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Abstract 
Choosing a cloud storage system and specific 
operations for reading and writing data requires 
developers to make decisions that trade off consistency 
for availability and performance. Applications may be 
locked into a choice that is not ideal for all clients and 
changing conditions.  Pileus is a replicated key-value 
store that allows applications to declare their 
consistency and latency priorities via consistency-
based service level agreements (SLAs).  It dynamically 
selects which servers to access in order to deliver the 
best service given the current configuration and system 
conditions.  In application-specific SLAs, developers 
can request both strong and eventual consistency as 
well as intermediate guarantees such as read-my-
writes.  Evaluations running on a worldwide test bed 
with geo-replicated data show that the system adapts to 
varying client-server latencies to provide service that 
matches or exceeds the best static consistency choice 
and server selection scheme. 

Categories and Subject Descriptors: D.4.7 
[Operating Systems]: Organization and Design--
Distributed systems; H.2.4 [Database Management]: 
Systems--Distributed databases; H.3.5 [Information 
Storage and Retrieval]: Online Information Services--
Data sharing 

General Terms: Design, Performance, Reliability 

Keywords: Cloud Computing, Storage, Replication, 
Consistency, Service Level Agreement 

1 Introduction 
Cloud storage systems, such as the currently 

popular class of “NoSQL” data stores, have been 
designed to meet the needs of diverse applications from 
social networking to electronic commerce.  Such 
storage services invariably replicate application data on 
multiple machines to make it highly available. Many 
provide a relaxed form of consistency, eventual 
consistency, in order to achieve elastic scalability and 
good performance while some strive for strong 
consistency to maintain the semantics of one-copy 
serializability.  To allow local access and ensure data 
survivability even during a complete datacenter failure, 
many storage systems offer “geo-replication,” the 
option of replicating data across different regions of the 
world. 

With data being replicated on a worldwide scale, 
the inherent trade-offs between performance and 
consistency are accentuated due to the high 
communication latencies between datacenters.  The 
performance difference between reads with different 
consistencies can be substantial.  This is not surprising.  
Strongly consistent reads generally involve multiple 
replicas or must be serviced by a primary replica, 
whereas eventually consistent reads can be answered 
by the closest replica.  Even within a datacenter, the 
latency of strongly consistent reads has been measured 
as eight times that of reads with weaker session 
guarantees [26].  With geo-replication, our studies 
show that the performance can differ by more than two 
orders of magnitude.   

Recognizing these fundamental trade-offs [12], 
storage systems like Amazon’s SimpleDB and 
DynamoDB [43], Google’s AppEngine data store [22], 
Yahoo!’s PNUTS [17], and Oracle’s NoSQL Database 
[32] now offer read operations with a choice between 
strong consistency and eventual consistency.  
Applications can choose between stronger consistency 
with lower performance and relaxed consistency with 
higher performance.   

A major problem with existing multi-consistency 
storage services is that application developers need to 
decide at development time which consistency to 
embrace.  They use different API calls to request 
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different guarantees.  Unfortunately, developers have 
insufficient information to make the best decision for 
all situations.  The actual performance differences 
depend heavily on the degree of replication, relative 
locations of servers and clients, network and server 
load, and other configuration issues.  In some cases, 
such as when a client is located on the other side of the 
globe from the master copy but near a potentially out-
of-date replica, a strong read may be 100 times slower 
than an eventually consistent read, while in other cases 
the performance differences may be minimal or non-
existent.  Although some systems allow the master 
replica to move so that it is near active clients [17], this 
is not possible for data that is shared by a global user 
community.  Different clients will observe different 
performance or consistency or both.  This makes it 
difficult for developers to pick a consistency-
performance pair that satisfies all users in all situations. 

The Pileus storage system was designed to relieve 
application developers from the burden of explicitly 
choosing a single ideal consistency.  The key novelty 
lies in allowing application developers to provide a 
service level agreement (SLA) that specifies the 
application’s consistency/latency desires in a 
declarative manner.  For example, an application might 
request the strongest consistency that can be met within 
a given response time.  Applications issue read 
operations with an associated SLA.  The Pileus system 
chooses to which server (or set of servers) each read is 
directed in order to comply with the SLA.  Customers 
of a public cloud may pay extra for better levels of 
service, thereby incentivizing the storage service 
provider to meet the application’s needs as closely as 
possible.  Pileus adapts to different configurations of 
replicas and clients and to changing conditions, 
including variations in network or server load.  If an 
application, such as a multi-player game, favors latency 
over consistency, then reads are directed to nearby 
servers regardless of whether they hold stale data, 
whereas applications with stronger consistency 
requirements have their reads directed to servers that 
are fully or mostly up-to-date.   

Our target applications are those that tolerate 
relaxed consistency but, nevertheless, benefit from 
improved consistency.  In the cloud computing world, 
many applications have been built on data stores that 
offer only eventual consistency.  This includes 
applications for social networking, shopping, 
entertainment, news, personal finances, messaging, 
crowd sourcing, mobility, and gaming.  In such 
applications, the cost of accessing stale data manifests 
itself in many ways: user inconvenience, lost revenue, 
compensating actions, duplicate work, and so on.  If 
the system, with knowledge of the application’s 
performance requirements, can return data that is as up-
to-date as possible, then the applications and their users 

profit.  Even applications that operate on strongly 
consistent data may take advantage of SLAs that 
permit some relaxed consistency.  For example, as 
discussed further in Section 2.3, a program might 
beneficially perform speculative execution on 
eventually consistent data.  Thus, we believe that a 
large class of applications could benefit from 
consistency-based SLAs. 

The key challenge addressed in this paper is how to 
define and implement consistency-based SLAs that 
offer an extensive set of service levels when accessing 
a scalable key-value store.  We make two main 
contributions: 

First, we present the design of a cloud storage 
system with a range of consistency choices that lie 
between strong and eventual consistency.  Others have 
demonstrated that a variety of consistency guarantees 
are useful including monotonic reads, read-my-writes, 
and bounded staleness [36][39][42][46].  Pileus allows 
different applications (or different users of an 
application) to obtain different consistency guarantees 
even while sharing the same data.   

Second, we introduce the notion of an SLA that 
incorporates consistency as well as latency.  With the 
consistency choices we offer, an application’s SLA can 
indicate a broad set of acceptable consistency/latency 
trade-offs. We propose expressing such consistency-
based SLAs as a series of alternative choices with 
decreasing value to the application.  We present and 
evaluate techniques that attempt to maximize the 
delivered value when reading data.  

The next section presents several concrete scenarios 
in which applications declare and benefit from 
consistency-based SLAs. Section 3 presents the 
services offered by Pileus to application developers 
including the range of consistency choices and the 
expressiveness of consistency-based SLAs.  Section 4 
then discusses the implementation of these services and 
the rationale for our design decisions.  Section 5 
evaluates the effectiveness of SLAs in improving the 
value provided to different applications.  Section 6 
outlines some extensions and areas for future 
exploration.  Related work is reviewed in Section 7, 
and Section 8 concludes by revisiting the key 
characteristics of consistency-based SLAs. 

2 Application scenarios 
In this section, we explore a number of applications 

and illustrate the consistency-based SLAs that those 
applications desire.  We envision a cloud computing 
ecosystem in which storage service providers charge 
clients for increasing levels of service.  That is, the 
price that clients pay for accessing storage depends not 
only on the amount of data they read or write but also 
on the latency for accessing that data and the 



consistency of the data returned for read operations.  
Amazon, for instance, already charges twice as much 
for strongly consistent reads as for eventually 
consistent reads in DynamoDB [4].  Major web service 
companies have reported that increased latency directly 
results in lower revenue per customer; for example, 
Amazon observed that they lose 1% of sales for each 
additional 100 ms of latency [24][40].  Some cloud 
companies already include latency guarantees in their 
SLAs, and differentiated pricing for low latency cannot 
be far behind [31].  Given such a pricing model, 
applications will not simply request strong consistency 
and zero latency.  Applications should request the 
consistency and latency that provides suitable service 
to their customers and for which they will pay.   

Even if applications are willing to pay for 
maximum consistency and minimal latency, current 
operating conditions may prevent the storage system 
from providing ideal service.  Thus, applications also 
want to express less favorable but acceptable latency-
consistency combinations in their SLAs.  Each 
application has a range of acceptable consistency and 
tolerable latency based on the application semantics 
and the data it accesses.  For example, although an 
application may prefer to read strongly consistent data, 
it may perform correctly even when presented stale 
data, and although the application may prefer 100 
millisecond response times, it may be usable with 
delays of up to one second.  An application’s 
consistency-based SLA communicates to the storage 
provider, in cases where its ideal consistency and 
latency cannot be met, whether the application favors 
relaxed consistency or higher latency or both.  Sample 
applications fit into one of three classes. 

2.1 Latency-favoring applications 
Shopping carts for holding electronic purchases are 

a well-known example of an application that has been 
built on an eventually consistent platform in order to 
maximize availability and performance [20][42].  High 
availability is critical since shoppers should never be 
prevented from adding items to their carts, and low 
latency is important so that customers can check out 
quickly.  If a user at check-out time occasionally 
experiences a shopping cart that is not quite up-to-date, 
that is acceptable.  For example, an Amazon shopper 
may occasionally see items that she previously 
removed from her cart.  In this case, the person simply 
needs to remove the item again before confirming her 
purchases.  Thus, the shopping cart application seems 
well suited to a data store that provides eventual 
consistency.  However, the customers’ shopping 
experience is clearly improved with stronger 
consistency.  If shopping carts were inaccurate most of 
the time, then shoppers would get annoyed and shop 
elsewhere.   

Ideally, this shopping cart application wants an 
SLA that offers the strongest consistency possible for a 
given latency budget.  Read-my-writes consistency is 
sufficient since the customer is the only client that ever 
updates her own shopping cart.  But weaker 
consistency is tolerable and may be required to meet 
strict performance standards.  Suppose, as in the 
Dynamo system [20], the application developer is 
given a target of retrieving a user’s shopping cart in 
under 300 milliseconds.  The application needs the 
ability to say:  

“I’d ideally like to be able to see my own 
updates but I’ll accept any consistency as long 
as data is returned in under 300 ms.” 
With such an SLA, clients that are near a primary 

replica can always read from this replica and observe 
perfectly accurate data, assuming the server is not 
overloaded.  This is preferred over reading from a 
randomly chosen server.  Clients with a round-trip time 
to the primary that is consistently over 300 ms, that is, 
customers located in remote parts of the world, should 
read from the closest server even if that server is not 
up-to-date.  This is the best that can be achieved under 
the circumstances.  The developer need not choose 
between strong reads or eventually consistent reads, 
which can result in suboptimal performance or 
consistency for many customers.  And the storage 
service provider, with knowledge of the applications’ 
performance and consistency needs, can improve the 
overall resource utilization. 

Other latency-sensitive and inconsistency-tolerant 
applications include real-time multiplayer games, 
computer-supported collaborative work, and some data 
analytics.  These applications would benefit from 
similar consistency-based SLAs. 

2.2 Consistency-favoring applications 
Other applications may have rigid consistency 

preferences but tolerate a wide range of response times 
for read operations.  For example, a web search 
application may want search results with bounded 
staleness.  While this application will accept different 
latencies, and, indeed, users are accustomed to 
unpredictable response times, the application loses 
advertising revenue when fetching data is slower.  
Essentially, the application wants an SLA that allows it 
to express the following: 

“I want data that is at most 5 minutes out-of-
date, and I will pay $0.00001 for reads that 
return in under 200 ms, $0.000008 for reads 
with latency under 400 ms, $0.000005 for reads 
in under 600 ms, and nothing for reads over 
600 ms.” 
Many other applications that are funded with 

advertising revenue fit into the same class and could 
use similar SLAs, though perhaps with different 



consistency choices.  These include social networking 
applications like Facebook, web-based e-mail and 
calendaring programs, news readers, personal cloud 
file systems, and photo sharing sites. 

2.3 Applications with other trade-offs 
As another example, consider applications that 

want to display information quickly in response to a 
user’s request and then update the display with more 
accurate data as it arrives.  For example, a browsing 
application might display results based on locally 
available information and then later add additional 
results from a more extensive search.  Or a news 
reading application might display a slightly outdated 
list of news stories and then update the list with the 
latest stories.  The code pattern depicted in Figure 1 
arises in a number of applications that retrieve data 
from a service that offers both strong and eventually 
consistent reads. 

When writing this code, the developer assumes that 
simply issuing a StrongRead will make the user wait too 
long and is aiming for a better user experience.  He 
assumes that the WeakRead has a low response time and 
that the StrongRead will take longer to return.  And he 
must pessimistically assume that the two reads return 
different results.  But what if these assumptions are 
incorrect?  If strongly consistent data can be fetched as 
quickly (or almost as quickly) as eventually consistent 
data, then performing two reads is wasteful, and the 
client unnecessarily pays for both operations.  If the 
application runs on a machine that is near a primary 
replica, for instance, the client will likely obtain 
accurate data with the first read operation.  
Unfortunately, the application code has no way of 
determining this.  On the other hand, if the application 
is far from any replicas, even the WeakRead operation 
may have an unsatisfactory response time.  In this case, 
the application may prefer to wait for accurate data 
since the user already experiences a noticeable delay. 

A consistency-based SLA allows the developer to 
precisely state his desires in a declarative manner.  He 
might decide that accessing data in under 150 ms is fast 
enough.  For this application, the desired SLA says the 
following:  

“I want a reply in under 150 ms and prefer 
strongly consistent data but will accept any 
data; if no data can be obtained quickly then I 
am willing to wait up to a second for up-to-date 
data.” 
With this SLA applied to the first read in Figure 1, 

the operation will return strongly consistent data if it 
can be fetched quickly or if no data is accessible in a 
timely manner.  The client is informed whether the data 
was retrieved from a primary replica so that it can skip 
the second, unnecessary read operation.  This SLA 
allows the client to obtain better performance and 
reduced execution costs in many, but not all, situations. 

Similar code patterns arise in other applications.  
For example, many systems maintain user credentials 
in an eventually consistent distributed database, like 
Microsoft’s Active Directory.  Some password 
checking programs first issue a weakly consistent read 
to obtain a user’s credentials.  Then, if the password 
check fails, they issue a strong read to ensure that the 
password is checked against the user’s latest 
credentials.  The intent, as with the code snippet above, 
is to perform the password check as fast as possible by 
using data that can be quickly obtained.  Since users 
change their passwords infrequently, reading from any 
server will almost always return a user’s current 
credentials.  Nevertheless, reading data that is 
guaranteed to be accurate is preferable if it can be done 
with bounded latency.  Thus, these password checking 
programs desire a consistency-based SLA like the one 
above.  

This password checking program is one example of 
a broad class of programs that want strongly consistent 
data but may benefit from speculatively executing on 
data returned by an eventually consistent read.  Such 
programs have a similar structure to the code in Figure 
1 except the calls to display data are replaced by code 
that executes on the data. In other words, data is 
fetched quickly and execution is started using this data 
as input.  In the background, strongly consistent data is 
fetched; only if it differs from the data that was 
previously returned is the computation restarted.  In the 
common case where most servers are up-to-date and 
can return accurate data, reading from a nearby server 
and starting a speculative execution can result in a 
reduced overall computation time.  As a concrete 
example, consider an application that generates 
thumbnails for a collection of photos.  Since photos are 
rarely edited, eventual consistency reads will almost 
always return the latest photo, and so the application 
can speculatively generate thumbnails from locally 
available photos but wants to ensure that the correct 
thumbnail is produced.  Such speculative programs can 
use similar consistency-based SLAs. 

data = WeakRead (key); 
display (data); 
latestdata = StrongRead (key); 
if data != latestdata { 
     display (latestdata); 
} 

Figure 1. Code segment for displaying inaccurate 
data quickly and more accurate data later.  



3 System API 
This section examines the functionality presented to 

application developers.  The Pileus system combines 
the features of a traditional key-value store offered by 
current cloud storage providers with new consistency 
choices and expanded service level agreements. 

3.1 Key-value store 
From the viewpoint of an application developer, 

Pileus manages a collection of replicated key-value 
tables.  Applications can create any number of tables 
for holding application-specific data.  A table contains 
one or more data objects.  Each data object consists of 
a unique string-valued key and a value that is an 
opaque byte-sequence.  Every table is created with a 
globally unique name and is managed independently 
with its own configuration of servers and replication 
policies; for the most part, these configuration details 
are transparent to applications.  

Put is the method for adding or updating a data 
object with a given key.  If a Put is performed for a key 
that does not already exist in the table, then a new data 
object is created; otherwise, a new version of the object 
is produced in which its value is overwritten with the 
new value. 

Get fetches the data associated with the given key.  
It differs from Get operations in a traditional key-value 
store in that it takes a consistency-based SLA as an 
optional argument.  Additionally, the Get method 
returns, along with some version of a data object, a 
condition code that indicates whether (or how well) the 
SLA was met, including the consistency of the data.  
Section 3.3 discusses the structure and semantics of 
consistency-based SLAs.  If the governing SLA allows 
relaxed consistency, then the data object being read 
may not be up-to-date, i.e. clients may read a version 
that existed at some point in the past. 

Pileus supports transactions.  That is, a client may 
call BeginTx, perform a sequence of Get and Put 
operations on arbitrary objects, and then call EndTx.  
Each transaction runs with snapshot isolation and is 
committed atomically.  The details of the transaction 
mechanisms are beyond the scope of this paper but are 

available in a technical report [38].  In this paper, we 
treat each Get and Put as single-operation transactions.  

All Get and Put operations are enclosed within a 
session.  Sessions serve as the scope for certain 
consistency guarantees such as monotonic reads; these 
guarantees are presented in the next section.  The 
BeginSession method takes a consistency-based SLA 
as its only argument.  This serves as the default SLA 
for all of the Gets within the session; however, a Get 
may override the default by indicating its own SLA. 

The basic operations supported by Pileus (ignoring 
transactions) are summarized in Figure 2. This API is 
provided by a client library that is called by 
applications.  The client library, as discussed in more 
detail in Section 4, performs operations by contacting 
one or more servers as needed.   

3.2 Consistency guarantees 
Each Get operation returns some, but not 

necessarily the latest, version written by a Put to the 
key being read.  Different consistency guarantees 
permit different amounts of staleness in the values of 
the objects returned by Gets.  Pileus offers several read 
guarantees, which we informally define as follows: 

 strong:  A Get(key) returns the value of the last 
preceding Put(key) performed by any client. 

 eventual:  A Get(key) returns the value written by 
any Put(key), i.e. any version of the object with the 
given key; clients can expect that the latest version 
eventually would be returned if no further Puts 
were performed, but there are no guarantees 
concerning how long this might take. 

 read-my-writes:  A Get(key) returns the value 
written by the last preceding Put(key) in the same 
session or returns a later version; if no Puts have 
been performed to this key in this session, then the 
Get may return any previous value as in eventual 
consistency. 

 monotonic:  A Get(key) returns the same or a later 
version as a previous Get(key) in this session; if the 
session has no previous Gets for this key, then the 
Get may return the value of any Put(key). 

 bounded(t):  A Get(key) returns a value that is stale 
by at most t seconds. Specifically, it returns the 
value of the latest Put(key) that completed more 
than t seconds ago or some more recent version. 

 causal:  A Get(key) returns the value of a latest 
Put(key) that causally precedes it or returns some 
later version.  The causal precedence relation < is 
defined such that op1<op2 if either 
(a) op1 occurs before op2 in the same session, 
(b) op1 is a Put(key) and op2 is a Get(key) that 

returns the version put in op1, or 
(c) for some op3, op1<op3 and op3<op2. 

CreateTable (name); 
DeleteTable (name); 
tbl = OpenTable (name); 

s = BeginSession(tbl, sla); 
                  EndSession(s);                  
 
                  Put (s, key, value); 

value, cc = Get (s, key, sla); 

Figure 2. The Pileus API 



This selection of guarantees was motivated by 
earlier work demonstrating their usefulness [39].  As 
noted previously, a number of cloud storage providers 
currently offer clients a choice between strong and 
eventual consistency.  The read-my-writes and 
monotonic guarantees were part of the session 
guarantees offered by Bayou [36].  Bounded staleness 
has been proposed in a number of systems [9][46].  Our 
definition of causal consistency resembles that used in 
other systems [28][30] but includes the notion of 
sessions.  Like previous storage systems, it only 
considers causal dependencies between Puts and Gets 
and does not track causality through direct client-to-
client messages. 

As will be evident when we discuss how these read 
guarantees are implemented in Section 4, selecting a 
guarantee may limit the set of servers that can process 
a Get operation.  Limiting the set of suitable servers 
indirectly increases the expected read latency since 
nearby servers may need to be bypassed in favor of 
more distant, but more up-to-date replicas.  For 
example, strong reads must be directed to the primary 
site; eventual reads can be answered by any replica 
thereby delivering the best possible availability and 
performance.  The other read guarantees fall 
somewhere in between these two consistency extremes 
in terms of trading off consistency and latency.   

Figure 3 shows the average latency obtained in our 
system when performing Gets with certain consistency 
choices.  In this experiment, we geo-replicated data 
across three datacenters with the primary site in 
England and secondary sites in the U.S. and India, and 
we ran the YCSB benchmark on clients in four 
different locations; more details are discussed in 
Section 5 where we present additional evaluations.  
These numbers confirm that latency does indeed vary 
drastically for different consistencies and also differs 
significantly from client to client.  Fortunately, when 
using Pileus, an application developer need not be fully 
aware of the performance consequences of choosing a 
specific consistency guarantee or commit to a 
particular choice; instead, the developer provides an 
SLA to capture the application needs and preferences. 

3.3 Service level agreements 
In Pileus, consistency-based SLAs allow an 

application developer to express his desired 
consistency and latency for Get operations.  
Importantly, an SLA indicates whether the system 
should relax consistency or use servers with slower 
response times when the application’s ideal 
consistency and ideal latency cannot both be met given 
the current conditions.   

An SLA is specified as a sequence of consistency 
and latency targets.  Each consistency-latency pair is 
called a subSLA.  A given SLA can contain any number 
of subSLAs.  The first subSLA indicates the 
application’s preferred consistency and latency.  Lower 
subSLAs denote alternatives that are acceptable but 
less desirable.  Generally, lower subSLAs permit lesser 
consistency or higher latency or both. 

 For example, the SLA for the shopping cart 
application discussed in Section 2.1 can be expressed 
as in Figure 4. This SLA says that the application 
prefers the read-my-writes guarantee but can tolerate 
eventual consistency and absolutely requires round-trip 
times of under 300 ms.  For the web applications 
discussed in Section 2.2 that favor lower latency, the 
SLA can be defined as in Figure 5.  The SLA for the 
password checking scenario discussed in Section 2.3 is 
shown in Figure 6. 

Pileus makes a best effort attempt to provide the 
highest desired service.  It may not always succeed in 
meeting the top subSLA due to the configuration of 
replicas and network conditions, over which Pileus has 
no control, or because it makes a poor decision based 
on inaccurate information as arising from changing 
load conditions.  Along with the data that is returned by 
a Get, the caller is informed of which subSLA was 
satisfied.  This information allows the application to 
take different actions based on the consistency of the 
returned data. 

If none of the subSLAs can be met, then the Get 
call returns with an error code and no data.  Thus, 
unavailability in Pileus is defined in practical terms as 
the inability to retrieve the desired data with 
acceptable consistency and latency as defined by the 
SLA.  If an application wants maximum availability, it 
need only specify <eventual, unbounded> as the last 
subSLA.  In this case, data will be returned as long as 
some replica can be reached. 

Consistency U.S. England 
(Primary) 

India China 

strong 147 1 435 307 
causal 146 1 431 306 
bounded(30) 75 1 234 241 
read-my-writes 13 1 18 166 
monotonic 1 1 1 160 
eventual 1 1 1 160 

Figure 3. Average latency (in milliseconds) 
observed for consistency choices and client 

locations  

Rank Consistency Latency Utility 
1. read-my-writes 300 ms 1.0 
2. eventual 300 ms 0.5 

Figure 4. The shopping cart SLA 



Associated with each subSLA is the utility of that 
consistency-latency pair to the application.  Lower-
ranked subSLAs have lower utility than higher-ranked 
ones within the same SLA.  The utility of a subSLA is 
a number that allows applications to indicate its 
relative importance.  As will be seen in Section 4.6, 
these utilities are used to decide the best strategy for 
meeting an SLA.  If Pileus were deployed as a public 
cloud service with a tiered pricing model, the utility of 
a subSLA ideally would match the price the storage 
provider charges for the given level of service.  In this 
case, the storage provider has a strong incentive to 
meet the highest subSLA possible, the one that will 
generate the highest revenue. 

4 Design and implementation 
This section presents the design and 

implementation of the Pileus system.  The emphasis is 
on the challenges faced in providing consistency-based 
SLAs for access to data that is partitioned and geo-
replicated. 

4.1 Architecture  
The Pileus system contains the following major 

components: 
Storage nodes are servers that hold data and 

provide a Get/Put interface.  They know nothing about 
consistency guarantees or SLAs.  The Put operation 
writes a new version with a given timestamp, while the 
Get operation returns the latest version that is known to 
the node.  Any number of storage nodes may exist in 
each datacenter.  As discussed in more detail below, 
some storage nodes are designated as primary nodes, 
which hold the master data, while others are secondary 
nodes. 

Replication agents are co-located with storage 
nodes and asynchronously propagate updates between 
nodes.  Any replication protocol could be used as long 
as updates are applied in timestamp order.  In our 
current implementation, secondary nodes periodically 
pull new versions of data objects from primary nodes 
(though they could also receive updates from other 
secondary nodes).  Each replication agent simply 
records the latest timestamp of any version it has 
received and periodically, say once per minute, 
retrieves versions with higher timestamps. 

Monitors track the amount by which various 
secondary nodes lag behind their primaries and 
measure the roundtrip latencies between clients and 
storage nodes.  In the current system, each client has its 
own monitor though having a shared monitoring 
service could be useful (as discussed in Section 6.1).  

The client library is linked into the application 
code.  It exports the API presented in Section 3 and 
maintains state for sessions.  Moreover, the client 
library contains the logic for directing Get operations 
to the storage nodes that maximize the expected utility 
for a given SLA.   

4.2 Replication and partitioning 
For scalability, a large table can be sharded into one 

or more tablets, as in other storage systems like 
BigTable [16].  Horizontal partitioning divides each 
table into tablets according to key-ranges.  Tablets are 
the granularity of replication and are independently 
replicated on multiple storage nodes.   

All Puts in Pileus are performed and strictly 
ordered at a primary site, a set of storage nodes within 
a datacenter.  Different tablets may be configured with 
different primary sites; only the primary site accepts 
Put operations for keys in the tablet’s key-range.  This 
mimics the design of many commercial cloud storage 
systems including Windows Azure Storage [14] and 
PNUTS, except that PNUTS allows per-object masters 
[17].  The advantages of this primary-update approach, 
compared to a multi-master update scheme, are two-
fold.  First, the primary site is an authoritative copy for 
answering strongly consistent Gets.  Second, the 
system avoids conflicts that might arise from different 
clients concurrently writing to different servers. 

The primary site could consist of a fault-tolerant 
cluster of servers, but any such structuring is invisible 
to clients.  The initial Pileus prototype, which is used 
for the evaluations in section 5, designates a single 
node as the primary.  Clearly, this has limited fault-
tolerance that could be addressed by well-known 
techniques such as the Paxos-based scheme used in 
Spanner [19] or chain replication [41].  As an example, 
we have built a second version of Pileus in which each 
“node” is a Windows Azure Storage account utilizing 
strongly consistent three-way replication.    

Secondary nodes eventually receive all updated 
objects along with their update timestamps via an 
asynchronous replication protocol.  Because this 

Rank Consistency Latency Utility 
1. bounded(300) 200 ms 0.00001 
2. bounded(300) 400 ms 0.000008 
3. bounded(300) 600 ms 0.000005 
4. bounded(300) 1000 ms 0.0 

Figure 5. The web application SLA 

Rank Consistency Latency Utility 
1. strong 150 ms 1.0 
2. eventual 150 ms 0.5 
3. strong 1 sec 0.25 

Figure 6. The password checking SLA 



protocol reliably transmits objects in timestamp order, 
Pileus actually provides a stronger form of eventual 
consistency than many systems, a guarantee that has 
been called prefix consistency [37] or timeline 
consistency [17].  No assumptions are made about the 
time required to fully propagate an update to all 
replicas, though more rapid dissemination increases a 
client’s chance of being able to read from a nearby 
node and hence increases the likelihood of satisfying a 
latency-critical SLA. 

Consistency choices and consistency-based SLAs 
are applicable in any system that contains a mixture of 
strongly consistent nodes that are synchronously 
updated and eventually consistent secondary nodes that 
are asynchronously updated, especially when there is a 
large variation in access times to different nodes.  This 
is invariably the case in systems that employ world-
scale geo-replication, where performing synchronous 
updates to large numbers of widely distributed storage 
nodes is costly.  But systems with both primary and 
secondary nodes are also commonly deployed within a 
datacenter or geographical region. 

Our Pileus prototype is manually configured by a 
system administrator.  Currently, the system does not 
automatically elect primary sites, create new replicas, 
migrate nodes, or repartition tables.  Other work has 
shown how to provide more dynamic reconfiguration 
[1][13][25], and we could adopt such mechanisms in 
the future as they are largely orthogonal to our new 
contributions.   

4.3 Storage metadata 
Each storage node maintains a single version of 

each data object in its tablet.    The state managed by a 
node includes the following information: 
 tablet store = set of <key, value, timestamp> tuples 

for all keys in a range. 
 high timestamp = the update timestamp of the latest 

data object version that has been received and 
processed by this node. 

Since all Put operations are assigned increasing 
update timestamps from the primary site and the 
replication protocol transfers updated objects in 
timestamp order, at any point in time, each node has 
received a prefix of the overall sequence of Put 
operations.  Thus, a single high timestamp per node is 
sufficient to record the set of updates that have been 
processed at the node.  When a node receives and 
stores a new version of some data object, it updates its 
high timestamp to the object’s update timestamp and 
records this same timestamp with the stored object.   

If no Puts have updated the tablet recently, 
secondary nodes will receive no new versions during 
their periodic replication.  In this case, the primary 
sends its current time causing secondary nodes to 

advance their high timestamps; this permits clients to 
discover that these nodes are up-to-date.  

In response to a Get(key) request, the node replies 
with its locally stored version of the object with the 
requested key.  Included in the response is the object’s 
timestamp as well as the node’s high timestamp. 

4.4 Consistency-specific node selection 
When selecting the node to which a Get operation 

should be sent, the desired consistency guarantee, 
along with the previous object versions that have been 
read or written in the current session and the key being 
read, determines the minimum acceptable read 
timestamp.  This read timestamp can be computed 
based solely on information maintained by the client. 
Any storage node whose high timestamp is greater than 
or equal to this minimum acceptable read timestamp is 
sufficiently up-to-date to process the Get request.  In 
other words, the minimum acceptable read timestamp 
indicates how far a secondary node can lag behind the 
primary and still provide an answer to the given Get 
operation with the desired consistency.  Figure 7 
illustrates an example in which a node can provide any 
of the consistency choices except for strong and causal.  

For strong consistency, the minimum acceptable 
read timestamp must be at least as large as the update 
timestamp of the latest Put to the key that is being Get.  
This guarantees, as expected, that each Get accesses 
the latest version of the object.  In practice, clients do 
not actually need to determine the minimum acceptable 
read timestamp for strongly consistent Gets.  The client 
simply sends such operations to the key’s primary site. 

For read-my-writes guarantees, the client’s session 
state records the update timestamps of any previous 
Puts in the session.  The minimum acceptable read 
timestamp is the maximum timestamp of any previous 
Puts to the key being accessed in the current Get. 

For monotonic reads, the client’s session state 
records each key along with the timestamp of the latest 
object version returned by previous Gets.  The 
minimum acceptable read timestamp is the recorded 
timestamp for the key being accessed in the Get.   

 For bounded staleness, the minimum acceptable 
read timestamp is simply the current time minus the 
desired time bound.  Clients and storage nodes need 
only have approximately synchronized clocks since 
staleness bounds tend to be large, often on the order of 
minutes. Work has shown that clocks can be tightly 
synchronized even across globally-distributed 
datacenters [19]. 

For causal consistency, observe that, because Puts 
are performed in causal order at the primary site, each 
secondary node always holds a causally consistent, but 
perhaps stale, copy of a tablet.  However, causal 
consistency could still be violated if clients perform 
Gets from randomly selected nodes.  Causal 



consistency can be guaranteed, while still allowing 
clients a choice of servers, by setting the minimum 
acceptable read timestamp in a similar manner to the 
monotonic reads and read-my-write guarantees.  
Specifically, the minimum acceptable read timestamp 
is the maximum timestamp of any object that was 
previously read or written in this session.   

For eventual consistency, the minimum acceptable 
read timestamp is simply time zero.  Get operations are 
thus allowed to be sent to any storage node for the 
given key. 

4.5 Monitoring storage nodes 
Clients need information about both the network 

latency and high timestamp of each storage node.  
Monitors residing in each client record the set of nodes 
for each tablet along with their pertinent statistics.  
This information is collected as clients perform Get 
and Put operations on various nodes; for nodes that 
have not been accessed recently, the monitor may send 
active probes.  The monitor measures the round-trip 
latency of each operation and records a sliding window 
of the last few minutes of measurements.  It also 
records the maximum high timestamp that it has 
observed for each node.   Monitors implement three 
main operations that return probability estimates based 
on the recorded information. 

PNodeCons (node, consistency, key) returns a number 
between zero and one indicating a conservative 
estimate of the probability that the given storage node 
is sufficiently up-to-date to provide the given 
consistency guarantee for the given key.  Although 
clients do not have perfect knowledge of each node’s 
high timestamp, it only increases over time, and thus 
stale information is still useful.  The local monitor 
returns one if the node’s last known high timestamp is 
greater than the minimum acceptable read timestamp 
for the given consistency (as discussed in the previous 
subsection), and otherwise returns zero.    

PNodeLat (node, latency) returns an estimate of the 
probability that the node can respond to Gets within the 
given response time.  Determining whether the node is 
likely to respond in time is based on past measurements 
of its round-trip response times; a sliding window is 
maintained so that the system reacts to changing 
latency caused by failed links or varying load.  
PNodeLat returns the fraction of previous times that are 
less than the desired latency.  More recent 
measurements could be weighted higher than older 
ones. 

PNodeSla (node, consistency, latency, key) returns an 
estimate of the probability that the given node can meet 
the given consistency and latency for the given key.  
This is obtained by multiplying PNodeCons (node, 

consistency, key) by PNodeLat (node, latency). 

4.6 Client-side SLA enforcement 
One simple, but flawed scheme for meeting an SLA 

is to broadcast each Get operation to all replicas, and 
then take the first response that provides the desired 
consistency and latency.  However, broadcasting Gets 
would be wasteful of network and server resources.  
More importantly, such a strategy would yield a 
multiplicative increase in the client’s financial costs 
since cloud service providers charge for each byte that 
is sent/received and for each operation performed.  

The client library’s main responsibility is to 
determine the minimum acceptable read timestamp 
based on the session’s SLA and send each Get 
operation to a single node (or perhaps small set of 
nodes) that can provide data at the desired consistency 
and also can meet the target round-trip latency. 

 

Figure 7. Acceptable read timestamp ranges for  
different consistency guarantees 

SelectTarget (SLA, key) =  
     maxutil = -1; 
     bestnodes = {}; 
     bestlatency = ∞; 
     targetSLA = null; 
     foreach subSLA in SLA  
            foreach node in key.replicas  
                 util = PNodeSla (node, subSLA.consistency, 
                             subSLA.latency, key)  * subSLA.utility; 
                 if (util > maxutil)  
                      targetSLA = subSLA; 
                      maxutil = util; 

                                 bestnodes = node;                            
                           else if (util = maxutil)  

                      bestnodes = bestnodes + node; 
     foreach node in bestnodes  
          if (node.latency < bestlatency)  
               bestnodes = node; 
               bestlatency = node.latency;      
     return targetSLA, bestnodes; 
  

Figure 8. Algorithm that selects target subSLA 
and node for each Get operation 
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4.6.1 Choosing a target subSLA 
Recall that an SLA consists of an ordered list of 

subSLAs where each subSLA has an application-
provided utility.  The client library’s goal in selecting a 
storage node is to maximize the expected utility.  
Figure 8 illustrates the algorithm used when presented 
with a Get operation and an SLA. 

For each subSLA and each node storing the key 
that is being accessed by the Get, the client computes 
the expected utility that would accrue from sending the 
Get to that node.  This expected utility is the product of 
the PNodeSla function provided by the monitor and the 
utility associated with this subSLA.  The client selects 
the target subSLA with the highest expected utility 
along with the set of nodes that it believes can best 
meet this subSLA at the current time.  If multiple nodes 
offer the same expected utility, the client chooses the 
one that is closest. Alternatively, the client could 
choose one at random to balance the load or pick the 
one that is most up-to-date. 

Note that the application’s top subSLA is not 
always chosen as the target subSLA.  For example, 
consider the shopping cart SLA specified in Figure 4.  
If the second subSLA has a utility that is only slightly 
less than that of the first subSLA and the first subSLA 
has a much lower chance of success, then the client 
will select the second subSLA as its target and choose 
among the nodes that can provide eventually consistent 
data rather than aiming for read-my-writes consistency. 

4.6.2 Determining which subSLA was met  
The client measures the time between sending a Get 

and getting a reply, and uses this round-trip latency 
along with timestamps included in the reply to 
determine whether the target subSLA was met.  The 
client may determine that some higher or lower 
subSLA was satisfied.  

In the response to each Get operation, along with 
the value of the requested data object, a storage node 
includes its current high timestamp.  Given the 
minimum acceptable read timestamps for each 
consistency guarantee, the client can use the 
responding node’s high timestamp to determine what 
consistency is actually being provided for a particular 

Get.  The client uses this actual consistency, along with 
the measured round-trip latency, to determine which 
subSLA was satisfied and returns this indication to the 
Get’s caller.   

Interestingly, a Get may meet a higher subSLA than 
the target subSLA.  For example, revisiting the 
shopping cart SLA, although the client may have 
chosen a node that it believed would provide only 
eventual consistency, the storage node may return an 
object whose version satisfies the read-my-writes 
guarantee as illustrated in Figure 9.  This could very 
well happen in practice when the client has outdated 
information for storage nodes, and hence severely 
underestimates whether a node can meet a guarantee. 

5 Evaluation 
This section describes experiments we conducted to 

evaluate Pileus in a globally distributed datacenter 
environment.  The goal was to verify that adapting 
consistency to different conditions in accordance with 
application-specific SLAs can yield significant benefits 
compared to selecting a fixed consistency. 

5.1 Experimental set-up 
For these experiments, Pileus was run on a research 

test bed connecting private datacenters in different 
parts of the world.  As shown in Figure 10, the primary 
storage node was in England and secondary nodes were 
placed on the U.S. West Coast and in India.  We 
evaluate configurations where the client runs in the 
same datacenter as one of the nodes as well as when it 
is in China.    

The widely used YCSB benchmark [18], which was 
developed for evaluating the performance of cloud-
based key-value stores, provided the workload that we 
used in our experiments.  In this workload, clients 
perform equal numbers of Puts and Gets to a collection 
of 10,000 keys.  We adapted this workload to add the 
notion of sessions.  In particular, we started a session, 
performed 400 Gets and Puts in this session, then 
ended the session and started a new one.   

One client performs all of the Gets and Puts in the 
benchmark.  The origin of the Puts is irrelevant since 
they all are performed on the primary node, and so the 

 

Figure 9. Meeting a higher subSLA than 
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results are the same as if a distributed set of clients 
were performing concurrent updates.  Once per minute, 
both secondary nodes pull all newly created versions 
from the primary. 

The goal is to measure how well the client’s Get 
operations meet a given consistency-based SLA.  We 
use the shopping cart SLA in Figure 4 and the 
password checking SLA in Figure 6; the third SLA 
presented in Figure 5 is not evaluated since it uses a 
single consistency and would not provide additional 
insights into Pileus.  We compare Pileus to three 
alternative systems that use simpler, fixed strategies for 
deciding where to send each Get operation:  
 Primary always performs Gets at the primary node.  

This is equivalent to systems like Azure [14] that 
only offer strong consistency or choosing strong 
reads in SimpleDB [5]. 

 Random performs each Get at a node selected 
randomly from one of the three.  This mimics the 
behavior of SimpleDB when clients choose 
eventually consistent reads [44]. 

 Closest always performs Gets at the node with the 
lowest average latency.  Thus, it promises only 
eventual consistency. 

The comparison metric used for all experiments is 
the average delivered utility.  Recall that each SLA 
consists of a list of subSLAs each with their own 
numerical utility.  For each Get operation, Pileus 
returns an indication of which subSLA was met.  For 
the alternative systems, we similarly determine the 
subSLA that was met for each Get even though their 
behavior does not depend on the given SLA.  The 
subSLA, in turn, determines the utility that is delivered 
for each Get, and we average this delivered utility over 
all operations in the workload. 

5.2 Shopping cart SLA 
Figure 11 shows results for the shopping cart SLA. 

The fixed strategy of always sending Gets to the 
primary works well for clients in the U.S. and England 
since their round-trip latencies are always below the 
desired 300 ms, but completely fails for clients in India 
and China.  As expected, choosing random nodes is not 

ideal for anyone since a too-distant node is often 
chosen.  Choosing the closest storage node works 
reasonably for this particular SLA since the read-my-
writes consistency guarantee can be met at least 90% of 
the time.  But there are times when clients (except 
those in England) receive only eventual consistency 
from their local node; these clients obtain an average 
utility from 0.95 for the U.S. client to 0.98 for India.   
Pileus’s utility-driven strategy always performs well.   

Table 1 provides more detail on the decisions made 
by the Pileus client in trying to meet this SLA; this 
table indicates the percentage of Gets for which Pileus 
selects each combination of target subSLA and storage 
node.  When the client is in the U.S., Pileus always 
chooses the top subSLA as its target. This client reads 
from the local U.S. node 90.9% of the time, i.e. when 
this node can provide the read-my-writes guarantee, 
and otherwise sends its Gets to England.  This results 
in a perfect average utility unlike the Closest strategy.  
Note that Pileus and the Primary strategy both satisfy 
the top subSLA 100% of the time, but Pileus obtains an 
average latency of 14.48 ms compared to 148 ms when 
accessing the primary.  When the client is in England, 
Pileus always reads from the local node, as expected. 
With the client in India, Pileus targets the top subSLA 
if it believes that the read-my-writes guarantee can be 
met locally or by accessing the U.S. and otherwise 
targets the second subSLA.  It almost always chooses 
to access the local secondary in India, and it obtains a 
high utility value since this secondary is quite often 
sufficiently up-to-date.  The results for the client in 
China are similar although all of its Get operations are 
sent to remote nodes; it does, however, experience 
much higher round-trip times.   The China client 
mostly accesses the U.S. node since it is the closest.  
Occasionally, 0.4% of the time, it discovers that the 
India node can meet the read-my-writes guarantee 
while the U.S. node cannot.  It never accesses England 
since the latency is too high.  

5.3 Password checking SLA 
Using the password checking SLA produces the 

results in Figure 12 and a more detailed breakdown in 

Client Target 
SubSLA 

Get from 
U.S. 

Get from 
England 

Get from 
India 

SubSLA 
Met 

Avg.  
Utility 

U.S. 1 90.9% 9.1% 0% 100% 1.0 
 2 0% 0% 0% 0%  

England 1 0% 100% 0% 100% 1.0 
 2 0% 0% 0% 0%  

India 1 0.2% 0% 95.9% 96.1% 0.98 
 2 0% 0% 3.9% 3.9%  

China 1 95.1% 0% 0.4% 95.5% 0.98 
 2 4.5% 0% 0% 4.5%  

Table 1. Breakdown of Pileus client decisions for  
shopping cart SLA 

 
Figure 11. Utility of shopping cart SLA for 

clients in U.S., England, India, and China 



Table 2.  Again, Pileus targets the top subSLA when 
the client is in the U.S. or England and always reads 
from the primary.  When the client is in the U.S., 
choosing to read from the remote primary rather than 
the local secondary is almost always the correct 
decision, though occasionally the primary does not 
respond quickly enough, resulting in a .99 average 
utility. When the client is in India, Pileus believes the 
top subSLA to be unattainable since the primary is too 
far away, and thus it targets the second subSLA and 
reads from the local secondary.  The client in China is 
so remote that Pileus forgoes the top two subSLAs and 
targets the third one, causing it to read from the 
primary but delivering only a 0.25 utility; in contrast, 
the Closest strategy always accesses the U.S. and 
receives a zero utility, which is worse than Random’s 
0.08 average utility. 

5.4 Adaptability to network delays 
To explore how well Pileus adapts to latencies that 

change drastically over time, we repeated our 
experiments for the password checking SLA while 
introducing artificial delays in the round-trip times for 
Get operations.  Figure 13 shows the delivered utility 
for Gets performed over a period of almost six minutes.  
Initially, with no added delays, the client (in the U. S.) 
always chooses to go to the primary (in England) for 
the first subSLA but occasionally the primary does not 
respond in time (as previously indicated in Table 2).  
At the point labeled #1 in Figure 13, the latency to the 
primary node was increased by 300 ms; we simply 
added 300 ms to the measured round-trip times that 
were reported to the client.  Such an increase might 
happen in practice if the primary or its 
inbound/outbound network becomes overloaded.  For 
some small period of time (between points #1 and #2 in 
the figure), the client continued to choose the top 
subSLA and continued to send all of its Gets to the 
primary.  None of these Gets returned in time to meet 
the top subSLA but they did satisfy the third subSLA, 
resulting in a utility of 0.25.   

Eventually, the client learned that the primary was 
too far away, switched to the second subSLA, and 
started performing Gets on the local node (between 

points #2 and #3 in the figure).  At point #3, we added 
300 ms to the latency when accessing the local node.  
For some period (between points #3 and #4) the client 
continued to use the local node, but it responded too 
slowly and was too inconsistent to meet any of the 
subSLAs, resulting in a utility of zero.  Note that in this 
case, after receiving a local response, the client could 
have performed the Get at the primary and still have 
met the third subSLA within the specified 1-second 
bound; we are considering adding such a strategy to the 
client library.  At point #4, the client decided correctly 
that only the third subSLA could be met and resumed 
sending Gets to the primary. 

At point #5 we reduced the access latency to the 
local node back to a millisecond, and at point #6 we 
restored the average latency to the primary to the usual 
149 ms.  The client eventually discovers, through 
periodic probes, that it can regularly access its local 
site with low delay, and the client switches back to 
choosing the second subSLA; this switch takes a while 
since the client probes infrequently and has some built-
in hysteresis.  Later, sometime after point #6, the client 
switches to targeting the top subSLA and resumes 
sending Gets to the primary.  This experiment clearly 
demonstrates Pileus’s ability to select a strategy that 
maximizes the delivered utility in response to varying 
network latencies. 

5.5 Sensitivity to utility values 
Finally, to study the sensitivity of our results to the 

utility number included in an SLA, we varied the 
utilities for the password checking SLA in Figure 6.  
We multiplied the utilities of the second and third 
subSLAs by a factor from 2, which places the second 
subSLA on par with the first, to 0.1, which makes the 
top subSLA considerably more valuable.  These results 
are presented in Figure 14.  Observe that different 
utilities affect the relative rankings of the fixed 
selection schemes but Pileus again outperforms them. 

 
Figure 12. Utility of password checking SLA 

Client Target 
SubSLA 

Get from 
U.S. 

Get from 
England 

Get from 
India 

SubSLA 
Met 

Avg. 
Utility 

U.S. 1 0% 100% 0% 99.4% 0.99 
 2 0% 0% 0% 0%  
 3 0% 0% 0% 0.6%  

England 1 0% 100% 0% 100% 1.0 
 2 0% 0% 0% 0%  
 3 0% 0% 0% 0%  

India 1 0% 0% 0% 0% 0.5 
 2 0% 0% 100% 100%  
 3 0% 0% 0% 0%  

China 1 0% 0% 0% 0% 0.25 
 2 0% 0% 0% 0%  
 3 0% 100% 0% 100%  

Table 2. Breakdown of Pileus client decisions for  
password checking SLA 



5.6 Summary 
In all of the configurations that we measured, Pileus 

delivered the same utility as the best performing fixed 
consistency scheme.  As expected, always requesting 
strong or always requesting eventual consistency 
yielded suboptimal service in some configurations. 
Pileus was able to adapt the service provided to clients 
in different locations to best meet the target SLA. 

6 Extensions and future work 
6.1 Enhanced monitoring 

Although the monitoring performed in Pileus does 
not consume many resources, especially when it 
piggybacks on normal traffic, it could potentially be 
improved.  For one thing, clients could adapt the rate at 
which they send periodic probes based on the data they 
obtain.  If the latency to a node is fairly stable and the 
consistency predictable, then clients could probe less 
frequently.   

Even if communication latencies are well-known, 
probes are used to determine the staleness of a storage 
node.  Clients could potentially predict a node’s high 
timestamp based on the time that it last communicated 
with the node as well as knowledge about the update 
rates for various objects and the replication protocol’s 
propagation delay. 

Additionally, clients could share monitoring 
information with other clients in the same datacenter.  
We have considered having a distributed monitoring 
service that is detached from individual clients, perhaps 
with monitors in every region of the world, or having 
clients gossip monitoring information among 
themselves.  Exploring the relationship between the 
amount of traffic generated by various monitoring 
schemes and the accrued benefits is an interesting 
subject for future work.  

6.2 SLA-driven reconfiguration 
Currently, we assume that the number and 

placement of storage nodes is outside of Pileus’s 
control.  However, given knowledge of the SLAs being 
used by various clients, the system could make 
reasonable re-configuration decisions.  For example, 
Pileus might automatically move the primary to a 

different datacenter in order to maximize the utility 
delivered to its clients.  If one client has stringent 
latency requirements but loose consistency needs, a 
new secondary storage node could be placed nearby.  
Similarly, the rate at which updated data objects are 
propagated from the primary to secondary nodes could 
be adjusted based on the clients’ desired consistency 
and proximity.  We are currently investigating SLA-
driven reconfiguration. 

6.3 Parallel Gets 
The current system sends each Get operation to a 

single node based on utility estimates.  This policy 
minimizes client costs when storage providers charge 
for each operation.  However, clients could receive 
more rapid responses and more up-to-date data when 
sending a Get in parallel to two or more nodes that are 
predicted to provide roughly the same service, 
particularly in cases where changing conditions lead to 
poor utility estimates.  Existing methods for computing 
expected utilities could be used in a cost-benefit 
analysis to explore multi-node selection schemes. 

6.4 Multi-site Puts 
Our current implementations perform Put operations at 
a single primary site, i.e. a cluster of storage nodes 
within a datacenter.  Generally, the cost of Put 
operations can be traded off against the cost of strongly 
consistent Get operations.  If the system synchronously 
sends Puts to a larger collection of primary nodes, 
possibly nodes that are replicated across datacenters or 
even across regions, the expected latency of strong 
Gets is reduced (and the availability of such operations 
increases).  A wider distribution of primary nodes can 
positively affect Gets with other consistency choices as 
well, except for eventual consistency.  A thorough 
study of these Put/Get trade-offs remains future work.   

7 Related work 
The design of Pileus adopts and extends prior work 

on cloud storage systems, variable consistency, and 
service level agreements. However, we are not aware 
of other systems that combine consistency guarantees 
with latency targets as part of a storage service SLA.   

 
Figure 13. Behavior under varying latency  

Figure 14. Behavior under varying utility 



Numerous cloud storage systems have been 
designed with a variety of data models, read and write 
operations, replication protocols, consistency, and 
partitioning schemes.  Some key-value store probably 
exists with every imaginable combination of features 
and occupies every point in the space of consistency, 
scalability, availability, cost, and performance trade-
offs.  These include Dynamo [20], SimpleDB [5], 
BigTable [16], PNUTS [17][35], Cassandra [27], 
Windows Azure [14], Spanner [19], and many more 
[15].  Pileus borrows from many of these systems its 
simple Get/Put interface, key-range partitioning, geo-
replication, and primary-update model.   

Researchers have observed the need for more 
flexible storage designs that permit tradeoffs between 
consistency and availability [33].  Some cloud storage 
systems offer both strongly consistent and eventually 
consistent read operations [22][43][17][2][8], and 
papers have suggested switching between these options 
based on application classes [26][45].  Studies have 
shown that even eventually consistent systems 
frequently deliver strongly consistent data [11][44].  
Researchers have proposed consistency models with 
guarantees that lie between these two extremes, such as 
session guarantees [36], continuous consistency 
[3][9][46], RedBlue consistency [29], and causal 
consistency [30], and many have been shown to be 
useful in diverse applications [10][36][42][23][34]. 
However, very few of these are being used in current 
systems.  To the best of our knowledge, Pileus is the 
first cloud storage system to offer a broad choice of 
consistency guarantees, and allow the requested 
consistency to vary for each Get even when accessing 
the same data. 

Service level agreements are an integral part of 
cloud services, including storage and networking. But 
such SLAs mainly focus on performance metrics and 
availability.  For example, a typical SLA for an 
Amazon service guarantees “a response within 300ms 
for 99.9% of its requests” [20]. Others have suggested 
including consistency in SLAs [7] and developed 
algorithms for checking consistency [6][21], but Pileus 
is the first system to actually support consistency-based 
SLAs. 

8 Conclusions 
The Pileus storage system’s main contribution is 

support for consistency-based SLAs that allow 
developers to declaratively specify their needs using a 
choice of consistency guarantees coupled with latency 
targets.  Get operations access data that is partitioned 
and replicated among servers in all parts of the world 
while conforming to such SLAs.  Consistency-based 
SLAs allow applications that were written to tolerate 
eventual consistency, as are many cloud applications 

today, to benefit from increased consistency when the 
performance cost is not excessive.  When conditions 
are favorable, such as when the application is running 
in the same datacenter as up-to-date replicas, Pileus is 
able to deliver ideal consistency and latency to the 
application, and when conditions are less favorable, 
such as when nodes fail or become overloaded or 
clients are far from their frequently accessed data, the 
application’s SLA indicates how best to adapt. 

Pileus cleanly separates the mechanism for finding 
versions of a data object with the desired consistency 
from the techniques for selecting servers that can meet 
an SLA given existing network and server 
characteristics.  Timestamp mechanisms support a 
broad range of consistencies while monitoring permits 
clients to independently select subSLAs that maximize 
the utility delivered to their local applications. 

While our early experimental results show that 
consistency-based SLAs can indeed improve 
application-specific levels of service, further studies 
are needed to explore the full space of practical SLAs.  
Future work will investigate additional schemes for 
monitoring/predicting the lag and performance of 
storage nodes, expanding the choice of consistency 
guarantees, and automatically configuring services 
based on their applications’ SLAs. 
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