebroad-
cast decision, hence a potentially high latency is introduced
to every flooded message. In [26], Tseng et al. extend ear-
lier approaches in [19] to allow nodes to dynamically adapt
threshold values such as the rebroadcast counter.

In [29] Zhang and Agrawal propose an approach that is a
combination of the counter-based and probabilistic method
of [19]. Instead of using a static rebroadcast probability p,
they adjust p according to the information collected by the
counters. While this makes p adaptable, it becomes depen-
dent upon other fixed parameters that need to be carefully
selected (e.g., timeouts).

Dynamic Gossip [25] relies on local density awareness to
adjust the rebroadcast probability p of the one-hop neigh-
bors. Its correctness and suitability relies on the assumption
that the nodes are uniformly distributed. Density informa-
tion is collected using a relay-ping method.

In [16], Kowalski and Pelc propose a broadcasting algo-
rithm with optimal lower bounds in their model. They con-
sider only stationary nodes and ajust the broadcast proba-
bility accordingly.

Haas et al. [10] study what they term a phase transi-
tion phenomena. This work shows that purely probabilis-
tic flooding (called gossiping in [10]) in an ad hoc network
has a bimodal delivery distribution. Their simulations re-
veal that either almost every node receives the message, or
virtually none. To reduce the likelihood of the latter case,
they explore a variety of approaches, such as adapting the
rebroadcast probability to the density or the distance to the

flooding source. Sasson et al. [24] theoretically explore the
same phenomena based on percolation theory and conclude
that there exists a threshold p̄ < 1 such that for any p > p̄
the node coverage is close to 1, while for p < p̄ the coverage
is very low. Hence, increasing p much beyond p̄ is not very
useful.

Any approach that bases rebroadcast decision on observa-
tion of neighbors and on overheard broadcasts is at risk of
using stale information if nodes might move before the infor-
mation is used. MANETs, of course, can have a high degree
of mobility, hence neither of these approaches is ideal.

Mistral’s compensation mechanisms is orthogonal to these
approaches. Indeed, were we building a production deploy-
ment of flooding in a real-world setting, we would be in-
clined to combine Mistral with one of these others (as should
be clear, the ideal choice of underlying mechanism depends
upon the anticipated density of nodes and level of mobility;
no single solution stands out as uniformly superior to the
others). By using such a hybrid scheme, we could parame-
terize the underlying solution to keep overheads low, accept-
ing a modest risk that flooded packets would fail to reach
some nodes. Compensation packets could then be used to
overcome this low level of residual losses.

3. MISTRAL
Traditional flooding suffers from the problem of redun-

dant message reception, once per neighbor. Even in a rea-
sonably connected network, the same message is received
multiple times by every node, which is inefficient, wastes
valuable resources, and can create contention in the trans-
mission medium.

Selective rebroadcasting of flooded messages is a way to
limit the number of redundant transmissions. Instead of
simply rebroadcasting the message a node evaluates a local
function F and then uses the outcome of this computation
to decide whether to forward the message. In its simplest
form, this function returns its result based on some static
probability (corresponding to PPF). More complex func-
tions take into account additional topological (e.g., the num-
ber of neighbors) or statistical information (e.g., the number
of overheard rebroadcasts). The downside of selective flood-
ing is that a flooding may no longer reach all intended nodes.
In particular, if a node has only few neighbors, none of these
neighbors may rebroadcast the message. Selective flooding
thus balances message overhead against reliability.

Mistral finds some middle ground by introducing a new
mechanism that allows us to fine-tune the balance between
message overhead and reliability. The key idea is to extend
selective flooding approaches by compensating for messages
that are not rebroadcast. This compensation is based on
a technique borrowed from forward error correction (FEC).
Every incoming data packet (dp) is either rebroadcast or
added to a compensation packet (cp). The compensation
packet is broadcast at regular intervals and allows the re-
ceivers to recover one missing data packet.

3.1 Forward Error Correction
In its simplest form, Forward Error Correction (FEC) [12,

20, 23] creates l repair packets for every m data packets such
that any m out of the resulting (m+ l) packets is enough to
recover the original m data packets [12]. Traditional appli-
cations of FEC generate l repair packets for every m data
packets and inject them into a data stream, which insulates

3

the receiver from at most l packet losses. One of the fun-
damental advantages of FEC is that it imposes a constant
overhead on the system and has easily understandable be-
havior under arbitrary network conditions. However, this
simple form of FEC was developed for streaming settings,
where a single sender is transmitting data at a high, steady
rate such as in bulk file transfers [7] or in a video or audio
feeds [8]. Part of our challenge is to develop a FEC solution
matched to the characteristics of a MANET.

3.2 Algorithm
We noted earlier that Mistral can be built on top of any

local-knowledge-based flooding approach. In the current
implementation of the system, we use purely probabilistic
flooding, mostly because this approach is extremely simple
and is intuitively easy to visualize. Recall that in PPF, a
node rebroadcasts a flooded message with static probability
p. Although PPF might not be an ideal choice of algorithm
in a practical deployment, the algorithm has no “hidden” ef-
fects that might make it hard to interpret our experimental
findings.

Upon reception of a data packet, every node evaluates the
function F : dp 7−→ {true|false}. In its most basic form,
F takes a data packet as input and returns a boolean. If
it returns true, dp is rebroadcast; otherwise, dp is added to
the current compensation packet. When the number of data
packets contained in a compensation packet passes a certain
threshold c, the compensation packet is broadcast. We call
c the compensation rate. Thus, a compensation packet is
broadcast for every c data packets that are not rebroadcast.

Algorithm 1 presents the algorithm in more detail: Pro-
cedure process delivers the data packet to the application
and decides whether to rebroadcast the packet or add it to
the compensation packet; composeCompensationPac builds
the compensation packet; and runRecovery attempts to re-
cover data packets from stored compensation packets when
a new data packet is delivered to the application. Finally,
procedure expand is used for level-2 recovery, which is pre-
sented in Section 3.2.2. The secondary recovery mechanism
discussed in the introduction is not included in Algorithm 1.

3.2.1 Composition of a Compensation Packet
In this section, we assume that data packets are of fixed

size, e.g., 512 bytes, and contain the payload, a sender ID
and some locally unique sequence number; we call these the
packet id. The payload is assumed to remain unchanged dur-
ing the course of the flooding (in some protocols, payloads
do change as packets are routed; we discuss the handling of
this kind of mutable payloads later in the paper).

To encode the payload of the data packets into the com-
pensation packet, we use the XOR (operator ⊗), which is
the simplest and best known FEC mechanism. A new data
packet is added to the compensation packet by computing
the XOR of its payload with the current payload in the com-
pensation packet (initially, zero). Obviously, much more so-
phisticated error correction mechanisms are also possible;
the advantage of XOR is its simplicity and low computa-
tional overhead.

If the receiver of a compensation packet already has all but
one of the contained data packets, the compensation packet
will allow the reconstruction of that missing data packet.
However, the recipient of a compensation packet has no a-
priori way to know what data packets were used to build

Algorithm 1 Mistral’s algorithm, code of node ni.

1: Initialisation:
2: DpBuffer ← ∅ {Received dps}
3: cp← ⊥ {Compensation packet}
4: CpBuffer ← ∅ {Received cps}

5: upon flood(dp) do
6: broadcast(dp)

7: upon reception of data packet dp for the first time do
8: process(dp)
9: runRecovery(dp)

10: upon reception of compensation packet cp from sender pj

do
11: if cp.ids contains unknown dp ID then
12: if recovery possible then
13: dprecov ← recover from cp
14: process(dprecov)
15: runRecovery(dprecov)
16: else
17: CpBuffer ← CpBuffer ∪ {cp}
18: if level-2 recovery then
19: expand(cp)
20: for all recovered dp do
21: process(dp)
22: runRecovery(dp)

23: procedure process(dp) {handles a data packet}
24: DpBuffer ← DpBuffer ∪ {dp}
25: if F(dp) then
26: broadcast(dp)
27: else
28: composeCompensationPac(dp)
29: deliver dp to the application

30: procedure composeCompensationPac(dp) {constructs a
cp}

31: cp.payload← cp.payload⊗ dp.payload
32: cp.ids← cp.ids ∪ {dp.id}; cp.ttls← cp.ttls ∪ {dp.ttl}
33: if |cp.ids| ≥ c then{|X| returns the nbr of elements in

X}
34: broadcast(cp)
35: cp← ⊥

36: procedure runRecovery(dp) {recovers dps from
CpBuffer}

37: for all cp1 ∈ CpBuffer do
38: if dp.id ∈ cp1.ids then
39: remove dp from cp {including TTL and ID}
40: if recovery from cp1 possible then
41: dprecov ←− recover from cp1
42: for all recovered data packets dp′recov do
43: process(dp′recov)
44: runRecovery(dp′recov)

45: procedure expand(cp) {level-2 recovery}
46: for all cp1 ∈ CpBuffer do
47: for all cp2 ∈ CpBuffer ∧ cp2 6= cp1 do
48: if cp1 or cp2 is reducible then
49: cp← reduction from cp1 and cp2
50: CpBuffer ← CpBuffer ∪ {cp}

4

the compensation packet. Accordingly, compensation pack-
ets must include a list of all its contained data packet IDs.
Assuming IP-style node addresses, the sender ID is repre-
sented by four bytes. The local sequence number consists of
one byte, which allows Mistral to send 255 flooded messages
by a node before looping back to 0. From this, we can see
that the size of a compensation packets will be the payload
size plus five times the number of included data packets c,
i.e, |cp| = |payloaddp| + 5 ∗ c. Notice that the packet size
is independent of the number of nodes in the system as a
whole. This information is sufficient for floodings that span
the entire node field.

A complication arises in applications where the the scope
of flooding is limited by a time-to-live (TTL) parameter.
Here, the compensation packets need to represent the TTL
for each contained data packet; otherwise, if a node recovers
data packet dp from a compensation packet, it has no way
to know what TTL to use when rebroadcasting dp. If it
chooses a TTL that is smaller than the true TTL, then the
flooding may die out too early. If the TTL is too high, then
valuable bandwidth is wasted. Even worse, if the flooding is
a part of a routing mechanisms and the routing mechanism
depends on the TTL, then loops occur in the routing paths.

Clearly we cannot treat the TTL of a data packet as a part
of that packet’s payload, since TTLs are decremented at ev-
ery hop of the data packet. The problem here is that incom-
ing TTLs for received packets might differ at the node un-
dertaking the reconstruction relative to the node that built
the compensation packet. Thus, TTLs need to be added to
the compensation packet outside of the payload.

The simplest approach is to add a list of TTLs to the com-
pensation packet. Since the TTL is generally represented by
one byte another c bytes are added to the size of a compen-
sation packet. In effect, the TTL extends the packet-id by
one byte.

Unfortunatly, this simple approach adds additional over-
head, which we would like to avoid. A first point to notice
is that TTLs are often defined based on some estimate and
are thus, by design, already an approximation. Hence, if we
manage to limit the error to some low number, we can man-
age with an approximate recnstruction of the TTL value.
For instance, we could store the sum of all TTLs. The TTL
of a recovered data packet can then be restored by subtract-
ing the TTL’s of all known packets (all data packets except
one). To limit the size to one byte, we apply the modulo
operator to this sum. Using this approach, the error will in
most cases be within ±1, or in total ±c, which is acceptable
for most applications. Thus, the total size of a compensation
packet is 5c + 1 + |payloaddp| bytes.

Although we have not explored the idea yet, it may be pos-
sible to further reduce the overhead associated with compen-
sation packets by compressing packet-id information. For
example, in a MANET where most communication origi-
nates with a very small set of senders, we could assign those
senders some sort of very small id. Moreover, it may some-
times be possible to compress the compensation packet pay-
load itself. On the other hand, such ideas increase the com-
putational overhead at the receiver and hence would require
careful evaluation.

3.2.2 Recovering from Compensation Packets
To recover data packets from compensation packets we

use a two-level recovery mechanism. The first level recov-

ers data packets based on the data packets that have al-
ready been received. If c − 1 data packets contained in a
compensation packet are known, the missing one can be
reconstructed. Compensation packets that contain two or
more missing data packets are stored (in the CpBuffer)
and reconsidered when new data packets arrive or are re-
covered from other compensation packets. Actually, we do
not store complete compensation packets, but only compen-
sation packets that contain the IDs, TTL(s), and payload
of the missing packets. More specifically, we xor the known
data packet payloads with the payload of the compensation
packet. After some time compensation packets are garbage
collected, as it has become highly unlikely that the missing
data packet(s) will be received in the future.

The level-2 recovery mechanism is more elaborate. In-
stead of only considering incoming and recovered data pack-
ets this algorithm also matches compensation packets against
each other. The matching operation works as a reduction.
Each new compensation packet is compared with all stored
compensation packets. If either one of the packets is com-
pletely contained in the other, then a new compensation
packet is added, which contains the set of data packet IDs
of the larger packet minus the ones in the smaller packet.
The new payload is constructed by applying XOR to both
compensation packets. Provided that it does not allow the
immediate recovery of a data packet, this reduced compen-
sation packet is then added to the set of stored compensation
packets (in CpBuffer).

Clearly, level-2 recovery adds a considerable overhead,
both in storage and computation. Its application thus makes
sense only if the gain in recovered data packets is signifi-
cant with respect to level-1 recovery. We explore level-1 and
level-2 recovery using simulations in Section 5.2.3.

3.2.3 Mutable Payloads
Many routing protocols modify the flooded packets during

the flooding. We have already shown how to handle TTL
values. But some protocols modify other parts of data pack-
ets, for example by touching internal parameters, building
a route trace, etc. To allow Mistral to handle these cases,
we extend the above mechanism into compensation packets
that include a mutable part and an immutable part of the
payload. Clearly, the larger the immutable part is relative
to the mutable part, the better the performance of Mis-
tral. This is particularly the case as the immutable parts
can be reduced into an immutable part of the same size,
while mutable parts need to be appended to each other,
thereby resulting in a size of

Pc
i=0 mutablePartOf (dpi). In

genernal, the size of a compensation packet will now be
5c + |immutablePayloaddp|+

Pc
i=0 mutablePartOf (dpi).

In the evaluation that follows, we assume that packets
contain no mutable data other than the TTL.

4. ANALYSIS
In this section, we provide a simple analysis of Mistral. We

denote by dmax the maximal diameter of the node field and
consider floodings that span the entire node field. The max-
imal transmission latency tmaxTrans is the maximal trans-
mission range (88m) divided by the transmission speed. The
time needed to do all the computations on a node is ∆t, and
we assume that there are no delays in the outgoing sending
buffers, i.e., that there is no contention in the transmission
medium.

5

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 50 100 150 200 250 300

N
od

e
co

ve
ra

ge

Nbr of nodes

Mistral c=5
flooding

PPF

0

200

400

600

800

1000

1200

1400

1600

1800

2000

50 pp
f f

75 pp
f f

10
0

pp
f f

12
5

pp
f f

15
0

pp
f f

17
5

pp
f f

20
0

pp
f f

22
5

pp
f f

25
0

pp
f f

27
5

pp
f f

30
0

pp
f f

Number of nodes

N
um

be
r o

f p
ac

ke
ts

 (i
n

th
ou

sa
nd

s)

Data packets Compensation packets

(a) Node coverage with varying density, p = 0.55. (b) Message overhead with varying density, p = 0.55.

Figure 1: Node coverage and message overhead with varying node density.

Let fi denote the number of floodings originating at node
i, then the estimated overall generated number of compen-

sation packets in a network with n nodes is G = n (1−p)Σifi
c

,
assuming that every node receives all flooded data packet
at least once. Thus, the overhead in bytes is G ∗ (5c + 1 +
|payloaddp|).

Assume that δflood denotes the average reception frequency
of data packet that are received for the first time. Then, the
estimated time needed to fill up a c-based compensation
packet is trecoveryPac = c

(1−p)∗δflood
.

We now consider the delivery latency of a data packet.
The worst case occurs when the flooding source and the des-
tination are dmax hops apart and the data packet is always
forwarded as part of a compensation packet. In this case,
the maximum delivery latency is dmax ∗ (trecoveryPac +∆t+
tmaxTrans), while the estimated maximum delivery latency
is (1−p)∗dmax ∗ (trecoveryPac +∆t+ tmaxTrans)+p∗dmax ∗
(∆t + tmaxTrans).

We now compute the number of packets sent by a single
flooding in a network of N connected nodes. Purely proba-
bilistic flooding has a message overhead of E(MsgOverhead) =
p ∗ N , if we assume that every node receives the flooded
message at least once. Mistral adds an estimate of 1

c
for

every dropped message. Thus, the total overhead per flood-
ing is (1 − p) ∗ N ∗ 1

c
+ p ∗ N . If the assumption that all

nodes receive the flooded message is relaxed then the rela-
tive overhead added by Mistral increases. Each node that
receives the flooded message only because of Mistral again
contributes an additional broadcast or partial compensation
to the overhead. Naturally, the additional overhead pays off
through the increased node coverage.

5. SIMULATIONS
For our simulation we used JiST/SWANS v1.0.4 [1, 5],

a simulation environment for ad hoc networks. Java ap-
plications written for a real deployment can be ported to
the simulation environment and then placed under a vari-
ety of simulated scenarios and loads. JiST/SWANS inter-
cepts the calls to the communication layer and dynamically
transforms them into calls to the simulator’s communication
package.

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
od

e
co

ve
ra

ge

Message overhead

Mistral c=7
PPF

Figure 2: Node coverage with respect to message
overhead.

5.1 Setup
We consider a set of nodes. Communication between two

nodes m and n occurs in an ad hoc manner and may be
asymmetric, i.e., n may be able to communicate with m,
but the inverse may not be possible. Communication is by
broadcast as defined in the 802.11b standard [13] and can
be subject to interference, in which case the message cannot
be received. Interference can occur without the sender being
able to detect the problem (this is called the hidden terminal
problem [3]).

We simulate a wireless ad-hoc network with 150 nodes
uniformly distributed in a field of size 600x600m. Nodes are
stationary, except for one case in which we measure the im-
pact of mobility (Section 5.2.4). The maximal transmission
range of a node is set to 88m. Every node starts flooding
20 messages at a regular interval, once all nodes are started
up. All flooding occurs across the entire node field. Hence,
ideally all nodes should receive all flooded messages.

Our work models disconnections due to mobility, trans-
mission range limits, and the hidden terminal problem just
mentioned (using JiST/SWANS’ RadioNoiseIndep package,
which uses a radio model identical to the one used by ns-2
[2]). Unless otherwise mentioned, we use the default values
defined in JiST/SWANS.

6

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 2 3 4 5 6 7 8 9 10

N
od

e
co

ve
ra

ge

Compensation rate c

Mistral
PPF

flooding
 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 2 3 4 5 6 7 8 9 10

M
es

sa
ge

 o
ve

rh
ea

d

Compensation rate c

Mistral
PPF

(a) Node coverage. (b) Message overhead.

Figure 3: Varying compensation rate c, p = 0.55.

The nodes start up at random times and positions. When
they are all up and running, we start sending the flooding
messages and we wait until all messages have been received
(terminating simulation).

5.2 Results
In this section, we present the results of our simulation.

Every node periodically, every 50s, floods a message through-
out the entire field. We have chosen a low flooding rate
because in our simulations we want to minimize the effect
of packet loss due to buffer overflows and interference. The
nodes are added to the sensor field at time 0s but start
flooding at times uniformly distributed between 0 and 60s.
All results give the average over at least 30 runs in differ-
ent uniform node distributions. In general, the variance in
the simulation results for ad hoc networks is high. This is
due to the many sources of randomness: distribution of the
sensor nodes, the paths of nodes, the time the nodes flood a
message, etc. Thus, where significant we indicate the 95%-
confidence intervals (CI).

To evaluate the quality of Mistral, we are mainly inter-
ested in two properties: node coverage and message over-
head. Node coverage measures the number of nodes that
have received the messages, while message overhead indi-
cates the total number of sent messages. Both measure-
ments are normalized against a connected network with the
same number of nodes. In a connected network, any node
can communicate with any other node. Thus, node cover-
age is given as a percentage of all nodes in the network,
while message overhead is given as the percentage of the
message overhead in the case in which all nodes receive all
messages (normal flooding). Note that the message overhead
in the connected network equals the product of the number
of flooded messages with the number of nodes. Moreover, it
is generally lower in a network with partitions. Since Mis-
tral complements local-knowledge-based approaches and is
based on purely probabilistic flooding, we compare Mistral
to the latter. Purely probabilistic flooding is entirely defined
by the rebroadcasting probability p. For completeness, we
also show the results for simple flooding, which corresponds
to PPF with p = 1.0.

In the following, we evaluate the following properties of
Mistral: its behavior in the face of varying density, varying
protocol parameters, node mobility, packet loss, and with

the secondary recovery mechanism. Unless explicitly stated
otherwise, we use the above default values in our measure-
ments.

5.2.1 Impact of Density
We start by measuring the impact of node density on the

node coverage and the message overhead. Fig. 1(a) shows
the node coverage with varying number of nodes. It shows
three measurements: simple flooding, purely probabilistic
flooding (PPF), and Mistral with compensation rate c = 5.
The rebroadcast probability is set to p = 0.55 in the cases
of purely probabilistic flooding and Mistral. As expected,
Mistral has a much higher node coverage than purely prob-
abilistic flooding, especially for lower node densities. If the
node density passes a certain threshold (around 225 nodes
for Mistral), it is sufficiently high such that all nodes receive
all messages. In contrast, with low density only a low per-
centage of the nodes receive all messages. However, below
a certain threshold (around 150 nodes) even simple flooding
cannot reach all nodes.

In Fig. 1(b) we show the corresponding message overhead.
For every number of nodes indicated on the x-axis, we draw
the sent number of packets for Mistral, purely probabilistic
flooding (ppf), and simple flooding (f). Mistral’s packets are
further separated into data packets and compensation pack-
ets. Since Mistral adds additional compensation packets,
its total message overhead is higher than the one of purely
probabilistic flooding. Notice also that for low densities the
number of flooding packets is higher. Due to higher node
coverage in Mistral, more nodes receive the message and
thus more nodes also rebroadcast the message, which ac-
counts for the higher number of flooding packets compared
to PPF.

Thus, to measure Mistral’s net gain in node coverage, as
compared to purely probabilistic flooding, we need to con-
sider both node coverage and message overhead graphs. In-
deed, since Mistral’s compensation mechanism adds an ad-
ditional overhead, we cannot directly compare the two ap-
proaches with the same rebroadcast probability p. Rather,
we need to compare Mistral with the purely probabilistic
flooding using a rebroadcasting probability with a similar
message overhead. Fig. 2 plots the node coverage with re-
spect to the message overhead, for c = 7. The message over-
head corresponds to simulation runs with p varying from 0.3

7

0%
20%
40%
60%
80%

100%
120%

1 2 3 4 5 6 7
Hop distance from source (c =5)

%
 p

ac
ke

ts

dps recovered dps missing dps

0%
20%
40%
60%
80%

100%
120%

1 2 3 4 5 6 7
Hop distance from source (c =10)

%
 p

ac
ke

ts

dps recovered dps missing dps

0%
20%
40%
60%
80%

100%
120%

1 2 3 4 5 6 7
Hop distance from source (no comp)

%
 p

ac
ke

ts

dps missing dps

Figure 4: Recovery based on hop counts, single source and p = 0.55.

(0.4 for PPF) to 1, in steps of 0.05. The gain with Mistral is
especially prominent for low rebroadcast probabilities p. Of
course, low rebroadcast probabilities lead to many dropped
rebroadcasts and thus the node coverage becomes low. Us-
ing Mistral allows some of the nodes to recover messages
they may have missed. For an overhead of 0.35, Mistral im-
proves the node coverage by 20%, for an overhead of 0.55 by
10%, and for overhead around 0.75 it is closer to 3%.

5.2.2 Compensation Rate
We now turn to one of the parameters that determine the

behavior of Mistral: compensation rate c. In Fig. 3(a), we
show the node coverage with compensation rate c varying
from 2 to 10, for 150 nodes and rebroadcasting probability
p = 0.55. Generally, the node coverage decreases with in-
creasing compensation rate. For comparison, the graph also
indicates the node coverage for flooding and purely prob-
abilitstic flooding (PPF) with the same parameters. Both
flooding and probabilistic flooding are independent from the
compensation rate and thus are represented by a horizontal
line. Fig. 3(b) gives the corresponding message overhead.
Here, the message overhead decreases with increasing com-
pensation rate. Thus, given a particular node coverage the
higher the compensation rate the better. However, a higher
compensation rate also increases the message delivery la-
tency. Indeed, data packets that are part of a compensa-
tion packet spend more time waiting until the compensation
packet is filled with sufficient data packets and may thus be
delayed.

5.2.3 Recovery Performance and Overhead
Next, we measure the number of recovered data packets

with respect to the hop count (see Fig.4). In this simula-
tion, a single node at position [300, 300] periodically floods
1000 messages. We give the results for c = 5, c = 10, and
the case with no compensation (no comp). Since the over-
all number of received data packets is different depending
on the hop-distance of a node to the flooding source, we
give the percentage of recovered data packets to all flood-
ing packets that should have been received by the nodes at
this hop distance from the source. The percentage of recov-
ered data packets is approximately the same for most hop
distances. An exception is at hop count 1, where all nodes
generally receive the flooded message, because the source
floods the data packet with p = 1.0 and at a time of low
traffic. As fewer compensation packets are sent in the case
of c = 10, the percentage of recovered data packets is lower

compared to the case of c = 5. Towards very high num-
bers of hop counts, no compensation packets are received.
However, these nodes are particular cases resulting from a
unusual node distribution, which does not occur frequently.

Notice that the percentage of dps increases between c =
5 and c = 10. The reason is that with smaller c, more
compensation packets are sent and the likelihood that a dps
is received via a compensation packet increases. Since we
count the data packets when they are received for the first
time, more packets are received via a compensation packet.
Thus, the percentage of dps is smaller for a smaller c.

We use the same setup to measure the packet delivery
latency. In contrast to the other simulations, we use a single
data point (one random uniform distribution) in this case.
The single source floods a data packet every second. The
graphs in Fig. 5(a) and (b) show the latency distribution
of data packets for c = 2 and c = 8 with respect to the
hop distance of the node. The delivery latency of a data
packet is high if it is received by a node only as part of a
compensation packet. The higher the compensation rate,
the higher this delay is.

Another important characteristic of Mistral is the ratio
of compensation packets that cannot be recovered. We say
that a compensation packet is recovered if all contained data
packets have been received or have been recovered. In gen-
eral, we expect the number of unrecovered compensation
packets to increase with increasing compensation rate. The
graph in Fig. 5(c) confirms this. It uses our default setup
with many flooding sources and shows the total number of
received compensation packets and the number of compen-
sation packets that have not been recovered (logarithmic
scale on y-axis). Clearly, the lower the compensation rate,
the higher the number of sent and thus received compensa-
tion packets. This number also includes all compensation
packets whose contained data packets have already been re-
ceived earlier by the receiving node (useless cps). Immedi-
ately recovered compensation packets denote the compensa-
tion packets that only contain a single unknown data packet.
Any compensation packet that contains more unknown data
packets is added to CpBuffer.

Fig. 5(d) shows the number of sent compensation packets
based on the number of nodes in the field. As expected, this
curve is not linear. Rather, the more dense, and thus the
more connected, the network is the higher the increase in
the number of compensation packets becomes with respect
to the next lower density. In comparison, the total num-
ber of broadcast data packets in the case of 300 nodes is

8

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 1 2 3 4 5 6 7

tim
e

(m
s)

Hop distance from source (c=2)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 1 2 3 4 5 6

tim
e

(m
s)

Hop distance from source (c=8)

(a) Data packet delivery latency, single source. (b) Data packet delivery latency, single source.

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 2 3 4 5 6 7 8 9 10

N
um

be
r p

ac
ke

ts
 (l

og
 s

ca
le

)

Compensation rate c

Received cps
Not recovered cps

Useless cp (all dp known)
Immediately recovered cp

Added to CpBuffer
Recovered from CpBuffer

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 50 100 150 200 250 300
 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

N
br

 o
f c

om
pe

ns
at

io
n

pa
ck

et
s

N
br

 c
ps

 o
ve

r n
br

 d
ps

Nbr of nodes

c=5
c=5 ->

(c) Recovered compensation packets. (d) Number of compensation packets with respect
to node density, with p = 0.55.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2 3 4 5 6 7 8 9 10

N
br

 c
ps

 n
ot

 re
co

ve
re

d

Compensation rate c

Level-1 recovery
Level-2 recovery

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 2 3 4 5 6 7 8 9 10

N
um

be
r p

ac
ke

ts

Compensation rate c

Avg level 2
Max level 2
Avg level 1
Max level 1

(e) Impact of stage 2 recovery, with p = 0.55. (f) Memory requirement for stage 2 recovery.

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 1 2 3 4 5 6

U
nr

ec
ov

er
ed

 c
p

/ r
ec

v
cp

Number of concurrent cp

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30 35 40

N
od

e
co

ve
ra

ge

Speed [m/s]

Mistral p=0.55, c=8
PPF p=0.55
PPF p=0.65

(g)Varying number of concurrent cps, p = 0.55 and c = 5. (h) Impact of node speed, with p = 0.55.

Figure 5: Recovery and node mobility.

9

990000. In the same graph, we also show which percentage
of all broadcast messages are compensation packets. For low
densities, the percentage is relatively lower, as the nodes re-
ceive very few messages and may not be able to send the
last compensation packet.

In Section 3.2.2, we described our two-level recovery algo-
rithm: level 1 corresponds to the recovery mechanism based
on incoming or recovered data packets, while level 2 extends
the CpBuffer (see Procedure extend in Algorithm 1). We
now measure the impact of level 2 recovery. Fig. 5(e) and
(f) show the impact of level-2 recovery on node coverage and
also regarding memory requirements. Our results show that
level-2 recovery does not significantly increase node cover-
age. At the same time, it also has a similar memory over-
head, in terms of the maximum and average number of com-
pensation packets in CpBuffer. Thus, we conclude that in
our setting level-1 recovery is sufficient for most applications.

Compensation packets work best if a node receives many
different compensation packets that contain only a single
unknown data packet, but a different one in every com-
pensation packet. To get an indication of the impact of
the distribution of data packets onto compensation pack-
ets, we artificially change the distribution in compensation
packets. Rather than sequentially building one compensa-
tion packet after the other, we build a number of compen-
sation packets in parallel and distribute the data packets
randomly among them. We then measure the ratio of unre-
covered compensation packets over the number of received
compensation packets, with every node sending 50 flooded
messages (Fig. 5(g)). This gives us an indication of the
recovery rate as a function of the number of concurrently
constructed compensation packets. Compared to the case
of sequentially constructing a single compensation packet,
Mistral achieves a considerable gain with even a moderate
level of packet compensation concurrency.

5.2.4 Mobility
We now measure the impact of node mobility on node

coverage. We use the random waypoint model [14] with a
fixed speed and zero pause time, thereby removing the ran-
domness caused by varying speeds and pause times.1 In
this model, nodes select an arbitrary location in the field
and move there on a direct line (at constant speed in our
case). When they reach the destination location, they wait
for an arbitrary pause time (0s in our case) and then pick
a new destination location. In the simulation in Fig. 5(h),
we vary the node speed and show the impact on the node
coverage. In the case of Mistral, node coverage increases
with mobility. The same is the case with purely probabili-
tis flooding, in which the relative increase compared to the
stationary case is much higher. However, when the speed
increases with Mistral, node coverage also increases, which
initially struck us as counter-intuitive. The explanation for
this phenomenon turns out to be that Mistral adds a delay
before sending compensation packets, especially with a large
c, and thus packets tend to get distributed more in the node
field.

Notice that we compare Mistral to PPF with a higher
p. The rebroadcast probability p is selected such that the
message overhead of PPF for stationary nodes corresponds

1Note that in [28] it has been shown that the random way-
point model is not entirely appropriate. However, for our
measurements, this has no immediate impact.

to the one of Mistral. Since an increasing node coverage also
increases message overhead and since PPF’s relative node
coverage increase between stationary and mobile nodes is
much higher, PPF’s message overhead also becomes higher
for mobile nodes. Thus, the measured node coverage for
PPF is an upper bound. In reality, the node coverage of
a PPF with comparable message overhead would have p <
0.65 and thus also a lower node coverage.

The better node coverage with mobility stems from the
fact that node mobility increases the likelyhood that a node
overhears a broadcast at least at one of the positions it moves
to. Furthermore, nodes do not stay in unfortunate distribu-
tions during a long time. The relative increase induced by
node mobility is lower in the case of Mistral, because the
node coverage is already much better for the stationary case.

Clearly, the increased node coverage is also related to the
limits of the field. This has the consequence that the nodes
move to much more positions in the field, thus the increased
likelihood to receive the message. With unlimited field size,
the nodes would just move outside the flooding area and
thus no longer receive the flooded message.

5.2.5 Packet Loss
In Fig. 6, we show the impact of packet loss on node cov-

erage. We assume that packets loss is uniformly distributed
over all the packets in the system and occurs with the same
probability at the sending and receiving side. Thus we re-
move 2k% packets, at the emission with k% probability and
at the reception with k%. On the x-axis we indicate k. The
graph shows that the node coverage decreases linearly, with
a slightly higher decrease for PPF with comparable message
overhead.

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 2 4 6 8 10

N
od

e
co

ve
ra

ge

Packet loss k (k% input and k% output loss)

Mistral, c=5, p=0.55
PPF=0.65

Flooding

Figure 6: Varying packet loss rate.

5.2.6 Secondary Recovery Mechanism
We have mentioned that one advantage of compensation

packets is that nodes learn what packets they might have
missed. This information can be used to explicitly request
missing packets from the neighbors. We have implemented
this secondary recovery mechanism and present its impact
on node coverage and message overhead in Fig. 7. For a
moderate increase in message overhead, we gain significantly
in node coverage.

10

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 m

es
sa

ge
s

fro
m

 m
es

sa
ge

s
to

ta
l f

lo
od

in
g

Probability to echo flood

Mistral c=5
Mistral c=5 (requests)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
sg

 o
ve

rh
ea

d
ra

tio

Probability to rebroadcast

Mistral c=5
Mistral c=5 (requests)

(a) Node coverage. (b) Message overhead.

Figure 7: Explicitly requesting missing packets.

6. CONCLUSION
The paper has presented an novel approach to flooding,

based on the idea of proactively compensating for flood-
ing packets that are not rebroadcast. Every compensation
packet contains a tunable number of data packets. The re-
ceiver can use such a packet to recover a single lost data
packet, provided that it has copies of the others used when
constructing the compensation packet. The construction of
compensation packets and the recovery of data packets rely
on forward error correction mechanisms.

Mistral allows the application to tune the rebroadcast
probabilities at a finer degree than purely probabilistic flood-
ing. Compensation packets are sent only if the data packet
is not rebroadcast. In addition to the rebroadcast prob-
ability p, the compensation mechanism can be fine-tuned
using the compensation-rate parameter. Clearly, there is a
tradeoff between delivery latency and the ability to recover
a packets on one side, and message overhead on the other.

Mistral’s compensation mechanism can support flooding
by a wide range of concurrently active applications, and in
this case the additional latency introduced by Mistral can
be sharply reduced, because flooding by one application can
also assist in the recovery of data lost in some other applica-
tion. The only requirement is that the data packet payloads
be of a similar size and that it be possible to pad any short
packets.

We have implemented Mistral and then ported the runnable
code to the JiST/SWANS platform, which allows us to take
real code and then evaluate it in a simulated setting. Our
simulation results show the improved node coverage of Mis-
tral compared to purely probabilistic flooding with a similar
overhead.

While we have investigated Mistral’s compensation mech-
anism in the context of flooding scenarios, the same compen-
sation mechanism could also applied to other applications
where packet loss is an issue.

Although this paper limited itself to simulation, we do
want to emphasize that Mistral is a real system and that
the code we evaluated here is executable on real platforms
with only minor modifications. Our hope in future work
is to explore deployments of the system using a network of
actual nodes.

7. ACKNOWLEDGMENTS
The authors are very grateful to Rimon Barr for his help

on JiST/SWANS, Tudor Marian and Amar Phanishayee for
their support with the cluster, and David Cavin for his com-
ments on an earlier version of the paper.

8. REFERENCES
[1] JiST/SWANS. http://jist.ece.cs.cornell.edu.

[2] The network simulator - ns-2.
http://www.isi.edu/nsnam/ns.

[3] D. Allen. Hidden terminal problems in wireless LAN’s.
In IEEE 802.11 Working Group Papers, 1993.

[4] K. Alzoubi, P.-J. Wan, and O. Frieder.
Message-optimal connected dominating sets in mobile
ad hoc networks. In Proc. of the 3th ACM Int.
Symposium on Mobile Ad Hoc Networking &
Computing (MobiHoc’02), pages 157–164, New York,
NY, USA, 2002. ACM Press.

[5] R. Barr. An efficient, unifying approach to simulation
using virtual machines. PhD thesis, Cornell
University, Ithaca, NY, 14853, May 2004.

[6] V. Bharghavan and B. Das. Routing in ad hoc
networks using minimum connected dominating sets.
In Proc. of the Int. Conference on Communications,
Montreal, Canada, June 1997.

[7] J. Byers, M. Luby, and M. Mitzenmacher. A digital
fountain approach to asynchronous reliable multicast.
IEEE Journal on Selected Areas in Communications,
20(8), Oct. 2002.

[8] G. Carle and E. Biersack. Survey of error recovery
techniques for ip-based audio-visual multicast
applications. IEEE Network, Dec. 1997.

[9] R. Gandhi, S. Parthasarathy, and A. Mishra.
Minimizing broadcast latency and redundancy in ad
hoc networks. In Proc. of the 4th ACM Int.
Symposium on Mobile Ad Hoc Networking &
Computing (MobiHoc’03), pages 222–232, Annapolis,
MD, 2003. ACM Press.

[10] Z. Haas, J. Halpern, and L. Li. Gossip-based ad hoc
routing. In Proc. of InfoCom 2002, volume 21, pages
1707–1716, June 2002.

11

[11] C. Ho, K. Obraczka, G. Tsudik, and K. Viswanath.
Flooding for reliable multicast in multi-hop ad hoc
networks. In 3rd Intl. workshop on Discrete
Algorithms and Methods for Mobile Computing and
Communications (DIAL-M’99), pages 64–71, 1999.

[12] C. Huitema. The case for packet level FEC. In Proc.
of the TC6 WG6.1/6.4 5th Int. Workshop on
Protocols for High-Speed Networks (PfHSN’96), pages
109–120, London, UK, 1996. Chapman & Hall, Ltd.

[13] IEEE. 802.11 specification (part 11): Wireless LAN
medium access control (MAC) and physical layer
(PHY) specifications, June 1997.

[14] D. Johnson and D. Maltz. Dynamic source routing in
ad hoc wireless networks. In Imielinski and Korth,
editors, Mobile Computing, volume 353. Kluwer
Academic Publishers, 1996.

[15] Y.-B. Ko and N. Vaidya. Flooding-based geocasting
protocols for mobile ad hoc networks. Mobile
Networks and Applications, 7(6):471–480, 2002.

[16] D. Kowalski and A. Pelc. Broadcasting in undirected
ad hoc radio networks. In Proc. of the 22th ACM
Symposium on Principles of Distributed Computing
(PODC’03), pages 73–82, New York, NY, USA, 2003.
ACM Press.

[17] S. Lee, W. Su, and M. Gerla. On-demand multicast
routing protocol in multihop wireless mobile networks.
Mobile Network Applications, 7(6):441–453, 2002.

[18] W. Lou and J. Wu. Double-covered broadcast (DCB):
A simple reliable broadcast algorithm in MANETs. In
Proc. of INFOCOMM, 2004.

[19] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu.
The broadcast storm problem in a mobile ad hoc
network. In Proc. of the 5th ACM/IEEE Int.
Conference on Mobile Computing and Networking
(MobiCom ’99), pages 151–162, New York, NY, USA,
1999. ACM Press.

[20] J. Nonnenmacher, E. Biersack, and D. Towsley.
Parity-based loss recovery for reliable multicast
transmission. IEEE/ACM Transactions on
Networking, 6(4):349–361, 1998.

[21] W. Peng and X.-C. Lu. On the reduction of broadcast
redundancy in mobile ad hoc networks. In Proc. of the
1st ACM Int. Symposium on Mobile Ad Hoc
Networking & Computing (MobiHoc’00), pages
129–130, Piscataway, NJ, USA, 2000. ACM.

[22] C. Perkins and E. Royer. Ad-Hoc On Demand
Distance Vector Routing. In Proceedings of the IEEE
Workshop on Mobile Computing Systems and
Applications (WMCSA), Feb. 1999.

[23] L. Rizzo and L. Vicisano. A reliable multicast data
distribution protocol based on software FEC
techniques. In Proc. of the 4th IEEE Workshop on the
Architecture and Implementation of High Performance
Communication Systems (HPCS’97), Sani Beach,
Chalkidiki, Greece, June 1997.

[24] Y. Sasson, D. Cavin, and A. Schiper. Probabilistic
broadcast for flooding in wireless mobile ad hoc
networks. In Proceedings of IEEE Wireless
Communications and Networking Conference (WCNC
2003), Mar. 2003.

[25] D. Scott and A. Yasinsac. Dynamic probabilistic
retransmission in ad hoc networks. In Proc of the Int.
Conference on Wireless Networks (ICWN’04), pages
158–164, Las Vegas, Nevada, June 2004. CSREA
Press.

[26] Y.-C. Tseng, S.-Y. Ni, and E.-Y. Shih. Adaptive
approaches to relieving broadcast storms in a wireless
multihop mobile ad hoc network. In Proc. of the 21st
Int. Conference on Distributed Computing Systems
(ICDCS’01), pages 481–488, Phoenix, Arizona, Apr.
2001.

[27] B. Williams and T. Camp. Comparison of
broadcasting techniques for mobile ad hoc networks.
In Proc. of the ACM Int. Symposium on Mobile Ad
Hoc Networking and Computing (MOBIHOC’02),
pages 194–205, 2002.

[28] J. Yoon, M. Liu, and B. Noble. Random waypoint
considered harmful. In INFOCOM 2003, Apr. 2003.

[29] Q. Zhang and D. P. Agrawal. Dynamic probabilistic
broadcasting in manets. J. Parallel Distrib. Comput.,
65(2):220–233, Feb. 2005.

12

