
Consistency-Based Service Level Agreements

for Cloud Storage

Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla,

Mahesh Balakrishnan, Marcos K. Aguilera, Hussam Abu-Libdeh†

Microsoft Research Silicon Valley
†Cornell University

Abstract
Choosing a cloud storage system and specific
operations for reading and writing data requires
developers to make decisions that trade off consistency
for availability and performance. Applications may be
locked into a choice that is not ideal for all clients and
changing conditions. Pileus is a replicated key-value
store that allows applications to declare their
consistency and latency priorities via consistency-
based service level agreements (SLAs). It dynamically
selects which servers to access in order to deliver the
best service given the current configuration and system
conditions. In application-specific SLAs, developers
can request both strong and eventual consistency as
well as intermediate guarantees such as read-my-
writes. Evaluations running on a worldwide test bed
with geo-replicated data show that the system adapts to
varying client-server latencies to provide service that
matches or exceeds the best static consistency choice
and server selection scheme.

Categories and Subject Descriptors: D.4.7
[Operating Systems]: Organization and Design--
Distributed systems; H.2.4 [Database Management]:
Systems--Distributed databases; H.3.5 [Information
Storage and Retrieval]: Online Information Services--
Data sharing

General Terms: Design, Performance, Reliability

Keywords: Cloud Computing, Storage, Replication,
Consistency, Service Level Agreement

1 Introduction
Cloud storage systems, such as the currently

popular class of “NoSQL” data stores, have been
designed to meet the needs of diverse applications from
social networking to electronic commerce. Such
storage services invariably replicate application data on
multiple machines to make it highly available. Many
provide a relaxed form of consistency, eventual
consistency, in order to achieve elastic scalability and
good performance while some strive for strong
consistency to maintain the semantics of one-copy
serializability. To allow local access and ensure data
survivability even during a complete datacenter failure,
many storage systems offer “geo-replication,” the
option of replicating data across different regions of the
world.

With data being replicated on a worldwide scale,
the inherent trade-offs between performance and
consistency are accentuated due to the high
communication latencies between datacenters. The
performance difference between reads with different
consistencies can be substantial. This is not surprising.
Strongly consistent reads generally involve multiple
replicas or must be serviced by a primary replica,
whereas eventually consistent reads can be answered
by the closest replica. Even within a datacenter, the
latency of strongly consistent reads has been measured
as eight times that of reads with weaker session
guarantees [26]. With geo-replication, our studies
show that the performance can differ by more than two
orders of magnitude.

Recognizing these fundamental trade-offs [12],
storage systems like Amazon’s SimpleDB and
DynamoDB [43], Google’s AppEngine data store [22],
Yahoo!’s PNUTS [17], and Oracle’s NoSQL Database
[32] now offer read operations with a choice between
strong consistency and eventual consistency.
Applications can choose between stronger consistency
with lower performance and relaxed consistency with
higher performance.

A major problem with existing multi-consistency
storage services is that application developers need to
decide at development time which consistency to
embrace. They use different API calls to request

Permission to make digital or hard copies of part or all of this

work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses,

contact the Owner/Author.

Copyright is held by the Owner/Author(s).

SOSP'13, Nov. 3-6, 2013, Farmington, Pennsylvania, USA.

ACM 978-1-4503-2388-8/13/11.

http://dx.doi.org/10.1145/2517349.2522731

different guarantees. Unfortunately, developers have
insufficient information to make the best decision for
all situations. The actual performance differences
depend heavily on the degree of replication, relative
locations of servers and clients, network and server
load, and other configuration issues. In some cases,
such as when a client is located on the other side of the
globe from the master copy but near a potentially out-
of-date replica, a strong read may be 100 times slower
than an eventually consistent read, while in other cases
the performance differences may be minimal or non-
existent. Although some systems allow the master
replica to move so that it is near active clients [17], this
is not possible for data that is shared by a global user
community. Different clients will observe different
performance or consistency or both. This makes it
difficult for developers to pick a consistency-
performance pair that satisfies all users in all situations.

The Pileus storage system was designed to relieve
application developers from the burden of explicitly
choosing a single ideal consistency. The key novelty
lies in allowing application developers to provide a
service level agreement (SLA) that specifies the
application’s consistency/latency desires in a
declarative manner. For example, an application might
request the strongest consistency that can be met within
a given response time. Applications issue read
operations with an associated SLA. The Pileus system
chooses to which server (or set of servers) each read is
directed in order to comply with the SLA. Customers
of a public cloud may pay extra for better levels of
service, thereby incentivizing the storage service
provider to meet the application’s needs as closely as
possible. Pileus adapts to different configurations of
replicas and clients and to changing conditions,
including variations in network or server load. If an
application, such as a multi-player game, favors latency
over consistency, then reads are directed to nearby
servers regardless of whether they hold stale data,
whereas applications with stronger consistency
requirements have their reads directed to servers that
are fully or mostly up-to-date.

Our target applications are those that tolerate
relaxed consistency but, nevertheless, benefit from
improved consistency. In the cloud computing world,
many applications have been built on data stores that
offer only eventual consistency. This includes
applications for social networking, shopping,
entertainment, news, personal finances, messaging,
crowd sourcing, mobility, and gaming. In such
applications, the cost of accessing stale data manifests
itself in many ways: user inconvenience, lost revenue,
compensating actions, duplicate work, and so on. If
the system, with knowledge of the application’s
performance requirements, can return data that is as up-
to-date as possible, then the applications and their users

profit. Even applications that operate on strongly
consistent data may take advantage of SLAs that
permit some relaxed consistency. For example, as
discussed further in Section 2.3, a program might
beneficially perform speculative execution on
eventually consistent data. Thus, we believe that a
large class of applications could benefit from
consistency-based SLAs.

The key challenge addressed in this paper is how to
define and implement consistency-based SLAs that
offer an extensive set of service levels when accessing
a scalable key-value store. We make two main
contributions:

First, we present the design of a cloud storage
system with a range of consistency choices that lie
between strong and eventual consistency. Others have
demonstrated that a variety of consistency guarantees
are useful including monotonic reads, read-my-writes,
and bounded staleness [36][39][42][46]. Pileus allows
different applications (or different users of an
application) to obtain different consistency guarantees
even while sharing the same data.

Second, we introduce the notion of an SLA that
incorporates consistency as well as latency. With the
consistency choices we offer, an application’s SLA can
indicate a broad set of acceptable consistency/latency
trade-offs. We propose expressing such consistency-
based SLAs as a series of alternative choices with
decreasing value to the application. We present and
evaluate techniques that attempt to maximize the
delivered value when reading data.

The next section presents several concrete scenarios
in which applications declare and benefit from
consistency-based SLAs. Section 3 presents the
services offered by Pileus to application developers
including the range of consistency choices and the
expressiveness of consistency-based SLAs. Section 4
then discusses the implementation of these services and
the rationale for our design decisions. Section 5
evaluates the effectiveness of SLAs in improving the
value provided to different applications. Section 6
outlines some extensions and areas for future
exploration. Related work is reviewed in Section 7,
and Section 8 concludes by revisiting the key
characteristics of consistency-based SLAs.

2 Application scenarios
In this section, we explore a number of applications

and illustrate the consistency-based SLAs that those
applications desire. We envision a cloud computing
ecosystem in which storage service providers charge
clients for increasing levels of service. That is, the
price that clients pay for accessing storage depends not
only on the amount of data they read or write but also
on the latency for accessing that data and the

consistency of the data returned for read operations.
Amazon, for instance, already charges twice as much
for strongly consistent reads as for eventually
consistent reads in DynamoDB [4]. Major web service
companies have reported that increased latency directly
results in lower revenue per customer; for example,
Amazon observed that they lose 1% of sales for each
additional 100 ms of latency [24][40]. Some cloud
companies already include latency guarantees in their
SLAs, and differentiated pricing for low latency cannot
be far behind [31]. Given such a pricing model,
applications will not simply request strong consistency
and zero latency. Applications should request the
consistency and latency that provides suitable service
to their customers and for which they will pay.

Even if applications are willing to pay for
maximum consistency and minimal latency, current
operating conditions may prevent the storage system
from providing ideal service. Thus, applications also
want to express less favorable but acceptable latency-
consistency combinations in their SLAs. Each
application has a range of acceptable consistency and
tolerable latency based on the application semantics
and the data it accesses. For example, although an
application may prefer to read strongly consistent data,
it may perform correctly even when presented stale
data, and although the application may prefer 100
millisecond response times, it may be usable with
delays of up to one second. An application’s
consistency-based SLA communicates to the storage
provider, in cases where its ideal consistency and
latency cannot be met, whether the application favors
relaxed consistency or higher latency or both. Sample
applications fit into one of three classes.

2.1 Latency-favoring applications
Shopping carts for holding electronic purchases are

a well-known example of an application that has been
built on an eventually consistent platform in order to
maximize availability and performance [20][42]. High
availability is critical since shoppers should never be
prevented from adding items to their carts, and low
latency is important so that customers can check out
quickly. If a user at check-out time occasionally
experiences a shopping cart that is not quite up-to-date,
that is acceptable. For example, an Amazon shopper
may occasionally see items that she previously
removed from her cart. In this case, the person simply
needs to remove the item again before confirming her
purchases. Thus, the shopping cart application seems
well suited to a data store that provides eventual
consistency. However, the customers’ shopping
experience is clearly improved with stronger
consistency. If shopping carts were inaccurate most of
the time, then shoppers would get annoyed and shop
elsewhere.

Ideally, this shopping cart application wants an
SLA that offers the strongest consistency possible for a
given latency budget. Read-my-writes consistency is
sufficient since the customer is the only client that ever
updates her own shopping cart. But weaker
consistency is tolerable and may be required to meet
strict performance standards. Suppose, as in the
Dynamo system [20], the application developer is
given a target of retrieving a user’s shopping cart in
under 300 milliseconds. The application needs the
ability to say:

“I’d ideally like to be able to see my own
updates but I’ll accept any consistency as long
as data is returned in under 300 ms.”
With such an SLA, clients that are near a primary

replica can always read from this replica and observe
perfectly accurate data, assuming the server is not
overloaded. This is preferred over reading from a
randomly chosen server. Clients with a round-trip time
to the primary that is consistently over 300 ms, that is,
customers located in remote parts of the world, should
read from the closest server even if that server is not
up-to-date. This is the best that can be achieved under
the circumstances. The developer need not choose
between strong reads or eventually consistent reads,
which can result in suboptimal performance or
consistency for many customers. And the storage
service provider, with knowledge of the applications’
performance and consistency needs, can improve the
overall resource utilization.

Other latency-sensitive and inconsistency-tolerant
applications include real-time multiplayer games,
computer-supported collaborative work, and some data
analytics. These applications would benefit from
similar consistency-based SLAs.

2.2 Consistency-favoring applications
Other applications may have rigid consistency

preferences but tolerate a wide range of response times
for read operations. For example, a web search
application may want search results with bounded
staleness. While this application will accept different
latencies, and, indeed, users are accustomed to
unpredictable response times, the application loses
advertising revenue when fetching data is slower.
Essentially, the application wants an SLA that allows it
to express the following:

“I want data that is at most 5 minutes out-of-
date, and I will pay $0.00001 for reads that
return in under 200 ms, $0.000008 for reads
with latency under 400 ms, $0.000005 for reads
in under 600 ms, and nothing for reads over
600 ms.”
Many other applications that are funded with

advertising revenue fit into the same class and could
use similar SLAs, though perhaps with different

consistency choices. These include social networking
applications like Facebook, web-based e-mail and
calendaring programs, news readers, personal cloud
file systems, and photo sharing sites.

2.3 Applications with other trade-offs
As another example, consider applications that

want to display information quickly in response to a
user’s request and then update the display with more
accurate data as it arrives. For example, a browsing
application might display results based on locally
available information and then later add additional
results from a more extensive search. Or a news
reading application might display a slightly outdated
list of news stories and then update the list with the
latest stories. The code pattern depicted in Figure 1
arises in a number of applications that retrieve data
from a service that offers both strong and eventually
consistent reads.

When writing this code, the developer assumes that
simply issuing a StrongRead will make the user wait too
long and is aiming for a better user experience. He
assumes that the WeakRead has a low response time and
that the StrongRead will take longer to return. And he
must pessimistically assume that the two reads return
different results. But what if these assumptions are
incorrect? If strongly consistent data can be fetched as
quickly (or almost as quickly) as eventually consistent
data, then performing two reads is wasteful, and the
client unnecessarily pays for both operations. If the
application runs on a machine that is near a primary
replica, for instance, the client will likely obtain
accurate data with the first read operation.
Unfortunately, the application code has no way of
determining this. On the other hand, if the application
is far from any replicas, even the WeakRead operation
may have an unsatisfactory response time. In this case,
the application may prefer to wait for accurate data
since the user already experiences a noticeable delay.

A consistency-based SLA allows the developer to
precisely state his desires in a declarative manner. He
might decide that accessing data in under 150 ms is fast
enough. For this application, the desired SLA says the
following:

“I want a reply in under 150 ms and prefer
strongly consistent data but will accept any
data; if no data can be obtained quickly then I
am willing to wait up to a second for up-to-date
data.”
With this SLA applied to the first read in Figure 1,

the operation will return strongly consistent data if it
can be fetched quickly or if no data is accessible in a
timely manner. The client is informed whether the data
was retrieved from a primary replica so that it can skip
the second, unnecessary read operation. This SLA
allows the client to obtain better performance and
reduced execution costs in many, but not all, situations.

Similar code patterns arise in other applications.
For example, many systems maintain user credentials
in an eventually consistent distributed database, like
Microsoft’s Active Directory. Some password
checking programs first issue a weakly consistent read
to obtain a user’s credentials. Then, if the password
check fails, they issue a strong read to ensure that the
password is checked against the user’s latest
credentials. The intent, as with the code snippet above,
is to perform the password check as fast as possible by
using data that can be quickly obtained. Since users
change their passwords infrequently, reading from any
server will almost always return a user’s current
credentials. Nevertheless, reading data that is
guaranteed to be accurate is preferable if it can be done
with bounded latency. Thus, these password checking
programs desire a consistency-based SLA like the one
above.

This password checking program is one example of
a broad class of programs that want strongly consistent
data but may benefit from speculatively executing on
data returned by an eventually consistent read. Such
programs have a similar structure to the code in Figure
1 except the calls to display data are replaced by code
that executes on the data. In other words, data is
fetched quickly and execution is started using this data
as input. In the background, strongly consistent data is
fetched; only if it differs from the data that was
previously returned is the computation restarted. In the
common case where most servers are up-to-date and
can return accurate data, reading from a nearby server
and starting a speculative execution can result in a
reduced overall computation time. As a concrete
example, consider an application that generates
thumbnails for a collection of photos. Since photos are
rarely edited, eventual consistency reads will almost
always return the latest photo, and so the application
can speculatively generate thumbnails from locally
available photos but wants to ensure that the correct
thumbnail is produced. Such speculative programs can
use similar consistency-based SLAs.

data = WeakRead (key);
display (data);
latestdata = StrongRead (key);
if data != latestdata {
 display (latestdata);
}

Figure 1. Code segment for displaying inaccurate
data quickly and more accurate data later.

3 System API
This section examines the functionality presented to

application developers. The Pileus system combines
the features of a traditional key-value store offered by
current cloud storage providers with new consistency
choices and expanded service level agreements.

3.1 Key-value store
From the viewpoint of an application developer,

Pileus manages a collection of replicated key-value
tables. Applications can create any number of tables
for holding application-specific data. A table contains
one or more data objects. Each data object consists of
a unique string-valued key and a value that is an
opaque byte-sequence. Every table is created with a
globally unique name and is managed independently
with its own configuration of servers and replication
policies; for the most part, these configuration details
are transparent to applications.

Put is the method for adding or updating a data
object with a given key. If a Put is performed for a key
that does not already exist in the table, then a new data
object is created; otherwise, a new version of the object
is produced in which its value is overwritten with the
new value.

Get fetches the data associated with the given key.
It differs from Get operations in a traditional key-value
store in that it takes a consistency-based SLA as an
optional argument. Additionally, the Get method
returns, along with some version of a data object, a
condition code that indicates whether (or how well) the
SLA was met, including the consistency of the data.
Section 3.3 discusses the structure and semantics of
consistency-based SLAs. If the governing SLA allows
relaxed consistency, then the data object being read
may not be up-to-date, i.e. clients may read a version
that existed at some point in the past.

Pileus supports transactions. That is, a client may
call BeginTx, perform a sequence of Get and Put
operations on arbitrary objects, and then call EndTx.
Each transaction runs with snapshot isolation and is
committed atomically. The details of the transaction
mechanisms are beyond the scope of this paper but are

available in a technical report [38]. In this paper, we
treat each Get and Put as single-operation transactions.

All Get and Put operations are enclosed within a
session. Sessions serve as the scope for certain
consistency guarantees such as monotonic reads; these
guarantees are presented in the next section. The
BeginSession method takes a consistency-based SLA
as its only argument. This serves as the default SLA
for all of the Gets within the session; however, a Get
may override the default by indicating its own SLA.

The basic operations supported by Pileus (ignoring
transactions) are summarized in Figure 2. This API is
provided by a client library that is called by
applications. The client library, as discussed in more
detail in Section 4, performs operations by contacting
one or more servers as needed.

3.2 Consistency guarantees
Each Get operation returns some, but not

necessarily the latest, version written by a Put to the
key being read. Different consistency guarantees
permit different amounts of staleness in the values of
the objects returned by Gets. Pileus offers several read
guarantees, which we informally define as follows:

 strong: A Get(key) returns the value of the last
preceding Put(key) performed by any client.

 eventual: A Get(key) returns the value written by
any Put(key), i.e. any version of the object with the
given key; clients can expect that the latest version
eventually would be returned if no further Puts
were performed, but there are no guarantees
concerning how long this might take.

 read-my-writes: A Get(key) returns the value
written by the last preceding Put(key) in the same
session or returns a later version; if no Puts have
been performed to this key in this session, then the
Get may return any previous value as in eventual
consistency.

 monotonic: A Get(key) returns the same or a later
version as a previous Get(key) in this session; if the
session has no previous Gets for this key, then the
Get may return the value of any Put(key).

 bounded(t): A Get(key) returns a value that is stale
by at most t seconds. Specifically, it returns the
value of the latest Put(key) that completed more
than t seconds ago or some more recent version.

 causal: A Get(key) returns the value of a latest
Put(key) that causally precedes it or returns some
later version. The causal precedence relation < is
defined such that op1<op2 if either
(a) op1 occurs before op2 in the same session,
(b) op1 is a Put(key) and op2 is a Get(key) that

returns the version put in op1, or
(c) for some op3, op1<op3 and op3<op2.

CreateTable (name);
DeleteTable (name);
tbl = OpenTable (name);

s = BeginSession(tbl, sla);
 EndSession(s);

 Put (s, key, value);

value, cc = Get (s, key, sla);

Figure 2. The Pileus API

This selection of guarantees was motivated by
earlier work demonstrating their usefulness [39]. As
noted previously, a number of cloud storage providers
currently offer clients a choice between strong and
eventual consistency. The read-my-writes and
monotonic guarantees were part of the session
guarantees offered by Bayou [36]. Bounded staleness
has been proposed in a number of systems [9][46]. Our
definition of causal consistency resembles that used in
other systems [28][30] but includes the notion of
sessions. Like previous storage systems, it only
considers causal dependencies between Puts and Gets
and does not track causality through direct client-to-
client messages.

As will be evident when we discuss how these read
guarantees are implemented in Section 4, selecting a
guarantee may limit the set of servers that can process
a Get operation. Limiting the set of suitable servers
indirectly increases the expected read latency since
nearby servers may need to be bypassed in favor of
more distant, but more up-to-date replicas. For
example, strong reads must be directed to the primary
site; eventual reads can be answered by any replica
thereby delivering the best possible availability and
performance. The other read guarantees fall
somewhere in between these two consistency extremes
in terms of trading off consistency and latency.

Figure 3 shows the average latency obtained in our
system when performing Gets with certain consistency
choices. In this experiment, we geo-replicated data
across three datacenters with the primary site in
England and secondary sites in the U.S. and India, and
we ran the YCSB benchmark on clients in four
different locations; more details are discussed in
Section 5 where we present additional evaluations.
These numbers confirm that latency does indeed vary
drastically for different consistencies and also differs
significantly from client to client. Fortunately, when
using Pileus, an application developer need not be fully
aware of the performance consequences of choosing a
specific consistency guarantee or commit to a
particular choice; instead, the developer provides an
SLA to capture the application needs and preferences.

3.3 Service level agreements
In Pileus, consistency-based SLAs allow an

application developer to express his desired
consistency and latency for Get operations.
Importantly, an SLA indicates whether the system
should relax consistency or use servers with slower
response times when the application’s ideal
consistency and ideal latency cannot both be met given
the current conditions.

An SLA is specified as a sequence of consistency
and latency targets. Each consistency-latency pair is
called a subSLA. A given SLA can contain any number
of subSLAs. The first subSLA indicates the
application’s preferred consistency and latency. Lower
subSLAs denote alternatives that are acceptable but
less desirable. Generally, lower subSLAs permit lesser
consistency or higher latency or both.

 For example, the SLA for the shopping cart
application discussed in Section 2.1 can be expressed
as in Figure 4. This SLA says that the application
prefers the read-my-writes guarantee but can tolerate
eventual consistency and absolutely requires round-trip
times of under 300 ms. For the web applications
discussed in Section 2.2 that favor lower latency, the
SLA can be defined as in Figure 5. The SLA for the
password checking scenario discussed in Section 2.3 is
shown in Figure 6.

Pileus makes a best effort attempt to provide the
highest desired service. It may not always succeed in
meeting the top subSLA due to the configuration of
replicas and network conditions, over which Pileus has
no control, or because it makes a poor decision based
on inaccurate information as arising from changing
load conditions. Along with the data that is returned by
a Get, the caller is informed of which subSLA was
satisfied. This information allows the application to
take different actions based on the consistency of the
returned data.

If none of the subSLAs can be met, then the Get
call returns with an error code and no data. Thus,
unavailability in Pileus is defined in practical terms as
the inability to retrieve the desired data with
acceptable consistency and latency as defined by the
SLA. If an application wants maximum availability, it
need only specify <eventual, unbounded> as the last
subSLA. In this case, data will be returned as long as
some replica can be reached.

Consistency U.S. England
(Primary)

India China

strong 147 1 435 307
causal 146 1 431 306
bounded(30) 75 1 234 241
read-my-writes 13 1 18 166
monotonic 1 1 1 160
eventual 1 1 1 160

Figure 3. Average latency (in milliseconds)
observed for consistency choices and client

locations

Rank Consistency Latency Utility
1. read-my-writes 300 ms 1.0
2. eventual 300 ms 0.5

Figure 4. The shopping cart SLA

Associated with each subSLA is the utility of that
consistency-latency pair to the application. Lower-
ranked subSLAs have lower utility than higher-ranked
ones within the same SLA. The utility of a subSLA is
a number that allows applications to indicate its
relative importance. As will be seen in Section 4.6,
these utilities are used to decide the best strategy for
meeting an SLA. If Pileus were deployed as a public
cloud service with a tiered pricing model, the utility of
a subSLA ideally would match the price the storage
provider charges for the given level of service. In this
case, the storage provider has a strong incentive to
meet the highest subSLA possible, the one that will
generate the highest revenue.

4 Design and implementation
This section presents the design and

implementation of the Pileus system. The emphasis is
on the challenges faced in providing consistency-based
SLAs for access to data that is partitioned and geo-
replicated.

4.1 Architecture
The Pileus system contains the following major

components:
Storage nodes are servers that hold data and

provide a Get/Put interface. They know nothing about
consistency guarantees or SLAs. The Put operation
writes a new version with a given timestamp, while the
Get operation returns the latest version that is known to
the node. Any number of storage nodes may exist in
each datacenter. As discussed in more detail below,
some storage nodes are designated as primary nodes,
which hold the master data, while others are secondary
nodes.

Replication agents are co-located with storage
nodes and asynchronously propagate updates between
nodes. Any replication protocol could be used as long
as updates are applied in timestamp order. In our
current implementation, secondary nodes periodically
pull new versions of data objects from primary nodes
(though they could also receive updates from other
secondary nodes). Each replication agent simply
records the latest timestamp of any version it has
received and periodically, say once per minute,
retrieves versions with higher timestamps.

Monitors track the amount by which various
secondary nodes lag behind their primaries and
measure the roundtrip latencies between clients and
storage nodes. In the current system, each client has its
own monitor though having a shared monitoring
service could be useful (as discussed in Section 6.1).

The client library is linked into the application
code. It exports the API presented in Section 3 and
maintains state for sessions. Moreover, the client
library contains the logic for directing Get operations
to the storage nodes that maximize the expected utility
for a given SLA.

4.2 Replication and partitioning
For scalability, a large table can be sharded into one

or more tablets, as in other storage systems like
BigTable [16]. Horizontal partitioning divides each
table into tablets according to key-ranges. Tablets are
the granularity of replication and are independently
replicated on multiple storage nodes.

All Puts in Pileus are performed and strictly
ordered at a primary site, a set of storage nodes within
a datacenter. Different tablets may be configured with
different primary sites; only the primary site accepts
Put operations for keys in the tablet’s key-range. This
mimics the design of many commercial cloud storage
systems including Windows Azure Storage [14] and
PNUTS, except that PNUTS allows per-object masters
[17]. The advantages of this primary-update approach,
compared to a multi-master update scheme, are two-
fold. First, the primary site is an authoritative copy for
answering strongly consistent Gets. Second, the
system avoids conflicts that might arise from different
clients concurrently writing to different servers.

The primary site could consist of a fault-tolerant
cluster of servers, but any such structuring is invisible
to clients. The initial Pileus prototype, which is used
for the evaluations in section 5, designates a single
node as the primary. Clearly, this has limited fault-
tolerance that could be addressed by well-known
techniques such as the Paxos-based scheme used in
Spanner [19] or chain replication [41]. As an example,
we have built a second version of Pileus in which each
“node” is a Windows Azure Storage account utilizing
strongly consistent three-way replication.

Secondary nodes eventually receive all updated
objects along with their update timestamps via an
asynchronous replication protocol. Because this

Rank Consistency Latency Utility
1. bounded(300) 200 ms 0.00001
2. bounded(300) 400 ms 0.000008
3. bounded(300) 600 ms 0.000005
4. bounded(300) 1000 ms 0.0

Figure 5. The web application SLA

Rank Consistency Latency Utility
1. strong 150 ms 1.0
2. eventual 150 ms 0.5
3. strong 1 sec 0.25

Figure 6. The password checking SLA

protocol reliably transmits objects in timestamp order,
Pileus actually provides a stronger form of eventual
consistency than many systems, a guarantee that has
been called prefix consistency [37] or timeline
consistency [17]. No assumptions are made about the
time required to fully propagate an update to all
replicas, though more rapid dissemination increases a
client’s chance of being able to read from a nearby
node and hence increases the likelihood of satisfying a
latency-critical SLA.

Consistency choices and consistency-based SLAs
are applicable in any system that contains a mixture of
strongly consistent nodes that are synchronously
updated and eventually consistent secondary nodes that
are asynchronously updated, especially when there is a
large variation in access times to different nodes. This
is invariably the case in systems that employ world-
scale geo-replication, where performing synchronous
updates to large numbers of widely distributed storage
nodes is costly. But systems with both primary and
secondary nodes are also commonly deployed within a
datacenter or geographical region.

Our Pileus prototype is manually configured by a
system administrator. Currently, the system does not
automatically elect primary sites, create new replicas,
migrate nodes, or repartition tables. Other work has
shown how to provide more dynamic reconfiguration
[1][13][25], and we could adopt such mechanisms in
the future as they are largely orthogonal to our new
contributions.

4.3 Storage metadata
Each storage node maintains a single version of

each data object in its tablet. The state managed by a
node includes the following information:
 tablet store = set of <key, value, timestamp> tuples

for all keys in a range.
 high timestamp = the update timestamp of the latest

data object version that has been received and
processed by this node.

Since all Put operations are assigned increasing
update timestamps from the primary site and the
replication protocol transfers updated objects in
timestamp order, at any point in time, each node has
received a prefix of the overall sequence of Put
operations. Thus, a single high timestamp per node is
sufficient to record the set of updates that have been
processed at the node. When a node receives and
stores a new version of some data object, it updates its
high timestamp to the object’s update timestamp and
records this same timestamp with the stored object.

If no Puts have updated the tablet recently,
secondary nodes will receive no new versions during
their periodic replication. In this case, the primary
sends its current time causing secondary nodes to

advance their high timestamps; this permits clients to
discover that these nodes are up-to-date.

In response to a Get(key) request, the node replies
with its locally stored version of the object with the
requested key. Included in the response is the object’s
timestamp as well as the node’s high timestamp.

4.4 Consistency-specific node selection
When selecting the node to which a Get operation

should be sent, the desired consistency guarantee,
along with the previous object versions that have been
read or written in the current session and the key being
read, determines the minimum acceptable read
timestamp. This read timestamp can be computed
based solely on information maintained by the client.
Any storage node whose high timestamp is greater than
or equal to this minimum acceptable read timestamp is
sufficiently up-to-date to process the Get request. In
other words, the minimum acceptable read timestamp
indicates how far a secondary node can lag behind the
primary and still provide an answer to the given Get
operation with the desired consistency. Figure 7
illustrates an example in which a node can provide any
of the consistency choices except for strong and causal.

For strong consistency, the minimum acceptable
read timestamp must be at least as large as the update
timestamp of the latest Put to the key that is being Get.
This guarantees, as expected, that each Get accesses
the latest version of the object. In practice, clients do
not actually need to determine the minimum acceptable
read timestamp for strongly consistent Gets. The client
simply sends such operations to the key’s primary site.

For read-my-writes guarantees, the client’s session
state records the update timestamps of any previous
Puts in the session. The minimum acceptable read
timestamp is the maximum timestamp of any previous
Puts to the key being accessed in the current Get.

For monotonic reads, the client’s session state
records each key along with the timestamp of the latest
object version returned by previous Gets. The
minimum acceptable read timestamp is the recorded
timestamp for the key being accessed in the Get.

 For bounded staleness, the minimum acceptable
read timestamp is simply the current time minus the
desired time bound. Clients and storage nodes need
only have approximately synchronized clocks since
staleness bounds tend to be large, often on the order of
minutes. Work has shown that clocks can be tightly
synchronized even across globally-distributed
datacenters [19].

For causal consistency, observe that, because Puts
are performed in causal order at the primary site, each
secondary node always holds a causally consistent, but
perhaps stale, copy of a tablet. However, causal
consistency could still be violated if clients perform
Gets from randomly selected nodes. Causal

consistency can be guaranteed, while still allowing
clients a choice of servers, by setting the minimum
acceptable read timestamp in a similar manner to the
monotonic reads and read-my-write guarantees.
Specifically, the minimum acceptable read timestamp
is the maximum timestamp of any object that was
previously read or written in this session.

For eventual consistency, the minimum acceptable
read timestamp is simply time zero. Get operations are
thus allowed to be sent to any storage node for the
given key.

4.5 Monitoring storage nodes
Clients need information about both the network

latency and high timestamp of each storage node.
Monitors residing in each client record the set of nodes
for each tablet along with their pertinent statistics.
This information is collected as clients perform Get
and Put operations on various nodes; for nodes that
have not been accessed recently, the monitor may send
active probes. The monitor measures the round-trip
latency of each operation and records a sliding window
of the last few minutes of measurements. It also
records the maximum high timestamp that it has
observed for each node. Monitors implement three
main operations that return probability estimates based
on the recorded information.

PNodeCons (node, consistency, key) returns a number
between zero and one indicating a conservative
estimate of the probability that the given storage node
is sufficiently up-to-date to provide the given
consistency guarantee for the given key. Although
clients do not have perfect knowledge of each node’s
high timestamp, it only increases over time, and thus
stale information is still useful. The local monitor
returns one if the node’s last known high timestamp is
greater than the minimum acceptable read timestamp
for the given consistency (as discussed in the previous
subsection), and otherwise returns zero.

PNodeLat (node, latency) returns an estimate of the
probability that the node can respond to Gets within the
given response time. Determining whether the node is
likely to respond in time is based on past measurements
of its round-trip response times; a sliding window is
maintained so that the system reacts to changing
latency caused by failed links or varying load.
PNodeLat returns the fraction of previous times that are
less than the desired latency. More recent
measurements could be weighted higher than older
ones.

PNodeSla (node, consistency, latency, key) returns an
estimate of the probability that the given node can meet
the given consistency and latency for the given key.
This is obtained by multiplying PNodeCons (node,

consistency, key) by PNodeLat (node, latency).

4.6 Client-side SLA enforcement
One simple, but flawed scheme for meeting an SLA

is to broadcast each Get operation to all replicas, and
then take the first response that provides the desired
consistency and latency. However, broadcasting Gets
would be wasteful of network and server resources.
More importantly, such a strategy would yield a
multiplicative increase in the client’s financial costs
since cloud service providers charge for each byte that
is sent/received and for each operation performed.

The client library’s main responsibility is to
determine the minimum acceptable read timestamp
based on the session’s SLA and send each Get
operation to a single node (or perhaps small set of
nodes) that can provide data at the desired consistency
and also can meet the target round-trip latency.

Figure 7. Acceptable read timestamp ranges for
different consistency guarantees

SelectTarget (SLA, key) =
 maxutil = -1;
 bestnodes = {};
 bestlatency = ∞;
 targetSLA = null;
 foreach subSLA in SLA
 foreach node in key.replicas
 util = PNodeSla (node, subSLA.consistency,
 subSLA.latency, key) * subSLA.utility;
 if (util > maxutil)
 targetSLA = subSLA;
 maxutil = util;

 bestnodes = node;
 else if (util = maxutil)

 bestnodes = bestnodes + node;
 foreach node in bestnodes
 if (node.latency < bestlatency)
 bestnodes = node;
 bestlatency = node.latency;
 return targetSLA, bestnodes;

Figure 8. Algorithm that selects target subSLA
and node for each Get operation

time 0 now

strong
read-my-writes

monotonic

bounded
causal

eventual

node’s high timestamp

4.6.1 Choosing a target subSLA
Recall that an SLA consists of an ordered list of

subSLAs where each subSLA has an application-
provided utility. The client library’s goal in selecting a
storage node is to maximize the expected utility.
Figure 8 illustrates the algorithm used when presented
with a Get operation and an SLA.

For each subSLA and each node storing the key
that is being accessed by the Get, the client computes
the expected utility that would accrue from sending the
Get to that node. This expected utility is the product of
the PNodeSla function provided by the monitor and the
utility associated with this subSLA. The client selects
the target subSLA with the highest expected utility
along with the set of nodes that it believes can best
meet this subSLA at the current time. If multiple nodes
offer the same expected utility, the client chooses the
one that is closest. Alternatively, the client could
choose one at random to balance the load or pick the
one that is most up-to-date.

Note that the application’s top subSLA is not
always chosen as the target subSLA. For example,
consider the shopping cart SLA specified in Figure 4.
If the second subSLA has a utility that is only slightly
less than that of the first subSLA and the first subSLA
has a much lower chance of success, then the client
will select the second subSLA as its target and choose
among the nodes that can provide eventually consistent
data rather than aiming for read-my-writes consistency.

4.6.2 Determining which subSLA was met
The client measures the time between sending a Get

and getting a reply, and uses this round-trip latency
along with timestamps included in the reply to
determine whether the target subSLA was met. The
client may determine that some higher or lower
subSLA was satisfied.

In the response to each Get operation, along with
the value of the requested data object, a storage node
includes its current high timestamp. Given the
minimum acceptable read timestamps for each
consistency guarantee, the client can use the
responding node’s high timestamp to determine what
consistency is actually being provided for a particular

Get. The client uses this actual consistency, along with
the measured round-trip latency, to determine which
subSLA was satisfied and returns this indication to the
Get’s caller.

Interestingly, a Get may meet a higher subSLA than
the target subSLA. For example, revisiting the
shopping cart SLA, although the client may have
chosen a node that it believed would provide only
eventual consistency, the storage node may return an
object whose version satisfies the read-my-writes
guarantee as illustrated in Figure 9. This could very
well happen in practice when the client has outdated
information for storage nodes, and hence severely
underestimates whether a node can meet a guarantee.

5 Evaluation
This section describes experiments we conducted to

evaluate Pileus in a globally distributed datacenter
environment. The goal was to verify that adapting
consistency to different conditions in accordance with
application-specific SLAs can yield significant benefits
compared to selecting a fixed consistency.

5.1 Experimental set-up
For these experiments, Pileus was run on a research

test bed connecting private datacenters in different
parts of the world. As shown in Figure 10, the primary
storage node was in England and secondary nodes were
placed on the U.S. West Coast and in India. We
evaluate configurations where the client runs in the
same datacenter as one of the nodes as well as when it
is in China.

The widely used YCSB benchmark [18], which was
developed for evaluating the performance of cloud-
based key-value stores, provided the workload that we
used in our experiments. In this workload, clients
perform equal numbers of Puts and Gets to a collection
of 10,000 keys. We adapted this workload to add the
notion of sessions. In particular, we started a session,
performed 400 Gets and Puts in this session, then
ended the session and started a new one.

One client performs all of the Gets and Puts in the
benchmark. The origin of the Puts is irrelevant since
they all are performed on the primary node, and so the

Figure 9. Meeting a higher subSLA than
predicted

Figure 10. Experimental configuration with the
average round-trip latency (in milliseconds)

between datacenters in four countries

0 no
w

read-my-writes
eventual

actual high
timestamp

recorded high
timestamp

results are the same as if a distributed set of clients
were performing concurrent updates. Once per minute,
both secondary nodes pull all newly created versions
from the primary.

The goal is to measure how well the client’s Get
operations meet a given consistency-based SLA. We
use the shopping cart SLA in Figure 4 and the
password checking SLA in Figure 6; the third SLA
presented in Figure 5 is not evaluated since it uses a
single consistency and would not provide additional
insights into Pileus. We compare Pileus to three
alternative systems that use simpler, fixed strategies for
deciding where to send each Get operation:
 Primary always performs Gets at the primary node.

This is equivalent to systems like Azure [14] that
only offer strong consistency or choosing strong
reads in SimpleDB [5].

 Random performs each Get at a node selected
randomly from one of the three. This mimics the
behavior of SimpleDB when clients choose
eventually consistent reads [44].

 Closest always performs Gets at the node with the
lowest average latency. Thus, it promises only
eventual consistency.

The comparison metric used for all experiments is
the average delivered utility. Recall that each SLA
consists of a list of subSLAs each with their own
numerical utility. For each Get operation, Pileus
returns an indication of which subSLA was met. For
the alternative systems, we similarly determine the
subSLA that was met for each Get even though their
behavior does not depend on the given SLA. The
subSLA, in turn, determines the utility that is delivered
for each Get, and we average this delivered utility over
all operations in the workload.

5.2 Shopping cart SLA
Figure 11 shows results for the shopping cart SLA.

The fixed strategy of always sending Gets to the
primary works well for clients in the U.S. and England
since their round-trip latencies are always below the
desired 300 ms, but completely fails for clients in India
and China. As expected, choosing random nodes is not

ideal for anyone since a too-distant node is often
chosen. Choosing the closest storage node works
reasonably for this particular SLA since the read-my-
writes consistency guarantee can be met at least 90% of
the time. But there are times when clients (except
those in England) receive only eventual consistency
from their local node; these clients obtain an average
utility from 0.95 for the U.S. client to 0.98 for India.
Pileus’s utility-driven strategy always performs well.

Table 1 provides more detail on the decisions made
by the Pileus client in trying to meet this SLA; this
table indicates the percentage of Gets for which Pileus
selects each combination of target subSLA and storage
node. When the client is in the U.S., Pileus always
chooses the top subSLA as its target. This client reads
from the local U.S. node 90.9% of the time, i.e. when
this node can provide the read-my-writes guarantee,
and otherwise sends its Gets to England. This results
in a perfect average utility unlike the Closest strategy.
Note that Pileus and the Primary strategy both satisfy
the top subSLA 100% of the time, but Pileus obtains an
average latency of 14.48 ms compared to 148 ms when
accessing the primary. When the client is in England,
Pileus always reads from the local node, as expected.
With the client in India, Pileus targets the top subSLA
if it believes that the read-my-writes guarantee can be
met locally or by accessing the U.S. and otherwise
targets the second subSLA. It almost always chooses
to access the local secondary in India, and it obtains a
high utility value since this secondary is quite often
sufficiently up-to-date. The results for the client in
China are similar although all of its Get operations are
sent to remote nodes; it does, however, experience
much higher round-trip times. The China client
mostly accesses the U.S. node since it is the closest.
Occasionally, 0.4% of the time, it discovers that the
India node can meet the read-my-writes guarantee
while the U.S. node cannot. It never accesses England
since the latency is too high.

5.3 Password checking SLA
Using the password checking SLA produces the

results in Figure 12 and a more detailed breakdown in

Client Target
SubSLA

Get from
U.S.

Get from
England

Get from
India

SubSLA
Met

Avg.
Utility

U.S. 1 90.9% 9.1% 0% 100% 1.0
 2 0% 0% 0% 0%

England 1 0% 100% 0% 100% 1.0
 2 0% 0% 0% 0%

India 1 0.2% 0% 95.9% 96.1% 0.98
 2 0% 0% 3.9% 3.9%

China 1 95.1% 0% 0.4% 95.5% 0.98
 2 4.5% 0% 0% 4.5%

Table 1. Breakdown of Pileus client decisions for
shopping cart SLA

Figure 11. Utility of shopping cart SLA for

clients in U.S., England, India, and China

Table 2. Again, Pileus targets the top subSLA when
the client is in the U.S. or England and always reads
from the primary. When the client is in the U.S.,
choosing to read from the remote primary rather than
the local secondary is almost always the correct
decision, though occasionally the primary does not
respond quickly enough, resulting in a .99 average
utility. When the client is in India, Pileus believes the
top subSLA to be unattainable since the primary is too
far away, and thus it targets the second subSLA and
reads from the local secondary. The client in China is
so remote that Pileus forgoes the top two subSLAs and
targets the third one, causing it to read from the
primary but delivering only a 0.25 utility; in contrast,
the Closest strategy always accesses the U.S. and
receives a zero utility, which is worse than Random’s
0.08 average utility.

5.4 Adaptability to network delays
To explore how well Pileus adapts to latencies that

change drastically over time, we repeated our
experiments for the password checking SLA while
introducing artificial delays in the round-trip times for
Get operations. Figure 13 shows the delivered utility
for Gets performed over a period of almost six minutes.
Initially, with no added delays, the client (in the U. S.)
always chooses to go to the primary (in England) for
the first subSLA but occasionally the primary does not
respond in time (as previously indicated in Table 2).
At the point labeled #1 in Figure 13, the latency to the
primary node was increased by 300 ms; we simply
added 300 ms to the measured round-trip times that
were reported to the client. Such an increase might
happen in practice if the primary or its
inbound/outbound network becomes overloaded. For
some small period of time (between points #1 and #2 in
the figure), the client continued to choose the top
subSLA and continued to send all of its Gets to the
primary. None of these Gets returned in time to meet
the top subSLA but they did satisfy the third subSLA,
resulting in a utility of 0.25.

Eventually, the client learned that the primary was
too far away, switched to the second subSLA, and
started performing Gets on the local node (between

points #2 and #3 in the figure). At point #3, we added
300 ms to the latency when accessing the local node.
For some period (between points #3 and #4) the client
continued to use the local node, but it responded too
slowly and was too inconsistent to meet any of the
subSLAs, resulting in a utility of zero. Note that in this
case, after receiving a local response, the client could
have performed the Get at the primary and still have
met the third subSLA within the specified 1-second
bound; we are considering adding such a strategy to the
client library. At point #4, the client decided correctly
that only the third subSLA could be met and resumed
sending Gets to the primary.

At point #5 we reduced the access latency to the
local node back to a millisecond, and at point #6 we
restored the average latency to the primary to the usual
149 ms. The client eventually discovers, through
periodic probes, that it can regularly access its local
site with low delay, and the client switches back to
choosing the second subSLA; this switch takes a while
since the client probes infrequently and has some built-
in hysteresis. Later, sometime after point #6, the client
switches to targeting the top subSLA and resumes
sending Gets to the primary. This experiment clearly
demonstrates Pileus’s ability to select a strategy that
maximizes the delivered utility in response to varying
network latencies.

5.5 Sensitivity to utility values
Finally, to study the sensitivity of our results to the

utility number included in an SLA, we varied the
utilities for the password checking SLA in Figure 6.
We multiplied the utilities of the second and third
subSLAs by a factor from 2, which places the second
subSLA on par with the first, to 0.1, which makes the
top subSLA considerably more valuable. These results
are presented in Figure 14. Observe that different
utilities affect the relative rankings of the fixed
selection schemes but Pileus again outperforms them.

Figure 12. Utility of password checking SLA

Client Target
SubSLA

Get from
U.S.

Get from
England

Get from
India

SubSLA
Met

Avg.
Utility

U.S. 1 0% 100% 0% 99.4% 0.99
 2 0% 0% 0% 0%
 3 0% 0% 0% 0.6%

England 1 0% 100% 0% 100% 1.0
 2 0% 0% 0% 0%
 3 0% 0% 0% 0%

India 1 0% 0% 0% 0% 0.5
 2 0% 0% 100% 100%
 3 0% 0% 0% 0%

China 1 0% 0% 0% 0% 0.25
 2 0% 0% 0% 0%
 3 0% 100% 0% 100%

Table 2. Breakdown of Pileus client decisions for
password checking SLA

5.6 Summary
In all of the configurations that we measured, Pileus

delivered the same utility as the best performing fixed
consistency scheme. As expected, always requesting
strong or always requesting eventual consistency
yielded suboptimal service in some configurations.
Pileus was able to adapt the service provided to clients
in different locations to best meet the target SLA.

6 Extensions and future work
6.1 Enhanced monitoring

Although the monitoring performed in Pileus does
not consume many resources, especially when it
piggybacks on normal traffic, it could potentially be
improved. For one thing, clients could adapt the rate at
which they send periodic probes based on the data they
obtain. If the latency to a node is fairly stable and the
consistency predictable, then clients could probe less
frequently.

Even if communication latencies are well-known,
probes are used to determine the staleness of a storage
node. Clients could potentially predict a node’s high
timestamp based on the time that it last communicated
with the node as well as knowledge about the update
rates for various objects and the replication protocol’s
propagation delay.

Additionally, clients could share monitoring
information with other clients in the same datacenter.
We have considered having a distributed monitoring
service that is detached from individual clients, perhaps
with monitors in every region of the world, or having
clients gossip monitoring information among
themselves. Exploring the relationship between the
amount of traffic generated by various monitoring
schemes and the accrued benefits is an interesting
subject for future work.

6.2 SLA-driven reconfiguration
Currently, we assume that the number and

placement of storage nodes is outside of Pileus’s
control. However, given knowledge of the SLAs being
used by various clients, the system could make
reasonable re-configuration decisions. For example,
Pileus might automatically move the primary to a

different datacenter in order to maximize the utility
delivered to its clients. If one client has stringent
latency requirements but loose consistency needs, a
new secondary storage node could be placed nearby.
Similarly, the rate at which updated data objects are
propagated from the primary to secondary nodes could
be adjusted based on the clients’ desired consistency
and proximity. We are currently investigating SLA-
driven reconfiguration.

6.3 Parallel Gets
The current system sends each Get operation to a

single node based on utility estimates. This policy
minimizes client costs when storage providers charge
for each operation. However, clients could receive
more rapid responses and more up-to-date data when
sending a Get in parallel to two or more nodes that are
predicted to provide roughly the same service,
particularly in cases where changing conditions lead to
poor utility estimates. Existing methods for computing
expected utilities could be used in a cost-benefit
analysis to explore multi-node selection schemes.

6.4 Multi-site Puts
Our current implementations perform Put operations at
a single primary site, i.e. a cluster of storage nodes
within a datacenter. Generally, the cost of Put
operations can be traded off against the cost of strongly
consistent Get operations. If the system synchronously
sends Puts to a larger collection of primary nodes,
possibly nodes that are replicated across datacenters or
even across regions, the expected latency of strong
Gets is reduced (and the availability of such operations
increases). A wider distribution of primary nodes can
positively affect Gets with other consistency choices as
well, except for eventual consistency. A thorough
study of these Put/Get trade-offs remains future work.

7 Related work
The design of Pileus adopts and extends prior work

on cloud storage systems, variable consistency, and
service level agreements. However, we are not aware
of other systems that combine consistency guarantees
with latency targets as part of a storage service SLA.

Figure 13. Behavior under varying latency

Figure 14. Behavior under varying utility

Numerous cloud storage systems have been
designed with a variety of data models, read and write
operations, replication protocols, consistency, and
partitioning schemes. Some key-value store probably
exists with every imaginable combination of features
and occupies every point in the space of consistency,
scalability, availability, cost, and performance trade-
offs. These include Dynamo [20], SimpleDB [5],
BigTable [16], PNUTS [17][35], Cassandra [27],
Windows Azure [14], Spanner [19], and many more
[15]. Pileus borrows from many of these systems its
simple Get/Put interface, key-range partitioning, geo-
replication, and primary-update model.

Researchers have observed the need for more
flexible storage designs that permit tradeoffs between
consistency and availability [33]. Some cloud storage
systems offer both strongly consistent and eventually
consistent read operations [22][43][17][2][8], and
papers have suggested switching between these options
based on application classes [26][45]. Studies have
shown that even eventually consistent systems
frequently deliver strongly consistent data [11][44].
Researchers have proposed consistency models with
guarantees that lie between these two extremes, such as
session guarantees [36], continuous consistency
[3][9][46], RedBlue consistency [29], and causal
consistency [30], and many have been shown to be
useful in diverse applications [10][36][42][23][34].
However, very few of these are being used in current
systems. To the best of our knowledge, Pileus is the
first cloud storage system to offer a broad choice of
consistency guarantees, and allow the requested
consistency to vary for each Get even when accessing
the same data.

Service level agreements are an integral part of
cloud services, including storage and networking. But
such SLAs mainly focus on performance metrics and
availability. For example, a typical SLA for an
Amazon service guarantees “a response within 300ms
for 99.9% of its requests” [20]. Others have suggested
including consistency in SLAs [7] and developed
algorithms for checking consistency [6][21], but Pileus
is the first system to actually support consistency-based
SLAs.

8 Conclusions
The Pileus storage system’s main contribution is

support for consistency-based SLAs that allow
developers to declaratively specify their needs using a
choice of consistency guarantees coupled with latency
targets. Get operations access data that is partitioned
and replicated among servers in all parts of the world
while conforming to such SLAs. Consistency-based
SLAs allow applications that were written to tolerate
eventual consistency, as are many cloud applications

today, to benefit from increased consistency when the
performance cost is not excessive. When conditions
are favorable, such as when the application is running
in the same datacenter as up-to-date replicas, Pileus is
able to deliver ideal consistency and latency to the
application, and when conditions are less favorable,
such as when nodes fail or become overloaded or
clients are far from their frequently accessed data, the
application’s SLA indicates how best to adapt.

Pileus cleanly separates the mechanism for finding
versions of a data object with the desired consistency
from the techniques for selecting servers that can meet
an SLA given existing network and server
characteristics. Timestamp mechanisms support a
broad range of consistencies while monitoring permits
clients to independently select subSLAs that maximize
the utility delivered to their local applications.

While our early experimental results show that
consistency-based SLAs can indeed improve
application-specific levels of service, further studies
are needed to explore the full space of practical SLAs.
Future work will investigate additional schemes for
monitoring/predicting the lag and performance of
storage nodes, expanding the choice of consistency
guarantees, and automatically configuring services
based on their applications’ SLAs.

9 Acknowledgements
For their feedback at various stages of our research,

we thank our colleagues including Paul Barham, Phil
Bernstein, Michael Isard, Rebecca Isaacs, Jean-
Philippe Martin, Rama Ramasubramanian, Masoud
Saeida Ardekani, Mike Schroeder, Chandu Thekkath,
and Yuan Yu. For letting us play with their client
library, we thank our friends in Windows Azure,
especially Brad Calder and Jai Haridas.

10 References
[1] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A.

Wolman, and H. Bhogan. Volley: Automated data
placement for geo-distributed cloud services.
Proceedings USENIX Symposium on Networked
Systems Design and Implementation (NSDI), April
2010.

[2] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch,
and C. Karamanolis. Sinfonia: A new paradigm for
building scalable distributed systems. ACM
Transactions on Computer Systems 27 (3),
November 2009.

[3] R. Alonso, D. Barbara, and H. Garcia-Molina.
Data caching issues in an information retrieval
system. ACM Transactions on Database Systems
15(3):359-384, September 1990.

[4] Amazon Web Services. Amazon DynamoDB
Pricing.
http://aws.amazon.com/dynamodb/pricing/

[5] Amazon Web Services. Amazon SimpleDB.
http://aws.amazon.com/simpledb/

[6] E. Anderson, X. Li, M. Shah, J. Tucek, and J.
Wylie. What consistency does your key-value
store actually provide? Proceedings USENIX
Workshop on Hot Topics in Systems
Dependability, 2010.

[7] M. Armbrust, A. Fox, D. A. Patterson, N. Lanham,
B. Trushkowsky, J. Trutna, and H. Oh. SCADS:
Scale-independent storage for social computing
applications. Proceedings Conference on
Innovative Data Systems Research (CIDR),
January 2009.

[8] J. Baker, C. Bond, J. C. Corbett, JJ Furman, A.
Khorlin, J. Larson, J.-M. Leon, Y. Li, A. Lloyd,
and V. Yushprakh. Megastore: Providing scalable,
highly available storage for interactive services.
Proceedings Conference on Innovative Data
Systems Research (CIDR), January 2011.

[9] D. Barbara-Milla and H. Garcia-Molina. The
demarcation protocol: A technique for maintaining
constraints in distributed database systems. VLDB
Journal 3(3):325-353, 1994.

[10] N. Belaramani, M. Dahlin, L. Gao, A. Nayate, A.
Venkataramani, P. Yalagandula and J. Zheng.
PRACTI replication. Proceedings USENIX
Symposium on Networked Systems Design and
Implementation (NSDI), May 2006.

[11] D. Bermbach and S. Tai. Eventual consistency:
How soon is eventual? An evaluation of Amazon
S3's consistency behavior. Proceedings Workshop
on Middleware for Service Oriented Computing,
December 2011.

[12] E. Brewer. CAP twelve years later: How the
“rules” have changed. IEEE Computer, February
2012.

[13] N. Bonvin, T. G. Papaioannou, and K. Aberer. A
self-organized, fault-tolerant and scalable
replication scheme for cloud storage. Proceedings
ACM Symposium on Cloud Computing (SoCC),
June 2010.

[14] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A.
Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav, J.
Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Khatri,
A. Edwards, V. Bedekar, S. Mainali, R. Abbasi, A.
Agarwal, M. Fahim ul Haq, M. Ikram ul Haq, D.
Bhardwaj, S. Dayanand, A. Adusumilli, M.
McNett, S. Sankaran, K. Manivannan, and L.
Rigas. Windows Azure Storage: A highly
available cloud storage service with strong

consistency. Proceedings ACM Symposium on
Operating Systems Principles (SOSP), October
2011.

[15] R. Cattell, Scalable SQL and NoSQL data stores,
ACM SIGMOD Record 39(4), December 2010.

[16] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D.
A. Wallach, M. Burrows, T. Chandra, A. Fikes,
and R. E. Gruber. Bigtable: A distributed storage
system for structured data. ACM Transactions on
Computer Systems 26(2), June 2008.

[17] B. Cooper, R. Ramakrishnan, U. Srivastava, A.
Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz,
D. Weaver, and R. Yerneni. PNUTS: Yahoo!’s
hosted data serving platform. Proceedings
International Conference on Very Large Data
Bases (VLDB), August 2008.

[18] B. F. Cooper, A. Silberstein, E. Tam, R.
Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with YCSB. Proceedings ACM
Symposium on Cloud Computing (SoCC), June
2010.

[19] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C.
Frost, JJ Furman, S. Ghemawat, A. Gubarev, C.
Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E.
Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D.
Nagle, S. Quinlan, R. Rao, L, Rolig, Y. Saito, M.
Szymaniak, C. Taylor, R. Wang, and D.
Woodford. Spanner: Google’s globally-distributed
database. Proceedings USENIX Symposium on
Operating System Design and Implementation
(OSDI), October 2012.

[20] G. DeCandia, D. Hastorun, M. Jampani, G.
Kakulapati, A. Lakshman, A. Pilchin, S.
Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon's highly available key-value
store. Proceedings ACM Symposium on Operating
Systems Principles (SOSP), October 2007.

[21] W. Golab , X. Li , and M. A. Shah. Analyzing
consistency properties for fun and profit.
Proceedings ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing (PODC),
June 2011.

[22] Google. Read consistency & deadlines: more
control of your datastore. Google App Engine
Blog, March 29, 2010.
http://googleappengine.blogspot.com/2010/03/read
-consistency-deadlines-more-control.html

[23] H. Guo, P.-Å. Larson, R. Ramakrishnan, and J.
Goldstein. Relaxed currency and consistency:
How to say "good enough" in SQL. Proceedings
ACM International Conference on Management of
Data (SIGMOD), June 2004.

http://aws.amazon.com/simpledb/
http://www.hpl.hp.com/techreports/2010/HPL-2010-98.pdf
http://www.hpl.hp.com/techreports/2010/HPL-2010-98.pdf
http://research.yahoo.com/node/2304
http://research.yahoo.com/node/2304
http://googleappengine.blogspot.com/2010/03/read-consistency-deadlines-more-control.html
http://googleappengine.blogspot.com/2010/03/read-consistency-deadlines-more-control.html

[24] J. Hamilton. The cost of latency. Perspectives
Blog, October 31, 2009.
http://perspectives.mvdirona.com/2009/10/31/The
CostOfLatency.aspx

[25] S. Kadambi, J. Chen, B. F. Cooper, D. Lomax, R.
Ramakrishnan, A. Silberstein, E. Tam, and H.
Garcia-Molina. Where in the world is my data?
Proceedings International Conference on Very
Large Data Bases (VLDB), August 2011.

[26] T. Kraska, M. Hentschel, G. Alonso, and D.
Kossmann. Consistency rationing in the cloud:
pay only when it matters. Proceedings
International Conference on Very Large Data
Bases (VLDB), August 2009.

[27] A. Lakshman and P. Malik. Cassandra: a
decentralized structured storage system. SIGOPS
Operating Systems Review 44(2), April 2010.

[28] L. Lamport. Time, clocks, and the ordering of
events in a distributed system. Communications of
the ACM 21(7), July 1978.

[29] C. Li, D. Porto, A. Clement, J. Gehrke, N.
Preguica, and R. Rodrigues. Making geo-
replicated systems fast as possible, consistent
when necessary. Proceedings USENIX
Symposium on Operating System Design and
Implementation (OSDI), October 2012.

[30] W. Lloyd, M. J. Freedman, M. Kaminsky, and D.
G. Andersen. Don't settle for eventual: Scalable
causal consistency for wide-area storage with
COPS. Proceedings ACM Symposium on
Operating Systems Principles (SOSP), October
2011.

[31] R. Minnear. Latency: The Achilles heel of cloud
computing. Cloud Computing Journal, March 9,
2011.

[32] Oracle. Oracle NoSQL Database. An Oracle
White Paper, September 2011.
http://www.oracle.com/technetwork/database/nosq
ldb/learnmore/nosql-database-498041.pdf

[33] A. Phanishayee, D. G. Andersen, H. Pucha, A.
Povzner, and W. Belluomini. Flex-KV: Enabling
high-performance and flexible KV systems.
Proceedings Workshop on Management of Big
Data Systems, September 2012.

[34] M. Serafini and F. Junqueira. Weak consistency as
a last resort. Proceedings ACM Workshop on
Large Scale Distributed Systems and Middleware
(LADIS), July 2010.

[35] A. E. Silberstein, R. Sears, W. Zhou, and B. F.
Cooper. A batch of PNUTS: Experiences
connecting cloud batch and serving systems.

Proceedings International Conference on
Management of Data (SIGMOD), June 2011.

[36] D. Terry, A. Demers, K. Petersen, M. Spreitzer,
M. Theimer, and B. Welch. Session guarantees for
weakly consistent replicated data. Proceedings
IEEE International Conference on Parallel and
Distributed Information Systems, 1994.

[37] D. B. Terry, M. M. Theimer, K. Petersen, A. J.
Demers, M. J. Spreitzer, and C. H. Hauser.
Managing update conflicts in Bayou, a weakly
connected replicated storage system. Proceedings
ACM Symposium on Operating Systems Principles
(SOSP), December 1995.

[38] D. Terry, V. Prabhakaran, R. Kotla, M.
Balakrishnan, and M. K. Aguilera. Transactions
with consistency choices on geo-replicated cloud
storage. Microsoft Technical Report MSR-TR-
2013-82, September 2013.

[39] D. Terry. Replicated data consistency explained
through baseball, Microsoft Technical Report
MSR-TR-2011-137, October 2011. To appear in
Communications of the ACM, December 2013.

[40] J. F. Van Der Zwet. Layers of latency: Cloud
complexity and performance. Wired, September
18, 2012.

[41] R. van Renesse and F. B. Schneider. Chain
replication for supporting high throughput and
availability. Proceedings USENIX Symposium on
Operating System Design and Implementation
(OSDI), December 2004.

[42] W. Vogels. Eventually consistent.
Communications of the ACM, January 2009.

[43] W. Vogels. Choosing consistency. All Things
Distributed, February 24, 2010.
http://www.allthingsdistributed.com/2010/02/stron
g_consistency_simpledb.html

[44] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu.
Data consistency properties and the trade-offs in
commercial cloud storages: the consumers’
perspective. Proceedings Conference on
Innovative Data Systems Research (CIDR),
January 2011.

[45] X. Wang, S. Yang, S. Wang, X. Niu, and J. Xu.
An application-based adaptive replica consistency
for cloud storage. Proceedings IEEE International
Conference on Grid and Cloud Computing,
November 2010.

[46] H. Yu and A. Vahdat. Design and evaluation of a
conit-based continuous consistency model for
replicated services. ACM Transactions on
Computer Systems 20(3):239-282, August 2002.

http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency.aspx
http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency.aspx
http://dl.acm.org/citation.cfm?id=1687627.1687657
http://dl.acm.org/citation.cfm?id=1687627.1687657
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=331722
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=331722
http://dl.acm.org/citation.cfm?doid=1435417.1435432
http://dl.acm.org/citation.cfm?doid=1435417.1435432
http://www.allthingsdistributed.com/2010/02/strong_consistency_simpledb.html
http://www.allthingsdistributed.com/2010/02/strong_consistency_simpledb.html
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper15.pdf
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper15.pdf
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper15.pdf

